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Introduction

HANK models have gained more and more prominence

Role of borrowing limits, social inequality, transmission of monetary policy

Such models are hard to handle due to their elevated complexity

Heterogeneous agents facing idiosyncratic risks

Aggregate uncertainty and nonlinearities

Forces to study tractable approximations and limits the empirical analysis

Loss of interesting features such as ZLB or stochastic volatility

⇒ New approach based on machine learning to estimate complex models

Estimation of a HANK model in its nonlinear specification
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Estimation with Neural Networks

Neural networks (NN) are the fundamental building block of our approach

→ Neural networks can tame curse-of-dimensionality and are very scalable

Why is it challenging to estimate complex models?

1. It is infeasible to solve such complex models sufficiently often

→ We exploit the scalability of NN to solve the model only ONCE

Treat parameters as pseudo state variables and adapt the NN training

2. It is very costly to evaluate the likelihood with a Monte Carlo filter repeatedly

→ We develop a particle filter trained neural network approach

Training of additional NN to provide the outcome of the filter
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Proofs of Concept

1. Neural network based solution vs. analytical one for a simple model

Solution based on our extended neural network with pseudo state variables

Laboratory model is a version of the linearized 3 equation NK model

⇒ Extended neural network coincides with true solution

2. Neural network based estimation vs. conventional one for a nonlinear model

Focus on Bayesian estimation with neural networks

Laboratory model is a RANK model with a zero lower bound

⇒ The estimation results are very similar
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Estimating a Non-Linear HANK Model

Nonlinear Heterogeneous Agent New Keynesian model as laboratory

Idiosyncratic income risk and borrowing limit for households

Several aggregate shocks, backward looking components and ZLB

Estimation includes 12 parameters

No restriction on the parameters that can be considered

Identification of parameters related to idiosyncratic risk is weak

⇒ Our estimation procedure can recover the true-data generating process

⇒ Capturing idiosyncratic and aggregate risk simultaneously is important

Interactions between nonlinearieties, aggregate uncertainty and heterogeneity

Kase, Melosi, Rottner Estimating HANK with Neural Networks July 21, 2022 5 / 29



Literature

Neural Networks in Macroeconomic Modeling

Fernandez-Villaverde et al. (2020), Chen et al. (2021), Maliar, Maliar and
Winant (2021), Azinovic et al. (2022)

⇒ Neural network based likelihood estimation procedure

HANK models, Aggregate Uncertainty and Nonlinearities

Reiter (2009), Ahn et al. (2018), Boppart et al.(2018), Auclert et al. (2021),
Winberry (2021), Gorodnichenko et al. (2021), Fernandez-Villaverde et al.

⇒ Strategy that exploits neural networks to estimate HANK models

Estimation of HANK models

Auclert et al. (2020,2021), Bayer et al. (2019), Lee (2021)

⇒ Estimation of nonlinear HANK model with individual and aggregate risk
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Challenge for Estimation and Neural Networks

Estimation of complex nonlinear models

E.g., HANK models with aggregate and individual nonlinearities

Requires the repetition of two expensive steps again and again

1. Solve the model for a considered parameters combination

2. Evaluate the fit of the model with the data (with a particle filter)

Seems to render estimation of complex models infeasible

⇒ A neural networks approach to overcome these issues

Proofs of concept and estimation of a HANK model
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Class of Models

Interested in solving DSGE models in its nonlinear specification

State variables St , shocks νt and structural parameters Θ

Dynamics of model can be summarized as (nonlinear) transition equation

St = f (St−1, νt ; Θ) ,

where function f is generally unknown and needs to be obtained numerically

Heterogeneity: Approximate distribution with finite number agents L More
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Key trick: Pseudo State Variables

Decisive step to solve these models is to obtain policy functions ψ (·):

ψt = ψ(St |Θ),

Key trick: Solve the policy function over an entire parameter range

Divide the parameters in two subsets

Θ = {Θ̃, Θ̄},

where Θ̃ is the set of parameters to be estimated and Θ̄ is the set of
parameters to be calibrated

Treat the (subset of) parameters as pseudo state variables

ψt = ψ(St , Θ̃|Θ̄),

⇒ Policy functions depend now on the state variables and the parameters
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Example: Linearized NK model

Small off-the-shelf linearized three equation NK model with TFP shock

Features an analytical solution

X̂ = EtX̂t+1 − σ−1
(
φΠΠ̂t + φY X̂t − EtΠ̂t+1 − R̂F

t

)
Π̂t = κX̂t + βEtΠ̂t+1

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAε

A
t

where X̂t is the output gap, Π̂ is inflation, RF
t is the risk free rate and εAt is

a TFP shock
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Example: Solution to Linearized NK Model

Solution to equation system depends on state variables and parameters

(
X̂t

Π̂t

)
= ψ

 R̂F
t︸︷︷︸

State St

, β, σ, η, φ, θΠ, θY , ρA, σA︸ ︷︷ ︸
Parameters Θ̃

 .

The analytical solution is given as (method of undetermined coefficients)

X̂t =
1− βρA

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F
t ,

Π̂t =
κ

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F
t .
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Graphical Characterization: Policy Function

Policy function over the parameter space θΠ ∈ [1.25, 2.75]
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Challenge

But, how can we solve such policy functions for models that feature jointly

1. Pseudo state variables for estimation Θ̃

2. Nonlinear dynamics (e.g. zero lower bound, borrowing limits)

3. Heterogeneous agents

Most numerical techniques are not well suited due to curse of dimensionality

⇒ NN tame the curse of dimensionality and are universal approximators More

Can handle high-dimensional input (e.g. many parameters, shocks, agents)

Can resolve local features accurately (e.g. nonlinear features)

Can capture irregularly shaped domain
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Remarkable Features of Neural Networks

1. Universal approximation theorem (Hornik et al. 1989, Cybenko 1989)

Sufficient wide NN can approximate any finite-dimensional function with any
desired non zero error

⇒ NN can be used to solve macroeconomic models

2. Scalability and curse of dimensionality (Barron, 1993, Bach, 2017)

NN handle high dimensional problems much better than classical function
approximators

⇒ Scalability allows to handle models with a large number of states

+ Extraordinary efficiency of modern machine learning software and hardware
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Extended Neural Network-Based Solution Method

We use NN to solve the extended policy functions ψNN(St , Θ̃|Θ̄)

Minimization of the Euler residual (loss function)

Training over thousands of iteration and number of economies (batch size B)

Training over parameter space and stochastic solution domain

Adjust NN training to solve policy function over entire parameter space

Θ̃ =
{[

Θ̃1, Θ̃1
]
,
[
Θ̃2, Θ̃2

]
, . . . ,

[
Θ̃P , Θ̃P

]}
We draw new parameters for each economy in each iteration

Combined with a simulation step to adjust solution domain for each draw

⇒ Extended neural network provides solution over entire parameter space
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Example: Linearized NK Model

We are interested in finding

(
X̂t

Π̂t

)
= ψNN

(
R̂F
t , β, σ, η, φ, θΠ, θY , ρA, σA

)
Minimization of the squared residual error (loss function)

err1 =X̂ −
(
EtX̂t+1 − σ−1

(
φΠΠ̂t + φY X̂t − EtΠ̂t+1 − R̂F

t

))
err2 =Π̂t −

(
κX̂t + βEtΠ̂t+1

)
Training NN over 100000 iterations and batch size of 500 economies

Stochastic solution from simulating R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAε

A
t

We train the extended NN by drawing from the bounded parameter space

Parameters LB UB Parameters LB UB
β Discount factor 0.95 0.99 θΠ MP inflation response 1.25 2.5
σ Relative risk aver. 1 3 θY MP output response 0.0 0.5
η Inverse Frisch elas. 1 4 ρA Persistence TFP shock 0.8 0.95
ϕ Price duration 0.5 0.9 σA Std. dev. TFP shock 0.02 0.1
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Neural Network: Inflation over the Parameter Space
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NN: Inflation over the Parameter Space (cont’d)
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Challenge for Estimation and Neural Networks

Estimation of complex nonlinear models

E.g., HANK models with aggregate and individual nonlinearities

Requires the repetition of two expensive steps again and again

1. Solve the model for a considered parameters combination

2. Evaluate the fit of the model with the data (with a particle filter)

Seems to render estimation of complex models infeasible

⇒ A neural networks approach to overcome these issues

Proofs of concept and estimation of a HANK model
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Neural Network Particle Filter

We need to evaluate the fit of the model with the data More

Particle filter calculates the likelihood of the nonlinear model

Calculation is noisy and can be time consuming ⇒ Bottleneck

Goal: Additional neural network that gives directly output of particle filter

Create a dataset of parameter values and corresponding likelihoods

Run the particle filter for randomly drawn values from the parameter
space

Train an additional neural network with this dataset

⇒ Particle filter trained neural network approach

Surrogate model that provides mapping from parameters to likelihood
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Graphical Characterization: NN based Particle Filter
Particle filter trained neural network

Use particle filter to create data, which then can used to train neural network
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Challenge for Estimation and Neural Networks

Estimation of complex nonlinear models

E.g., HANK models with aggregate and individual nonlinearities

Requires the repetition of two expensive steps again and again

1. Solve the model for a considered parameters combination

2. Evaluate the fit of the model with the data (with a particle filter)

Seems to render estimation of complex models infeasible

⇒ A neural networks approach to overcome these issues
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Comparison to Conventional Estimation

Estimation of a nonlinear model with neural networks

RANK model with zero lower bound in its fully nonlinear specification

True data-generating process to provide controlled environment

Neural network based Bayesian estimation

Extended neural network, surrogate particle filter, RWMH algorithm

Conventional methods follow Herbst and Schorfheide (2015)

Solve model with global methods, particle filter, RWMH algorithm

⇒ Estimation results are very similar and recover true data-generating process
More
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Estimation of Nonlinear HANK with Neural Networks

HANK with individual and aggregate nonlinearities

Households face idiosyncratic income risk s it and a borrowing limit B

E0

∑∞

t=0
βt exp(ζDt )

[(
1

1− σ

)
(C i

t − hCt−1)1−σ − χ
(

1

1 + η

)
(H i

t)
1+η

]
s.t. C i

t + B i
t = Wts

i
tH

i
t +

Rt−1

Πt
B i

t−1 − T i
t + Div i

t

s.t. Bt ≥ B

where idiosyncratic risk follows an AR(1) process: s it = ρss
i
t−1 + σsε

i
t

Aggregate shocks: preference ζD , growth rate gt and monetary policy mpt

Consumption habit h and persistence in the monetary policy rule ρR

Monetary policy is constrained by the zero lower bound

Rt = max

[
1,
(
RN
t−1

)ρR (
R

(
Πt

Π

)θΠ
(

Yt

ZtY

)θY
)1−ρR

exp(mpt)

]
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Setup and Training of Neural Networks

We are interested in finding the policy functions over the parameter range

Aggregate PFs: Inflation and wage

Individual PFs: Labor choice and multiplier on borrowing constraint

Model features 217 state variables

200 individual, 5 aggregate and 12 pseudo (parameters) states

Approximation of continuum with 100 agents

Training NN over 200000 iterations and batch size of 100 economies

Minimization of the squared residual error of 205 equations

Estimation, likelihood and particle filter

Observation equation connects output growth, inflation and interest rate

NN based particle filter trained with 15000 likelihood points

Metropolis Hastings algorithm with 500000 draws

⇒ Bayesian estimation of HANK model in its nonlinear specification
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Estimation: Results and Priors

Estimation
Par. Prior Neural Network

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters related to idiosyncratic risk
B Trc.N −0.29 0.05 −0.5 0.0 −0.27 −0.36 −0.18
ρs Trc.N 0.8 0.01 0.7 0.9 0.81 0.79 0.82
σs Trc.N 2.25% 0.5% 0.01% 3.0% 2.07 1.87 2.26

Parameters related to aggregate risk
h Trc.N 0.5 0.01 0.0 0.7 0.50 0.48 0.51
ϕ Trc.N 1000 25 700 1300 989 949 1028
ρr Trc.N 0.5 0.01 0.0 0.7 0.50 0.48 0.51
θΠ Trc.N 2.0 0.025 1.5 2.5 2.00 1.95 2.03
θY Trc.N 0.25 0.025 0.125 0.5 0.26 0.23 0.29
ρζ Trc.N 0.7 0.025 0.6 0.8 0.70 0.68 0.72
σζ Trc.N 3.0% 0.25% 0.1% 4.0% 3.08% 2.92% 3.25%
σg Trc.N 0.9% 0.1% 0.01% 1.5% 1.00% 0.92% 1.09%
σmp Trc.N 0.3% 0.1% 0.01% 0.6% 0.29% 0.27% 0.32%
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Posterior: Estimated Parameters and Idiosyncratic Risk
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Posterior: Estimated Parameters and Aggregate Risk
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Conclusion

Novel neural network based Bayesian estimation procedure

Extended neural network with pseudo state variables

Neural network based particle filter algorithm

Estimation of models with hundreds of state variables possible

Estimation of a HANK with individual and aggregate nonlinearities

Two proofs of concept based on simpler models

Techniques open up new exciting avenues for future research questions

Framework to think about monetary policy strategy and inequality
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Primer on Neural Networks

Deep learning uses deep neural networks (NN) as fundamental building block

NN are mathematical function that maps some inputs into outputs

Composed of several layers with neutrons

Hidden Layer

Output Layer

Hidden Layer

Input Layer

NN is trained with batch of data points to minimize a defined loss function

Back
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Incorporation of Heterogeneity

Heterogeneity usually assumes the existence of a continuum of agents

→ Distribution of states and shocks is infinite∫
SitdΩ and

∫
ν itdΩ,

We approximate the distribution with a finite number agents L{
Sit
}L
i=1

and
{
ν it
}L
i=1

.

The state variables and shock can be summarized as:

St =
{{

Sit
}L
i=1

,SAt
}

and νt =
{{
ν it
}L
i=1

, νAt

}
,

Individual and aggregate policy functions we adjust the policy functions

ψi
t = ψI (Sit ,St |Θ̄) and ψA

t = ψA(St |Θ̄).

Back
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Particle Filter

Observation equation connects the state variables with the observables Yt :

Yt = g(St |Θ̃) + ut ,

where g is a function and ut is a measurement error

Particle filter determines the likelihood

L
(
Y1:T ; Θ̃

)
= ΩPF

(
Y1:T ; Θ̃

)
Particle filter can be noisy and very time consuming for complex models

Using a filter to calculate the likelihood is still a bottleneck Back
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Nonlinear RANK Model with ZLB

Off-the-shelf New Keynesian model

Shocks to households’ preference to consumption

Price rigidities a la Rotemberg

Zero lower bound constraint on the nominal interest rate

Rt = max

[
1,R

(
Πt

Π

)θΠ
(

Yt

ZtY

)θY
]

We are interested in solving and estimating it in its nonlinear specification
Back
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Neural Network and Estimation

Training NN over 100000 iterations and batch size of 200 economies

We train the extended NN by drawing from the bounded parameter space

Stochastic solution from simulating the model after each draw

Observation equation with a sample size of 1000 periodsOutput Growth
Inflation

Interest Rate

 =

100 ln
(

Yt

Yt−1

)
400 ln (Πt)
400 ln (Rt)

+ ut

Estimation includes five structural parameters

Priors are truncated normal densities

15000 data points to train neural network based particle filter
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Estimation Results

Estimation
Par. Cal. Neural Network Conventional Approach

True Posterior Posterior
Value Median 5% 95% Median 5% 95%

θΠ 2.0 2.02 1.87 2.17 2.06 1.94 2.20
θY 0.25 0.251 0.238 0.263 0.248 0.237 0.258
ϕ 1000 988.6 935.1 1036.7 973.7 911.2 1037.2
ρζ 0.8 0.686 0.669 0.701 0.691 0.670 0.710
σζ 0.02 0.020 0.020 0.021 0.020 0.019 0.020

Neural network based estimation works very well

Posterior median is very close to the true value

The bounds of neural network and conventional method are very similar

Neural network method is much faster and much more scalable!
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Bayesian Estimation with NN: Posterior
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