Measuring the Welfare Cost of Asymmetric Information in Consumer Credit Markets

Anthony A. DeFusco^{*} Huan Tang[†] Constantine Yannelis[‡]

*Northwestern University and NBER [†]London School of Economics [‡] University of Chicago and NBER

Motivation

• Asymmetric information has theoretically important effects on credit markets

Akerlof (1970), Jaffee & Russel (1976), Stiglitz & Weiss (1981)

Motivation

- Asymmetric information has theoretically important effects on credit markets *Akerlof* (1970), *Jaffee & Russel* (1976), *Stiglitz & Weiss* (1981)
- Information asymmetries documented empirically in many credit markets

Mortgages

Stroebel (2016), Gupta & Hansman (2019)

• Auto loans

Adams, Einav & Levin (2009), Einav, Jenkins & Levin (2012)

Credit cards

Ausubel (1999), Agarwal et al. (2010, 2018)

• Payday and microcredit Karlan & Zinman (2009), Dobbie & Skiba (2013)

Fintech consumer loans

Hertzberg, Liberman & Paravisini (2018)

Motivation

- Asymmetric information has theoretically important effects on credit markets *Akerlof* (1970), *Jaffee & Russel* (1976), *Stiglitz & Weiss* (1981)
- Information asymmetries documented empirically in many credit markets

Mortgages

Stroebel (2016), Gupta & Hansman (2019)

• Auto loans

Adams, Einav & Levin (2009), Einav, Jenkins & Levin (2012)

• Credit cards

Ausubel (1999), Agarwal et al. (2010, 2018)

• Payday and microcredit Karlan & Zinman (2009), Dobbie & Skiba (2013)

• Fintech consumer loans Hertzberg, Liberman & Paravisini (2018)

Less work linking theory + empirics to measure welfare costs

This Paper: Empirical Context

- Estimate welfare losses from asymmetric information in Chinese "fintech" market
 - Fintech \equiv consumer lending facilitated by stand-alone online platforms
- Three features of this market motivate our focus on it
 - It is new \rightarrow scope for asymmetric information greater?
 - It is large \rightarrow China \approx half of global fintech lending
 - Collaboration with specific lender \rightarrow clean identification
- But the approach we use is general and can be applied to any credit market...

- Asymmetric information \rightarrow lenders' marginal costs \uparrow in interest rates
 - Adverse selection: higher rates attract riskier borrowers
 - Moral hazard: higher rates increase individual-level default risk

- Asymmetric information \rightarrow lenders' marginal costs \uparrow in interest rates
- Link between price and marginal cost \rightarrow inefficiently high pricing
 - In equilibrium, lenders set price = average cost > marginal cost = social cost

- Asymmetric information \rightarrow lenders' marginal costs \uparrow in interest rates
- Link between price and marginal cost \rightarrow inefficiently high pricing
- Key insight from insurance literature \rightarrow Einav, Finkelstein, & Cullen (2010)
 - Demand, AC, and MC curves are sufficient statistics for welfare analysis

- Asymmetric information \rightarrow lenders' marginal costs \uparrow in interest rates
- Link between price and marginal cost \rightarrow inefficiently high pricing
- Key insight from insurance literature \rightarrow Einav, Finkelstein, & Cullen (2010)
 - Demand, AC, and MC curves are sufficient statistics for welfare analysis
- An important distinction between credit and insurance markets
 - Default \rightarrow price you're quoted \neq price you pay

- Asymmetric information \rightarrow lenders' marginal costs \uparrow in interest rates
- Link between price and marginal cost \rightarrow inefficiently high pricing
- Key insight from insurance literature \rightarrow Einav, Finkelstein, & Cullen (2010)
 - Demand, AC, and MC curves are sufficient statistics for welfare analysis
- An important distinction between credit and insurance markets
 - Default \rightarrow price you're quoted \neq price you pay
- Implication of this distinction
 - Demand \neq willingness to pay \rightarrow need to estimate willingness to pay curve

- Einav, Finkelstein, & Cullen (2010)
 - Demand, AC, and MC curves are sufficient statistics for welfare analysis
- Our contributions
 - Show how to construct WTP curve from these inputs
 - Show that under moral hazard estimated welfare losses = upper bound

Step 1 - Adapt "cost curve" approach from insurance literature to credit markets

- Einav, Finkelstein, & Cullen (2010)
 - Demand, AC, and MC curves are sufficient statistics for welfare analysis
- Our contributions
 - Show how to construct WTP curve from these inputs
 - Show that under moral hazard estimated welfare losses = upper bound

Step 2 - Estimate these curves using randomized experiment

- Large fintech lender randomized interest rates offered to applicants
- Use to trace out how demand and costs vary with interest rates

Summary of Main Results

Asymmetric information is present in this market

- Increasing interest rate by $10pp \downarrow take-up$ rate by 4.3pp
- Increasing interest rate by 10pp ↑ charge-off rate by 1.0pp
- Borrowers who endogenously select in at higher rates have higher expected costs

Summary of Main Results

Asymmetric information is present in this market

- Increasing interest rate by $10pp \downarrow take-up$ rate by 4.3pp
- Increasing interest rate by 10pp ↑ charge-off rate by 1.0pp
- Borrowers who endogenously select in at higher rates have higher expected costs

Large equilibrium price distortion, but small overall welfare losses

- Equilibrium interest rate (D = AC): 30%
- Efficient interest rate (D = MC): 9%
- Welfare loss: 0.8% of loan amount (\approx \$7.20 per applicant)
- Small welfare loss driven by relatively inelastic demand

Summary of Main Results

Asymmetric information is present in this market

- Increasing interest rate by $10pp \downarrow take-up$ rate by 4.3pp
- Increasing interest rate by 10pp ↑ charge-off rate by 1.0pp
- Borrowers who endogenously select in at higher rates have higher expected costs

Large equilibrium price distortion, but small overall welfare losses

- Equilibrium interest rate (D = AC): 30%
- Efficient interest rate (D = MC): 9%
- Welfare loss: 0.8% of loan amount (\approx \$7.20 per applicant)
- Small welfare loss driven by relatively inelastic demand

Larger welfare losses among observably riskier borrowers

• Welfare losses 2x larger among borrowers with low initial credit scores

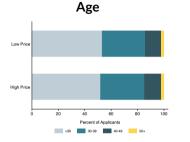
Empirical Setting, Experimental Design, and Data

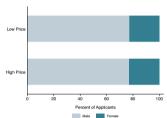
Empirical Setting

$\textbf{Our lender} \rightarrow \textbf{``The Platform''}$

- Popular Chinese platform specializing in small-dollar installment loans
 - Typical loan size: ¥6300 (\approx \$900)
 - Typical maturity: 12 months
 - Typical borrowing cost: 36%

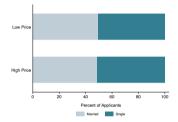
Empirical Setting

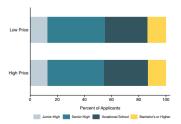

$\textbf{Our lender} \rightarrow \textbf{``The Platform''}$


- Popular Chinese platform specializing in small-dollar installment loans
 - Typical loan size: ¥6300 (\approx \$900)
 - Typical maturity: 12 months
 - Typical borrowing cost: 36%

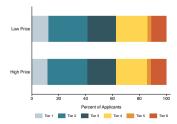
The experiment

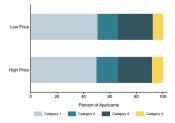
- Platform randomly selected pprox11K applicants in Q1 2018
- All had qualified for credit, but were offered different interest rates
- High-Price group: standard financing terms $\rightarrow \overline{r}$ = 36%
- + Low-Price group: 40% reduction borrowing costs $\rightarrow \bar{r}$ = 21.5%

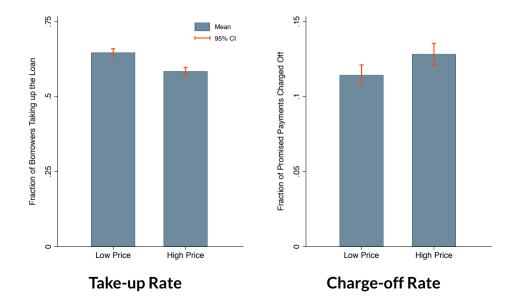

Covariate Balance Tests



Sex


Marital Status


Education


City Tier

Credit Rating

Evidence of Asymmetric Information

Conceptual Framework

Setup

- Contract space
 - One-period loans
 - Fixed loan size: L
- Lenders
 - Choose interest rate: r
 - $N \ge 2$, identical, risk-neutral
- Borrowers
 - Accept/reject loan offers at posted rate
 - Heterogeneous: $X \sim F(X)$
 - Expected default rate: δ(X_i)
 - Expected charge-off rate: *θ*(*X_i*)
 - Baseline: no moral hazard $\rightarrow \delta(X_i), \theta(X_i)$ independent of r

Borrower Demand

- Utility of accepting a loan: $u^{L}(X_{i}, r)$
- Outside option: $u^N(X_i)$
- Maximum acceptable rate

$$\rho(X_i) \equiv \max\{r: u^L(X_i, r) > u^N(X_i)\}$$

• Market demand curve

$$D(r) = \int \mathbb{1}(
ho(X) \ge r) dF(X)$$

Market Structure, Supply, and Equilibrium

• Expected profits

$$\Pi_{j} = \frac{L}{N} \times \int (r - \delta(X)\theta(X)(1+r) - c)\mathbb{1}(\rho(X) \ge r)dF(X) = 0$$

• c: "fixed" costs (e.g. cost of funds, customer acquisition)

Market Structure, Supply, and Equilibrium

• Expected profits

$$\Pi_{j} = \frac{L}{N} \times \int (r - \delta(X)\theta(X)(1+r) - c)\mathbb{1}(\rho(X) \ge r)dF(X) = 0$$

Average cost

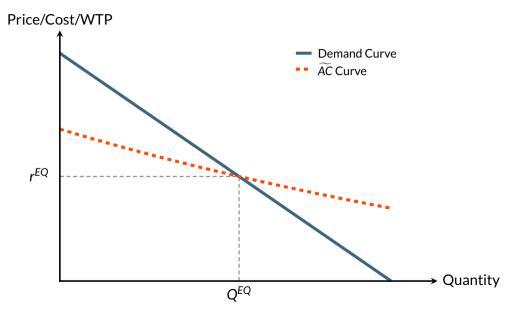
$$AC(r) = \frac{1}{D(r)} \int c(X) \mathbb{1}(\rho(X) \ge r) dF(X) = \mathbb{E}\left[c(X) \mid \rho(X) \ge r\right]$$

• $c(X) = c + \delta(X)\theta(X)$

Market Structure, Supply, and Equilibrium

• Expected profits

$$\Pi_{j} = \frac{L}{N} \times \int (r - \delta(X)\theta(X)(1+r) - c)\mathbb{1}(\rho(X) \ge r)dF(X) = 0$$


• Average cost

$$\mathsf{AC}(r) = \frac{1}{\mathsf{D}(r)} \int \mathsf{c}(\mathsf{X}) \mathbb{1}(\rho(\mathsf{X}) \geq r) d\mathsf{F}(\mathsf{X}) = \mathbb{E}\left[\mathsf{c}(\mathsf{X}) \mid \rho(\mathsf{X}) \geq r\right]$$

• Equilibrium pricing

$$r = \frac{\int c(X)\mathbb{1}(\rho(X) \ge r)dF(X)}{\int (1 - \delta(X)\theta(X))\mathbb{1}(\rho(X) \ge r)dF(X)} = \frac{AC(r)}{(1 + c) - AC(r)} \equiv \widetilde{AC}(r)$$

Graphical Representation of Equilibrium Outcome

Consumer surplus

$$\mathsf{CS} = \int \left[\left(m^{\mathsf{L}}(\mathsf{X}) - (1 - \delta(\mathsf{X})\theta(\mathsf{X}))\mathsf{rL} \right) \mathbb{1}(\rho(\mathsf{X}) \ge \mathsf{r}) + m^{\mathsf{N}}(\mathsf{X})\mathbb{1}(\rho(\mathsf{X}) < \mathsf{r}) \right] d\mathsf{F}(\mathsf{X})$$

- $m^{L}(X_{i})$: money-metric value of loan
- $m^N(X_i)$: money-metric value of no loan
- WTP = $m^L(X_i) m^N(X_i) = (1 \delta(X_i)\theta(X_i))\rho(X_i)L$

Consumer surplus

$$\mathsf{CS} = \int \left[\left(m^{\mathsf{L}}(\mathsf{X}) - (1 - \delta(\mathsf{X})\theta(\mathsf{X}))\mathsf{rL} \right) \mathbb{1}(\rho(\mathsf{X}) \ge \mathsf{r}) + m^{\mathsf{N}}(\mathsf{X})\mathbb{1}(\rho(\mathsf{X}) < \mathsf{r}) \right] d\mathsf{F}(\mathsf{X})$$

- $m^{L}(X_{i})$: money-metric value of loan
- $m^N(X_i)$: money-metric value of no loan
- WTP = $m^{L}(X_i) m^{N}(X_i) = (1 \delta(X_i)\theta(X_i))\rho(X_i)L$
- Producer surplus

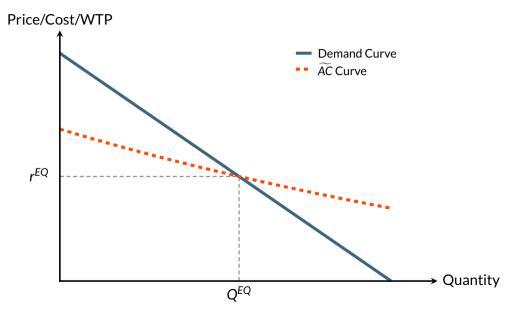
$$\mathsf{PS} = \mathsf{L} \times \int (r - \delta(\mathsf{X})\theta(\mathsf{X})(1+r) - c) \mathbb{1}(\rho(\mathsf{X}) \ge r) d\mathsf{F}(\mathsf{X})$$

• Total surplus

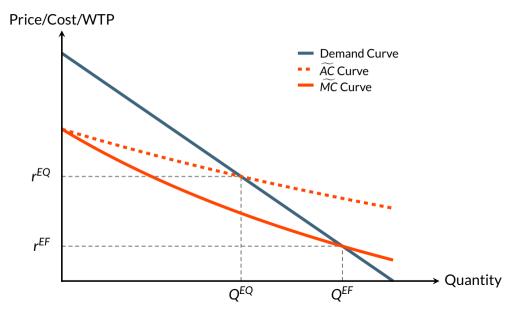
$$\mathsf{TS} = \mathsf{CS} + \mathsf{PS} = \int \left[\left(m^{\mathsf{L}}(\mathsf{X}) - c(\mathsf{X})\mathsf{L} \right) \mathbb{1}(\rho(\mathsf{X}) \ge r) + m^{\mathsf{N}}(\mathsf{X}) \mathbb{1}(\rho(\mathsf{X}) < r) \right] d\mathsf{F}(\mathsf{X})$$

- Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\mathbb{E}[m^{L}(X) - m^{N}(X) \mid \rho(X) = \rho(X_{i})] \geq \mathbb{E}[c(X)L \mid \rho(X) = \rho(X_{i})]$$


• Total surplus

$$\mathsf{TS} = \mathsf{CS} + \mathsf{PS} = \int \Big[\left(\mathsf{m}^{\mathsf{L}}(\mathsf{X}) - \mathsf{c}(\mathsf{X})\mathsf{L} \right) \mathbb{1}(\rho(\mathsf{X}) \ge r) + \mathsf{m}^{\mathsf{N}}(\mathsf{X}) \mathbb{1}(\rho(\mathsf{X}) < r) \Big] d\mathsf{F}(\mathsf{X})$$


- Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\rho(\mathsf{X}_i) \geq \frac{\mathbb{E}[\mathsf{c}(\mathsf{X}) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]}{\mathbb{E}[1 - \delta(\mathsf{X})\theta(\mathsf{X}) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]} = \frac{\mathsf{MC}(\rho(\mathsf{X}_i))}{(1 + c) - \mathsf{MC}(\rho(\mathsf{X}_i))} \equiv \widetilde{\mathsf{MC}}(\rho(\mathsf{X}_i))$$

Graphical Representation of Equilibrium Outcome

Graphical Representation of Equilibrium and Efficient Outcome

Measuring the Welfare Loss

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\mathbb{E}[m^{\mathsf{L}}(\mathsf{X}) - m^{\mathsf{N}}(\mathsf{X}) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)] \geq \mathbb{E}[c(\mathsf{X})\mathsf{L} \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]$$

Measuring the Welfare Loss

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\frac{\mathbb{E}[m^{L}(X) - m^{N}(X) \mid \rho(X) = \rho(X_{i})]}{L} \geq \mathbb{E}[c(X) \mid \rho(X) = \rho(X_{i})]$$

Measuring the Welfare Loss

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\frac{\mathbb{E}[m^{L}(X) - m^{N}(X) \mid \rho(X) = \rho(X_{i})]}{L} \geq \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_{i})]}_{MC(\rho(X_{i}))}$$

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i) \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{\mathsf{MC}(\rho(X_i))}$$

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\underbrace{\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i)}_{WTP(\rho(X_i))} \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{MC(\rho(X_i))}$$

• The WTP curve converts the demand curve into ex-ante willingness to pay

• Constrained efficient allocation → borrower *i* receives a loan if and only if

$$\underbrace{\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i)}_{WTP(\rho(X_i))} \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{MC(\rho(X_i))}$$

- The WTP curve converts the demand curve into ex-ante willingness to pay
- Measures default-adjusted borrower maximum acceptable rate

• Constrained efficient allocation \rightarrow borrower *i* receives a loan if and only if

$$\underbrace{\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i)}_{WTP(\rho(X_i))} \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{MC(\rho(X_i))}$$

- The WTP curve converts the demand curve into ex-ante willingness to pay
- Measures default-adjusted borrower maximum acceptable rate
- Easily constructed given knowledge of demand and marginal cost curves

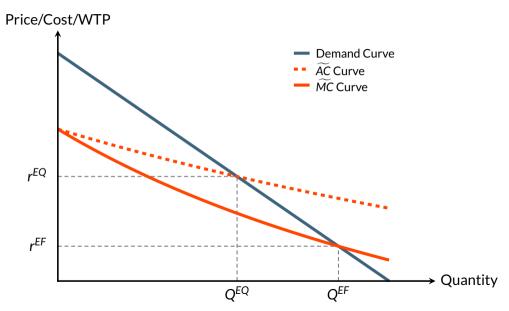
$$\mathsf{WTP}(\rho(\mathsf{X}_i)) = (1 + c - \mathbb{E}[c(\mathsf{X}) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]) \times \rho(\mathsf{X}_i)$$

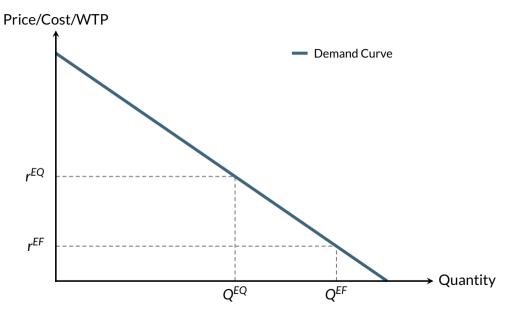
• Constrained efficient allocation → borrower *i* receives a loan if and only if

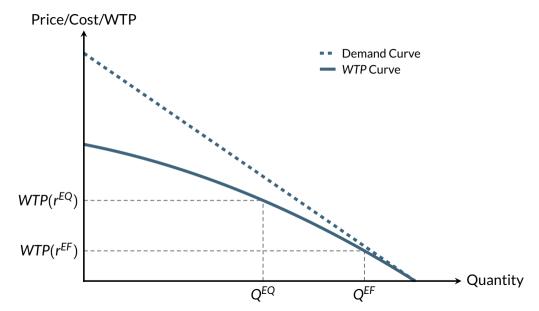
$$\underbrace{\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i)}_{WTP(\rho(X_i))} \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{MC(\rho(X_i))}$$

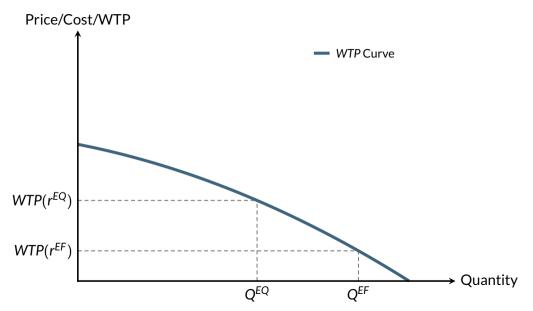
- The WTP curve converts the demand curve into ex-ante willingness to pay
- Measures default-adjusted borrower maximum acceptable rate
- Easily constructed given knowledge of demand and marginal cost curves

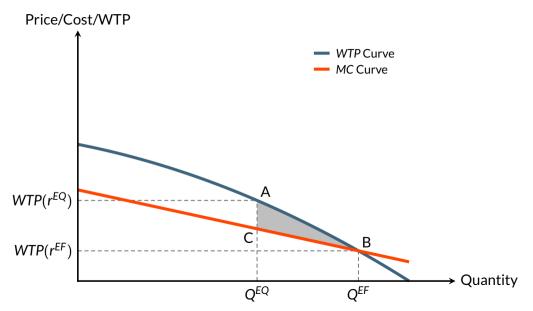
$$WTP(\rho(X_i)) = (1 + c - MC(\rho(X_i))) \times \rho(X_i)$$


• Constrained efficient allocation → borrower *i* receives a loan if and only if


$$\underbrace{\mathbb{E}[1 - \delta(X)\theta(X) \mid \rho(X) = \rho(X_i)] \times \rho(X_i)}_{WTP(\rho(X_i))} \ge \underbrace{\mathbb{E}[c(X) \mid \rho(X) = \rho(X_i)]}_{MC(\rho(X_i))}$$


- The WTP curve converts the demand curve into ex-ante willingness to pay
- Measures default-adjusted borrower maximum acceptable rate
- Easily constructed given knowledge of demand and marginal cost curves


$$\mathsf{WTP}(\rho(\mathsf{X}_i)) = (1 + c - \mathsf{MC}(\rho(\mathsf{X}_i))) \times \rho(\mathsf{X}_i)$$


• Will over-estimate WTP under moral hazard \rightarrow welfare estimates = upper bound Moral Hazard

Estimation

Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$$

- Measurement
 - *d_i*: indicator for take-up
 - c_i: charge-off rate + fixed cost
 - Baseline: calibrate fixed cost
 - Extension: estimate to set $(r^{EQ}, Q^{EQ}) = (\bar{r}, \overline{Q})$
 - r_i : interest rate \rightarrow instrumented using treatment assignment

Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$$

• Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$$

• Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

• $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions

Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = lpha_{\mathbf{c}} + eta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} +
u_{\mathbf{i}}$$

• Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

• $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions

• WTP(r) built from D(r) and MC(r)

Main Results

Demand curve

$$\mathbf{d}_{\mathbf{i}} = \alpha_{\mathbf{d}} + \beta_{\mathbf{d}}\mathbf{r}_{\mathbf{i}} + \epsilon_{\mathbf{i}}$$

Average cost curve

$$c_i = \alpha_c + \beta_c r_i + \nu_i$$

• Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

• $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions

• WTP(r) built from D(r) and MC(r)

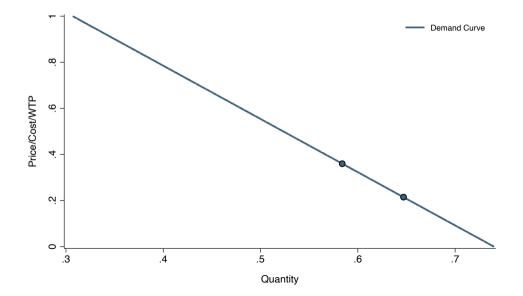
Demand curve

$$\mathbf{d}_{\mathbf{i}} = \alpha_{\mathbf{d}} + \beta_{\mathbf{d}}\mathbf{r}_{\mathbf{i}} + \epsilon_{\mathbf{i}}$$

Average cost curve

$$c_i = \alpha_c + \beta_c r_i + \nu_i$$

Marginal cost curve


$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

Demand Curve Estimates

	(1)	(2)	(3)	(4)
Interest Rate	-0.433***	-0.429***	-0.430***	-0.425***
	(0.064)	(0.063)	(0.063)	(0.063)
Constant	0.740***	0.739***	0.739***	0.737***
	(0.019)	(0.019)	(0.019)	(0.019)
Demographics		Х	Х	Х
Geography			Х	Х
Loan Size and Rating				Х
Number of Observations	10,991	10,991	10,991	10,991

Demand Curve Estimates

Demand curve

$$\mathbf{d}_{\mathbf{i}} = \alpha_{\mathbf{d}} + \beta_{\mathbf{d}}\mathbf{r}_{\mathbf{i}} + \epsilon_{\mathbf{i}}$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$$

Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

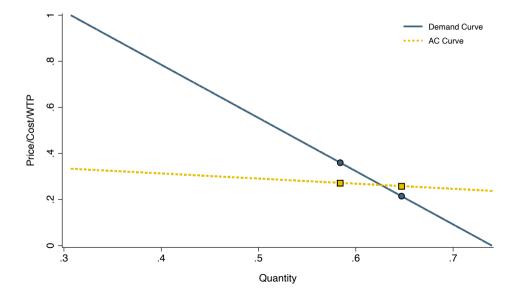
Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

 $\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$

Marginal cost curve


$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

Average Cost Curve Estimates

	(1)	(2)	(3)	(4)	(5)
Interest Rate	0.096**	0.094**	0.093**	0.090**	0.090*
	(0.044)	(0.044)	(0.044)	(0.043)	(0.049)
Constant	0.238***	0.238***	0.238***	0.239***	0.227***
	(0.013)	(0.013)	(0.013)	(0.013)	(0.014)
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х
Number of Observations	6,761	6,761	6,761	6,761	6,761

Average Cost Curve Estimates

Demand curve

$$\mathbf{d}_{\mathbf{i}} = \alpha_{\mathbf{d}} + \beta_{\mathbf{d}}\mathbf{r}_{\mathbf{i}} + \epsilon_{\mathbf{i}}$$

Average cost curve

 $\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$

Marginal cost curve

$$\mathsf{MC}(r) = \frac{\partial \mathsf{TC}(r)}{\partial \mathsf{D}(r)} = \frac{\partial (\mathsf{AC}(r) \times \mathsf{D}(r))}{\partial \mathsf{D}(r)} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

Demand curve

$$d_i = \alpha_d + \beta_d r_i + \epsilon_i$$

Average cost curve

$$\mathbf{c}_{\mathbf{i}} = \alpha_{\mathbf{c}} + \beta_{\mathbf{c}}\mathbf{r}_{\mathbf{i}} + \nu_{\mathbf{i}}$$

• Marginal cost curve

$$\mathsf{MC}(\mathbf{r}) = \frac{\partial \mathsf{TC}(\mathbf{r})}{\partial \mathsf{D}(\mathbf{r})} = \frac{\partial (\mathsf{AC}(\mathbf{r}) \times \mathsf{D}(\mathbf{r}))}{\partial \mathsf{D}(\mathbf{r})} = \frac{\alpha_d \beta_c}{\beta_d} + \alpha_c + 2\beta_c \mathbf{r}$$

• $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions

• WTP(r) built from D(r) and MC(r)

Demand curve

$$d = 0.740 - 0.433 \times r$$

Average cost curve

 $c = 0.238 + 0.096 \times r$

• Marginal cost curve

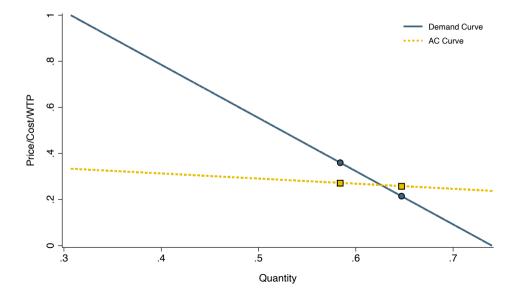
$$\mathsf{MC}(\mathbf{r}) = \frac{\partial \mathsf{TC}(\mathbf{r})}{\partial \mathsf{D}(\mathbf{r})} = \frac{\partial (\mathsf{AC}(\mathbf{r}) \times \mathsf{D}(\mathbf{r}))}{\partial \mathsf{D}(\mathbf{r})} = \mathbf{0.074} + \mathbf{0.192} \times \mathbf{r}$$

- AC(r) and MC(r) derived from these using definitions
- WTP(r) built from D(r) and MC(r)

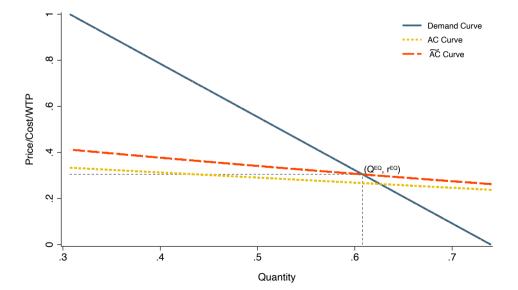
Demand curve

$$d = 0.740 - 0.433 \times r$$

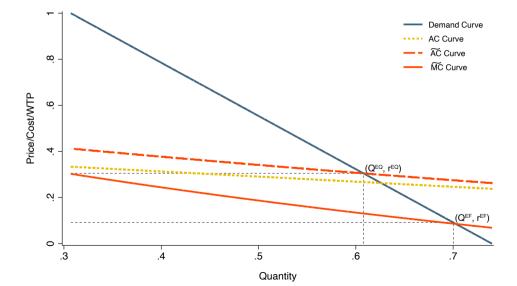
Average cost curve

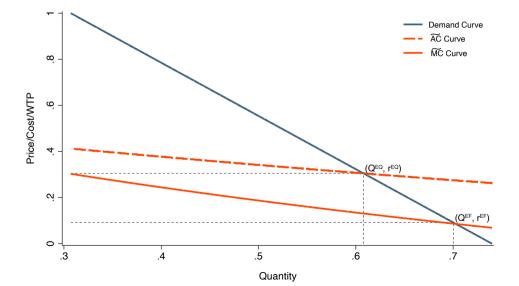

$$c = 0.238 + 0.096 \times r$$

• Marginal cost curve


$$MC(r) = \frac{\partial TC(r)}{\partial D(r)} = \frac{\partial (AC(r) \times D(r))}{\partial D(r)} = 0.074 + 0.192 \times r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)


Implied \widetilde{AC} and \widetilde{MC} Curves


Implied \widetilde{AC} and \widetilde{MC} Curves

Implied \widetilde{AC} and \widetilde{MC} Curves

Empirical Estimates of Equilibrium and Efficient Outcomes

Demand curve

$$d = 0.740 - 0.433 \times r$$

Average cost curve

$$c = 0.238 + 0.096 \times r$$

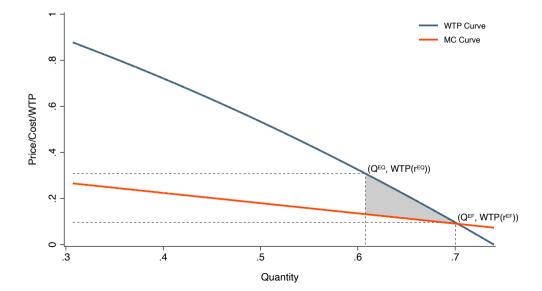
• Marginal cost curve

$$MC(r) = \frac{\partial TC(r)}{\partial D(r)} = \frac{\partial (AC(r) \times D(r))}{\partial D(r)} = 0.074 + 0.192 \times r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

Demand curve

$$d = 0.740 - 0.433 \times r$$


Average cost curve

$$c = 0.238 + 0.096 \times r$$

• Marginal cost curve

$$MC(r) = \frac{\partial TC(r)}{\partial D(r)} = \frac{\partial (AC(r) \times D(r))}{\partial D(r)} = 0.074 + 0.192 \times r$$

- $\widetilde{AC}(r)$ and $\widetilde{MC}(r)$ derived from these using definitions
- WTP(r) built from D(r) and MC(r)

	(1)	(2)	(3)	(4)	(5)
Equilibrium Price	0.304	0.304	0.304	0.304	0.288
Equilibrium Quantity	0.608	0.608	0.608	0.608	0.615
Efficient Price	0.085	0.088	0.091	0.095	0.081
Efficient Quantity	0.703	0.701	0.700	0.697	0.703
Welfare Loss (per ¥100): Approximate	0.835	0.806	0.787	0.750	0.743
Welfare Loss (per ¥100): Exact	0.849	0.820	0.800	0.762	0.754
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х

	(1)	(2)	(3)	(4)	(5)
Equilibrium Price	0.304	0.304	0.304	0.304	0.288
Equilibrium Quantity	0.608	0.608	0.608	0.608	0.615
Efficient Price	0.085	0.088	0.091	0.095	0.081
Efficient Quantity	0.703	0.701	0.700	0.697	0.703
Welfare Loss (per ¥100): Approximate	0.835	0.806	0.787	0.750	0.743
Welfare Loss (per ¥100): Exact	0.849	0.820	0.800	0.762	0.754
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х

Asymmetric information \rightarrow Large equilibrium price distortion

Bootstrap CIs Heterogeneity

	(1)	(2)	(3)	(4)	(5)
Equilibrium Price	0.304	0.304	0.304	0.304	0.288
Equilibrium Quantity	0.608	0.608	0.608	0.608	0.615
Efficient Price	0.085	0.088	0.091	0.095	0.081
Efficient Quantity	0.703	0.701	0.700	0.697	0.703
Welfare Loss (per ¥100): Approximate	0.835	0.806	0.787	0.750	0.743
Welfare Loss (per ¥100): Exact	0.849	0.820	0.800	0.762	0.754
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х

Inelastic demand \rightarrow Small equilibrium quantity distortion

Bootstrap CIs Heterogeneity

	(1)	(2)	(3)	(4)	(5)
Equilibrium Price	0.304	0.304	0.304	0.304	0.288
Equilibrium Quantity	0.608	0.608	0.608	0.608	0.615
Efficient Price	0.085	0.088	0.091	0.095	0.081
Efficient Quantity	0.703	0.701	0.700	0.697	0.703
Welfare Loss (per ¥100): Approximate	0.835	0.806	0.787	0.750	0.743
Welfare Loss (per ¥100): Exact	0.849	0.820	0.800	0.762	0.754
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х

Welfare loss = 0.8% of loan amount \approx \$7.20 per applicant

Bootstrap CIs Heterogeneity

Conclusion

Estimate welfare losses from asymmetric information in new and growing market

- Large price distortion
- Small quantity distortion
- Surprisingly small welfare losses
- Hard to argue for strong policy interventions in this market

Illustrate how methods from insurance can be adapted to credit markets

- Key required inputs
 - Data on borrower take-up (demand)
 - Data on lender charge-offs (costs)
 - Exogenous variation in interest rates
- Hopefully useful for studies of other credit markets!

Thanks!

Covariate Balance Tests

	Low Price	High Price	Difference	t-statistic
	(1)	(2)	(3)	(4)
Loan terms				
Interest Rate (%)	21.5	36.0	-14.5	-291.45***
Loan size (¥100's)	62.7	62.5	0.2	0.24
Basic Demographics				
Age	30.4	30.5	-0.1	-0.61
Male (%)	77.3	77.2	0.1	0.08
Single (%)	50.4	51.3	-0.8	-0.86
Highest Degree Completed (%)				
Junior-High School	12.8	13.0	-0.2	-0.31
Senior-High School	42.4	41.6	0.8	0.85
Vocational School	31.2	32.2	-0.9	-1.06
Bachelor's or Higher	13.5	13.2	0.3	0.52
City Tier (%)				
Tier 1	12.4	11.9	0.5	0.76
Tier 2	29.1	29.4	-0.3	-0.38
Tier 3	21.2	21.4	-0.2	-0.28
Tier 4	23.4	23.1	0.4	0.44
Tier 5	2.8	2.8	-0.1	-0.18
Tier 6	11.1	11.4	-0.2	-0.37
Credit Rating (%)				
Category 1	50.8	50.0	0.8	0.87
Category 2	15.3	16.0	-0.8	-1.12
Category 3	26.4	25.8	0.6	0.66
Category 4	7.5	8.1	-0.6	-1.19
Number of Observations	5,479	5,512	10,991	10,991

- Moral hazard \rightarrow borrower-level costs depend on the interest rate

$$c(X_i, r) = c + \delta(X_i, r)\theta(X_i, r)$$

• Moral hazard \rightarrow borrower-level costs depend on the interest rate

 $c(X_i, r) = c + \delta(X_i, r)\theta(X_i, r)$

• The marginal cost curve now has two components

$$\mathsf{MC}(r) = \underbrace{\mathbb{E}[c(X,r) \mid \rho(X) = r]}_{\mathsf{Adverse Selection (>0)}} + \underbrace{\frac{1}{D'(r)} \int \frac{\partial c(X,r)}{\partial r} \mathbb{1}(\rho(X) \ge r) dF(X)}_{\mathsf{Moral Hazard (<0)}}$$

• Moral hazard \rightarrow borrower-level costs depend on the interest rate

 $c(X_i,r) = c + \delta(X_i,r)\theta(X_i,r)$

• The marginal cost curve now has two components

$$\mathsf{MC}(r) = \underbrace{\mathbb{E}[c(X,r) \mid \rho(X) = r]}_{\mathsf{Adverse Selection (>0)}} + \underbrace{\frac{1}{D'(r)} \int \frac{\partial c(X,r)}{\partial r} \mathbb{1}(\rho(X) \ge r) dF(X)}_{\mathsf{Moral Hazard (< 0)}}$$

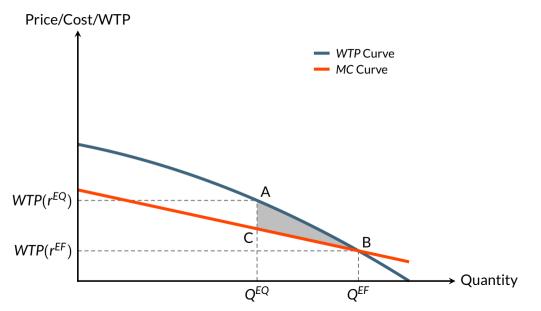
• Constructing WTP as before will overestimate consumer surplus

 $\mathsf{WTP}(\rho(\mathsf{X}_i)) = (1 + c - \mathbb{E}[c(\mathsf{X}, r) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]) \times \rho(\mathsf{X}_i) < (1 + c - \mathsf{MC}(\rho(\mathsf{X}_i))) \times \rho(\mathsf{X}_i)$

• Moral hazard \rightarrow borrower-level costs depend on the interest rate

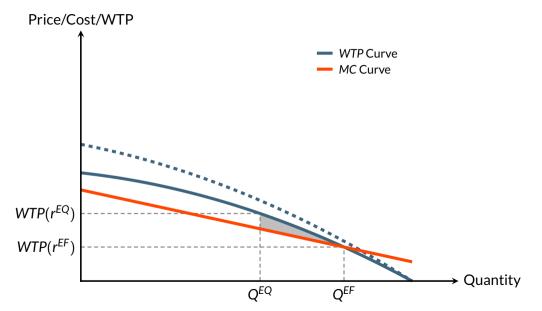
 $c(X_i,r) = c + \delta(X_i,r)\theta(X_i,r)$

• The marginal cost curve now has two components


$$\mathsf{MC}(r) = \underbrace{\mathbb{E}[c(X,r) \mid \rho(X) = r]}_{\mathsf{Adverse Selection (>0)}} + \underbrace{\frac{1}{D'(r)} \int \frac{\partial c(X,r)}{\partial r} \mathbb{1}(\rho(X) \ge r) dF(X)}_{\mathsf{Moral Hazard (< 0)}}$$

• Constructing WTP as before will overestimate consumer surplus

 $\mathsf{WTP}(\rho(\mathsf{X}_i)) = (1 + c - \mathbb{E}[c(\mathsf{X}, r) \mid \rho(\mathsf{X}) = \rho(\mathsf{X}_i)]) \times \rho(\mathsf{X}_i) < (1 + c - \mathsf{MC}(\rho(\mathsf{X}_i))) \times \rho(\mathsf{X}_i)$


• We estimate an upper bound on pooled welfare losses

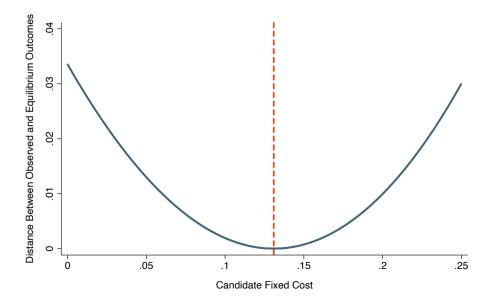
The Welfare Cost of Asymmetric Information

<Back

The Welfare Cost of Asymmetric Information

First Stage Results: Demand Curve

	(1)	(2)	(3)	(4)	
	Interest Rate				
High-Price Group	0.145***	0.145***	0.145***	0.145***	
	(0.000)	(0.000)	(0.000)	(0.000)	
Constant	`0.215 ^{***}	0.215 ^{***}	0.215 ^{***}	0.215 ^{***}	
	(0.000)	(0.000)	(0.000)	(0.000)	
Demographics Geography Loan Size and Rating		Х	X X	X X X	
F-statistic	84,945	84,945	85,015	87,371	
Number of Observations	10,991	10,991	10,991	10,991	


First Stage Results: Average Cost Curve

	(1)	(2)	(3)	(4)	
	Interest Rate				
High-Price Group	0.145***	0.145***	0.145***	0.145***	
	(0.001)	(0.001)	(0.001)	(0.001)	
Constant	0.211 ^{***}	0.211 ^{***}	0.211 ^{***}	0.211 ^{***}	
	(0.000)	(0.000)	(0.000)	(0.000)	
Demographics Geography Loan Size and Rating		Х	X X	X X X	
F-statistic	59,143	59,083	59,092	60,439	
Number of Observations	6,761	6,761	6,761	6,761	

Confidence Intervals for Implied Quantities of Interest

	(1)	(2)	(3)	(4)	(5)
Equilibrium Price	0.304	0.304	0.304	0.304	0.288
	[0.294, 0.317]	[0.294, 0.317]	[0.294, 0.316]	[0.294, 0.317]	[0.278, 0.299]
Equilibrium Quantity	0.608	0.608	0.608	0.608	0.615
	[0.597, 0.618]	[0.598, 0.618]	[0.598, 0.618]	[0.597, 0.618]	[0.605, 0.625]
Efficient Price	0.085	0.088	0.091	0.095	0.081
	[-0.131, 0.286]	[-0.133, 0.294]	[-0.128, 0.294]	[-0.129, 0.299]	[-0.141, 0.285]
Efficient Quantity	0.703	0.701	0.700	0.697	0.703
	[0.614, 0.781]	[0.612, 0.782]	[0.612, 0.780]	[0.608, 0.777]	[0.615, 0.783]
Welfare Loss (per ¥100): Approximate	0.835	0.806	0.787	0.750	0.743
	[0.025, 2.684]	[0.012, 2.647]	[0.009, 2.625]	[0.004, 2.555]	[0.005, 2.547]
Welfare Loss (per ¥100): Exact	0.849	0.820	0.800	0.762	0.754
	[0.006, 3.306]	[0.001, 3.291]	[0.001, 3.202]	[0.000, 3.127]	[0.000, 3.066]
Demographics		Х	Х	Х	Х
Geography			Х	Х	Х
Loan Size and Rating				Х	Х
Estimated Fixed Cost					Х

Objective Function Value for Fixed Cost Estimation

Demand Curve Estimates by Credit Rating

	Catego	ory 1	Catego	ry 2-4
	(1)	(2)	(3)	(4)
Interest Rate	-0.448***	-0.448***	-0.417***	-0.402***
	(0.088)	(0.088)	(0.091)	(0.091)
Constant	0.746***	0.778***	0.733***	0.722***
	(0.026)	(0.026)	(0.028)	(0.029)
Demographics		Х		Х
Geography		Х		Х
Loan Size		Х		Х
Number of Observations	5,543	5,543	5,448	5,448

Demand equally sensitive to interest rates across credit scores

Average Cost Curve Estimates by Credit Rating

	Category 1		Catego	ry 2-4
	(1)	(2)	(3)	(4)
Interest Rate	0.056	0.060	0.133**	0.122*
	(0.056)	(0.056)	(0.068)	(0.067)
Constant	0.230***	0.227***	0.247***	0.237***
	(0.016)	(0.016)	(0.020)	(0.021)
Demographics		Х		Х
Geography		Х		Х
Loan Size		Х		Х
Number of Observations	3,432	3,432	3,329	3,329

Costs more sensitive to interest rates among observably riskier borrowers

Implied Quantities of Interest by Credit Rating

	Category 1		Catego	ory 2-4
	(1)	(2)	(3)	(4)
Equilibrium Price	0.272	0.270	0.344	0.317
Equilibrium Quantity	0.624	0.657	0.590	0.594
Efficient Price	0.156	0.140	0.016	0.019
Efficient Quantity	0.676	0.715	0.727	0.714
Welfare Loss (per ¥100): Approximate	0.256	0.325	1.725	1.425
Welfare Loss (per ¥100): Exact	0.258	0.327	1.790	1.468
Demographics		Х		Х
Geography		Х		Х
Loan Size		Х		Х

Welfare losses substantially larger among observably riskier borrowers