Discussion of

"What do the portfolios of individual investors reveal about the cross section of equity returns?"

by Betermier, Calvet, Knüpfer and Kvaerner

Daniele Bianchi Queen Mary, University of London

"Workshop on Household Finance and Housing" 2023 Bank of England/Imperial College Business School

"Modern asset pricing models are built on asset demand [...]. However, the common practice is to ignore institutional or household holdings data in estimating these models, even though these data are direct observations of asset demand."

Koijen and Yogo (2019)

"Modern asset pricing models are built on asset demand [...]. However, the common practice is to ignore institutional or household holdings data in estimating these models, even though these data are direct observations of asset demand."

Koijen and Yogo (2019)

"[...] explanations for household portfolio heterogeneity requires a more general characterization of the structure of heterogeneity – a parsimonious summary of who owns what."

Balasubramaniam, Campbell, Ramadorai & Ranish (2023)

This paper sides with those who think that *both* asset demand and investors' heterogeneity matter in equilibrium.

→ Leverage on a comprehensive administrative data set of individual investors.

This paper sides with those who think that *both* asset demand and investors' heterogeneity matter in equilibrium.

→ Leverage on a comprehensive administrative data set of individual investors.

It takes an asset pricing perspective:

 \hookrightarrow Firm characteristics \Longrightarrow discount rates and/or cash-flows.

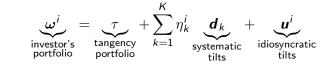
This paper sides with those who think that *both* asset demand and investors' heterogeneity matter in equilibrium.

→ Leverage on a comprehensive administrative data set of individual investors.

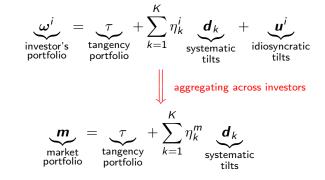
It takes an asset pricing perspective:

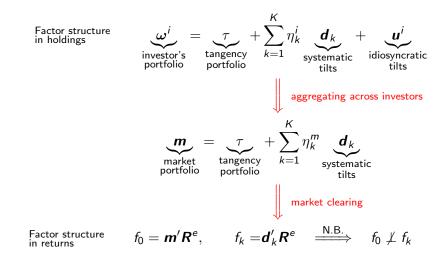
- \hookrightarrow Firm characteristics \Longrightarrow discount rates and/or cash-flows.
- \hookrightarrow Investors' characteristics \Longrightarrow discount rates.

This paper sides with those who think that *both* asset demand and investors' heterogeneity matter in equilibrium.


→ Leverage on a comprehensive administrative data set of individual investors.

It takes an asset pricing perspective:


- \hookrightarrow Firm characteristics \Longrightarrow discount rates and/or cash-flows.
- \hookrightarrow Investors' characteristics \Longrightarrow discount rates.


↓ Investors' characteristics as "risk factors"!

Factor structure in holdings

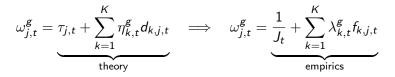
Factor structure in holdings

Candidates for \boldsymbol{d}_k

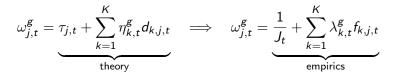
- \hookrightarrow Socioeconomic factors.
- \hookrightarrow These correlate with sentiment/risk aversion.
 - \hookrightarrow Intertemporal CAPM.

Candidates for d_k

- \hookrightarrow Socioeconomic factors.
- \hookrightarrow These correlate with sentiment/risk aversion.
 - \hookrightarrow Intertemporal CAPM.


Main results:

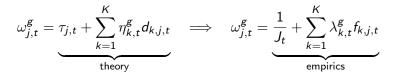
- \hookrightarrow Age and wealth help to explain:
 - \hookrightarrow Commonalities in portfolio holdings.
 - \hookrightarrow Cross-sectional variation of stock returns.
- → Pricing information which is not subsumed by risk factors á-la Fama and French (e.g., value, size, etc).


Factor structure of investors' portfolios (j stock, g group),

$$\omega_{j,t}^{g} = \underbrace{\tau_{j,t} + \sum_{k=1}^{K} \eta_{k,t}^{g} d_{k,j,t}}_{\text{theory}}$$

Factor structure of investors' portfolios (j stock, g group),

Factor structure of investors' portfolios (j stock, g group),



Empirical test:

$$\widehat{f}_{k,j,t} = a^k + \lambda_{Mkt}^k \cdot m_{j,t} + \lambda_{Age}^k \cdot g_{Age,j,t} + \lambda_{Wealth}^k \cdot g_{Wealth,j,t} + \epsilon_{j,t}^k,$$

- \hookrightarrow $g_{Age,j,t}$ stock j in a LS portfolio on age.
- \hookrightarrow $g_{Wealth,j,t}$ stock j in a LS portfolio on wealth.
- \hookrightarrow $m_{j,t}$ stock j in the market portfolio.

Factor structure of investors' portfolios (j stock, g group),

Empirical test:

$$\widehat{f}_{k,j,t} = a^k + \lambda_{Mkt}^k \cdot m_{j,t} + \lambda_{Age}^k \cdot g_{Age,j,t} + \lambda_{Wealth}^k \cdot g_{Wealth,j,t} + \epsilon_{j,t}^k,$$

- \hookrightarrow $g_{Age,j,t}$ stock j in a LS portfolio on by group age.
- \hookrightarrow $g_{Wealth,j,t}$ stock j in a LS portfolio on by group wealth.
- \hookrightarrow $m_{j,t}$ stock j in the market characteristic-managed portfolio.

Matching socioeconomic factors with stock returns:

$$\mathsf{Age}_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} A_{t}^{i}}{\sum_{\substack{i=1 \\ \text{Age factor} \\ \text{for stock } j}}}, \qquad \mathsf{Wealth}_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} W B_{t}^{i}}{\sum_{i=1}^{l} N_{j,t}^{i}}}_{\mathsf{Wealth factor} \\ \mathsf{Wealth factor} \\ \mathsf{for stock } j}$$

Matching socioeconomic factors with stock returns:

$$Age_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} A_{t}^{i}}{\sum_{i=1}^{l} N_{j,t}^{i}}}_{Age \ factor \ for \ stock \ j}}, \qquad Wealth_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} WB_{t}^{i}}{\sum_{i=1}^{l} N_{j,t}^{i}}}_{Wealth \ factor \ for \ stock \ j}}$$

	Panel	l B: M	onthly (CA	PM Al	phas		
Alpha				t(Alpha)				
L	Μ	Н	H-L		L	М	Η	H-L
-0.82	0.02	0.26	1.08		-2.36	0.14	2.27	2.65
-0.85	0.19	0.17	1.01		-2.83	1.93	0.75	2.91
Panel C: Monthly CAPM Betas								
Beta				t(Beta)				
L	Μ	Н	H-L		L	М	Η	H-L
1.13	1.07	0.94	-0.19		19.41	36.69	49.50	-2.81
1.17	1.01	0.99	-0.18		23.20	59.77	26.74	-3.12
	-0.82 -0.85 L 1.13	Alp L Alp -0.82 0.02 -0.85 0.19 -0.85 Ba -0.94	Alpha L M H -0.82 0.02 0.26 -0.85 0.19 0.17 Panel C: M B H L M H 1.13 1.07 0.94	Alpha L M H -0.82 0.02 0.26 1.08 -0.85 0.19 0.17 1.01 Panel C -Weight -Weight -Weight L M H -Weight L M H -Weight 1.13 1.07 0.94 -0.19	Alpha L M H H-L -0.82 0.02 0.26 1.08 -0.85 0.19 0.17 1.01 Panel C: Worthly CA L M H H 1.13 1.07 0.94 -0.19	Alpha H-L L L M H H-L L -0.82 0.02 0.26 1.08 -2.36 -0.85 0.19 0.17 1.01 -2.83 Panel C: Monthly CAPM B E Image: Comparison of the second s	L M H-L L M -0.82 0.02 0.26 1.08 -2.36 0.14 -0.85 0.19 0.17 1.01 -2.83 1.93 Panel C: Monthly CAPM Betas 1.01 -2.84 1.93 Betas .101 .101 .101 .101 L M H .101 .101 .101 .101 L1.13 1.07 0.94 -0.19 19.41 36.69	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Matching socioeconomic factors with stock returns:

$$Age_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} A_{t}^{i}}{\sum_{i=1}^{l} N_{j,t}^{i}}}_{Age \text{ factor} for \text{ stock } j},$$

$$\mathsf{Wealth}_{j,t} = \underbrace{\frac{\sum_{i=1}^{l} N_{j,t}^{i} W B_{t}^{i}}{\sum_{i=1}^{l} N_{j,t}^{i}}}_{\mathsf{Wealth factor for stock } j}$$

Panel B: Monthly CAPM Alphas								
	Alpha				t(Alpha)			
	L	Μ	Η	H-L	L	Μ	Н	H-L
Age	-0.82	0.02	0.26	1.08	-2.36	0.14	2.27	2.65
Wealth	-0.85	0.19	0.17	1.01	-2.83	1.93	0.75	2.91
Panel C: Monthly CAPM Betas								
	Beta				t(Beta)			
	L	Μ	Η	H-L	L	Μ	Н	H-L
Age	1.13	1.07	0.94	-0.19	19.41	36.69	49.50	-2.81
Wealth	1.17	1.01	0.99	-0.18	23.20	59.77	26.74	-3.12

Expanding to more standard risk factors?

- → Spanning regressions (Table IV) combine Age/Wealth factors.
- $\begin{array}{rl} \hookrightarrow & \mbox{Betas w.r.t to} \\ & \mbox{FF factors.} \end{array}$

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

Digression: Bagging works for "uncorrelated" models (i.i.d.).

 \hookrightarrow For uncorrelated samples, z_i , with variance σ^2 , the variance of their average $Var(\overline{z})$ is lower,

$$Var\left(\overline{z}\right) = \frac{\sigma^2}{n}$$

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

Digression: Bagging works for "uncorrelated" models (i.i.d.).

 \hookrightarrow For samples z_i with correlation ρ and variance σ^2 , the variance of their average $Var(\overline{z})$ is not necessarily lower,

$$Var(\overline{z}) = \frac{\sigma^2}{n} + \frac{n-1}{n}\rho\sigma^2$$

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

Digression: Bagging works for "uncorrelated" models (i.i.d.).

 \hookrightarrow For samples z_i with correlation ρ and variance σ^2 , the variance of their average $Var(\overline{z})$ is not necessarily lower,

$$Var\left(\overline{z}\right) = \frac{\sigma^2}{n} + \frac{n-1}{n}\rho\sigma^2$$

→ Logic: The "wisdom of the crowd" requires diverse and independent members of the crowd.

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping tool.

1. Sampling T observations M times, with replacement.

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping tool.

- 1. Sampling T observations M times, with replacement.
- 2. Select in-sample vs out-of-sample for each draw m.

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping tool.

- 1. Sampling T observations M times, with replacement.
- 2. Select in-sample vs out-of-sample for each draw *m*.
- 3. In-sample max-SR portfolios for each draw m.

$$\widehat{\Sigma}_{f}^{(m)} = \Sigma_{f}^{(m)} + \gamma \mathbf{I} \qquad \Longrightarrow \qquad \widehat{\tau}^{(m)} = \widehat{\Sigma}_{f}^{-1(m)} \mu_{f}^{(m)}$$

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping tool.

- 1. Sampling T observations M times, with replacement.
- 2. Select in-sample vs out-of-sample for each draw m.
- 3. In-sample max-SR portfolios for each draw m.

$$\widehat{\Sigma}_{f}^{(m)} = \Sigma_{f}^{(m)} + \gamma \mathbf{I} \qquad \Longrightarrow \qquad \widehat{\tau}^{(m)} = \widehat{\Sigma}_{f}^{-1(m)} \mu_{f}^{(m)}$$

4. Project estimates out of sample for each draw m.

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping ensembling tool.

 \hookrightarrow Are factor returns really i.i.d? \Longrightarrow block-bootstrap

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping ensembling tool.

- \hookrightarrow Are factor returns really i.i.d? \Longrightarrow block-bootstrap
- \hookrightarrow In-sample max-SR (average) portfolio for each draw m'

$$\widehat{\Sigma}_{f}^{(m')} = \frac{1}{M} \sum_{m=1}^{M} \left(\Sigma_{f}^{(m)} + \gamma \mathbf{I} \right) \implies \widehat{\tau}^{(m')} = \widehat{\Sigma}_{f}^{-1(m')} \mu_{f}^{(m')}$$

Comparison vs Fama-French factors based on a bootstrap aggregating ("bagging") approach (Breiman 1996).

← Ensemble learning method that is commonly used to reduce variance within a noisy dataset.

In this paper bagging as a pure bootstrapping ensembling tool.

- \hookrightarrow Are factor returns really i.i.d? \Longrightarrow block-bootstrap
- \hookrightarrow In-sample max-SR (average) portfolio for each draw m'

$$\widehat{\Sigma}_{f}^{(m')} = \frac{1}{M} \sum_{m=1}^{M} \left(\Sigma_{f}^{(m)} + \gamma \mathbf{I} \right) \implies \widehat{\tau}^{(m')} = \widehat{\Sigma}_{f}^{-1(m')} \mu_{f}^{(m')}$$

 \hookrightarrow Project (average) estimates out of sample for each m'.

Comment #3b

	Optimized V	Fixed Weights	
	OS Sharpe Ratio (1)	OS-IS Ratio (2)	OS Sharpe Ratio (3)
MKT, AGE	0.51	0.74	0.58
MKT, WEALTH	0.54	0.75	0.57
MKT, SMB	0.13	0.48	0.32
MKT, HML	0.17	0.44	0.34
MKT, MOM	0.44	0.69	0.55
MKT, CMA	0.34	0.61	0.15
MKT, RMW	0.49	0.72	0.56
MKT, AGE, WEALTH	0.66	0.73	0.61
MKT, SMB, HML	0.08	0.24	0.35
MKT, SMB, MOM	0.39	0.59	0.46
MKT, SMB, CMA	0.29	0.49	0.24
MKT, SMB, RMW	0.48	0.63	0.45
MKT, HML, MOM	0.38	0.55	0.48
MKT, HML, CMA	0.26	0.42	0.25
MKT, HML, RMW	0.43	0.59	0.48
MKT, CMA, RMW	0.52	0.65	0.36
MKT, CMA, MOM	0.48	0.62	0.37
MKT, RMW, MOM	0.55	0.68	0.59
Firm-4	0.34	0.48	0.44
Firm-5	0.44	0.50	0.36
Firm-6	0.50	0.52	0.41
Firm-6, AGE, WEALTH	0.65	0.58	0.48

- \hookrightarrow Average performance across draws \Longrightarrow Confidence intervals?
- \hookrightarrow Nested models \Longrightarrow Spreads in SRs? (Fama and French 2018).

Conclusion

Executive summary:

- \hookrightarrow Really cool paper! I learnt a lot.
- \hookrightarrow Will go in the reading list of my PhD course.