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Overview of the paper

“Modern asset pricing models are built on asset demand [...].
However, the common practice is to ignore institutional or
household holdings data in estimating these models, even though
these data are direct observations of asset demand.”

Koijen and Yogo (2019)

“[...] explanations for household portfolio heterogeneity requires a
more general characterization of the structure of heterogeneity –
a parsimonious summary of who owns what.”

Balasubramaniam, Campbell, Ramadorai & Ranish (2023)
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This paper sides with those who think that both asset demand
and investors’ heterogeneity matter in equilibrium.

↪→ Leverage on a comprehensive administrative data set of
individual investors.

It takes an asset pricing perspective:

↪→ Firm characteristics =⇒ discount rates and/or cash-flows.

↪→ Investors’ characteristics =⇒ discount rates.ww�
Investors’ characteristics as “risk factors”!
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Overview of the paper

Candidates for d k

↪→ Socioeconomic factors.

↪→ These correlate with sentiment/risk aversion.

↪→ Intertemporal CAPM.

Main results:

↪→ Age and wealth help to explain:

↪→ Commonalities in portfolio holdings.

↪→ Cross-sectional variation of stock returns.

↪→ Pricing information which is not subsumed by risk factors
á-la Fama and French (e.g., value, size, etc).
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Comment #3b

↪→ Average performance across draws =⇒ Confidence intervals?

↪→ Nested models =⇒ Spreads in SRs? (Fama and French 2018).



Conclusion

Executive summary:

↪→ Really cool paper! I learnt a lot.

↪→ Will go in the reading list of my PhD course.
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