An Anatomy of the 2022 Gilt Market Crisis

Gábor Pintér (BoE)

Bank of England

May 2023

The views expressed are those of the author and not necessarily those of the Bank of England or its committees.

Introduction

'It was not quite a Lehman moment. But it got close.' (Sep 2022, Senior London-based banker)

Contribution and Data

- Contribution:
 - Detailed account of a liquidity crisis through the joint analysis government bond, repo and swap markets
 - Identify individual clients sharpens the analysis (compared to Falato, Goldstein, and Hortacsu (2021); O'Hara and Zhou (2021); Kargar, Lester, Lindsay, Liu,Weill, and Zuniga (2021); Haddad, Moreira, and Muir (2021); Ma, Xiao, and Zeng (2022) among others)

Contribution and Data

- Contribution:
 - Detailed account of a liquidity crisis through the joint analysis government bond, repo and swap markets
 - Identify individual clients sharpens the analysis (compared to Falato, Goldstein, and Hortacsu (2021); O'Hara and Zhou (2021); Kargar, Lester, Lindsay, Liu,Weill, and Zuniga (2021); Haddad, Moreira, and Muir (2021); Ma, Xiao, and Zeng (2022) among others)
- Datasets:
 - Government Bond Market: all secondary market trades from the MIFID II dataset
 - Repo Market: Sterling Money Market Data (SMMD), a proprietary dataset of the Bank of England
 - Swaps: EMIR TR data
 - Legal Entity Identifiers (LEIs) allows a consistent merge across these markets

Overview

- Extreme stress in gilt markets during 23 Sep 14 Oct 2022
- At its centre: highly leveraged, liability-driven investment (LDI) strategies of certain pension funds and asset managers
- Sudden worsening of repo and swap positions (collateral and margin calls) forced them to quickly liquidate gilts for cash.
- Selling pressures and market illiquidity → yield spikes and extreme orderflows → Bank of England intervention within days to restore market functioning (Breeden, 2022; Hauser, 2022).

Nominal Yields 5Y, 20Y, 40Y Maturities

Gilt Sales by the LDI Sector

Liability Hedging

• LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.
- $PV \approx 67.6$, i.e. the pension fund needs to hold this amount to deliver the required cashflow later (typically holds less than that)

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.
- $PV \approx 67.6$, i.e. the pension fund needs to hold this amount to deliver the required cashflow later (typically holds less than that)
- Two main risks that can increase the present value: (i) lower discount rate and (ii) higher inflation

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.
- $PV \approx 67.6$, i.e. the pension fund needs to hold this amount to deliver the required cashflow later (typically holds less than that)
- Two main risks that can increase the present value: (i) lower discount rate and (ii) higher inflation
- So pension schemes use (i) inflation-linked bonds (repo financed)

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.
- $PV \approx 67.6$, i.e. the pension fund needs to hold this amount to deliver the required cashflow later (typically holds less than that)
- Two main risks that can increase the present value: (i) lower discount rate and (ii) higher inflation
- So pension schemes use (i) inflation-linked bonds (repo financed),
 (ii) interest rate swaps [paying the floating rate]

- LDI strategies originally employed for hedging liabilities of defined benefit pension schemes.
- Example: a pension fund to deliver £100 in 40 years in real terms; expected inflation is 2% and discount rate is 3%.
- $PV \approx 67.6$, i.e. the pension fund needs to hold this amount to deliver the required cashflow later (typically holds less than that)
- Two main risks that can increase the present value: (i) lower discount rate and (ii) higher inflation
- So pension schemes use (i) inflation-linked bonds (repo financed), (ii) interest rate swaps [paying the floating rate] and (iii) inflation swaps [receiving inflation]

Net Positions in the OIS Market (22 Sep, 2022)

LDIs are the largest payer of floaters

Net Positions in Overnight Index Swaps

Net Positions in the Inflation-swap Market (22 Sep, 2022)

LDIs are the largest buyer of inflation

Net Positions in Inflation Swaps

Net Positions in the Repo Market (22 Sep, 2022)

LDIs are the largest borrowers

Net Positions in Nominal Gilt Repos

6 Main Results

- **1** Pre-crisis swap and repo positions of LDIs **predictive** of gilts sales
- Selling pressure started in linkers (across all maturities) followed by nominals (mid maturities) → consistent price pressures
- **3** firms generated over 70% of LDI gilt sales to dealers
- Transaction costs soared
 - concentrated in smaller trade sizes, at smaller dealers, at clients other than LDIs (\rightarrow illiquidity **spillovers**)
 - stronger trading relationships mitigated these cost hikes
- Oispersion of transaction prices jumped (large price differentials across dealers ↔ intermediation frictions)
- Hedge funds profited greatly

Result 1: Role of Pre-crisis Funding Positions

Result 2: Evidence on Price Pressure

Result 2: Evidence on Price Pressure

Mispricing in UK Inflation Markets (Fleckenstein-Longstaff-Lustig, 2014)

Result 2: Evidence on Price Pressure

Mispricing in Inflation Markets (Barria-Pinter, 2023)

Result 3: A few large sellers

Result 4: Transaction Cost Heterogeneity

Measurement

Measuring transaction costs (O'Hara and Zhou (2021)) for each trade
 v:

$$Cost_{\nu} = \left[\ln \left(P_{\nu}^{\star} \right) - \ln \left(\overline{P} \right) \right] \times \mathbf{1}_{B,S}, \tag{1.1}$$

where:

- P_v^{\star} is the transaction price,
- $\mathbf{1}_{B,S}$ buy-sell indicator
- \overline{P} is a benchmark price (hourly quoted price from Datastream)

Result 4: Transaction Cost Heterogeneity

Small vs Large Dealers

Result 5: Dispersion of Transaction Prices

• Measuring total dispersion (Jankowitsch, Nashikkar, and Subrahmanyam (2011)) :

$$D_{T} = \sqrt{\frac{1}{N} \sum_{\nu}^{N} \left(\ln\left(P_{\nu}^{\star}\right) - \ln\left(\overline{P}\right) \right)^{2}}, \qquad (1.2)$$

Result 5: Dispersion of Transaction Prices

• Measuring total dispersion (Jankowitsch, Nashikkar, and Subrahmanyam (2011)) :

$$D_{T} = \sqrt{\frac{1}{N} \sum_{\nu}^{N} \left(\ln \left(P_{\nu}^{\star} \right) - \ln \left(\overline{P} \right) \right)^{2}}, \qquad (1.2)$$

• The decomposition of total dispersion 1.2 is then written as:

$$D_{T}^{2} = \underbrace{\frac{1}{N} \sum_{v}^{N} \left(\ln\left(P_{v}^{\star}\right) - \ln\left(\ddot{P}\right) \right)^{2}}_{within-dealer} + \underbrace{\frac{1}{N} \sum_{v}^{N} \left(\ln\left(\ddot{P}\right) - \ln\left(\overline{P}\right) \right)^{2}}_{cross-dealer}, \quad (1.3)$$

where \ddot{P} is the average hourly transaction price at the dealer where trade v is executed.

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 21/155

Result 5: Heightened Dispersion of Transaction Prices

Result 6: Hedge Fund Returns - Measurement

• *T*-day-horizon return on each hedge fund trade on day *t* (Di Maggio, Franzoni, Kermani, and Sommavilla (2019)) for each trade *j*:

$$Performance_{j}^{T} = \left[\ln \left(P^{T} \right) - \ln \left(P_{j}^{\star} \right) \right] \times \mathbf{1}_{B,S}, \quad (1.4)$$

- we then aggregate at the hedge fund sector day level (using unweighted or size weighted) averages
- we experiment with horizon T = 1, 3, 6 days

Result 6: Cumulative Hedge Fund Returns

Result 6: Hedge Funds' Timing of Liquidity Provision

Hedge Fund Orderflow and Yield Dynamics

 $\bullet Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?$

- **()** Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?
- Level of leverage vs structure of leverage ?! (Pinter-Siriwardane-Walker, 2023)

- Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?
- Level of leverage vs structure of leverage ?! (Pinter-Siriwardane-Walker, 2023)
- Sole of bond supply new issuance during the crisis !? Bond Issuances

- Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?
- Level of leverage vs structure of leverage ?! (Pinter-Siriwardane-Walker, 2023)
- Sole of bond supply new issuance during the crisis !? Bond Issuances
- Distribution of interest rate risk in non-bank financial intermediaries (NBFIs) (Pinter-Walker, 2023)

- Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?
- Level of leverage vs structure of leverage ?! (Pinter-Siriwardane-Walker, 2023)
- 8 Role of bond supply new issuance during the crisis !? Bond Issuances
- Distribution of interest rate risk in non-bank financial intermediaries (NBFIs) (Pinter-Walker, 2023)
- Will dealers manage to intermediate rapidly increasing government debt ?! (Duffie, 2020)
Open Questions and Future Research

- Big 3 sellers \longrightarrow Macroprudential policy or microprudential policy !?
- Level of leverage vs structure of leverage ?! (Pinter-Siriwardane-Walker, 2023)
- Sole of bond supply new issuance during the crisis !? Bond Issuances
- Distribution of interest rate risk in non-bank financial intermediaries (NBFIs) (Pinter-Walker, 2023)
- Will dealers manage to intermediate rapidly increasing government debt ?! (Duffie, 2020)
- Was the BoE intervention optimal ?
 - beyond reduced-form regressions \rightarrow structural equilibrium model \rightarrow policy counterfactuals (Gavazza-Pinter-Uslu (2023))

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

THANK YOU FOR YOUR ATTENTION!

Sizeable Issuances during the Crisis

Operation Date	Gilt Name	Nom. Amount	Cash Raised
27-Sep-2022	0 1/8% Index-linked Gilt 2031	1,200	1,383
28-Sep-2022	11⁄2% Green Gilt 2053	4,500	2,352
4-Oct-2022	01⁄2% Treasury Gilt 2061	2,500	948
5-Oct-2022	1% Treasury Gilt 2032	3,750	2,852
11-Oct-2022	0 1/8% Index-linked Gilt 2051	1,106	871
12-Oct-2022	4 1/8% Treasury Gilt 2027	4,365	4,252
		17,422	12,658

Increasing Issuance Activity of the Years

Lou-Pinter-Uslu, 2022

Fiscal-Monetary Interactions?

Lou-Pinter-Uslu, 2022

Liability-Driven Investment Leverage (Cunliffe, 2022)

Diagram 1: Illustrative change in assets and liabilities for a DB pension fund using LDI to hedge its liabilities, with impact of an increase in long-term gilt yields

Source: Bank of England

Outline

• Stylised Facts from UK Bond Markets

- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Market Structure of UK Gilt Market

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 33/155

Elevated LDI Trading Activity

Turnover of LDI Sector

Elevated LDI Activity in Linkers and Nominals

Turnover of LDI Sector

Elevated Activity in Other Sectors

Turnover of Different Client Types

Elevated Activity in Other Sectors

Trading Intensity of Different Client Types

Elevated Activity in Other Sectors

Number of Firms of Different Client Types

LDIs Selling

Total Orderflow of LDI Sector

LDIs Selling: It Started with Linkers

Orderflow of LDI Sector

LDIs Selling: All Maturities in Linkers

Linker Orderflow of LDI Sector

LDIs Selling: Mainly Medium Maturities in Nominals Nominal Orderflow of LDI Sector

Limited Liquidity Provision from Other Clients

Total Orderflow of Different Sectors

Some Liquidity Provision in Nominals

Nominal Orderflow of Different Sectors

Little Liquidity Provision in Linkers

Linker Orderflow of Different Sectors

Client-to-Client Orderflow Remained Modest

Orderflow of Different Sectors

Nominal Yields 5Y, 20Y, 40Y Maturities

Nominal Term Spreads

5Y, 20Y, 40Y Maturities

Nominal Term Spreads and LDI Orderflow

Evidence on Price Pressure?

Real Yields 5Y, 20Y, 40Y Maturities

Breakeven Inflation

5Y, 20Y, 40Y Maturities

Breakeven Inflation and LDI Orderflow

Evidence on Price Pressure?

Heterogeneity across LDI Firms

How uniform was the selling pressure across LDIs?

Decomposing Total Bond Orderflow

Decomposing Total Bond Orderflow

Gabor Pinter (Bank of England)

Decomposing Nominal Bond Orderflow

Decomposing Nominal Bond Orderflow

Decomposing Linker Orderflow

Decomposing Linker Orderflow

Outline

- Stylised Facts from UK Bond Markets
- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Net Positions in the OIS Market (22 Sep, 2022)

LDIs are the largest payer of floaters

Net Positions in Overnight Index Swaps
LDIs' Deteriorating OIS Swap Positions

Changes in Total (mark-to-market) Contract Values

Change in OIS Contract Values of LDI-PIs

Changing LDI Net Positions in the OIS Market

LDIs reduce floating exposure

Change in OIS Net Positions of LDI-PIs

Net Positions in the Inflation-swap Market (22 Sep, 2022)

LDIs are the largest buyer of inflation

Net Positions in Inflation Swaps

LDIs' Deteriorating RPI Swap Positions

Changes in Total (mark-to-market) Contract Values

Change in RPI-Swap Contract Values of LDI-PIs

Changing LDI Net Positions in the Inflation Swap Market LDIs reduce inflation exposure

Change in RPI-Swap Net Positions of LDI-PIs

Swap Exposure and Bond Liquidation by LDI Firms Cross-sectional Regressions

• Did LDI firms with larger swap exposures before the crisis end up liquidating more bonds during the crisis?

Swap Exposure and Bond Liquidation by LDI Firms Cross-sectional Regressions

- Did LDI firms with larger swap exposures before the crisis end up liquidating more bonds during the crisis?
- Cross-sectional regression:

$$BondSales_{i}^{9/23-10/14} = c + \beta_{1} \times OISExposure_{i}^{9/22} + \beta_{2} \times RPIExposure_{i}^{9/22} + \varepsilon_{i}$$
(3.1)

- where $BondSales_i^{9/23-10/14}$ is the cumulative orderflow of firm *i*
- $OISExposure_i^{9/22}$ is the net position of firm *i* in OIS
- $RPIExposure_i^{9/22}$ is the net position of firm *i* in RPI-swaps

Swap Exposure and Bond Liquidation by LDI Firms

Cross-sectional Regressions

	(1)	(2)	(3)
$OISExposure_i^{9/22}$	0.039**		0.037*
	(2.30)		(1.94)
RPIExposure _i ^{9/22}		-0.052*	-0.006
		(-1.68)	(-0.20)
Ν	779	779	779
R^2	0.078	0.039	0.077

Notes: this table regresses the cumulative order flow of LDI clients over the period 23 September – 14 October on the net positions (in £ millions) in the OIS and RPI-swap markets on 22 September. All variables are in £ millions. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors. Asterisks denote significance levels (* p < 0.1, *** p < 0.05, *** p < 0.01).

Net Positions in the Repo Market (22 Sep, 2022)

LDIs are the largest borrowers

Net Positions in All Gilt Repos

Net Positions in the Repo Market (22 Sep, 2022)

LDIs are the largest borrowers

Net Positions in Nominal Gilt Repos

Change in Net Repo Positions, Sep 22 - Oct 17

LDIs cut back by more than £30 billion

Net Positions in Gilt Repos

Swap or Repo Exposure Mattered More?

Cross-sectional Regressions

- Add repo exposure (on 22 Sep), and distinguish between outstanding repo borrowing backed by (i) nominal bond or (ii) linker collateral
- Cross-sectional regression:

$$BondSales_{i}^{9/23-10/14} = c + \beta_{1} \times OISExposure_{i}^{9/22} + \beta_{2} \times RPIExposure_{i}^{9/22} + \beta_{3} \times RepoLinkerExposure_{i}^{9/22} + \beta_{4} \times RepoNomExposure_{i}^{9/22}$$
(3.2)

- where *RepoLinkerExposure*^{9/22} is total borrowing backed by linkers as collateral
- $RepoNomExposure_i^{9/22}$ is total borrowing backed by nominal gilts as collateral

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 72/155

Swap or Repo Exposure Mattered More?

Cross-sectional Regressions

	(1)	(2)	(3)	(4)	(5)	(6)
OISExposure _i ^{9/22}	0.046**					0.014
	(2.21)					(0.70)
$RPIExposure_i^{9/22}$		-0.072*				-0.039
		(-1.78)				(-1.08)
$RepoALLExposure_i^{9/22}$			-0.003***			
			(-8.73)			
RepoLinkerExposure ^{9/22}				-0.003***		-0.003***
				(-12.27)		(-5.19)
RepoNomExposure _i ^{9/22}					-0.019*	0.009
					(-1.80)	(1.35)
Ν	213	213	213	213	213	213
R ²	0.122	0.078	0.228	0.241	0.078	0.291

Swap or Repo Exposure Mattered More?

Cross-sectional Regressions

	(1)	(2)	(3)	(4)	(5)	(6)
$OISExposure_i^{9/22}$	0.046**					0.014
	(2.21)					(0.70)
RPIExposure _i ^{9/22}		-0.072*				-0.039
		(-1.78)				(-1.08)
$RepoALLE \times posure_i^{9/22}$			-0.003***			
			(-8.73)			
RepoLinkerExposure ^{9/22}				-0.003***		-0.003***
				(-12.27)		(-5.19)
RepoNomExposure; ^{9/22}					-0.019*	0.009
					(-1.80)	(1.35)
Ν	213	213	213	213	213	213
R ²	0.122	0.078	0.228	0.241	0.078	0.291

Outline

- Stylised Facts from UK Bond Markets
- Stylised Facts from UK Swap Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Measurement

• Measure of transaction costs (O'Hara-Zhou, 2021):

$$Cost_{v} = \left[\ln\left(P_{v}^{\star}\right) - \ln\left(\overline{P}\right) \right] \times \mathbf{1}_{B,S}$$

$$(4.1)$$

• Panel regression:

$$Cost_{v} = \beta_{1} \times D_{t}^{9/23 - 9/27} + \beta_{2} \times D_{t}^{9/28 - 10/14} + \beta_{3} \times D_{t}^{10/17 - 10/28} + Size_{v} + \lambda_{j} + \delta_{i,j} + \varepsilon_{v}$$
(4.2)

- where Ds are time dummies,
- λ_j are bond fixed effects
- $\delta_{i,j}$ are client-dealer fixed effects
- Run regression 4.2 for (i) different trade sizes, (ii) dealers etc.

Summary Statistics

		Trade Size	Trade Size Turnover		Number	of Firms
		(£ million)	(f billion)	%	Ν	%
	Panel A: Pre-crisi	s (8/29-9/22)				
	LDI & Pension	5.22	3.40	27.5%	97.24	32.6%
	Hedge Funds	16.45	4.83	39.0%	39.94	13.4%
	Asset Managers	2.92	3.17	25.6%	108.94	36.5%
	Others	3.41	0.99	8.0%	52.53	17.6%
	Panel B: Crisis (9	/23-10/14)				
	LDI & Pension	7.33	7.01	34.8%	125.50	31.7%
	Hedge Funds	14.67	6.21	30.8%	51.94	13.1%
	Asset Managers	3.10	5.49	27.2%	147.69	37.3%
	Others	2.09	1.46	7.2%	71.00	17.9%
	Panel C: Post-Cris	sis (10/14-10/28	3)			
	LDI & Pension	5.43	3.83	30.4%	117.30	33.4%
	Hedge Funds	14.39	4.45	35.3%	45.40	12.9%
	Asset Managers	2.06	3.10	24.6%	125.80	35.9%
Gabor Pinter (Bank	of England)	2022	Gilt Market Cr	isis		

5/2023 77 / 155

All Clients - All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	7.400***	7.368***	5.766***	6.213**
	(3.91)	(3.87)	(2.85)	(2.41)
$D_t^{9/28-10/14}$	10.201***	10.108***	9.282***	9.038***
	(3.58)	(3.62)	(3.59)	(4.26)
$D_t^{10/17-10/28}$	4.674*	4.212*	3.805	4.339*
	(1.84)	(1.70)	(1.51)	(1.76)
N	160161	160161	160161	157130
R^2	0.015	0.018	0.026	0.101
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

All Clients - Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	7.755***	7.598***	5.889***	6.821***
	(5.43)	(5.16)	(3.92)	(4.50)
$D_t^{9/28-10/14}$	7.885***	7.617***	6.742***	6.756***
	(3.15)	(3.15)	(3.08)	(4.01)
$D_t^{10/17-10/28}$	5.217**	4.468**	4.080**	4.813***
	(2.62)	(2.31)	(2.04)	(2.83)
Ν	116018	116018	116018	113147
R^2	0.011	0.016	0.028	0.113
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

All Clients - Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	4.157	4.542	3.565	1.392
	(0.84)	(0.90)	(0.75)	(0.26)
$D_t^{9/28-10/14}$	15.460***	15.537***	15.020***	14.130***
	(3.01)	(3.00)	(3.01)	(2.78)
$D_t^{10/17-10/28}$	3.450	3.501	3.088	3.251
	(0.69)	(0.71)	(0.64)	(0.54)
Ν	44143	44143	44143	43013
R^2	0.013	0.015	0.023	0.136
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Client Heterogeneity

Are changes in trading costs heterogeneous across client types?

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 81/155

LDI Firms – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	-2.660	-3.051	-3.608	0.019
	(-0.30)	(-0.35)	(-0.37)	(0.00)
$D_t^{9/28-10/14}$	8.943**	8.763**	8.050*	8.891**
	(2.15)	(2.16)	(1.88)	(2.10)
$D_t^{10/17-10/28}$	1.029	1.319	1.244	3.703
	(0.30)	(0.38)	(0.37)	(1.05)
Ν	45364	45364	45364	44156
R^2	0.005	0.007	0.009	0.084
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

LDI Firms – Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	5.041***	4.961***	3.756	9.478*
	(3.30)	(3.14)	(1.01)	(1.70)
$D_t^{9/28-10/14}$	4.049	4.025	3.120	3.547
	(1.00)	(0.99)	(0.82)	(1.11)
$D_t^{10/17-10/28}$	-0.534	-0.448	-0.601	2.717
	(-0.14)	(-0.12)	(-0.15)	(0.69)
N	29016	29016	29016	27848
R^2	0.003	0.003	0.007	0.092
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	-18.376	-19.285	-17.959	-16.075
	(-0.87)	(-0.93)	(-0.91)	(-0.68)
$D_t^{9/28-10/14}$	17.749**	16.840**	17.523**	19.928**
	(2.25)	(2.29)	(2.40)	(2.39)
$D_t^{10/17-10/28}$	4.011	4.639	4.693	6.636*
	(1.38)	(1.59)	(1.50)	(1.74)
N	16348	16348	16348	15756
R^2	0.012	0.015	0.019	0.128
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Other Clients – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	11.691***	10.547***	7.796***	7.715***
	(4.48)	(6.92)	(13.23)	(4.20)
$D_t^{9/28-10/14}$	21.153***	19.738***	17.421***	17.578***
	(3.61)	(3.89)	(5.24)	(3.97)
$D_t^{10/17-10/28}$	13.138***	11.463***	10.511***	11.294***
	(3.61)	(3.73)	(5.23)	(4.62)
Ν	27370	27370	27370	26209
R^2	0.083	0.098	0.109	0.231
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Other Clients - Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	9.791***	8.259***	5.280***	5.646***
	(7.35)	(5.22)	(5.85)	(4.94)
$D_t^{9/28-10/14}$	17.889***	16.191***	13.732***	14.102***
	(3.57)	(3.73)	(4.11)	(3.49)
$D_t^{10/17-10/28}$	11.286***	9.541***	8.490***	8.411***
	(3.84)	(3.91)	(4.37)	(3.42)
Ν	22520	22520	22520	21450
R^2	0.082	0.102	0.121	0.232
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Other Clients - Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	14.776	17.529*	14.227**	4.033
	(1.52)	(1.84)	(2.52)	(0.35)
$D_t^{9/28-10/14}$	34.169***	35.311***	31.918***	24.655***
	(3.01)	(3.23)	(5.08)	(2.93)
$D_t^{10/17-10/28}$	20.977**	20.202***	16.660***	16.920***
	(2.62)	(2.82)	(5.19)	(3.62)
Ν	4850	4850	4850	4574
R^2	0.041	0.054	0.071	0.290
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Hedge Funds – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	13.279**	13.205***	13.561***	12.682**
	(2.66)	(2.75)	(2.92)	(2.33)
$D_t^{9/28-10/14}$	-0.025	0.191	0.168	-0.442
	(-0.01)	(0.09)	(0.09)	(-0.17)
$D_t^{10/17-10/28}$	-3.873	-3.870	-4.524	-5.000
	(-0.53)	(-0.52)	(-0.57)	(-0.55)
N	18633	18633	18633	18499
R^2	0.075	0.075	0.079	0.116
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Hedge Funds – Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	-0.345	-0.037	0.615	0.291
	(-0.06)	(-0.01)	(0.11)	(0.07)
$D_t^{9/28-10/14}$	0.584	0.916	1.257	1.196
	(0.41)	(0.68)	(0.96)	(0.74)
$D_t^{10/17-10/28}$	4.628***	4.974***	4.825***	4.095**
	(2.85)	(3.02)	(2.94)	(2.31)
Ν	12654	12654	12654	12537
R^2	0.019	0.020	0.023	0.080
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Hedge Funds - Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	56.712***	56.200***	55.694***	49.591***
	(8.71)	(9.22)	(9.93)	(6.44)
$D_t^{9/28-10/14}$	-3.785	-3.384	-4.932	-6.738
	(-0.50)	(-0.44)	(-0.69)	(-0.84)
$D_t^{10/17-10/28}$	-20.615	-21.227	-22.887	-28.015
	(-1.37)	(-1.36)	(-1.40)	(-1.55)
Ν	5979	5979	5979	5901
R^2	0.085	0.087	0.098	0.140
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Asset Managers – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	9.167***	9.265***	9.484***	8.271**
	(2.77)	(2.72)	(3.22)	(2.51)
$D_t^{9/28-10/14}$	7.822**	8.006**	9.097***	8.759***
	(2.65)	(2.68)	(3.16)	(3.70)
$D_t^{10/17-10/28}$	4.765*	4.522*	5.602**	5.050*
	(1.92)	(1.81)	(2.02)	(1.91)
Ν	68794	68794	68794	68196
R^2	0.013	0.015	0.025	0.085
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Asset Managers - Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	9.390***	9.440***	8.958***	8.615***
	(3.44)	(3.40)	(3.67)	(3.62)
$D_t^{9/28-10/14}$	6.052**	6.128**	6.626***	6.665***
	(2.65)	(2.64)	(2.87)	(3.43)
$D_t^{10/17-10/28}$	4.570**	4.152*	4.759*	4.786*
	(2.05)	(1.85)	(1.87)	(1.84)
Ν	51828	51828	51828	51275
R^2	0.009	0.012	0.025	0.097
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Asset Managers – Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	6.236	6.572	7.758	-1.251
	(0.97)	(1.01)	(1.21)	(-0.16)
$D_t^{9/28-10/14}$	12.523**	12.693**	14.998**	13.466**
	(2.09)	(2.04)	(2.51)	(2.54)
$D_t^{10/17-10/28}$	5.295	5.420	7.682	6.302
	(1.04)	(1.04)	(1.46)	(1.09)
Ν	16966	16966	16966	16760
R^2	0.012	0.015	0.032	0.114
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Dealer Heterogeneity

Are changes in trading costs heterogeneous across dealer size?

Gabor Pinter (Bank of England)

Small Dealers – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	10.923***	10.486***	8.437***	7.281***
	(5.06)	(5.34)	(7.27)	(3.23)
$D_t^{9/28-10/14}$	16.783***	16.571***	15.451***	14.004***
	(4.46)	(4.93)	(5.48)	(4.88)
$D_t^{10/17-10/28}$	10.098***	9.875***	9.444***	9.045***
	(3.41)	(3.63)	(3.61)	(3.43)
N	54827	54827	54827	53745
R^2	0.041	0.051	0.062	0.143
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Large Dealers – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	4.933	4.883	4.795	6.213
	(1.42)	(1.40)	(1.26)	(1.42)
$D_t^{9/28-10/14}$	6.645**	6.659**	6.491**	6.980***
	(2.39)	(2.39)	(2.26)	(2.98)
$D_t^{10/17-10/28}$	1.325	1.415	1.404	2.344
	(0.48)	(0.51)	(0.50)	(0.82)
N	105334	105334	105334	103385
R^2	0.010	0.010	0.011	0.082
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes
Small Dealers – Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	11.229***	10.445***	8.709***	8.818***
	(8.03)	(6.43)	(5.74)	(4.22)
$D_t^{9/28-10/14}$	15.578***	15.131***	13.928***	13.812***
	(4.65)	(5.13)	(5.56)	(5.85)
$D_t^{10/17-10/28}$	10.191***	9.642***	9.170***	9.676***
	(4.34)	(4.33)	(4.09)	(5.00)
Ν	40367	40367	40367	39370
R^2	0.048	0.067	0.080	0.177
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Large Dealers – Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	4.843***	4.840***	4.512**	6.227**
	(2.97)	(2.94)	(2.35)	(2.63)
$D_t^{9/28-10/14}$	3.455	3.455	3.192	3.327**
	(1.63)	(1.63)	(1.51)	(2.10)
$D_t^{10/17-10/28}$	1.743	1.753	1.697	2.592
	(0.85)	(0.84)	(0.81)	(1.29)
N	75651	75651	75651	73777
R^2	0.003	0.003	0.005	0.084
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Small Dealers – Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	5.056	5.968	3.229	-1.089
	(0.71)	(0.86)	(0.60)	(-0.15)
$D_t^{9/28-10/14}$	18.781***	19.172***	18.149***	15.558**
	(3.27)	(3.38)	(3.16)	(2.31)
$D_t^{10/17-10/28}$	9.362	9.973	8.223	7.443
	(1.38)	(1.50)	(1.28)	(0.92)
Ν	14460	14460	14460	14047
R^2	0.023	0.028	0.040	0.160
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Large Dealers – Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	3.919	3.809	4.089	2.840
	(0.34)	(0.33)	(0.36)	(0.24)
$D_t^{9/28-10/14}$	14.171**	13.785**	14.126**	14.114**
	(2.27)	(2.21)	(2.27)	(2.36)
$D_t^{10/17-10/28}$	0.926	0.895	1.061	1.495
	(0.18)	(0.18)	(0.21)	(0.27)
Ν	29683	29683	29683	28966
R^2	0.013	0.014	0.015	0.124
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Bond Heterogeneity

Are changes in trading costs heterogeneous across bond maturity?

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 101 / 155

0-10 Year Maturity - All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	5.676***	5.441***	3.747***	4.027***
	(9.84)	(10.71)	(6.49)	(6.11)
$D_t^{9/28-10/14}$	8.198***	7.843***	7.493***	8.121***
	(5.08)	(5.41)	(5.99)	(6.16)
$D_t^{10/17-10/28}$	5.641***	4.851***	4.945***	5.647***
	(5.86)	(5.52)	(4.95)	(5.33)
N	68288	68288	68288	65832
R^2	0.059	0.099	0.181	0.298
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

10-25 Year Maturity - All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	5.313	5.406	4.145	5.394
	(1.21)	(1.24)	(0.94)	(1.33)
$D_t^{9/28-10/14}$	8.233***	8.358***	7.585**	7.428***
	(2.75)	(2.77)	(2.68)	(3.21)
$D_t^{10/17-10/28}$	4.249	3.793	3.561	4.252
	(1.44)	(1.32)	(1.27)	(1.65)
Ν	44772	44772	44772	43074
R^2	0.007	0.010	0.026	0.130
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

>25 Year Maturity – All Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	12.002***	11.889***	10.251***	11.388
	(3.40)	(3.28)	(2.82)	(1.54)
$D_t^{9/28-10/14}$	13.935**	13.770**	11.309**	10.892**
	(2.45)	(2.42)	(2.11)	(2.29)
$D_t^{10/17-10/28}$	3.722	3.534	1.832	2.994
	(0.63)	(0.60)	(0.31)	(0.45)
Ν	47101	47101	47101	45585
R^2	0.012	0.013	0.020	0.131
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

0-10 Year Maturity - Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	5.507***	5.220***	3.530***	3.678***
	(7.61)	(7.61)	(4.95)	(4.32)
$D_t^{9/28-10/14}$	7.763***	7.269***	6.805***	7.243***
	(4.70)	(4.93)	(5.25)	(5.33)
$D_t^{10/17-10/28}$	4.749***	3.905***	3.901***	4.419***
	(5.63)	(5.02)	(3.93)	(4.16)
N	57024	57024	57024	54795
R^2	0.067	0.107	0.192	0.319
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Trading Costs

Recall: no LDI selling pressure in short-dated nominals Yet, trading costs rise!

10-25 Year Maturity - Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	8.868***	8.816***	8.049***	10.353***
	(3.23)	(3.18)	(2.92)	(3.54)
$D_t^{9/28-10/14}$	5.655**	5.673**	5.211*	5.494**
	(2.04)	(2.04)	(1.97)	(2.54)
$D_t^{10/17-10/28}$	5.528**	4.799*	4.862*	5.555**
	(2.02)	(1.83)	(1.78)	(2.20)
N	31132	31132	31132	29657
R^2	0.005	0.010	0.025	0.136
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

>25 Year Maturity – Nominal Bonds

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	12.012***	12.010***	9.285***	14.094***
	(4.52)	(4.30)	(2.80)	(2.89)
$D_t^{9/28-10/14}$	10.430*	10.323*	7.058	7.745**
	(1.93)	(1.94)	(1.52)	(2.09)
$D_t^{10/17-10/28}$	5.973	5.318	3.256	5.739
	(1.26)	(1.15)	(0.69)	(1.40)
Ν	27862	27862	27862	26561
R^2	0.009	0.011	0.022	0.155
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

0-10 Year Maturity - Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	4.852***	5.138***	4.521**	4.392***
	(3.24)	(3.13)	(2.18)	(4.45)
$D_t^{9/28-10/14}$	10.492***	11.666***	12.382***	14.347***
	(5.69)	(5.61)	(6.07)	(5.50)
$D_t^{10/17-10/28}$	10.674***	10.732***	10.954***	13.618***
	(3.47)	(3.47)	(3.59)	(3.59)
Ν	11264	11264	11264	10621
R^2	0.037	0.090	0.191	0.346
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

10-25 Year Maturity - Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	-6.600	-5.949	-8.191	-10.105
	(-0.68)	(-0.62)	(-0.83)	(-1.39)
$D_t^{9/28-10/14}$	14.221***	14.492***	13.503***	12.058***
	(2.98)	(3.00)	(2.98)	(2.82)
$D_t^{10/17-10/28}$	1.486	1.510	1.018	2.514
	(0.38)	(0.38)	(0.29)	(0.73)
Ν	13640	13640	13640	12922
R^2	0.010	0.012	0.032	0.201
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

>25 Year Maturity – Linkers

	(1)	(2)	(3)	(4)
$D_t^{9/23-9/27}$	12.188*	11.295	10.421	1.828
	(1.85)	(1.68)	(1.62)	(0.19)
$D_t^{9/28-10/14}$	19.082**	18.088**	15.976*	12.759
	(2.18)	(2.05)	(1.80)	(1.28)
$D_t^{10/17-10/28}$	1.086	0.720	-0.518	-3.912
	(0.11)	(0.08)	(-0.06)	(-0.30)
N	19239	19239	19239	18465
R^2	0.010	0.012	0.017	0.168
Bond FE	Yes	Yes	Yes	Yes
Size FE	No	Yes	Yes	Yes
Dealer FE	No	No	Yes	No
Client#Dealer FE	No	No	No	Yes

Size Heterogeneity

Are changes in trading costs heterogeneous across trade sizes?

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 112/155

Trading Costs around the Crisis Small Trades (<£100,000) – All Bonds

(1)(2) (3) $D_{t}^{9/23-9/27}$ 19.021*** 14.543*** 14.092** (5.58)(3.95)(2.64) $D_{\star}^{9/28-10/14}$ 16.909*** 15.377*** 14.320*** (4.08)(4.42)(3.81) $D_t^{10/17-10/28}$ 12.145*** 12.083*** 12.209*** (3.16)(3.15)(3.26)Ν 54416 54416 53231 R^2 0.039 0.069 0.170 Bond FE Yes Yes Yes Dealer FE No Yes No Client#Dealer FE No No Yes

Small Trades (<£100,000) - Nominal Bonds

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	17.201***	12.279**	11.294***
	(3.51)	(2.59)	(2.78)
$D_t^{9/28-10/14}$	15.651***	14.192***	12.562***
	(4.17)	(4.62)	(3.69)
$D_t^{10/17-10/28}$	11.840***	11.647***	10.500***
	(4.52)	(4.31)	(4.32)
Ν	39137	39137	38198
R^2	0.047	0.098	0.207
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Small Trades (<£100,000) - Linkers

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	16.011**	16.605***	21.353**
	(2.64)	(2.74)	(2.40)
$D_t^{9/28-10/14}$	17.871**	16.592**	16.423**
	(2.64)	(2.67)	(2.57)
$D_t^{10/17-10/28}$	12.140	10.829	12.018
	(1.20)	(1.08)	(1.09)
N	15279	15279	14781
R^2	0.025	0.053	0.204
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Medium Trades (£100,000-£1,000,000) - All Bonds

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	1.920	0.800	1.714
	(0.24)	(0.10)	(0.31)
$D_t^{9/28-10/14}$	5.428	4.864	4.398
	(1.45)	(1.32)	(1.54)
$D_t^{10/17-10/28}$	-0.024	-0.553	-0.611
	(-0.01)	(-0.17)	(-0.23)
Ν	44054	44053	42154
<i>R</i> ²	0.006	0.009	0.124
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Medium Trades (£100,000-£1,000,000) - Nominal Bonds

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	6.377*	5.236	7.068**
	(1.79)	(1.56)	(2.35)
$D_t^{9/28-10/14}$	4.901	4.208	5.127*
	(1.37)	(1.23)	(1.90)
$D_t^{10/17-10/28}$	-0.221	-0.598	-0.115
	(-0.06)	(-0.18)	(-0.04)
Ν	31634	31633	30035
R ²	0.006	0.011	0.138
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Medium Trades (£100,000-£1,000,000) - Linkers

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	-10.754	-11.482	-17.444
	(-0.50)	(-0.55)	(-1.24)
$D_t^{9/28-10/14}$	6.871	6.651	-1.386
	(1.14)	(1.11)	(-0.26)
$D_t^{10/17-10/28}$	0.743	0.321	-1.433
	(0.16)	(0.07)	(-0.28)
Ν	12420	12420	11681
R^2	0.007	0.011	0.181
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Large Trades (>£1,000,000) - All Bonds

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	1.226	1.927	2.911
	(0.62)	(0.85)	(0.57)
$D_t^{9/28-10/14}$	7.793***	7.897***	7.744***
	(3.29)	(3.30)	(4.22)
$D_t^{10/17-10/28}$	-0.136	-0.263	0.130
	(-0.06)	(-0.12)	(0.06)
Ν	61691	61691	59839
<i>R</i> ²	0.019	0.021	0.102
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Large Trades (>£1,000,000) - Nominal Bonds

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	0.446	0.766	3.143
	(0.13)	(0.22)	(0.92)
$D_t^{9/28-10/14}$	3.234	3.222	2.907**
	(1.55)	(1.54)	(2.13)
$D_t^{10/17-10/28}$	1.817	1.628	2.847*
	(0.96)	(0.84)	(1.81)
Ν	45247	45247	43450
R^2	0.006	0.007	0.107
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Large Trades (>£1,000,000) - Linkers

	(1)	(2)	(3)
$D_t^{9/23-9/27}$	4.892	5.877	-1.306
	(0.82)	(1.05)	(-0.11)
$D_t^{9/28-10/14}$	20.075***	20.100***	21.717***
	(3.88)	(3.82)	(3.52)
$D_t^{10/17-10/28}$	-2.720	-2.657	-2.679
	(-0.65)	(-0.58)	(-0.45)
N	16444	16444	15769
R^2	0.026	0.030	0.149
Bond FE	Yes	Yes	Yes
Dealer FE	No	Yes	No
Client#Dealer FE	No	No	Yes

Size Heterogeneity

How do the size penalty and size discount change? (Pinter-Wang-Zou, 2022)

Size Discount Increases

Cross-client Relationship between trade size and trading costs

Changes in the Size Discount

Size Penalty Increases

Within-client Relationship between trade size and trading costs

Changes in the Size Penalty

Outline

- Stylised Facts from UK Bond Markets
- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Did relationships mitigate cost hikes?

• Did trading relationships mitigate (client-specific) cost hikes? (Di Maggio et al (2017), Jurkatis-Schrimpf-Todorov-Vause (2022))

Did relationships mitigate cost hikes?

- Did trading relationships mitigate (client-specific) cost hikes? (Di Maggio et al (2017), Jurkatis-Schrimpf-Todorov-Vause (2022))
- Favorite dealer: defined as the dealer with which a client traded the most before the crisis

Did relationships mitigate cost hikes?

- Did trading relationships mitigate (client-specific) cost hikes? (Di Maggio et al (2017), Jurkatis-Schrimpf-Todorov-Vause (2022))
- Favorite dealer: defined as the dealer with which a client traded the most before the crisis
- Favorite clients: defined as the top 3 clients with which a dealer traded the most before the crisis

Did relationships mitigate cost hikes?

- Did trading relationships mitigate (client-specific) cost hikes? (Di Maggio et al (2017), Jurkatis-Schrimpf-Todorov-Vause (2022))
- Favorite dealer: defined as the dealer with which a client traded the most before the crisis
- Favorite clients: defined as the top 3 clients with which a dealer traded the most before the crisis
- Did trading costs increase by less if the given trade was with (i) the favorite dealer, or with (ii) favorite clients?

The Role of Favorite Dealers

	(1)	(2)	(3)	(4)	(5)	(6)
	All E	Bonds	Nomina	I Bonds	Linkers	
Dealer type	Other	Favorite	Other	Favorite	Other	Favorite
$D_t^{9/23-9/27}$	9.648**	-1.261	10.486***	-0.418	5.418	-9.356
	(2.61)	(-0.24)	(3.89)	(-0.17)	(0.80)	(-0.88)
$D_t^{9/28-10/14}$	6.660***	15.098***	4.189**	11.914***	12.841**	22.285***
	(2.87)	(4.69)	(2.33)	(3.58)	(2.60)	(2.89)
N	91231	30295	64528	23617	26000	6552
R^2	0.106	0.150	0.104	0.170	0.150	0.201
Bond FE	Yes	Yes	Yes	Yes	Yes	Yes
CL#DE FE	Yes	Yes	Yes	Yes	Yes	Yes

The Role of Favorite Clients

	(1)	(2)	(3)	(4)	(5)	(6)
	All B	onds	Nominal	l Bonds Linkers		ers
Client type	Other	Favorite	Other	Favorite	Other	Favorite
$D_t^{9/23-9/27}$	10.641**	-15.513	10.476***	-11.929	8.086	-21.180
	(2.71)	(-0.83)	(3.78)	(-1.12)	(0.90)	(-0.53)
$D_t^{9/28-10/14}$	9.798***	4.561	7.716***	0.462	14.838***	14.962
	(4.88)	(0.92)	(4.65)	(0.15)	(3.07)	(1.05)
N	101697	19829	74474	13671	26396	6156
R^2	0.130	0.043	0.137	0.051	0.179	0.065
Bond FE	Yes	Yes	Yes	Yes	Yes	Yes
Bond FE	Yes	Yes	Yes	Yes	Yes	Yes

Did The Entire Trade Network Change during the Crisis?

• Construct 2 snapshots of the gilt market trading network: pre-crisis (09/01 - 09/22) and crisis (09/23 - 10/14)
Did The Entire Trade Network Change during the Crisis?

- Construct 2 snapshots of the gilt market trading network: pre-crisis (09/01 09/22) and crisis (09/23 10/14)
- nodes: clients and dealers participating in the market
 - to illustrate the importance of firms, the size of nodes captures the first-order connections of the given firm
- edges: determined by transactions

Did The Entire Trade Network Change during the Crisis?

- Construct 2 snapshots of the gilt market trading network: pre-crisis (09/01 09/22) and crisis (09/23 10/14)
- nodes: clients and dealers participating in the market
 - to illustrate the importance of firms, the size of nodes captures the first-order connections of the given firm
- edges: determined by transactions
- colour scheme: dealers = red; two biggest LDI sellers = black, all other LDIs = green, all other clients = blue
- take-aways: in the crisis (i) network becomes denser, (ii) new (local) hubs appear (non-LDIs as centers)

Trade Network Before the Crisis

Dealers (red), Two Largest LDIs (black), Other LDIs (green)

Pre-crisis (09/01-09/22)

Trade Network During the Crisis

Dealers (red), Two Largest LDIs (black), Other LDIs (green)

Crisis (09/23-10/14)

Outline

- Stylised Facts from UK Bond Markets
- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Price Dispersion around the Crisis A Measure of Liquidity

 Price dispersion as a measure of market liquidity (Jankowitsch-Nashikkar-Subrahmanyam, 2011):

$$D = \sqrt{\frac{1}{N} \sum_{v}^{N} \left(\ln \left(P_{v}^{\star} \right) - \ln \left(\overline{P} \right) \right)^{2}}$$
(6.1)

• Using dealer IDs, we can decompose 6.1:

$$D^2 = D^2_{within-dealer} + D^2_{cross-dealer}$$
(6.2)

• document the estimated measures 6.1–6.2 for (i) different periods around the crisis, and for (ii) nominals and linkers

Elevated Price Dispersion

Measured as standard deviation; All Bonds

Larger Price Dispersion in Linkers

Measured as standard deviation; Nominals vs Linkers

Price Dispersion During the Crisis

Hourly Benchmark Price

	Pre-crisis (8/30-9/22)		Crisis (9/23-10/14)		Post-Crisis (10/17-10/28)			
	Variance	%	Variance	%	Variance	%		
Panel A: All Bonds	5							
Cross-Dealer	0.02885	68.2%	0.15415	48.8%	0.08139	60.8%		
Within-Dealer	0.01343	31.8%	0.16164	51.2%	0.05255	39.2%		
Total Dispersion	0.04228	100.0%	0.31579	100.0%	0.13393	100.0%		
Panel B: Nominal Bonds								
Cross-Dealer	0.00986	62.6%	0.06895	55.5%	0.02389	50.9%		
Within-Dealer	0.00588	37.4%	0.05518	44.5%	0.0231	49.2%		
Total Dispersion	0.01574	100.0%	0.12413	100.0%	0.04698	100.0%		
Panel C: Linkers								
Cross-Dealer	0.09719	70.5%	0.39582	46.1%	0.2352	64.2%		
Within-Dealer	0.04062	29.5%	0.46363	53.9%	0.13131	35.8%		
Total Dispersion	0.13782	100.0%	0.85945	100.0%	0.36651	100.0%		

Gabor Pinter (Bank of England)

Price Dispersion During the Crisis

Daily Benchmark Price

	Pre-crisis (8/30-9/22)		Crisis (9/23-10/14)		Post-Crisis (10/17-10/28)			
	Variance	%	Variance	%	Variance	%		
Panel A: All Bonds	5							
Cross-Dealer	0.19804	48.4%	2.2683	38.1%	0.54075	40.1%		
Within-Dealer	0.21077	51.6%	3.69194	61.9%	0.80736	59.9%		
Total Dispersion	0.40881	100.0%	5.96025	100.0%	1.34811	100.0%		
Panel B: Nominal Bonds								
Cross-Dealer	0.07886	41.7%	0.52313	32.6%	0.11666	38.9%		
Within-Dealer	0.11038	58.3%	1.08103	67.4%	0.18327	61.1%		
Total Dispersion	0.18924	100.0%	1.60415	100.0%	0.29993	100.0%		
Panel C: Linkers								
Cross-Dealer	0.57783	52.1%	6.8085	39.4%	1.58404	40.3%		
Within-Dealer	0.53067	47.9%	10.48444	60.6%	2.34268	59.7%		
Total Dispersion	1.10850	100.0%	17.29294	100.0%	3.92672	100.0%		

Gabor Pinter (Bank of England)

Cross-Dealer Component is Sizeable

Measured as variance; Linkers

Cross-Dealer Component is Sizeable

Measured as variance; Nominals

Outline

- Stylised Facts from UK Bond Markets
- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- Hedge Fund Trading
- Comparisons with COVID-19

Hedge Fund Trading around the Crisis

 Measure of trading performance (Di Maggio et al, 2018; Kondor-Pinter, 2022):

$$\Pi_{h} = \left[\ln \left(\overline{P}_{t+h} \right) - \ln \left(P_{t}^{\star} \right) \right] \times \mathbf{1}_{B,S}$$
(7.1)

- where \overline{P}_{t+h} is the benchmark price *h* days after transaction
- compute the estimated measure 7.1 for hedge funds; compute for $h = \{1, 3, 6\}$
 - unweighted mean
 - mean weighted by trade size
 - median

Hedge Fund Trading around the Crisis Example

• Apply our measure of trading performance:

$$\Pi_{h} = \left[\ln \left(\overline{P}_{t+h} \right) - \ln \left(P_{t}^{\star} \right) \right] \times \mathbf{1}_{B,S}$$
(7.2)

- Take the 22mar2046 linker on 28 September 2022:
 - at 8am a star hedge fund bought £100.8million at £49
 - at 1pm, this bond was trading at around £83

Hedge Fund Trading around the Crisis Example

• Apply our measure of trading performance:

$$\Pi_{h} = \left[\ln \left(\overline{P}_{t+h} \right) - \ln \left(P_{t}^{\star} \right) \right] \times \mathbf{1}_{B,S}$$
(7.2)

- Take the 22mar2046 linker on 28 September 2022:
 - at 8am a star hedge fund bought £100.8million at £49
 - $\bullet\,$ at 1pm, this bond was trading at around £83
- Plug in the values

$$\Pi_{h} = \left[\ln \left(\overline{P}_{t+h} \right) - \ln \left(P_{t}^{\star} \right) \right] \times \mathbf{1}_{B,S}$$
$$= \left[\ln \left(83 \right) - \ln \left(49 \right) \right] \times \mathbf{1}_{B,S}$$
$$\approx 53\%$$

so the 5-hour log return is 53% (arithmetic return is 69%)

2022 Gilt Market Crisis

Hedge Fund Trading around the Crisis Hedge Fund Returns

Did hedge funds profit from the forced selling of LDIs?

1-day Horizon; Unweighted Mean

3-day Horizon; Unweighted Mean

6-day Horizon; Unweighted Mean

1-day Horizon; Weighted Mean

3-day Horizon; Weighted Mean

6-day Horizon; Weighted Mean

1-day Horizon; Median

3-day Horizon; Median

6-day Horizon; Median

Stylised Facts from UK Bond Markets

- Stylised Facts from UK Swap and Repo Markets
- Trading Costs around the Crisis
- Trading Relationships and Trade Networks
- Aggregate Price Dispersion
- 6 Hedge Fund Trading

• Comparisons with COVID-19

Gabor Pinter (Bank of England)

2022 Gilt Market Crisis

5/2023 153/155

Comparing LDI Orderflow: Sep-Oct 2022 vs March 2020 All Bonds

Comparing LDI Orderflow: Sep-Oct 2022 vs March 2020 Nominal Bonds

Comparing LDI Orderflow: Sep-Oct 2022 vs March 2020 Linkers

