Heterogeneous Intermediaries and Bond Characteristics in the Transmission of Monetary Policy

Federic Holm-Hadulla (European Central Bank) and Matteo Leombroni (Boston College)

The views expressed here are those of the authors and do not necessarily reflect those of the European Central Bank.

- Unconventional and conventional monetary policy have large effects on bond yields
 - Empirically documented through high-frequency approach [Krishnamurthy-Vissing-Jorgensen 2011; Gagnon-et-al 2011; Gertler Karadi 2015]

- Unconventional and conventional monetary policy have large effects on bond yields
 - Empirically documented through high-frequency approach [Krishnamurthy-Vissing-Jorgensen 2011;
 Gagnon-et-al 2011; Gertler Karadi 2015]
- Investor heterogeneity and market segmentation key to rationalize empirical findings [Koijen-Yogo 2019, Vayanos-Vila 2009, Greenwood-et-al 2018...]

- Unconventional and conventional monetary policy have large effects on bond yields
 - Empirically documented through high-frequency approach [Krishnamurthy-Vissing-Jorgensen 2011; Gagnon-et-al 2011; Gertler Karadi 2015]
- Investor heterogeneity and market segmentation key to rationalize empirical findings [Koijen-Yogo 2019, Vayanos-Vila 2009, Greenwood-et-al 2018...]
- Segmentation particularly relevant for corporate bonds [Kisgen 2006; Chernenko-Sunderam 2012]

- Unconventional and conventional monetary policy have large effects on bond yields
 - Empirically documented through high-frequency approach [Krishnamurthy-Vissing-Jorgensen 2011; Gagnon-et-al 2011; Gertler Karadi 2015]
- Investor heterogeneity and market segmentation key to rationalize empirical findings [Koijen-Yogo 2019, Vayanos-Vila 2009, Greenwood-et-al 2018...]
- Segmentation particularly relevant for corporate bonds [Kisgen 2006; Chernenko-Sunderam 2012]
- However, limited empirical evidence on:
 - Connection between bond market response and investors heterogeneity
 - Role of market segmentations for monetary policy transmission to corporate bonds

- New evidence on relationship between **bond ownership** and price response to monetary policy
 - Main focus on ECB corporate bond purchases, but also discuss conventional policy

- New evidence on relationship between bond ownership and price response to monetary policy
 - Main focus on ECB corporate bond purchases, but also discuss conventional policy
- Simple model to show this relation can be driven by two channels:
 - **Selection** How intermediaries (e.g., insurance vs mutual funds) select bonds with different characteristics
 - Segmentation: bonds with similar risk may have different responses

- New evidence on relationship between bond ownership and price response to monetary policy
 - Main focus on ECB corporate bond purchases, but also discuss conventional policy
- Simple model to show this relation can be driven by two channels:
 - **Selection** How intermediaries (e.g., insurance vs mutual funds) select bonds with different characteristics
 - **Segmentation**: bonds with similar risk may have different responses
- Empirical test to disentangle the two channels:
 - Compare effects of monetary policy on bonds with similar characteristics but different ownership

- Model shows:
 - No segmentations: Price effects depend on bonds' risk and aggregate shares of different investors
 - Segmentations: Price effects depend on investors' shares in market segment

- Model shows:
 - No segmentations: Price effects depend on bonds' risk and aggregate shares of different investors
 - Segmentations: Price effects depend on investors' shares in market segment
- Empirically, bond purchases stronger effects on bonds with higher mutual funds shares
 - Policy primarily affect credit-riskier bonds, typically held by mutual funds (selection)
 - But...if we control for risk, bonds held by mutual funds still more responsive (segmentation)

- Model shows:
 - No segmentations: Price effects depend on bonds' risk and aggregate shares of different investors
 - Segmentations: Price effects depend on investors' shares in market segment
- Empirically, bond purchases stronger effects on bonds with higher mutual funds shares
 - Policy primarily affect credit-riskier bonds, typically held by mutual funds (selection)
 - But...if we control for risk, bonds held by mutual funds still more responsive (segmentation)
- Mechanism:
 - Insurance companies and banks refrain to invest in certain segments
 - Mutual funds have to absorb supply in equilibrium
 - Higher yield and higher sensitivity to shift in supply in those segments

- Model shows:
 - No segmentations: Price effects depend on bonds' risk and aggregate shares of different investors
 - Segmentations: Price effects depend on investors' shares in market segment
- Empirically, bond purchases stronger effects on bonds with higher mutual funds shares
 - Policy primarily affect credit-riskier bonds, typically held by mutual funds (selection)
 - But...if we control for risk, bonds held by mutual funds still more responsive (segmentation)
- Mechanism:
 - Insurance companies and banks refrain to invest in certain segments
 - Mutual funds have to absorb supply in equilibrium
 - Higher yield and higher sensitivity to shift in supply in those segments
 - → Conclude risk bearing capacity in market segments matters for transmission

Table of Contents

Corporate Sector Purchase Programme (CSPP)

Bond Ownership and Bond Characteristics

Simple Model

Segmentation and the Effects of Asset Purchases

Conventional Monetary Policy

Data

Asset Prices

- iBoxx database on single-name corporate bonds
- Daily frequency information on prices, duration, yields, OAS spreads ...

Asset Holdings

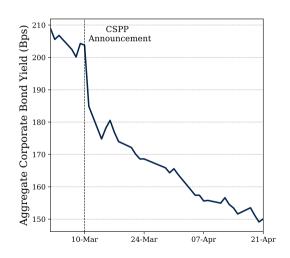
- ECB security holdings statistics (SHSS) database
- Security-level portfolio holdings by investor type:
 - Mutual funds, insurance companies and pension funds (ICPF), banks, ...

Table of Contents

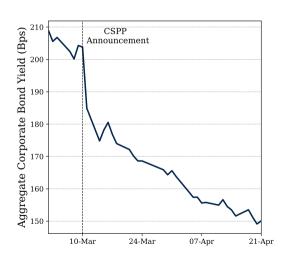
Corporate Sector Purchase Programme (CSPP)

Bond Ownership and Bond Characteristics

Simple Mode

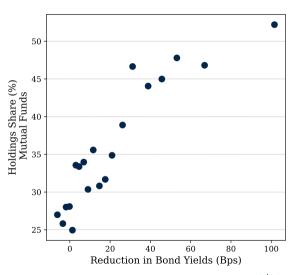

Segmentation and the Effects of Asset Purchases

Conventional Monetary Policy

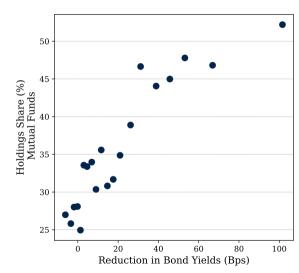

 ECB announced to purchase non-banks investment grade bonds in March 2016

- ECB announced to purchase non-banks investment grade bonds in March 2016
- Effective in reducing corporate bond yields [Todorov 2020, De Santis-Zaghini 2021 ...]

- ECB announced to purchase non-banks investment grade bonds in March 2016
- Effective in reducing corporate bond yields [Todorov 2020, De Santis-Zaghini 2021 ...]
- Significant drop in bond yields following announcements



- ECB announced to purchase non-banks investment grade bonds in March 2016
- Effective in reducing corporate bond yields [Todorov 2020, De Santis-Zaghini 2021 ...]
- Significant drop in bond yields following announcements
- Open question: How bonds held by different intermediaries responded?


Mutual Fund Holdings and Reduction in Bond Yields

Mutual fund shares (y-axis) and reduction in bond yields (x-axis) positively correlated

Mutual Fund Holdings and Reduction in Bond Yields

- Mutual fund shares (y-axis) and reduction in bond yields (x-axis) positively correlated
- Correlation can be driven by:
 - Selection How intermediaries select bonds with different characteristics
 - Segmentation: bonds with similar risk may have different responses

Table of Contents

Corporate Sector Purchase Programme (CSPP)

Bond Ownership and Bond Characteristics

Simple Mode

Segmentation and the Effects of Asset Purchases

Conventional Monetary Policy

Selection and Market Segmentation

■ Test for the role of market segmentation by comparing similar bonds

Selection and Market Segmentation

- Test for the role of market segmentation by comparing similar bonds
- Regress change in OAS spreads $(\Delta y s_i^n)$ on mutual funds shares θ_i^{MF} and fixed-effects

$$\Delta y s_i^n = \beta_{\mathbf{n}}^{\mathbf{MF}} \quad \underbrace{\theta_i^{\mathbf{MF}}}_{\text{Nutual Funds}} \quad + \text{Interacted Fixed Effects} + \varepsilon_i^n$$

■ Fixed effects can include: Duration, Rating, Country, Callable, Liquidity (bid-ask)

Selection and Market Segmentation

- Test for the role of market segmentation by comparing similar bonds
- Regress change in OAS spreads $(\Delta y s_i^n)$ on mutual funds shares θ_i^{MF} and fixed-effects

$$\Delta y s_i^n = \beta_n^{MF} \underbrace{\theta_i^{MF}}_{\text{Nutual Funds}} + \text{Interacted Fixed Effects} + \varepsilon_i^n$$

- Fixed effects can include: Duration, Rating, Country, Callable, Liquidity (bid-ask)
- We use the OAS change in n = 5-days, 10-days, 20-days

Results: The Ownership Effects

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Δys^5							
θ_i^{MF}	-55.690***	46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	-11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
Observations	472	466	452	429	399	328	343	435
Adj. R-squared	0.146	0.170	0.231	0.304	0.344	0.570	0.520	0.864
Observations	467	461	449	426	397	324	338	432
Adj. R-squared	0.110	0.186	0.317	0.377	0.427	0.611	0.537	0.629
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
Issuer	No	Yes						
								11/

Results: The Ownership Effects

					\			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Δys^5							
θ_i^{MF}	-55.690***	-46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	-11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
Observations	472	466	452	429	399	328	343	435
Adj. R-squared	0.146	0.170	0.231	0.304	0.344	0.570	0.520	0.864
Observations	467	461	449	426	397	324	338	432
Adj. R-squared	0.110	0.186	0.317	0.377	0.427	0.611	0.537	0.629
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
Issuer	No	Yes						
					J			11/

Results: The Ownership Effects

								\
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Δys^5							
θ_i^{MF}	-55.690***	-46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
Observations	472	466	452	429	399	328	343	435
Adj. R-squared	0.146	0.170	0.231	0.304	0.344	0.570	0.520	0.864
Observations	467	461	449	426	397	324	338	432
Adj. R-squared	0.110	0.186	0.317	0.377	0.427	0.611	0.537	0.629
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
Issuer	No	Yes						
								11/2

Results at Different Lags are Stable

				Panel (A): !	5-days lag			
θ_i^{MF}	-55.690***	-46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	-11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
				Panel (B): 1	.0-days lag			
θ_i^{MF}	-55.511***	-45.265***	-46.297***	-37.732***	-47.013***	-30.854***	-16.748*	-10.929
	(7.16)	(8.40)	(9.75)	(8.66)	(13.66)	(8.67)	(9.92)	(6.60)
				Panel (C): 2	:0-days lag			
θ_i^{MF}	-56.007***	-39.698***	-41.945***	-33.066***	-38.163***	-29.255***	-14.352	-14.364*
	(7.32)	(8.05)	(8.70)	(9.31)	(12.12)	(7.18)	(10.25)	(8.54)
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
Issuer	No	No	No	No	No	No	No	Yes

Results at Different Lags are Stable

				Panel (A): 5	5-days lag			
θ_i^{MF}	-55.690***	-46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	-11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
				Panel (B): 1	D-days lag			
θ_i^{MF}	-55.511***	-45.265***	-46.297***	-37.732***	-47.013***	-30.854***	-16.748*	-10.929
	(7.16)	(8.40)	(9.75)	(8.66)	(13.66)	(8.67)	(9.92)	(6.60)
				Panel (C): 2	D-days lag			
θ_i^{MF}	-56.007***	-39.698***	-41.945***	-33.066***	-38.163***	-29.255***	-14.352	-14.364*
	(7.32)	(8.05)	(8.70)	(9.31)	(12.12)	(7.18)	(10.25)	(8.54)
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
Issuer	No	No	No	No	No	No	No	Yes

Results at Different Lags are Stable

				Panel (A):	5-days lag			
θ_i^{MF}	-55.690***	-46.192***	-50.943***	-40.276***	-49.979***	-31.120***	-20.202**	11.586**
	(6.16)	(6.95)	(10.69)	(9.17)	(14.11)	(8.75)	(9.79)	(4.48)
				Panel (B): 1	.0-days lag			
θ_i^{MF}	-55.511***	-45.265***	-46.297***	-37.732***	-47.013***	-30.854***	-16.748*	-10.929
	(7.16)	(8.40)	(9.75)	(8.66)	(13.66)	(8.67)	(9.92)	(6.60)
				Panel (C): 2	:0-days lag			
9 ^{MF}	-56.007***	-39.698***	-41.945***	-33.066***	-38.163***	-29.255***	-14.352	-14.364*
	(7.32)	(8.05)	(8.70)	(9.31)	(12.12)	(7.18)	(10.25)	(8.54)
Duration	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Rating	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Country	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rating Worst	No	No	No	Yes	Yes	Yes	Yes	Yes
Callable	No	No	No	No	Yes	No	No	No
Liquidity	No	No	No	No	No	Yes	No	No
Sector	No	No	No	No	No	No	Yes	No
lssuer	No	No	No	No	No	No	No	Yes 12

Recap

- lacktriangledown \uparrow mutual fund shares ightarrow \uparrow sensitivity to central banks' purchases
- Mutual funds hold credit riskier bonds, naturally more sensitive to central bank purchases
- But, controlling for bond characteristics (rating, sector, liquidity) ...
 - ightarrow Bonds held by mutual funds are more sensitive to central bank purchases

Recap

- lacktriangledown \uparrow mutual fund shares ightarrow \uparrow sensitivity to central banks' purchases
- Mutual funds hold credit riskier bonds, naturally more sensitive to central bank purchases
- But, controlling for bond characteristics (rating, sector, liquidity) ...
 - ightarrow Bonds held by mutual funds are more sensitive to central bank purchases
- We find similar patterns for the Pandemic Emergency Purchase Programme

Recap

- lacktriangledown \uparrow mutual fund shares ightarrow \uparrow sensitivity to central banks' purchases
- Mutual funds hold credit riskier bonds, naturally more sensitive to central bank purchases
- But, controlling for bond characteristics (rating, sector, liquidity) ...
 - ightarrow Bonds held by mutual funds are more sensitive to central bank purchases
- We find similar patterns for the Pandemic Emergency Purchase Programme
- How do we rationalize these findings?

Table of Contents

Corporate Sector Purchase Programme (CSPP)

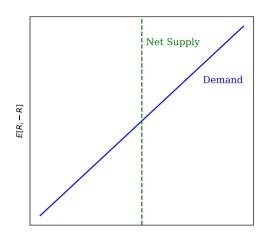
Bond Ownership and Bond Characteristics

Simple Model

Segmentation and the Effects of Asset Purchases

Conventional Monetary Policy

- Two period economy (endogenous in blue)
- Assets i=1,..N, in unit supply and returns $R_i \sim N(\mu_i,\sigma_i)$, Risk-free rate R
- Continuum of two investor types (in mass one):
 - k = M for mutual funds
 - k = O for other investors
- Assets A^k , mean-variance preferences (risk-aversion γ_k)
- Choose portfolio share X_i^k

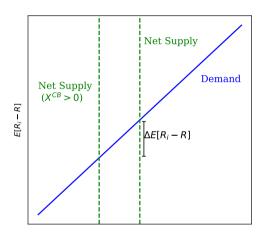

• Portfolio choice depends on γ_k :

$$\mathbf{X}_{i,k} = \frac{1}{\gamma_k} \frac{E[R_i - R]}{\sigma_i^2},$$

Market Clearing

$$\underbrace{A_{M}X_{i,M} + A_{O}X_{i,O}}_{\text{Demand}} = \underbrace{1 - X_{i}^{CB}}_{\substack{\text{Net} \\ \text{Supply}}}$$

■ Central banks' holdings X_i^{CB}


• Portfolio choice depends on γ_k :

$$\mathbf{X}_{i,k} = \frac{1}{\gamma_k} \frac{E[R_i - R]}{\sigma_i^2},$$

Market Clearing

$$\underbrace{A_{M}X_{i,M} + A_{O}X_{i,O}}_{\text{Demand}} = \underbrace{1 - X_{i}^{CB}}_{\substack{\text{Net} \\ \text{Supply}}}$$

• Central banks' holdings X_i^{CB}

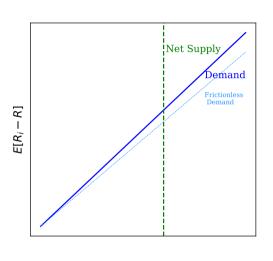
Simple Model - Segmented Equilibrium

- Only subset θ_i^O of O-investors eligible to invest in asset i
- Same portfolio choices if allowed to invest:

$$\mathbf{X}_{i,k} = \frac{1}{\gamma_k} \frac{E\left[R_i - R\right]}{\sigma_i^2}$$

Market Clearing

$$\underbrace{A_{M}X_{i,M} + \theta_{i}^{O}A_{O}X_{i,O}}_{\text{Demand}} = \underbrace{1 - X_{i}^{CB}}_{\text{Net}}$$

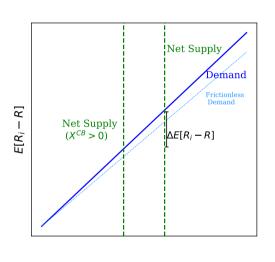

Simple Model - Segmented Equilibrium

- Only subset θ_i^O of O-investors eligible to invest in asset i
- Same portfolio choices if allowed to invest:

$$\mathbf{X}_{i,k} = \frac{1}{\gamma_k} \frac{E\left[R_i - R\right]}{\sigma_i^2}$$

Market Clearing

$$\underbrace{A_{M}X_{i,M} + \theta_{i}^{O}A_{O}X_{i,O}}_{\text{Demand}} = \underbrace{1 - X_{i}^{CB}}_{\text{Supply}}$$


Simple Model - Segmented Equilibrium

- Only subset θ_i^O of O-investors eligible to invest in asset i
- Same portfolio choices if allowed to invest:

$$\mathbf{X}_{i,k} = \frac{1}{\gamma_k} \frac{E\left[R_i - R\right]}{\sigma_i^2}$$

Market Clearing

$$\underbrace{A_{M}X_{i,M} + \theta_{i}^{O}A_{O}X_{i,O}}_{\text{Demand}} = \underbrace{1 - X_{i}^{CB}}_{\text{Supply}}$$

Frictionless Equilibrium

• Cross-sectional difference depends on σ_i ($\Delta E[R_i - R]$ larger for riskier bonds)

Frictionless Equilibrium

• Cross-sectional difference depends on σ_i ($\Delta E[R_i - R]$ larger for riskier bonds)

Segmented Equilibrium

Segmented Equilibrium

- Cross-sectional difference depends on θ_i^O
 - Some investors (e.g., banks and insurance companies) refrain from hold certain assets
 - Mutual funds have to intermediate them
 - ullet Lower risk-bearing capacity o steeper demand curve o stronger effects

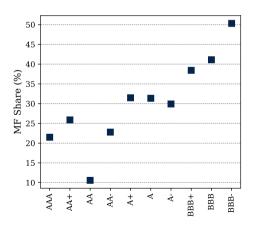
Segmented Equilibrium

- Cross-sectional difference depends on θ_i^O
 - Some investors (e.g., banks and insurance companies) refrain from hold certain assets
 - Mutual funds have to intermediate them
 - ullet Lower risk-bearing capacity o steeper demand curve o stronger effects
- Conditioning on risk, bonds held by mutual funds more responsive (segmentation)

Table of Contents

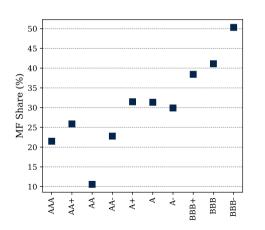
Corporate Sector Purchase Programme (CSPP)

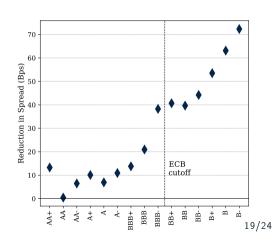
Bond Ownership and Bond Characteristics


Simple Mode

Segmentation and the Effects of Asset Purchases

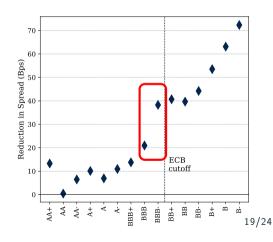
Conventional Monetary Policy


Mutual Funds Holdings and Effects by Ratings


Mutual funds hold more of lower rated bonds

Mutual Funds Holdings and Effects by Ratings

Mutual funds hold more of lower rated bonds
 Credit riskier bonds naturally more affected



Mutual Funds Holdings and Effects by Ratings

- and especially BBB- bonds
 - Share (%) 35 30 MF 15 10 BBB+ BBB BBB-

- Mutual funds hold more of lower rated bonds

 Credit riskier bonds naturally more affected
 - But...Large wedge between BBB and BBB-

Table of Contents

Corporate Sector Purchase Programme (CSPP

Bond Ownership and Bond Characteristics

Simple Model

Segmentation and the Effects of Asset Purchases

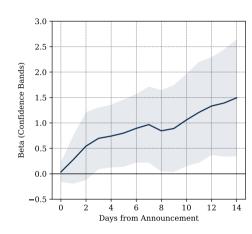
Conventional Monetary Policy

Aggregate Effects

- Conventional monetary policy also affect bond spread
- Regress aggregate spread n-day from announcement:

$$\Delta YS_t^n = \alpha^n + \beta^{MP,n}MP_t + \varepsilon_t^n$$

where MP_t are interest rate shocks (Jarocinsky-Karadi)


Aggregate Effects

- Conventional monetary policy also affect bond spread
- Regress aggregate spread n-day from announcement:

$$\Delta Y S_t^n = \alpha^n + \beta^{MP,n} M P_t + \varepsilon_t^n$$

where MP_t are interest rate shocks (Jarocinsky-Karadi)

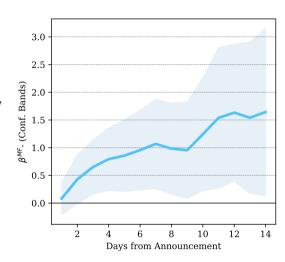
 The sensitivity of bond spread increase days after announcement

 $\blacksquare \ \ \ \ \, \text{Monetary policy tightening} \to \text{contraction in size of mutual fund sector [Holm-Hadulla-et-al 2023]}$

- $\blacksquare \quad \text{Monetary policy tightening} \rightarrow \text{contraction in size of mutual fund sector [Holm-Hadulla-et-al 2023]}$
- If markets are segmented and some investors do not absorb selling pressure
 - ightarrow stronger price reactions

- $\blacksquare \quad \text{Monetary policy tightening} \rightarrow \text{contraction in size of mutual fund sector [Holm-Hadulla-et-al 2023]}$
- \blacksquare If markets are segmented and some investors do not absorb selling pressure \to stronger price reactions
- Mutual funds shift in demand could explain the post-announcement drift [Brooks-Katz-Lustig 2023]

- $\blacksquare \quad \text{Monetary policy tightening} \rightarrow \text{contraction in size of mutual fund sector [Holm-Hadulla-et-al 2023]}$
- \blacksquare If markets are segmented and some investors do not absorb selling pressure \to stronger price reactions
- Mutual funds shift in demand could explain the post-announcement drift [Brooks-Katz-Lustig 2023]
- Regress individual bond yields on monetary policy and interaction with mutual funds shares:


$$\Delta y s_{i,t}^n = \alpha + \beta_n^{MP} M P_t + \beta_n^{MF} \theta_{MF,i,t} \times M P_t + \text{Interacted Fixed Effects} + \eta_n^{MF} \theta_{MF,i,t} + \varepsilon_{i,t}^n$$

Mutual Funds Holdings and Conventional Monetary Policy

- Estimate marginal effects of mutual funds (β_n^{MF})
- Control for ratings, duration and country

Mutual Funds Holdings and Conventional Monetary Policy

- Estimate marginal effects of mutual funds (β_n^{MF})
- Control for ratings, duration and country
- The marginal effects is large and significant (only 3+ days from announcement)
- The marginal effects increases over time
 - \rightarrow explain the post-announcement drift

Conclusion

- We study transmission of monetary policy to bonds held by different intermediaries
- Uncover novel patterns on the relationship between bond holdings and price response
- Shows that these are explained by bond selection and market segmentations
- Risk-bearing capacity in market segments matter for monetary policy transmission
- Transmission stronger for assets excluded from investment mandate of certain intermediaries