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Motivation

“The effectiveness of changes in central-bank targets for overnight rates in
affecting spending decisions is wholly dependent upon the impact of such actions

upon other financial-market prices such as longer-term interest rates, equity
prices, and exchange rates. These are plausibly linked, through arbitrage relations
to the short-term interest rates most directly affected by central-bank actions.”

–Woodford (2003), Interest & Prices

• Growing consensus that frictions to arbitrage matter for asset prices and the
macroeconomy
Gromb & Vayanos (2002), He & Krishnamurthy (2013), Brunnermeier & Sannikov (2014)

• Frictions even in the most liquid market in the world: US Treasuries
Duffie (2023) Jackson Hole

• Conventional monetary policy transmission relies on arbitrage, but even in
liquid bond markets arbitrage is imperfect
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This Paper

• Research question: how does bond market liquidity affect the transmission
of conventional monetary policy shocks (MPS) to long-term rates?

• Prior work: puzzling (high) degree of Monetary Non-Neutrality
Hanson & Stein (2015), Nakamura & Steinsson (2018)

• Our work: MPS transmission to long-term rates stronger & only happens
when markets are more liquid → ”Liquidity State-Dependence” (LSD)

• Limits to arbitrage can explain the Liquidity State-Dependence

⇒ Nakamura & Steinsson (2018) meets Vayanos & Vila (2021)

• Our contribution: show arbitrageurs’ wealth is the key state variable in
explaining the Liquidity State-Dependence (not about macro)
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The Liquidity State-Dependence (LSD)

1. Long-term nominal interest rates react more strongly to MPS when liquidity
is high – Liquidity State-Dependence

2. Driven entirely by movements in real rates, with no effect on inflation
component

◦ Deepens and sharpens the puzzle of Nakamura & Steinsson (2018)

3. With the real term premium accounting for the state-dependence

◦ In line with Hanson & Stein (2015), explains why Nakamura & Steinsson
(2018) found no effect on pooled sample

4. These state-dependent effects are persistent, lasting over a quarter

5. Persistent state-dependent response also for mortgage rates

◦ It matters for the macroeconomy

• Robust to excluding recessions, QE dates, easing cycles and purging from the
Fed Information Effect; also true in the UK
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Understanding LSD: Theory

• We rationalize findings with limits-to-arbitrage and segmentation in bond
markets as in Vayanos & Vila (2021)

◦ Two agents: arbitrageurs trading all maturities and preferred-habitat investors
(PH) with exogenous demand for individual maturities

◦ Central bank in the background changes short-term interest rate MP shock

• Arbitrageurs play two roles:

1. absorb demand shocks (including QE)
2. only agents trading across the yield curve
⇒ While enforcing no arbitrage, arbs’ trades transmit MPS to LT yields

• Arbitrageurs wealth key to understand LSD of different MP tools

◦ QE: largest during crisis and fully localized effects when no arbitrageurs
◦ IR: no transmission when arbitrageurs are absent

⇒ opposite State-Dependent Effectiveness
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Understanding LSD: Empirics

• Hypothesis: variation in arbitrageurs’ wealth explains LSD

• Test the hypothesis using two independent data sources:

1. Aggregate data

◦ Proxies for arbitrage capital (dealers’ leverage, specific hedge fund strategies
returns) most successful in explaining variation in liquidity

◦ Capturing something beyond aggregate volatility, uncertainty or business cycle
◦ Proxies for arbitrage capital can be directly used the ’state’ in the SD

2. Confidential transaction-level dataset

◦ Trades by UK-regulated entities in US Treasuries around FOMC meetings
◦ We identify arbitrageurs from trading behavior in a way consistent with theory
◦ More trading done by arbitrageurs in days where liquidity is high, particularly

so for longer maturities
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Roadmap

1. Literature, Data & Methodology

2. Main Results: Liquidity State-Dependence

3. The Role of Arbitrageurs in the Liquidity State-Dependence

3.1 Evidence from Aggregate Data
3.2 Evidence from Transaction-Level Data

4. Alternative Explanations

5. Conclusions
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Data

Zero-coupon Yield Curves

◦ Nominal, TIPS and real (forward) curves from Gurkaynack, Sack and Swanson
(2006)

High-frequency Monetary Policy Shocks

◦ Baseline with Nakamura & Steinsson (2018), updated by Acosta (2022)
◦ Robustness: Jarocinski & Karadi (2015), Bauer & Swanson (2023) and others

Bond-Market Liquidity Proxy

◦ Yield-curve ‘noise’ from Hu, Pan and Wang (2013)

Risk (Term) Premium Estimates

◦ Baseline with Abrahams et al (2015)
◦ Robustness with Kim & Wright (2005), D’Amico, Kim & Wei (2015)

Other Controls

◦ unemployment rate, PMI, business-conditions index from Aruoba et al (2009)
VIX, MOVE, uncertainty measures Bauer & Chernov (2023) and Baekert et al
(2020)
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Aggregate Liquidity Proxy

• Our proxy for liquidity: yield-curve ’noise’

◦ Measures cross-sectional dispersion (≈ noise) of bond prices relative to a
smooth yield curve

• Hu, Pan and Wang (2013) show that this measure is:

◦ informative about overall market liquidity → more general than other bond
market-specific measures

◦ generally close to zero → smooth curve
◦ closely correlated with arbitrageurs’ capital (hedge fund returns, carry trade

strategies), spiking during market stress (like LTCM and Lehman)
◦ not driven by any individual maturity

↑ Liquidity ⇔ ↓ Yield-Curve Noise
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Empirical Specification

∆f
(τ)
j,t = α+ β

(τ)
j ·mpst + ϵ

(τ)
j,t (N&S 2018)

∆f
(τ)
j,t = α+ β

(τ)
j,hl · [mpst × 1HighLiqt−1

] + β
(τ)
j,ll · [mpst × 1LowLiqt−1

] + ϵ
(τ)
j,t

• 1HighLiqt−1
: dummy equal to 1 if noise < median noise before FOMC

• ∆f
(τ)
j,t : daily change in maturity-τ forward rate

◦ t: date of scheduled FOMC meeting
◦ j = {Nominal(n),Real(r), Inflation(i)}
◦ τ = {2, 3, 4, ..., 20}

• mpst : high-frequency monetary policy shock

◦ Rescaled so that β
(1Y )
n,hl = β

(1Y )
n,ll = 1% (conservative, to control for diff scale)

• Sample of Nakamura & Steinsson (2018)

◦ 2000-2014, scheduled FOMC meetings, excl. GFC, N = 106
◦ Robust to longer sample 2000-2019
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Result 1: The Liquidity State-Dependence
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*Charts show point estimates and 95% confidence intervals for separate resgressions by maturity
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Result 2: The Liquidity State-Dependence is Real
Fisher Identity: f

(τ)
n,t = f
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r,t + f
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i,t
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Result 3: Expectation Hypothesis vs Term Premium
Decomposition: f

(τ)
r,t = eh

(τ)
r,t + rp

(τ)
r,t
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Result 4: Persistence

f
(τ)
r ,t+k − f
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Understanding LSD:

The Role of Arbitrageurs
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Inspecting the Mechanism - Roadmap

• Hu, Pan & Wang (2013) motivation: ↑ liquidity ⇔ ↑ arbitrage capital

• Rationalize LSD with Vayanos & Vila (2021) with varying arbitrageurs capital

◦ Poorly-capitalized arbitrageurs leads to weaker pass-through of MPS to
long-term rates Model

↑ Arbs’ Capital (↑ Liquidity) ⇔ ↓ Yield-Curve Noise

• We validate this mechanism by separately testing two separate dimensions &
independent data sources:

1. Aggregate data: test if arbitrageurs capital can explain noise (& capture LSD)
2. Transaction-Level data: test if arbitrageurs activity is higher in low-noise

FOMC days
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Inspecting the Mechanism - Aggregate Data

• Question: What explains our state variable, yield-curve noise?

◦ Intermediary asset pricing theory predicts arbitrageurs capital, business cycle,
volatility and asset prices should all co-move in equilibrium
He & Krishnamurthy (2013), Brunnermeier & Sannikov (2014)

• Include proxies for arbitrageurs capital and competing alternatives:

1. Business cycle: ADS index, real-time unemployment rate, PMI index
Aruoba et al (2009), Berge & Jorda (2011)

2. Uncertainty/Risk: VIX, MOVE, risk aversion and uncertainty indices, IR
skewness, IR uncertainty
Istrefi & Mouabbi (2018), Baekert et al (2020), Bauer & Chernov (2024)

3. Arbitrageurs capital: intermediary capital factor, hedge fund returns
(sub-indices for diff. strategies) from BarclayHedge
He et al (2017)

• Univariate regression to assess economic significance of each variable

• Then horse race with all the variables together
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What Explains Yield-Curve Noise?

∆Noiset = α+ β · Xt + ϵt

Monthly Changes in Noise
(1) (2) (3) (4) (5) (6) (7) (8) AR(1)

∆MOVE 0.02*** 0.01***
(4.24) (3.59)

∆Unemp. 0.14*** 0.10***
(2.68) (2.95)

∆Unc. 0.71** -0.32
(2.44) (-1.27)

∆Lev. 1.43*** 0.59*
(3.90) (1.93)

FIA Ret. -0.41*** -0.18*** -0.17*** -0.32***
(-7.95) (-3.02) (-2.63) (-4.84)

ConvArb Ret. -0.45*** -0.32*** -0.32*** -0.05
(-5.35) (-3.38) (-2.82) (-0.77)

Adj. R2 15.94 2.53 16.10 16.35 34.52 40.89 43.47 50.77 18.76
N 205 240 240 240 240 240 240 205 239

• Arbitrageurs’ proxies most successful at explaining monthly variation in noise,
both in terms of univariate R2 and surviving in full regression

• Evidence points to specialized investors and segmentation
Duffie (2010), Siriwardane et al (2023)
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State-Dependence with Fixed-Income Arb. Returns

∆f
(τ)
j,t = α+ β

(τ)
j,hr · [mpst × 1HighFIArett−1 ] + β

(τ)
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(τ)
j,t
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• Same state-dependence using FIA returns to define states

• Does not work with other proxies not Vol or Unc not MP easing cycles
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Inspecting the Mechanism - Transaction-Level Data

• Question: is there more arbitrage capital (trading volume) around FOMC
meeting when yield-curve noise is low?

• We use the confidential MiFID II dataset kept by the Financial Conduct
Authority (FCA)

• Trade-level, minute-by-minute dataset covering the universe of UK financial
market participants

• Identify trading in US Treasuries

Key advantages: coverage & frequency

Limitations: shorter (and different) sample period (2018 - present)
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Sample Representativeness
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Identifying Arbitrageurs from Trading Characteristics

• Arbitrage is multi dimensional, attempt to capture along two dimensions:

1. Trading across the yield curve

◦ We expect arbitrageurs to enforce arbitrage across different maturities
⇒ standard deviation of maturities traded (weighted by notional)

2. Duration-neutral exposure

◦ Captures the long-short nature of arbitrage
⇒ net duration exposure of all trades

• Each month, we rank traders along the two dimensions, we then create a
composite score:

Ii,t = ρσi,t ∗ ρDur
i,t

• Then, average over the entire sample

Ii =
1

Ni,t

T∑
t=1

Ii,t

⇒ Arbitrageurs are IDs in the top-tercile of the index
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Who are the Arbitrageurs?
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Arbitrageurs Trade More When Noise is Low
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• Arbs > 0, increase trading (almost) monotonically across maturities
◦ Between 15%-25% more trading in the High Liquidity days relative to Low

Liquidity days

• Non-arbs < 0: they trade less
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Alternative Explanations
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Alternative Explanations: Business Cycles, QE & Volatility

Alternative 
Explanation(s)

Liquidity

MP Transm.
(2)

(3)

(1)

• We have shown (2) unlikely

• What can we say about (3)?

◦ Tenreyro & Thwaites (2016) show MP less powerful in recessions/easing cycles
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Recessions, QE Dates and Easing Cycles

Nominal Real Inflation
2Y 5Y 10Y 15Y 2Y 5Y 10Y 15Y 2Y 5Y 10Y 15Y

A. LSD excluding NBER recessions

High Liquidity 1.05*** 0.54*** 0.27* 0.15 1.18*** 0.68*** 0.37*** 0.26** 0.18 -0.14 -0.10 -0.12
(3.87) (4.21) (2.46) (1.17) (4.75) (5.84) (4.27) (2.91) (1.00) (-1.81) (-1.43) (-1.47)

Low Liquidity 1.39** 0.09 -0.61* -0.68* 2.16* 0.63 -0.14 -0.20 -0.54 -0.54* -0.46* -0.47*
(2.73) (0.24) (-2.06) (-2.29) (2.42) (1.72) (-0.69) (-1.10) (-1.71) (-2.59) (-2.43) (-2.10)
B. LSD excluding QE dates

High Liquidity 0.99*** 0.48*** 0.27* 0.13 1.11*** 0.64*** 0.36*** 0.26** 0.16 -0.16* -0.09 -0.13
(3.81) (4.09) (2.47) (0.99) (4.59) (5.98) (4.09) (2.79) (0.88) (-2.05) (-1.27) (-1.53)

Low Liquidity 0.97* -0.11 -0.65** -0.69** 1.73** 0.32 -0.26 -0.24 -0.39 -0.43** -0.39* -0.44**
(2.49) (-0.43) (-3.05) (-3.02) (2.64) (1.30) (-1.74) (-1.88) (-1.20) (-2.80) (-2.50) (-2.66)
C. MPS impact by observed target rate decision (no change, hike, easing)

nochange 1.57*** 0.64** 0.05 -0.07 1.55*** 0.93*** 0.25 0.12 0.10 -0.29* -0.20 -0.20
(8.72) (3.17) (0.30) (-0.40) (4.48) (4.85) (1.65) (0.96) (0.49) (-2.38) (-1.89) (-1.48)

hike 1.32*** 0.39 -0.20 -0.18 1.58*** 0.56* 0.26 0.16 -0.18 -0.17 -0.46* -0.34
(3.57) (1.19) (-0.75) (-0.69) (3.67) (2.12) (1.32) (0.62) (-0.49) (-0.83) (-2.39) (-1.94)

ease 0.35 0.04 0.02 -0.07 0.34 0.23 0.10 0.10 -0.09 -0.19 -0.08 -0.17
(0.98) (0.20) (0.08) (-0.28) (0.75) (1.36) (0.61) (0.60) (-0.23) (-1.87) (-0.71) (-1.49)

• LSD not about recessions or QE shocks (also present pre-2007)

• Stark difference during easing cycles (confirms Tenreyro & Thwaites (2016)
but in yield curve space): could this explain LSD?
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Liquidity-SD without Easing Cycle

⇒we now exclude all FOMC meetings when target rate was cut
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Conclusions

• We document a strong Liquidity State-Dependence in transmission of MP
shocks to yield curve: ‘non-neutrality puzzle’ only in liquid markets

• The Liquidity State-Dependence is entirely about the long-term real rates and
it is persistent: it matters for macroeconomic policy

• We show our results linked to presence of arbitrageurs, providing two distinct
pieces of evidence: using aggregate data and using transaction-level data

• Policy complementarity: market functioning/liquidity in bond markets
important for both financial stability and monetary policy
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Backup Slides
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State-Dependence with Spot Rates
y
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n,t = 1

τ
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j=1 f

(j)
n,t
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Liquidity State-Dependence with Raw MPS & Noise
LSD even stronger without normalizing & detrending
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Fixed Income Arbitrage Return-SD without Easing Cycle
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• Same state-dependence using FIA returns to define states when we exclude
all FOMC meetings when target rate was cut

back
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State-dependence with Volatility or Uncertainty?

Nominal Real Inflation
2Y 5Y 10Y 15Y 2Y 5Y 10Y 15Y 2Y 5Y 10Y 15Y

A. sorting on MOVE

low MOVE 1.09*** 0.27 -0.20 -0.26 1.07*** 0.66** -0.05 -0.16 0.03 -0.40** -0.15 -0.11
(4.11) (1.06) (-1.01) (-1.35) (3.91) (3.00) (-0.26) (-0.78) (0.21) (-2.74) (-1.22) (-0.75)

high MOVE 1.06** 0.30 -0.06 -0.14 1.07** 0.50* 0.14 0.12 -0.10 -0.21* -0.21* -0.26*
(3.32) (1.29) (-0.34) (-0.70) (3.16) (2.46) (0.99) (0.92) (-0.51) (-2.33) (-2.28) (-2.35)
B. sorting VIX

low VIX 1.10*** 0.45** 0.03 -0.02 1.01*** 0.69*** 0.14 0.04 0.09 -0.24** -0.11 -0.06
(7.36) (3.00) (0.23) (-0.13) (5.07) (5.00) (1.19) (0.37) (0.74) (-3.06) (-1.79) (-0.80)

high VIX 0.76* 0.06 -0.23 -0.32 1.20* 0.31 0.04 0.03 -0.32 -0.25* -0.27* -0.35*
(2.42) (0.28) (-1.02) (-1.43) (2.33) (1.59) (0.28) (0.22) (-1.11) (-2.15) (-2.16) (-2.60)
C. sorting Interest Rate Uncertainty (Istrefi & Mouabbi (2018))

low IR Unc. 1.14*** 0.53** -0.04 -0.08 1.35*** 0.78*** 0.16 -0.01 -0.20 -0.24* -0.20 -0.08
(5.48) (2.75) (-0.31) (-0.70) (5.65) (4.44) (1.24) (-0.05) (-1.15) (-2.03) (-1.77) (-0.75)

high IR Unc. 0.78** 0.13 -0.11 -0.20 0.89* 0.34 0.08 0.08 0.12 -0.21* -0.19 -0.27*
(2.68) (0.67) (-0.53) (-0.99) (2.58) (1.94) (0.59) (0.63) (0.46) (-2.38) (-1.84) (-2.40)
D. sorting Uncertainty (Bekaert, Engstrom & Xu (2022))

low Uncert. 0.92** 0.28 -0.12 -0.17 1.24*** 0.45* 0.14 0.08 0.22 -0.17* -0.26** -0.25**
(3.17) (1.39) (-0.80) (-1.32) (5.33) (2.27) (1.27) (0.81) (1.20) (-2.47) (-2.93) (-2.84)

high Uncert. 1.13** 0.23 -0.16 -0.27 1.70** 0.63* 0.04 0.00 -0.38 -0.40* -0.20 -0.27
(2.79) (0.79) (-0.55) (-0.92) (2.67) (2.31) (0.20) (0.00) (-1.26) (-2.59) (-1.35) (-1.56)

back
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Model

Vayanos & Vila (2021) with varying mass of arbitrageurs

Model-Implied Pass-Through of MPS

back
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Is it Business Cycle State-Dependence?
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• Liquidity-SD in long-term rates after accounting for macro-SD

• Macro-SD matters short-term rates but not significant

* GoodMacro refers to FOMC meetings where latest PMI was above its median
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Summary Statistics: Dealer-to-Client Segment
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Summary Statistics: Dealer-to-Client Segment

Volume No. Transactions Trade Size No. LEI
Panel A: Full Sample

9,887 586 16.9 3,020
Panel B: By Maturity

1-3y 2,676 (26.3%) 132 (22.0%) 20.2 2,146
3-7y 3,433 (33.8%) 153 (25.5%) 22.4 2,067
7-10y 2,831 (27.9%) 189 (31.5 %) 15.0 2,199
11-30y 1,218 (12.0%) 126 (21.0%) 9.7 1,806

Panel C: By Sector

Banks 3,829 (37.2%) 293 (48.5%) 13.0 524
AMs 1,329 (12.9%) 168 (27.8%) 7.9 1,365
HFs 3,160 (30.7%) 83 (13.7%) 38.1 596
Foreign Off. 1,654 (16.1%) 38 (6.3%) 43.5 126
ICPFs 308 (3.0%) 22 (3.6%) 14.1 409

]
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Identifying Arbitrage Capital

Volume No. Transactions Trade Size No. LEI
Panel A: Any Day

RV 2,372 103 23.0 699
non RV 7,610 488 15.6 2,321

Panel B: FOMC

RV no FOMC 2,342 101 23.1 699
RV Pre-FOMC (t) 2,716 127 21.4 459
RV Post-FOMC (t+1) 3,155 143 22.0 479
non RV no FOMC 7,498 482 15.6 2,285
non RV Pre-FOMC (t) 8,830 556 15.9 957
non RV Post-FOMC (t+1) 10,545 662 15.9 922

Panel C: High vs Low Liquidity FOMC

RV H-Noise Pre-FOMC 2,305 111 20.8 310
RV H-Noise Post-FOMC 2,873 137 21.0 329
RV L-Noise Pre-FOMC 3,034 139 21.8 375
RV L-Noise Post-FOMC 3,374 148 22.8 394
non RV H-Noise Pre-FOMC 8,255 475 17.4 615
non RV H-Noise Post-FOMC 10,931 640 17.1 637
non RV L-Noise Pre-FOMC 9,274 618 15.0 802
non RV L-Noise Post-FOMC 10,246 680 15.1 761


