The Liquidity State-Dependence of Monetary Policy

Oliver Ashtari-Tafti (LSE) Rodrigo Guimaraes (BoE) Gabor Pinter (BIS) Jean-Charles Wijnandts (BoE)

New Evidence on the Monetary Transmission Mechanism

May 2024

Motivation

"The effectiveness of changes in central-bank targets for overnight rates in affecting spending decisions is wholly dependent upon the impact of such actions upon other financial-market prices such as longer-term interest rates, equity prices, and exchange rates. These are plausibly linked, through arbitrage relations to the short-term interest rates most directly affected by central-bank actions."

-Woodford (2003), Interest & Prices

• Growing consensus that frictions to arbitrage matter for asset prices and the macroeconomy

Gromb & Vayanos (2002), He & Krishnamurthy (2013), Brunnermeier & Sannikov (2014)

- Frictions even in the most liquid market in the world: US Treasuries Duffie (2023) Jackson Hole
- Conventional monetary policy transmission relies on arbitrage, but even in liquid bond markets arbitrage is imperfect

This Paper

- **Research question:** how does bond market liquidity affect the transmission of conventional monetary policy shocks (MPS) to long-term rates?
- **Prior work:** puzzling (high) degree of Monetary Non-Neutrality Hanson & Stein (2015), Nakamura & Steinsson (2018)
- Our work: MPS transmission to long-term rates stronger & only happens when markets are more liquid → "Liquidity State-Dependence" (LSD)

This Paper

- **Research question:** how does bond market liquidity affect the transmission of conventional monetary policy shocks (MPS) to long-term rates?
- **Prior work:** puzzling (high) degree of Monetary Non-Neutrality Hanson & Stein (2015), Nakamura & Steinsson (2018)
- Our work: MPS transmission to long-term rates stronger & only happens when markets are more liquid → "Liquidity State-Dependence" (LSD)
- Limits to arbitrage can explain the Liquidity State-Dependence
 ⇒ Nakamura & Steinsson (2018) meets Vayanos & Vila (2021)
- **Our contribution:** show arbitrageurs' wealth is the key state variable in explaining the Liquidity State-Dependence (not about macro)

1. Long-term nominal interest rates react more strongly to MPS when liquidity is high – Liquidity State-Dependence

- 1. Long-term nominal interest rates react more strongly to MPS when liquidity is high Liquidity State-Dependence
- 2. Driven entirely by movements in real rates, with no effect on inflation component
 - Deepens and sharpens the puzzle of Nakamura & Steinsson (2018)

- 1. Long-term nominal interest rates react more strongly to MPS when liquidity is high Liquidity State-Dependence
- 2. Driven entirely by movements in real rates, with no effect on inflation component
 - Deepens and sharpens the puzzle of Nakamura & Steinsson (2018)
- 3. With the real term premium accounting for the state-dependence
 - In line with Hanson & Stein (2015), explains why Nakamura & Steinsson (2018) found no effect on pooled sample

- 1. Long-term nominal interest rates react more strongly to MPS when liquidity is high Liquidity State-Dependence
- 2. Driven entirely by movements in real rates, with no effect on inflation component
 - Deepens and sharpens the puzzle of Nakamura & Steinsson (2018)
- 3. With the real term premium accounting for the state-dependence
 - In line with Hanson & Stein (2015), explains why Nakamura & Steinsson (2018) found no effect on pooled sample
- 4. These state-dependent effects are persistent, lasting over a quarter
- 5. Persistent state-dependent response also for mortgage rates
 - It matters for the macroeconomy
- Robust to excluding recessions, QE dates, easing cycles and purging from the Fed Information Effect; also true in the UK

Understanding LSD: Theory

- We rationalize findings with limits-to-arbitrage and segmentation in bond markets as in Vayanos & Vila (2021)
 - Two agents: arbitrageurs trading all maturities and preferred-habitat investors (PH) with exogenous demand for individual maturities
 - Central bank in the background changes short-term interest rate MP shock

• Arbitrageurs play two roles:

- 1. absorb demand shocks (including QE)
- 2. only agents trading across the yield curve
- \Rightarrow While enforcing no arbitrage, arbs' trades transmit MPS to LT yields

Understanding LSD: Theory

- We rationalize findings with limits-to-arbitrage and segmentation in bond markets as in Vayanos & Vila (2021)
 - Two agents: arbitrageurs trading all maturities and preferred-habitat investors (PH) with exogenous demand for individual maturities
 - Central bank in the background changes short-term interest rate MP shock

• Arbitrageurs play two roles:

- 1. absorb demand shocks (including QE)
- 2. only agents trading across the yield curve
- \Rightarrow While enforcing no arbitrage, arbs' trades transmit MPS to LT yields
- Arbitrageurs wealth key to understand LSD of different MP tools
 - QE: largest during crisis and fully localized effects when no arbitrageurs
 - IR: no transmission when arbitrageurs are absent

 \Rightarrow opposite State-Dependent Effectiveness

Understanding LSD: Empirics

- Hypothesis: variation in arbitrageurs' wealth explains LSD
- Test the hypothesis using two independent data sources:

1. Aggregate data

- Proxies for arbitrage capital (dealers' leverage, specific hedge fund strategies returns) most successful in explaining variation in liquidity
- Capturing something beyond aggregate volatility, uncertainty or business cycle
- Proxies for arbitrage capital can be directly used the 'state' in the SD

2. Confidential transaction-level dataset

- Trades by UK-regulated entities in US Treasuries around FOMC meetings
- · We identify arbitrageurs from trading behavior in a way consistent with theory
- More trading done by arbitrageurs in days where liquidity is high, particularly so for longer maturities

Roadmap

- 1. Literature, Data & Methodology
- 2. Main Results: Liquidity State-Dependence
- 3. The Role of Arbitrageurs in the Liquidity State-Dependence
 - 3.1 Evidence from Aggregate Data
 - 3.2 Evidence from Transaction-Level Data
- 4. Alternative Explanations
- 5. Conclusions

Literature

High-frequency Identification of Monetary Policy

Kuttner (2001), Cochrane & Piazzesi (2002), Bernanke & Kuttner (2005), Nakamura & Steinsson (2018), Jarocinski & Karadi (2020), Swanson (2021), Karnaukh & Vokata (2022), Bauer & Swanson (2023)

Monetary Policy and Risk Premia

Hanson & Stein (2015), Pflueger & Rinaldi (2020), Kekre & Lenel (2020), Hanson, Lucca & Wright (2021), Ai et al (2022), Bauer, Bernanke & Milstein (2023), Kashyap & Stein (2023), Nagel & Xu (2024)

The State-Dependence of Monetary Policy

Tenreyro & Thwaites (2016), Eichenbaum, Rebelo & Wong (2021)

Limits-to-Arbitrage in Bond Markets

Vayanos & Vila (2009, 2021), Ray (2019), King (2019), Ray, Droste & Gorodnichenko (2023), Kekre, Lenel & Mainardi (2024)

Data

Zero-coupon Yield Curves

 Nominal, TIPS and real (forward) curves from Gurkaynack, Sack and Swanson (2006)

High-frequency Monetary Policy Shocks

- Baseline with Nakamura & Steinsson (2018), updated by Acosta (2022)
- Robustness: Jarocinski & Karadi (2015), Bauer & Swanson (2023) and others

Bond-Market Liquidity Proxy

• Yield-curve 'noise' from Hu, Pan and Wang (2013)

Risk (Term) Premium Estimates

- Baseline with Abrahams et al (2015)
- Robustness with Kim & Wright (2005), D'Amico, Kim & Wei (2015)

Other Controls

 unemployment rate, PMI, business-conditions index from Aruoba et al (2009) VIX, MOVE, uncertainty measures Bauer & Chernov (2023) and Baekert et al (2020) Aggregate Liquidity Proxy

Our proxy for liquidity: yield-curve 'noise'

- $\circ\,$ Measures cross-sectional dispersion ($\approx\,$ noise) of bond prices relative to a smooth yield curve
- Hu, Pan and Wang (2013) show that this measure is:
 - $\circ\,$ informative about overall market liquidity \rightarrow more general than other bond market-specific measures
 - $\circ~$ generally close to zero \rightarrow smooth curve
 - closely correlated with arbitrageurs' capital (hedge fund returns, carry trade strategies), spiking during market stress (like LTCM and Lehman)
 - o not driven by any individual maturity

 $\uparrow \mathsf{Liquidity} \Leftrightarrow \downarrow \mathsf{Yield}\mathsf{-}\mathsf{Curve} \mathsf{ Noise}$

Empirical Specification

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_j^{(\tau)} \cdot mps_t + \epsilon_{j,t}^{(\tau)}$$

• $\Delta f_{j,t}^{(\tau)}$: daily change in maturity- τ forward rate

•
$$\tau = \{2, 3, 4, ..., 20\}$$

mpst: high-frequency monetary policy shock

Empirical Specification

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_j^{(\tau)} \cdot mps_t + \epsilon_{j,t}^{(\tau)}$$

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hl}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{j,ll}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$
(N&S 2018)

- $1_{\mathsf{HighLiq}_{t-1}}$: dummy equal to 1 if noise < median noise before FOMC
- $\Delta f_{i,t}^{(\tau)}$: daily change in maturity- τ forward rate
 - t: date of scheduled FOMC meeting
 - *j* = {*Nominal*(n), *Real*(r), *Inflation*(i)}
 - $\tau = \{2, 3, 4, ..., 20\}$
- *mps*_t: high-frequency monetary policy shock
 - Rescaled so that $\beta_{n,hl}^{(1Y)} = \beta_{n,ll}^{(1Y)} = 1\%$ (conservative, to control for diff scale)

Empirical Specification

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_j^{(\tau)} \cdot mps_t + \epsilon_{j,t}^{(\tau)}$$

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hl}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{j,ll}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$
(N&S 2018)

- $1_{\mathsf{HighLiq}_{t-1}}$: dummy equal to 1 if noise < median noise before FOMC
- $\Delta f_{i,t}^{(\tau)}$: daily change in maturity- τ forward rate
 - t: date of scheduled FOMC meeting
 - *j* = {*Nominal*(n), *Real*(r), *Inflation*(i)}
 - $\tau = \{2, 3, 4, ..., 20\}$
- *mpst*: high-frequency monetary policy shock
 - Rescaled so that $\beta_{n,hl}^{(1Y)} = \beta_{n,ll}^{(1Y)} = 1\%$ (conservative, to control for diff scale)
- Sample of Nakamura & Steinsson (2018)
 - $\,\circ\,$ 2000-2014, scheduled FOMC meetings, excl. GFC, N = 106 \,
 - Robust to longer sample 2000-2019

Result 1: The Liquidity State-Dependence

$$\Delta f_{n,t}^{(\tau)} = \alpha + \beta_{n,h'}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{n,l'}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{n,t}^{(\tau)}$$

*Charts show point estimates and 95% confidence intervals for separate resgressions by maturity

Result 2: The Liquidity State-Dependence is Real Fisher Identity: $f_{n,t}^{(\tau)} = f_{r,t}^{(\tau)} + f_{i,t}^{(\tau)}$

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hl}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{j,ll}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$

Inflation Forward Curve (j = i)

Result 3: Expectation Hypothesis vs Term Premium Decomposition: $f_{r,t}^{(\tau)} = eh_{r,t}^{(\tau)} + rp_{r,t}^{(\tau)}$

$$\Delta eh_{r,t}^{(\tau)} = \alpha + \beta_{r-eh,hl}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{r-eh,ll}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{r-eh,t}^{(\tau)}$$
$$\Delta rp_{r,t}^{(\tau)} = \alpha + \beta_{r-rp,hl}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{r-rp,ll}^{(\tau)} \cdot [mps_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{r-rp,t}^{(\tau)}$$

Result 4: Persistence

$$f_{r,t+k}^{(\tau)} - f_{r,t-1}^{(\tau)} = \alpha_k + \beta_{r,k,hl}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{r,k,ll}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{r,t+k}^{(\tau)}$$

Understanding LSD: The Role of Arbitrageurs

Inspecting the Mechanism - Roadmap

- Hu, Pan & Wang (2013) motivation: ↑ liquidity ⇔ ↑ arbitrage capital
- Rationalize LSD with Vayanos & Vila (2021) with varying arbitrageurs capital
 - Poorly-capitalized arbitrageurs leads to weaker pass-through of MPS to long-term rates

 \uparrow Arbs' Capital (\uparrow Liquidity) $\Leftrightarrow \downarrow$ Yield-Curve Noise

- We validate this mechanism by separately testing two separate dimensions & independent data sources:
 - 1. Aggregate data: test if arbitrageurs capital can explain noise (& capture LSD)
 - 2. **Transaction-Level data:** test if arbitrageurs activity is higher in low-noise FOMC days

Inspecting the Mechanism - Aggregate Data

• Question: What explains our state variable, yield-curve noise?

- Intermediary asset pricing theory predicts arbitrageurs capital, business cycle, volatility and asset prices should all co-move in equilibrium
 He & Krishnamurthy (2013), Brunnermeier & Sannikov (2014)
- Include proxies for arbitrageurs capital and competing alternatives:
 - 1. Business cycle: ADS index, real-time unemployment rate, PMI index Aruoba et al (2009), Berge & Jorda (2011)
 - Uncertainty/Risk: VIX, MOVE, risk aversion and uncertainty indices, IR skewness, IR uncertainty

Istrefi & Mouabbi (2018), Baekert et al (2020), Bauer & Chernov (2024)

- Arbitrageurs capital: intermediary capital factor, hedge fund returns (sub-indices for diff. strategies) from BarclayHedge He et al (2017)
- Univariate regression to assess economic significance of each variable
- Then horse race with all the variables together

What Explains Yield-Curve Noise?

				Monthly C	hanges in N	loise			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	AR(1)
ΔMOVE	0.02***							0.01***	
	(4.24)							(3.59)	
Δ Unemp.		0.14***						0.10***	
		(2.68)						(2.95)	
ΔUnc.			0.71**					-0.32	
			(2.44)					(-1.27)	
ΔLev.				1.43***				0.59*	
				(3.90)				(1.93)	
FIA Ret.					-0.41***		-0.18***	-0.17***	-0.32***
					(-7.95)		(-3.02)	(-2.63)	(-4.84)
ConvArb Ret.						-0.45***	-0.32***	-0.32***	-0.05
						(-5.35)	(-3.38)	(-2.82)	(-0.77)
Adj. R ²	15.94	2.53	16.10	16.35	34.52	40.89	43.47	50.77	18.76
N	205	240	240	240	240	240	240	205	239

 $\Delta \mathsf{Noise}_t = \alpha + \beta \cdot X_t + \epsilon_t$

- Arbitrageurs' proxies most successful at explaining monthly variation in noise, both in terms of univariate R² and surviving in full regression
- Evidence points to specialized investors and segmentation Duffie (2010), Siriwardane et al (2023)

State-Dependence with Fixed-Income Arb. Returns

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hr}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\textit{HighFlAret}_{t-1}}] + \beta_{j,hr}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\textit{LowFlAret}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$

- Same state-dependence using FIA returns to define states
- Does not work with other proxies
 not Vol or Unc
 not MP easing cycles

Inspecting the Mechanism - Transaction-Level Data

• **Question:** is there more arbitrage capital (trading volume) around FOMC meeting when yield-curve noise is low?

Inspecting the Mechanism - Transaction-Level Data

- **Question:** is there more arbitrage capital (trading volume) around FOMC meeting when yield-curve noise is low?
- We use the confidential MiFID II dataset kept by the Financial Conduct Authority (FCA)
- Trade-level, minute-by-minute dataset covering the universe of UK financial market participants
- Identify trading in US Treasuries

Key advantages: coverage & frequency

Limitations: shorter (and different) sample period (2018 - present)

Sample Representativeness

Identifying Arbitrageurs from Trading Characteristics

- Arbitrage is multi dimensional, attempt to capture along two dimensions:
- 1. Trading across the yield curve
 - We expect arbitrageurs to enforce arbitrage across different maturities \Rightarrow standard deviation of maturities traded (weighted by notional)
- 2. Duration-neutral exposure
 - Captures the long-short nature of arbitrage
 - \Rightarrow net duration exposure of all trades

Identifying Arbitrageurs from Trading Characteristics

- Arbitrage is multi dimensional, attempt to capture along two dimensions:
- 1. Trading across the yield curve
 - We expect arbitrageurs to enforce arbitrage across different maturities \Rightarrow standard deviation of maturities traded (weighted by notional)
- 2. Duration-neutral exposure
 - Captures the long-short nature of arbitrage
 ⇒ net duration exposure of all trades
- Each month, we rank traders along the two dimensions, we then create a composite score:

$$I_{i,t} = \rho_{i,t}^{\sigma} * \rho_{i,t}^{Dur}$$

• Then, average over the entire sample

$$I_i = \frac{1}{N_{i,t}} \sum_{t=1}^T I_{i,t}$$

 \Rightarrow Arbitrageurs are IDs in the top-tercile of the index

Who are the Arbitrageurs?

Arbitrageurs Trade More When Noise is Low

- Arbs > 0, increase trading (almost) monotonically across maturities
 - Between 15%-25% more trading in the High Liquidity days relative to Low Liquidity days
- Non-arbs < 0: they trade less

Alternative Explanations

Alternative Explanations: Business Cycles, QE & Volatility

- We have shown (2) unlikely
- What can we say about (3)?
 - Tenreyro & Thwaites (2016) show MP less powerful in recessions/easing cycles

Recessions, QE Dates and Easing Cycles

	Nominal			Real				Inflation				
	2Y	5Y	10Y	15Y	2Y	5Y	10Y	15Y	2Y	5Y	10Y	15Y
	A. LSD e	excluding N	BER reces	sions								
High Liquidity	1.05***	0.54***	0.27*	0.15	1.18***	0.68***	0.37***	0.26**	0.18	-0.14	-0.10	-0.12
	(3.87)	(4.21)	(2.46)	(1.17)	(4.75)	(5.84)	(4.27)	(2.91)	(1.00)	(-1.81)	(-1.43)	(-1.47)
Low Liquidity	1.39**	0.09	-0.61*	-0.68*	2.16*	0.63	-0.14	-0.20	-0.54	-0.54*	-0.46*	-0.47*
	(2.73)	(0.24)	(-2.06)	(-2.29)	(2.42)	(1.72)	(-0.69)	(-1.10)	(-1.71)	(-2.59)	(-2.43)	(-2.10)
	B. LSD e	excluding Q	E dates									
High Liquidity	0.99***	0.48***	0.27*	0.13	1.11***	0.64***	0.36***	0.26**	0.16	-0.16*	-0.09	-0.13
	(3.81)	(4.09)	(2.47)	(0.99)	(4.59)	(5.98)	(4.09)	(2.79)	(0.88)	(-2.05)	(-1.27)	(-1.53)
Low Liquidity	0.97*	-0.11	-0.65**	-0.69**	1.73**	0.32	-0.26	-0.24	-0.39	-0.43**	-0.39*	-0.44**
	(2.49)	(-0.43)	(-3.05)	(-3.02)	(2.64)	(1.30)	(-1.74)	(-1.88)	(-1.20)	(-2.80)	(-2.50)	(-2.66)
	C. MPS	impact by	observed ta	arget rate	decision (n	o change, l	hike, easing	;)				
nochange	1.57***	0.64**	0.05	-0.07	1.55***	0.93***	0.25	0.12	0.10	-0.29*	-0.20	-0.20
	(8.72)	(3.17)	(0.30)	(-0.40)	(4.48)	(4.85)	(1.65)	(0.96)	(0.49)	(-2.38)	(-1.89)	(-1.48)
hike	1.32***	0.39	-0.20	-0.18	1.58***	0.56*	0.26	0.16	-0.18	-0.17	-0.46*	-0.34
	(3.57)	(1.19)	(-0.75)	(-0.69)	(3.67)	(2.12)	(1.32)	(0.62)	(-0.49)	(-0.83)	(-2.39)	(-1.94)
ease	0.35	0.04	0.02	-0.07	0.34	0.23	0.10	0.10	-0.09	-0.19	-0.08	-0.17
	(0.98)	(0.20)	(0.08)	(-0.28)	(0.75)	(1.36)	(0.61)	(0.60)	(-0.23)	(-1.87)	(-0.71)	(-1.49)

- LSD not about recessions or QE shocks (also present pre-2007)
- Stark difference during easing cycles (confirms Tenreyro & Thwaites (2016) but in yield curve space): could this explain LSD?

Liquidity-SD without Easing Cycle

 \Rightarrow we now exclude all FOMC meetings when target rate was cut

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hl}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{j,ll}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$

Conclusions

- We document a strong Liquidity State-Dependence in transmission of MP shocks to yield curve: 'non-neutrality puzzle' only in liquid markets
- The Liquidity State-Dependence is entirely about the long-term real rates and it is persistent: it matters for macroeconomic policy
- We show our results linked to presence of arbitrageurs, providing two distinct pieces of evidence: using aggregate data and using transaction-level data
- Policy complementarity: market functioning/liquidity in bond markets important for both financial stability and monetary policy

Backup Slides

State-Dependence with Spot Rates $y_{n,t}^{(\tau)} = \frac{1}{\tau} \sum_{j=1}^{\tau} f_{n,t}^{(j)}$

$$\Delta y_{n,t}^{(\tau)} = \alpha + \beta_{n,hl}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{n,ll}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{n,t}^{(\tau)}$$

Nominal Spot Curve

Liquidity State-Dependence with Raw MPS & Noise

LSD even stronger without normalizing & detrending

$$\Delta f_{n,t}^{(\tau)} = \alpha + \beta_{n,hl}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{HighLiq}_{t-1}}] + \beta_{n,ll}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\mathsf{LowLiq}_{t-1}}] + \epsilon_{n,t}^{(\tau)}$$

Nominal Forward Curve

Fixed Income Arbitrage Return-SD without Easing Cycle

$$\Delta f_{j,t}^{(\tau)} = \alpha + \beta_{j,hr}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\textit{HighFIAret}_{t-1}}] + \beta_{j,hr}^{(\tau)} \cdot [\textit{mps}_t \times \mathbb{1}_{\textit{LowFIAret}_{t-1}}] + \epsilon_{j,t}^{(\tau)}$$

 Same state-dependence using FIA returns to define states when we exclude all FOMC meetings when target rate was cut

State-dependence with Volatility or Uncertainty?

	Nominal				Re	al		Inflation				
	2Y	5Y	10Y	15Y	2Y	5Y	10Y	15Y	2Y	5Y	10Y	15Y
	A. sortin	g on MO	/E									
low MOVE	1.09***	0.27	-0.20	-0.26	1.07***	0.66**	-0.05	-0.16	0.03	-0.40**	-0.15	-0.11
	(4.11)	(1.06)	(-1.01)	(-1.35)	(3.91)	(3.00)	(-0.26)	(-0.78)	(0.21)	(-2.74)	(-1.22)	(-0.75)
high MOVE	1.06**	0.30	-0.06	-0.14	1.07**	0.50*	0.14	0.12	-0.10	-0.21*	-0.21*	-0.26*
	(3.32)	(1.29)	(-0.34)	(-0.70)	(3.16)	(2.46)	(0.99)	(0.92)	(-0.51)	(-2.33)	(-2.28)	(-2.35)
	B. sortin	g VIX										
low VIX	1.10***	0.45**	0.03	-0.02	1.01***	0.69***	0.14	0.04	0.09	-0.24**	-0.11	-0.06
	(7.36)	(3.00)	(0.23)	(-0.13)	(5.07)	(5.00)	(1.19)	(0.37)	(0.74)	(-3.06)	(-1.79)	(-0.80)
high VIX	0.76*	0.06	-0.23	-0.32	1.20*	0.31	0.04	0.03	-0.32	-0.25*	-0.27*	-0.35*
	(2.42)	(0.28)	(-1.02)	(-1.43)	(2.33)	(1.59)	(0.28)	(0.22)	(-1.11)	(-2.15)	(-2.16)	(-2.60)
	C. sortinį	g Interest	Rate Unc	ertainty (l	strefi & M	ouabbi (20	18))					
low IR Unc.	1.14***	0.53**	-0.04	-0.08	1.35***	0.78***	0.16	-0.01	-0.20	-0.24*	-0.20	-0.08
	(5.48)	(2.75)	(-0.31)	(-0.70)	(5.65)	(4.44)	(1.24)	(-0.05)	(-1.15)	(-2.03)	(-1.77)	(-0.75)
high IR Unc.	0.78**	0.13	-0.11	-0.20	0.89*	0.34	0.08	0.08	0.12	-0.21*	-0.19	-0.27*
	(2.68)	(0.67)	(-0.53)	(-0.99)	(2.58)	(1.94)	(0.59)	(0.63)	(0.46)	(-2.38)	(-1.84)	(-2.40)
	D. sortin	g Uncerta	inty (Beka	aert, Engs	trom & Xu	(2022))						
low Uncert.	0.92**	0.28	-0.12	-0.17	1.24***	0.45*	0.14	0.08	0.22	-0.17*	-0.26**	-0.25**
	(3.17)	(1.39)	(-0.80)	(-1.32)	(5.33)	(2.27)	(1.27)	(0.81)	(1.20)	(-2.47)	(-2.93)	(-2.84)
high Uncert.	1.13**	0.23	-0.16	-0.27	1.70**	0.63*	0.04	0.00	-0.38	-0.40*	-0.20	-0.27
	(2.79)	(0.79)	(-0.55)	(-0.92)	(2.67)	(2.31)	(0.20)	(0.00)	(-1.26)	(-2.59)	(-1.35)	(-1.56)

Model

Vayanos & Vila (2021) with varying mass of arbitrageurs

Model-Implied Pass-Through of MPS

Is it Business Cycle State-Dependence?

 $\Delta f_{r,t}^{(\tau)} = \alpha + \beta \cdot mps_t + \gamma_{H-L} \cdot [mps_t \times \mathsf{HighLiq}_{t-1}] + \delta \cdot [mps_t \cdot \mathsf{GoodMacro}_{t-1}] + \nu_{r,t}^{(\tau)}$

- Liquidity-SD in long-term rates after accounting for macro-SD
- Macro-SD matters short-term rates but not significant
 - * GoodMacro refers to FOMC meetings where latest PMI was above its median

Summary Statistics: Dealer-to-Client Segment

Cash Secondary Market

Summary Statistics: Dealer-to-Client Segment

	Volume	No. Transactions	Trade Size	No. LEI
		Fallel A. Full Sal	пріе	
	9,887	586	16.9	3,020
		Panel B: By Mat	urity	
1-3y	2,676 (26.3%)	132 (22.0%)	20.2	2,146
3-7y	3,433 (33.8%)	153 (25.5%)	22.4	2,067
7-10y	2,831 (27.9%)	189 (31.5 %)	15.0	2,199
11-30y	1,218 (12.0%)	126 (21.0%)	9.7	1,806
		Panel C: By Sec	tor	
Banks	3,829 (37.2%)	293 (48.5%)	13.0	524
AMs	1,329 (12.9%)	168 (27.8%)	7.9	1,365
HFs	3,160 (30.7%)	83 (13.7%)	38.1	596
Foreign Off.	1,654 (16.1%)	38 (6.3%)	43.5	126
ICPFs	308 (3.0%)	22 (3.6%)	14.1	409

Identifying Arbitrage Capital

		Volume	No. Transactions	Trade Size	No. LEI					
	Panel A: Any Day									
RV		2,372	103	23.0	699					
non RV		7,610	488	15.6	2,321					
		Pa	nel B: FOMC							
RV	no FOMC	2,342	101	23.1	699					
RV	Pre-FOMC (t)	2,716	127	21.4	459					
RV	Post-FOMC $(t+1)$	3,155	143	22.0	479					
non RV	no FOMC	7,498	482	15.6	2,285					
non RV	Pre-FOMC (t)	8,830	556	15.9	957					
non RV	Post-FOMC $(t+1)$	10,545	662	15.9	922					
	Panel C: High vs Low Liquidity FOMC									
RV	H-Noise Pre-FOMC	2,305	111	20.8	310					
RV	H-Noise Post-FOMC	2,873	137	21.0	329					
RV	L-Noise Pre-FOMC	3,034	139	21.8	375					
RV	L-Noise Post-FOMC	3,374	148	22.8	394					
non RV	H-Noise Pre-FOMC	8,255	475	17.4	615					
non RV	H-Noise Post-FOMC	10,931	640	17.1	637					
non RV	L-Noise Pre-FOMC	9,274	618	15.0	802					
non RV	L-Noise Post-FOMC	10,246	680	15.1	761					