SENTIMENT AND UNCERTAINTY INDICATORS USING ARTIFICIAL INTELLIGENCE

Morteza Ghomi (BdE), Samuel Hurtado (BdE)

Bank of England, June 25, 2025

The views expressed in this presentation are those of the authors and do not necessarily represent the views of the Bank of Spain or the Eurosystem.

OUTLINE

- 1. Introduction
- 2. Constructed Indicators
- 3. Effect on Forecast Errors
- 4. Conclusion

INTRODUCTION

- The usual methodology for calculating sentiment and uncertainty indicators is based on counting words, in two stages
 - 1. Selection of relevant news articles: using a dictionary of words that define a topic
 - 2. Quantification: using dictionaries of positive/negative terms, or terms that capture uncertainty
- · An LLM model could improve both the selection and the quantification steps
 - Problem: if the database is very big, asking an LLM about every news piece is not feasible
- But we can use **AI techniques** to improve in both steps:
 - 1. Selection: Retrieval Augmented Generation (RAG) technique and embedding models
 - 2. Quantification: Using GPT-4o-mini to quantify sentiment and uncertainty in each article
- Finally, we estimate how uncertainty indicators affect GDP forecast errors

STEP 1: SELECTION

- **Retrieval Augmented Generation**: a technique in NLP that combines two powerful components:
 - 1. Retrieval: Finding relevant documents or information from a large knowledge base
 - 2. **Generation**: Using a language model (like GPT) to generate an answer based on the retrieved information
- The source retrieval part is done through semantic search, using an **embedding model**
 - · A text embedding model is a function that transforms text into numbers
 - It projects news articles and economic topic definitions into a multidimensional space (e.g. 4096 dimensions)
 - · Each article is then classified into a topic based on cosine similarity

STEP 1: SELECTION

- Which embedding model performs best for our task? (Identifying news articles about specific economic topics in a Spanish-language database)
- We compare several embedding models using a random sample of 443 manually classified news articles and build an index to measure their relative performance

STEP 1: SELECTION

- Embeddings model selected: **multilingual-e5-large**: Strong performance; Free to use; Small (560M parameters); Fast (9 days to process the full >4M articles of the 2000-2025 database)
- Topics to be used in our sentiment and uncertainty indicators:
 - 1. Geopolitical tensions
 - 2. International trade and tariffs
 - 3. Exports markets and external demand
 - 4. Financial markets
 - 5. Prices of energy and other raw materials
 - 6. Inflation, prices and markups
 - 7. Wages and collective bargaining
 - 8. Fiscal policy and sustainability of public finances
 - 9. Housing market
 - 10. Confidence of agents and internal demand

STEP 2: QUANTIFICATION

- Once the relevant news articles have been selected...
 - 130.000 for each of the 10 topics (on average, 100 articles per week)
- We ask GPT-4o-mini to quantify the level of sentiment and uncertainty in each article
- · The prompt is long and detailed
 - It includes a step to verify that the article is relevant to the assigned topic
 - It contains ten examples (different for each topic) of headlines and the value of sentiment and uncertainty that we would assign to them
- For each topic and month, we calculate the average sentiment and uncertainty scores across all relevant articles

OUTLINE

1. Introduction

2. Constructed Indicators

3. Effect on Forecast Errors

4. Conclusion

BANCO DE **ESPAÑA** Eurosistema

BANCO DE **ESPAÑA** Eurosistema

UNCERTAINTY AND SENTIMENT INDICATORS

OUTLINE

1. Introduction

2. Constructed Indicators

3. Effect on Forecast Errors

4. Conclusion

UNCERTAINTY AND FORECAST ERROR

How does uncertainty affect GDP forecast error? $FE_t = \alpha + \beta U_t + \Gamma X + \varepsilon_t$

	1 quarter ahead GDP forecast error			
	(1)	(2)	(3)	
Uncertainty	0.050***	0.040*	0.039*	
	(0.018)	(0.022)	(0.021)	
dummy 2020g1	3.138***	3.113***	3.229***	
	(0.021)	(0.053)	(0.066)	
forecast error(t-1)		0.078	0.205	
		(0.116)	(0.140)	
gdp growth			0.028	
			(0.019)	
Constant	0.143***	0.130***	0.094***	
	(0.020)	(0.024)	(0.027)	
R-squared	0.778	0.783	0.805	
Observations	84	83	83	

EFFECT ON FORECAST ERROR

Which measures contribute the most? We analyze the first two principal components (74% of total variance)

- → PC 1: reflects mainly internal factors (Spanish economy)
- \rightarrow PC 2: captures mainly external influences

Variable	PC 1	PC 2
Geopolitics	0.23	0.57
International trade	0.52	0.80
Global demand	0.83	0.32
Financial markets	0.85	-0.21
Energy prices	0.66	-0.34
Inflation, markups	0.94	0.13
Wages	0.73	-0.48
Fiscal policy	0.75	0.15
Housing market	0.83	-0.41
Confidence, demand	0.94	0.04

	1 quarter ahead GDP forecast error			
	(1)	(2)	(3)	
PC 1	0.014 (0.009)		0.016 * (0.009)	
PC 2		0.028 ** (0.013)	0.031 ** (0.013)	
Constant	0.131*** (0.025)	0.132*** (0.025)	0.137*** (0.024)	
Controls	YES	YES	YES	
R-squared	0.780	0.782	0.790	
Observations	83	83	83	

FORECAST ERROR AT HIGHER HORIZONS

	FE(1)	FE(2)	FE(3)	FE(4)
PC1	0.019**	0.075**	0.108**	0.074
PC2	(0.008) 0.033 *	(0.038) 0.232 ***	(0.045) 0.315 ***	(0.069) 0.299 **
	(0.018)	(0.079)	(0.094)	(0.144)
Constant	0.144***	0.541***	0.890***	1.218***
	(0.021)	(0.095)	(0.113)	(0.175)
Dummy 2020Q2	YES	YES	YES	YES
R ²	0.795	0.524	0.858	0.742
N	77	77	77	77
	FE(5)	FE(6)	FE(7)	FE(8)
PC1	FE(5) 0.091	FE(6) 0.015	FE(7) -0.058	FE(8) -0.147
PC1	FE(5) 0.091 (0.085)	FE(6) 0.015 (0.105)	FE(7) -0.058 (0.117)	FE(8) -0.147 (0.130)
PC1 PC2	FE(5) 0.091 (0.085) 0.371**	FE(6) 0.015 (0.105) 0.316	FE(7) -0.058 (0.117) 0.271	FE(8) -0.147 (0.130) 0.143
PC1 PC2	FE(5) 0.091 (0.085) 0.371** (0.177) 1.670***	FE(6) 0.015 (0.105) 0.316 (0.217) 2.022***	FE(7) -0.058 (0.117) 0.271 (0.242) 2.416***	FE(8) -0.147 (0.130) 0.143 (0.268) 2.789***
PC1 PC2 Constant	FE(5) 0.091 (0.085) 0.371** (0.177) 1.670*** (0.215)	FE(6) 0.015 (0.105) 0.316 (0.217) 2.032*** (0.264)	FE(7) -0.058 (0.117) 0.271 (0.242) 2.416*** (0.294)	FE(8) -0.147 (0.130) 0.143 (0.268) 2.788*** (0.326)
PC1 PC2 Constant	FE(5) 0.091 (0.085) 0.371** (0.177) 1.670*** (0.215)	FE(6) 0.015 (0.105) 0.316 (0.217) 2.032*** (0.264)	FE(7) -0.058 (0.117) 0.271 (0.242) 2.416*** (0.294)	FE(8) -0.147 (0.130) 0.143 (0.268) 2.788*** (0.326)
PC1 PC2 Constant Dummy 2020Q2	FE(5) 0.091 (0.085) 0.371** (0.177) 1.670*** (0.215) YES	FE(6) 0.015 (0.105) 0.316 (0.217) 2.032*** (0.264) YES	FE(7) -0.058 (0.117) 0.271 (0.242) 2.416*** (0.294) YES	FE(8) -0.147 (0.130) 0.143 (0.268) 2.788*** (0.326) YES
PC1 PC2 Constant Dummy 2020Q2 R ²	FE(5) 0.091 (0.085) 0.371** (0.177) 1.670*** (0.215) YES 0.644	FE(6) 0.015 (0.105) 0.316 (0.217) 2.032*** (0.264) YES 0.544	FE(7) -0.058 (0.117) 0.271 (0.242) 2.416*** (0.294) YES 0.486	FE(8) -0.147 (0.130) 0.143 (0.268) 2.788*** (0.326) YES 0.438

• 2006Q4: Low PC1, Low PC2 2012Q4: High PC1, Low PC2

• 2022Q4: High PC1, High PC2 2024Q4: Low PC1, High PC2

OUTLINE

1. Introduction

2. Constructed Indicators

3. Effect on Forecast Errors

4. Conclusion

CONCLUSION

- We apply recent AI techniques to construct uncertainty and sentiment indicators for the Spanish economy
- Using text embedding models, we classify >4 million news pieces into 10 different topics, using ChatGPT models we quantify their uncertainty and sentiment measures
- The constructed uncertainty indicators correlate strongly with GDP forecast errors, with international uncertainty showing a particularly large impact
- Next steps:
 - We can use the indicators for different topics to generate risk scenarios, e.g., to accompany our forecasts, or for stress testing
 - · Analyze the effect of different uncertainty measures on economic activities

Thank you for your attention!

BANCO DE **ESPAÑA** Eurosistema

BANCO DE **ESPAÑA** Eurosistema

Sentiment

