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Abstract

This paper looks at some implications of data uncertainty for monetary policy. We combine

national accounts data revisions with optimal control and filtering experiments on a calibrated

model to discuss policy implications of price-versus-volume data uncertainty in GDP data for the

United Kingdom. We find some degree of negative correlation between revisions to real GDP and

GDP deflator data. We develop a methodology for estimating the output gap which takes account

of the benefit of hindsight and decreasing measurement errors through time. Our optimal control

experiments reveal that monetary policy makers would be led to place greater weight on nominal

GDP data and correspondingly less weight on separate, uncertain estimates of prices and volume

growth. However, estimates of real growth and also the output gap matter even when there is

much uncertainty of this type. Our results also suggest that estimates of the level of inflationary

pressure and nominal GDP data become more important when the economy is prone to

inflationary overreactions to shifts in technological progress.

Key words: Data uncertainty, monetary policy, Kalman filter, optimal control.

JEL classification: E01, E52.
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Summary

It is often the case that information available to policymakers, expressed as economic data, is

implicitly or explicitly considered to be unchangeable. In practice, policymakers need to take

account of data uncertainty and data revisions in their decision processes (this has been recently

underlined in speeches by members of the Monetary Policy Committee in the United Kingdom;

see Bell 2004, Lomax 2004, and Bean 2005). This paper looks at some implications of data

uncertainty for monetary policy.

We combine national accounts data revisions with optimal control and filtering experiments on a

calibrated model to discuss policy implications of price-versus-volume data uncertainty in GDP

data for the UK. We show first of all that there is a degree of negative correlation between

revisions to real GDP growth and revisions to changes in the GDP deflator. We then analyse how

revisions in national accounts data can affect estimates of the output gap. We show how the benefit

of hindsight means that past errors in the real growth rate and potential output growth do not fully

cumulate onto the best estimate of the current output gap. We draw from this insight to develop a

‘hindsight’ or discounted output gap measurement model in which past errors decay. The point is

that the discounted output gap estimate gives different (and possibly better) information than a

mechanical estimate. This may be a more realistic view of how monetary policy makers measure

the level of inflationary pressure.

Our optimal control experiments find that monetary policy makers, when adjusting their policy

instrument to take account of data revisions, would be led to place greater weight on nominal GDP

data and correspondingly less weight on separate, uncertain estimates of prices and volume

growth as data uncertainty increases. However, we also find that estimates of the level of real

activity cannot be ignored by the central bank and matter even when there is much uncertainty of

this type. If demand shocks are more dominant, the policymaker will put more emphasis on

inflation data. Larger supply shocks in our model do not have powerful second-round effects, so

the weights of the indicators, including nominal GDP, do not change that much. When

technological progress shocks are large, real GDP growth data are more important, and output gap

data less so. This could be interpreted as a situation in which the policymaker uses real output

growth data to assess what is happening to potential output growth.
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We then modify the baseline model to take account of technological progress shocks that push

potential output beyond a ‘speed limit’ and create inflation (or, on the contrary, that tend to make

the output gap more negative and create temporary disinflations). Our simulations confirm that the

output gap estimates and, as price/volume mismeasurement builds up, nominal GDP growth data

become more important when the economy is prone to overreact to shifts in technological

progress in this way.
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1 Introduction

Monetary policy models are often characterised by a monetary authority setting a policy

instrument (typically a short-term interest rate) in order to achieve certain objectives expressed in

terms of macroeconomic variables, subject to available information on these and other variables. It

is often the case that the information available to policymakers, expressed as economic data, is

implicitly or explicitly considered to be unchangeable and perfectly measured. This is not a very

realistic assumption. In practice policymakers need to take account of data uncertainty and data

revisions in their decision processes.

In this paper we focus on a particular, possible case of data uncertainty — price/volume

uncertainty — and discuss its implications for monetary policy. The general idea behind this type

of uncertainty is that, given an estimate for economic activity in money or value terms, errors in

the price component and the real output component of said estimate of nominal activity might

cancel out, or cancel out even if the errors compound one another. Friedman and Schwartz (1982),

for example, acknowledge that there are statistical as well as economic reasons to expect a

negative correlation between real income and prices (1). Recent national accounts revisions for the

United Kingdom in Autumn 2003 showed an altered picture for real growth and prices, leaving

money spending and output broadly unchanged (see King 2003).

We look at revisions to vintages of national accounts data for the UK on a quarterly basis from

1989 Q3 onwards. We find that revisions to quarterly real GDP growth and the quarterly change in

the GDP deflator are, to some extent, negatively correlated. This implies that revisions in the

allocation of an estimate of activity to its price and volume components are one source, among

many, of data uncertainty and revisions. In the rest of the paper we use a calibrated model of

monetary policy to derive some implications about this type of data uncertainty that we hope are

reasonably robust.

A negative correlation between revisions to price and volume measures may arise because of the

difficulty that statistical offices face in deriving, from aggregate output or expenditure national

accounts data, separate estimates for real activity and prices or price deflators (2). The separation of

(1) Friedman and Schwartz (1982) observe that in general two out of the three magnitudes (nominal income, real
income and prices) are independently calculated, so, as a result, errors of estimates of real income and prices are
negatively correlated.
(2) This does not usually apply to some sectors of the economy where output is measured directly in volume terms.
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estimates of real activity from prices can be much more difficult when the relative prices of

various goods and services are shifting. One can imagine a situation in which frequent changes in

relative prices may lead to changes in deflator estimates and hence changes in volume estimates of

activity without significant changes to the overall value (or current price) estimate of economic

activity. This means that periods where relative prices change frequently, or where there are shifts

in the long-run trends of relative prices, may be periods of particularly high price/volume data

uncertainty.

The importance of taking changes in relative prices into consideration is certainly one of the main

reasons behind the move towards annually chain-linked national accounts in many countries,

including recently the United Kingdom (see, for example, Lynch 1996, Tuke and Reed 2001) (3).

The introduction of annual chain-linking in the national accounts should, through the more

frequent updating of weights and price deflators used in the compilation of the national accounts,

to a certain extent address the problem of uncertainty about the split between (aggregate) real

activity and the price level, although it is conceivable that particularly rapid changes in relative

prices that occur, for example, between the period chosen as a price base and the present, could

still have an effect.

In this paper we focus on two dimensions of the problem that data uncertainty of this type may

pose for monetary policymakers: the first is how much to rely on nominal GDP data compared to

real GDP data if the former are consistently less prone to revisions than the latter; the second is

how much emphasis should be placed on data for real GDP growth as opposed to the level of real

activity (4).

The first question loosely relates to a debate about whether nominal GDP can provide an

intermediate monetary policy target when there are supply-side shocks with no second-round

effects. Supply-side shocks with no second-round effects are rather like our price/volume

‘measurement error shocks’, in that they need no policy reaction and are likely to raise real

volumes whilst lowering prices, but are offset in the nominal data.

(3) Before September 2003, the national accounts in the UK would be rebased every five years.
(4) Revisions also pose a problem for ex-post evaluation. Orphanides (1998, 2001) has observed that the practice of
using estimates of monetary policy rules to evaluate monetary policy ex-post is complicated by the fact that these rules
are generally estimated on the basis of the most recent available data. However, the most recent available data rarely,
if ever, coincide with the information set available to the policymaker at the time his decisions are made.
Consequently, there is a case for trying to evaluate policy based on a real-time data set, i.e. with the data, or at least an
estimate of the data that were available to the policymaker at the time a certain policy was set.
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This is not to say that we are testing the relevance of nominal GDP targeting. Our focus is very

much on an inflation-targeting regime where nominal GDP data are but one in a set of indicators.

In addition to this, we assume that data of high quality for the target measure of inflation

(interpreted as a consumer price index) are available, and that nominal GDP data (when deflated

by consumer price inflation) are considered as an alternative measure of real activity to real

growth data or output gap level estimates (5).

The second question that we pose, when considering real GDP growth versus real GDP levels, is

linked to the concept of the output gap, as a measure for gauging the amount of inflationary

pressure in the economy. For example, Federal Reserve Board Governor Edward Gramlich

suggested that policymakers should concentrate more on the rate of change of real variables than

the levels of real variables under measurement error (6). We analyse how (price/volume) data

uncertainty may affect estimates of the level of the output gap, and whether any mismeasurement

is serious enough to lead policymakers to ignore output gap estimates but instead take into

consideration growth rates of macroeconomic variables when implementing policy.

Our approach is to understand the implications of this type of data uncertainty within a structural

dynamic model of the transmission mechanism. The mix of economic shocks expected to be

hitting inflation and output determines which data source is more relevant. We focus on three

types of economic shocks: price adjustment curve shocks, shifts in technological progress that

raise potential output, and demand shocks. We also consider scenarios in which the shifts in

technological progress are over-predicted by agents, and so can have inflationary consequences.

We find the following result: as (price versus volume) data uncertainty increases, monetary

policymakers would place greater emphasis on nominal GDP data and, correspondingly, less

emphasis on the separate, possibly very uncertain estimates of prices and volumes in interest rate

setting. But our calibrations indicate that very uncertain estimates of real activity cannot be

entirely disregarded: indeed, these real activity estimates matter even when data uncertainty is

very high. We find, furthermore, that the more agents in the economy are prone to overanticipate

shifts in potential output growth — a scenario which, as we will see, can be characterised with the

presence of a ‘speed limit’ effect in the transmission mechanism — the more the output gap data

(5) Svensson (2001), for example, adopts this approach in discussing the role of money as an indicator in an inflation
targeting regime.
(6) See Gramlich (1999).
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or nominal GDP growth data become important.

The next section, section 2, begins by explaining how price/volume uncertainty can arise and

explores what it can mean for monetary policy. It then goes on to provide some evidence of the

scale of data revisions, by looking at a real-time data set for the UK for real and nominal GDP and

estimates of output gap obtained using the aforementioned real-time data set. Section 3 presents

our formal model of monetary policy, introduces data uncertainty into the model, and discusses

some issues regarding monetary policy models and certainty equivalence. Section 4 presents

results of experiments when our model is calibrated to fit to some extent the UK economy. Section

5 discusses the introduction of data uncertainty, and section 6 concludes.

2 Price/volume data uncertainty

We now look at revisions to national accounts data from our real-time data set. A negative

correlation between revisions to real GDP and the GDP deflator would show that, to some extent,

these revisions compensate one another. We then use the real GDP data from our data set to obtain

real-time estimates of potential output and the output gap, considering how revisions to national

accounts data relate to estimates of the output gap.

2.1 Evidence on price/volume mismeasurement and its effects on growth data

Are effects of price/volume data uncertainty visible in any way? We should see, to some degree, a

negative correlation between revisions to real GDP growth and revisions to changes in the overall

price level, in this case the GDP deflator.

Chart 1 plots the overall revisions (defined as the revision between the first estimate for a given

quarter, starting in 1989 Q3, and the estimate for that quarter in the latest vintage of data in our

data set, where the data are available up to 2004 Q1) to the quarterly growth rates of GDP at

constant prices and current prices (7). Also included are the revisions to growth in the GDP

deflator, calculated as the ratio of current price and constant price GDP. Table A shows summary

statistics for the revisions.

(7) Since the introduction of annual chain-linking, in the UK ‘GDP at constant prices’ is referred to as
‘chained-volume measure’. We will often refer to the old definition.
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Chart 1. Cumulative revisions to quarterly growth rates
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Note: Centred 3 quarter moving average

Quarterly change in:
Real GDP (1) std dev 0.35

abs dev 0.27
mean 0.13

GDP deflator (2) std dev 0.70
abs dev 0.54
mean 0.11

Nominal GDP growth std dev 0.67
abs dev 0.54
mean 0.24

Correlation between (1) and (2) -0.35

Table A: Summary statistics on cumulative revisions to the quarterly growth rates

Certain patterns stand out. First of all, the mean revision to nominal GDP growth is larger than the

mean revisions for real GDP and GDP deflator growth. Revisions to national accounts data, over a

long period of time, will be due, among other things, to both updated source data and to

methodological changes. It is not straightforward to separately identify the expected impact of

these revisions on the three measures of nominal income, real income and prices. Another, more

interesting, point to note from table A is that revisions to real GDP growth and to quarterly

deflator inflation have to some extent been offsetting – the correlation between overall revisions to

the quarterly change in the GDP deflator and quarterly real GDP growth is minus 0.35. This

finding is consistent with some degree of price/volume uncertainty.

From chart 1 it also seems that deflator and nominal growth revisions are quite strongly correlated:
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the correlation coefficient is in fact 0.875. A strong positive correlation between deflator and

nominal growth revisions does not rule out a significant negative correlation between real growth

and deflator inflation revisions. In fact, in appendix C we show in a simple decomposition how a

positive (but still smaller than one) covariance between errors in nominal growth values and errors

in deflator inflation is consistent with a negative correlation between measurement errors in

deflation and real volume growth (8).

Here we have looked only at cumulative or total revisions, that is, the revision between the first

estimate of the data and the latest vintage. Different results could be obtained by looking at

revisions to growth rates between vintages that are a fixed distance apart, rather than just the

revision between the first estimate and the latest vintage. For example, Akritidis (2003) shows that

over a sample ranging from 1993 Q1 to 2000 Q4, the largest revisions to real GDP growth rates

occur in the later stages of the national accounts compilation process, that is, after the publication

of two Blue Books(9) following the first estimate of the data point under consideration.

We checked to see if the correlation coefficient between revisions to real GDP growth and the

change in the GDP deflator changed when we used the data in our data set that had been through

at least two Blue Books (meaning that we considered data up to 2001 Q4) and found that the

correlation between quarterly GDP deflator inflation revisions and quarterly GDP growth revisions

became only slightly more negative. We then calculated the same correlation coefficient over

different revision windows, rather than between the first estimate and an end-point. The revisions

were calculated over the following intervals: one, four, eight, 16, 20 and 24 quarters after the first

release. Table B describes the results.

It is comforting that the correlation coefficients found are all negative except in one case.

2.2 Data revisions and the output gap

We have discussed data uncertainty while looking at data revisions in a real-time data set with real

GDP, nominal GDP and the GDP deflator. We can now look at the implications of this type of data

uncertainty for the output gap, an economic concept which should indicate how much inflationary

(8) We are grateful to Charlie Bean for pointing this out to us.
(9) In the UK, the Blue Book, published by the Office for National Statistics (ONS), is the key annual publication for
national accounts statistics. The Blue Book provides detailed estimates of national product, income and expenditure
for the UK.
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No of quarter after first release Correlation sample (no of obs)
1 -0.142 1989Q3:2003Q3 (57)
4 -0.157 1989Q3:2002Q4 (54)
8 0.118 1989Q3:2002Q1 (51)
16 -0.297 1989Q3:2001Q1 (43)
20 -0.222 1989Q3:1999Q1 (39)
24 -0.167 1989Q3:1989Q1 (35)

Table B: Correlation between fixed window revisions to the quarterly growth rates and defla-
tor inflation

pressure there is in the economy(10). In what follows, the output gap is defined by the percentage

difference between the level of real GDP and the level of potential output.

Some intriguing evidence about what we would expect on the relative extent of output gap

uncertainty is provided by chart 2 below, taken from Walsh (2003a) (11). According to his

calculations for the United States, data revisions have affected official estimates of the output gap

much more than they have influenced estimates of changes in the output gap. We can see this in

the figure below. If we were to take these calculations at face value, we would conclude that

estimates of the level of the output gap in the US are more uncertain than the growth rate of

potential output.

.

Chart 2. Cumulative revisions to the output gap and the change in the output gap (US)
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Source: Walsh (2003a)

(10) We do not address the separate issue of the choice between alternative indicators of the level of inflationary
pressure in the economy, such as, for example, real marginal costs or the real rate gap versus the output gap.
(11) We are grateful to Carl Walsh for supplying us with the data for chart 2.
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To derive comparable estimates for the UK we used our real-time data set, using each vintage of

real GDP data in levels to calculate different vintages of estimates of potential output and hence

output gaps (using a Hodrick-Prescott filter with a smoothing parameter of 1600). Chart 3 is our

version of Walsh’s chart for recent UK data, which confirms that on this side of the Atlantic too

the revision in the output gap estimate tends to be much larger than revisions to the trend growth

rate estimate, at least when judged from this method.

Chart 3. Cumulative revisions to the output gap and the change in the output gap (UK)
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Source: Own calculations

Summary statistics are shown in table C. We can see that the unconditional standard deviation of

the revision to the level of the output gap is more than five times that of the change in the output

gap or to the potential output growth rate.

Variable
Output gap (level) std dev 1.55

abs dev 1.21
mean 0.31

Change in output gap std dev 0.38
abs dev 0.29
mean 0.05

Trend growth std dev 0.27
abs dev 0.20
mean 0.08

Table C: Summary statistics on cumulative revisions to the output gap

Judged from these estimates, data revisions seem to affect the estimate of the level of the output
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gap much more than it affects estimates of growth rates (of real GDP, or of potential output, or the

difference between the two). The main reason why mechanical estimates of the output gap shift so

much with revisions is that they are derived by assuming that potential output is a smooth process.

Therefore, by construction, potential output is unlikely to shift as much as real GDP.

There are, however, three related reasons why mechanical estimates of the output gap level shift so

much more than estimates of the change in trend growth. First, as McCallum and Nelson (2004)

argue, the mechanical method may be incorrectly assuming that potential output is a smooth

process. Data revisions which reflect news about potential output are not allowed to affect the

estimation.

A second reason is that we are not allowing for the possibility that we may know more about

potential output as time goes on. One reason is that, as Kapetanios and Yates (2004) assume, there

may be some decay in the measurement error associated with data, as better information gets

incorporated into later vintages of data.

Even abstracting from revisions, simply knowing how real GDP growth evolves in subsequent

quarters helps to pin down the output gap more accurately. For example, in the literature on

potential output estimation, methods such as the Hodrick-Prescott filter are often criticised for

placing too much weight on observations at the end of the sample. The first estimate we produce

using this method is therefore vulnerable to an ‘end-of-sample’ estimation error.

Orphanides and Van Norden (2001), using data for the US from 1965 Q1 to 2000 Q1, find that

end-of-sample estimation errors are a major cause of real-time output gap uncertainty. They

carried out this test by estimating what they call a quasi real-time output gap, where potential

output for time t is estimated using data only up to and including time t on the final vintage.

Subtracting the estimated gap in real time from this quasi real-time gap for each vintage gives us

an estimate of what proportion of the cumulative revision is due to data revisions only. We carried

out the same experiment on our UK data and found that the standard deviation of the cumulative

revision was reduced by more than a half: it fell to 0.64 percent from 1.55 percent, confirming that

the end-point problem is an important (but not the only) reason why mechanical filters fail to

capture the true gap. Chart 4 plots the quasi-revision in the gap against the total revision in the gap

and shows that the former is less variable. Table D shows some summary statistics.
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Chart 4. Revisions to the UK output gap estimates
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Variable
Output gap (level) std dev 1.55

abs dev 1.21
mean 0.31

Quasi real-time output gap (level) std dev 0.64
abs dev 0.48
mean 0.42

Table D: Summary statistics on cumulative revisions to the output gap

What does this tell us about our model of output gap measurement error? This confirms that the

benefit of hindsight matters in output gap estimation; that knowing what will happen to real GDP

in subsequent quarters matters in picking out the correct output gap today. Together, allowing for

revisions and for hindsight argues for a model of output gap mismeasurement that should allow for

some discounting.

A third problem with the method could be that it makes the assumption that only aggregate data

are relevant. The mechanical approach takes no account of the influence disaggregate information

would have on any view of the supply side and hence potential output. New information on

components of labour inputs, for example, could help change our views about underlying

productivity trends; new information on relative price movements could help change our view

about values and volumes of goods.

Building on these intuitions, in what follows we assume that the process of estimating the level of

potential output following a revision and a rebasing can be more sophisticated than subtracting a
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smoothed growth rate from real GDP growth data and then cumulating those changes. We call this

a ‘hindsight’ or discounted output gap.

3 A monetary policy model

3.1 A monetary policy problem without data mismeasurement

In this section we discuss how we can combine these stylised facts on data uncertainty with a

more complex and realistic analysis of macroeconomic variables. We begin first by laying out a

monetary policy problem in a world without measurement error, and then adapt the model to allow

for data uncertainty.

Let us consider a two-equation model similar to the one in, for example, Lippi and Neri (2004).

The first equation is a version of a Phillips curve in which inflation depends on expected future

inflation
b
E
d
π t+1 | It

ec
, past inflation (π t−1), the lagged output gap

b
yt−1 − y∗t−1

c
and Phillips

curve shocks (εt). The output gap is written as the difference between actual and flexible-price

output. We can write this Phillips curve as:

π t = α0E
d
π t+1 | It

e+ (1− α0) π t−1 + α1
b
yt−1 − y∗t−1

c+ εt+1. (1)

The second equation is an IS curve where output is an increasing function of future output, the

previous period’s output and a negative function of a measure of a real ex-ante interest rate:

yt = β0E
d
yt+1 | It

e+ b1− β0
c

yt−1 − β1(it − E
d
π t+1 | It

e
)+ ηt+1 + χωt+1 (2)

where π t = pt − pt−1 is the rate of inflation with pt being the log of the aggregate price level, yt

is the log of the level of output and it is the nominal interest rate, set by the monetary authority.

The coefficient α0 lies between zero and unity and α1 and β1 are positive. For reasons we discuss

below, β0 lies between 0.5 and unity. The terms εt and ηt are stochastic processes that represent

supply and demand shocks. The term ωt in (2) is a stochastic process that represents a technology

shock (below we explain the reason for the presence of this technology shock). These processes

are assumed to be autoregressive such that

ωt = ρωωt−1 + eωt ;
εt = ρ>εt−1 + eεt

and

ηt = ρηηt−1 + eηt
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where eωt, eεt and eηt are all zero-mean, normally distributed shocks with variances σ 2
ω, σ 2

> and σ 2
η

and the parameters ρω, ρε, ρη all lying between zero and unity.

The final equation in our description of the transmission mechanism defines potential output as the

flexible-price level of output. We begin by relating the flexible-price real interest rate to the

technical progress growth term, ωt+1:

r∗t =
t
ωt+1

β1

u
. (3)

We now justify (3) by showing it implies a familiar linear relation between the real interest rate

and the rate of output growth in the steady state.

A first step is to obtain an expression for potential output that is consistent with the flexible-price

concept. We eliminate all parameters associated with nominal rigidities from the IS curve,

equation (2). Setting χ = 0 and σ 2
η = 0 we have(12)

y∗t = β0E
d
y∗t+1 | It

e+ b1− β0
c

y∗t−1 − β1r∗t . (4)

Substituting (3) into (4) we have

y∗t = β0E
d
y∗t+1 | It

e+ b1− β0
c

y∗t−1 − ωt+1. (5)

We can now rewrite equation (5) asb
E
d
y∗t+1 | It

e− y∗t
c = 1− β0

β0

b
y∗t − y∗t−1

c+ ωt+1

β0
(6)

with ωt = ρωωt−1 + eωt . To get the steady-state values, take

ybg − ybg
t−1 ≡ y∗t − y∗t−1 =

b
E
d
y∗t+1 | It

e− y∗t
c = c and ωbg = ωt+1 to be constant in equation (6),

so that

ybg − ybg
t−1 = c = ωbgb

2β0 − 1
c = β1b

2β0 − 1
cr∗bg. (7)

This then gives the linear relation between output growth and the real rate in the steady state, as

one would expect. Note however that in order for this equation to describe output growth as a

positive function of the steady-state real rate, it must be that β0 > 0.5.

Now we can derive an IS curve in terms of the output gap. As equation (5) implies

ωt+1 = −
b
y∗t − β0E

d
y∗t+1 | It

e− b1− β0
c

y∗t−1
c
, we can substitute into (2) to give such an

(12) Our assumption is that the parameter χ is associated with a nominal rigidity.
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expression

yt − y∗t = β0
b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec+ b1− β0
c b

yt−1 − y∗t−1
c

−β1(it − E
d
π t+1 | It

e
)

+ηt+1 + (1+ χ)ωt+1. (8)

Using our definition of the real rate we can rewrite (8) as

yt − y∗t = β0
b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec+ b1− β0
c b

yt−1 − y∗t−1
c

−β1
b
(it − E

d
π t+1 | It

e
)− r∗t

c
+ηt+1 + χωt+1. (9)

Looking at equation (9), we can see that the technology growth shocks ω affect the output gap if

and only if χ /= 0. A negative value of χ can be interpreted as the deflationary impact of a supply

side improvement, such as a rise in labour productivity, or a fall in the natural rate of

unemployment. This type of shock will lower the output gap, and through the output gap will have

a downward effect on (future) inflation.

How do we interpret the case where χ > 0? We can interpret this as an extra demand shock, over

and above the η-shocks, that has a positive impact on the output gap, i.e. it captures an increase in

overall demand, not (completely) matched by an increase in overall supply before triggering extra

inflationary pressure. One interpretation of a positive χ is that it captures the inflationary impact

of the output gap rising above a certain ‘speed limit’ (given by its constant balanced growth rate,

or trend growth) (13). Note that there is an important conceptual difference with the η-shocks,

which affect actual output, rather than potential output. In our baseline case we assume that

χ = 0, while in section 5.2 we will relax this assumption.

(13) This is a different and additional motivation to Walsh’s (2003b, 2003d) explanation of a ‘speed limit’ policy. See
section 4.
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The transmission mechanism is now summarised by equation (1) and equation (8). The two

equations express current inflation and output in terms of expected future inflation and the

expected future output gap, lagged inflation and output gap, current interest rates and unobserved

shocks only. To complete the set-up we need to describe the objectives of the monetary authority.

We will assume that the policymaker seeks to minimise squared deviations of inflation from zero,

and of output from its flexible-price level. This means that the instantaneous (expected) loss

function will have the following form:

E [Ls | It] = 1
2

[E
d
(π s)

2 | It
e+ λE

Kb
(ys − y∗s

c2 | It

L
] (10)

with λ > 0, and s > t .

This instantaneous loss function specified above implies the following intertemporal problem for

the central bank:

min
it ,..,∞

∞;
s=t
κs−t E [Ls | It] , with 0 < κ < 1 (11)

subject to (1) and (8) (14).

In the next section we consider the situation in which equations (1) and (8) represent the true state

of the economy, but that the policymakers operate under the constraint of only having imperfect

information about the true values of real output, inflation and the output gap(15).

3.2 Allowing for mismeasured data

In our set-up the policymaker has four independent sources of data estimates to learn about the

state of the economy. These are (consumer price) inflation, real GDP data, the output gap and

nominal GDP data. In this section we describe the measurement error in these sources. In what

follows we will generally distinguish between the observed and true values of data; with the

superscriptH indicating the (mismeasured) observed data.

The first source of data is consumer price inflation data. We will assume that consumer price

inflation is the measure of inflation targeted by the central bank, i.e. the inflation measure that

(14) If we multiply (10) by 1− κ , this formulation of the loss function is very similar to that used in, e.g., Rudebusch
and Svensson (1999), except for the absence of a term in the loss function that depends on the change in nominal
interest rates. As κ −→ 1, the instantaneous loss function will approximate the weighted sum of the unconditional
variances of inflation and the output gap.
(15) There is no informational asymmetry between the monetary authority and other agents in the economy.
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appears in the loss function (10). We will also assume that inflation defined by this consumer price

measure (henceforth referred to as CPI inflation) is perfectly measured (or at least is never

revised), so that the value observed by the policymaker and the true value coincide:

Hπ t = π t . (12)

Despite the fact that CPI inflation is perfectly measured, in order to assess the amount of

inflationary pressure in the economy, the policymaker needs estimates of other variables that

define the transmission mechanism. But in our set-up, the data estimates of these variables are

measured inaccurately.

Real GDP is measured imperfectly, and we interpret this as a price/volume error, as will be more

clear below. We express real GDP in the following way:

Hyt −Hyt−1 = yt − yt−1 + ψ t, (13)

where ψ t is assumed to be a normally distributed variable with zero mean and variance σ 2
ψ .

Nominal GDP can be expressed as (approximately) real GDP plus the price level, measured by the

GDP deflator. We assume that GDP deflator inflation deviates from CPI inflation because of two

types of errors. First, there are deflator errors which only distort the relationship between deflator

inflation data and true inflation. And second, there is the converse of the price/volume errors seen

above. We express the difference between observed deflator inflation
bJde f t

c
and true CPI inflation

(π t) as: Jde f t − π t = −ψ t + vt (14)

with the deflator measurement error vt assumed to be a normally distributed variable with zero

mean and variance of σ 2
ν .

If we look at the sign of ψ , in the previous two expressions it is clear that we assume that revisions

to real activity and the price level (as expressed by the GDP deflator) compensate one another.

This implies that in current price terms, GDP growth is not affected by price/volume errors but

only by the deflator errors ν. Nominal GDP growth data in period t is therefore:

Hnt = π t + yt − yt−1 + vt . (15)
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The policymaker will use data estimates available to him to assess the amount of inflationary

pressure in the economy. Real GDP growth data can be used as a ‘speed-limit’ indicator, with high

rates of growth indicating a widening of the output gap, for example. In the context of our model,

nominal GDP data deflated by CPI inflation can also serve as an indicator for movements in real

activity. Finally, the policymaker can use estimates of the output gap level (Hyt+1 −Hy∗t+1) to infer

where the true output gap is. Given our assumptions about data measurement, how should we

model output gap (level) uncertainty? How does data uncertainty in this context distort the

policymaker’s reading of the level of the output gap?

In contrast to the way in which potential output was estimated in the previous section — i.e. the

filtering of real GDP data — we assume that policymakers do not just use real GDP data to

formulate their view of potential output, but use information about a plethora of macroeconomic

variables (for example, investment and the capital stock, labour market data, import prices and

world demand). Some judgement (using a wider array of data and models) has to be made about

whether the measurement error in real GDP carries over to potential output in such a way that it

drops out of the output gap calculation, or if it is the case that it compounds the error in estimating

the true level of inflationary pressure.

We can formalise these arguments into a model of output gap (mis)measurement with hindsight as

follows. First we will describe how errors are introduced in the measurement of the output gap

through the process by which potential output growth is estimated. Our model of potential growth

measurement combines two popular approximations. A first approximation is that potential output

growth is constant, as in the expression below:

Assumption 1. Hy∗t −Hy∗t−1 = c

where c is the constant steady-state growth rate. This means that the estimates for potential output

are insensitive to price/volume measurement errors, but also do not allow for technological

progress shocks to affect potential growth. The opposite alternative is that potential output growth

follows actual output growth quite closely. This implies taking into account, for example,

technological progress shocks — which would be a desirable feature — but also data uncertainty

errors as well as monetary shocks. We can express this second assumption as

Assumption 2. Hy∗t −Hy∗t−1 =Hyt −Hyt−1.
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In what follows we assume that the approach chosen is a linear combination of the two procedures

outlined above, with a parameter ρ1 determining the weight. Ignoring the constant, we have:

Hy∗t −Hy∗t−1 = (1− ρ1) (Hyt −Hyt−1) . (16)

This is in keeping with the spirit of the Hodrick-Prescott filter, where the smoothing parameter

plays the role of ρ1, in determining the trade-off between assuming the trend is linear and tracking

the actual data. It seems plausible that ρ1 tends to be greater than 0.5 as most potential output

measurement techniques in practice rely more heavily on smoothing.

The measurement error in potential output growth is given by subtracting true potential output

growth
b
y∗t − y∗t−1

c
from this estimate of potential growth described in equation (16):

Hy∗t −Hy∗t−1 − (y∗t − y∗t−1)

= (1− ρ1) ψ t + (1− ρ1) (yt − yt−1 − y∗t − y∗t−1)− ρ1
b
y∗t − y∗t−1

c
. (17)

Given that the measurement error in real output growth is equal to the price/volume error, that is,Hyt −Hyt−1 − (yt − yt−1) = ψ t , we can now write the measurement error in the change in the output

gap as

Hyt −Hyt−1 −
bHy∗t −Hy∗t−1

c− (yt − yt−1)+
b
y∗t − y∗t−1

c
= ρ1ψ t − (1− ρ1) (yt − yt−1 − y∗t − y∗t−1)+ ρ1

b
y∗t − y∗t−1

c
. (18)

We have specified how the change in the output gap is mismeasured. A final step is to derive a

model of mismeasurement in the level of the output gap. If we were to take our stylised facts on

output gap revisions from section 2 at face value, we would assume that predicting the current

output gap is more difficult than predicting current potential output growth, as errors in measuring

past growth rates cumulate onto the level. That would imply that the measurement error in the

current output gap level would rise without bound. Rather than allow these errors to cumulate
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undiscounted onto the estimate of the output gap level, we find it more plausible to assume that the

influence of an error in real GDP growth rates wanes with successive vintages. So past

price/volume errors matter less for the current output gap than current errors. Formally we relate

the mismeasurement in our discounted output gap to current and past price/volume errors by

Hyt −Hy∗t = yt − y∗t

+
�

s=t;
s=0
ρs

0
b
ρ1ψ t−s − (1− ρ1) (yt − yt−1 − y∗t − y∗t−1)+ ρ1

b
y∗t − y∗t−1

cc�
(19)

with 1 > ρ0 > 0.

We can re-write equation (19) in autoregressive form as

Hyt−Hy∗t −yt−y∗t = ρ0
bHyt−1 −Hy∗t−1 − yt−1 − y∗t−1

c−(1− ρ1) (yt−yt−1−y∗t −y∗t−1)+ρ1ψ t+ρ1
b
y∗t − y∗t−1

c
.

(20)

To check that the autoregression is a reasonable description of the output gap measurement error,

we carried out some estimates on our real-time data set. We regress the cumulative revision in the

mechanical output gap estimate on its past value with the sample from 1989Q3 to 2004Q1. This

gives us an estimate of

Hyt −Hy∗t − byt − y∗t
c = 0.93

(25.9)

dbHyt−1 −Hy∗t−1
c− byt−1 − y∗t−1

ce+ (−3∗
(−0.52)

10−4) (21)

with t-statistics in brackets, an R2 of 0.93, a standard error of 0.43%, and an LM test statistic for

fourth order serial correlation at 4.8 (insignificant at 90%).

To complete our understanding of the discounted output gap mismeasurement, we need an

expression for potential output to substitute in equation (20). From the derivations following

equation (3), remember that we can rewrite equation (5) asb
E
d
y∗t+1 | It

e− y∗t
c = 1− β0

β0

b
y∗t − y∗t−1

c+ ωt+1

β0
(22)

with ωt = ρωωt−1 + eωt, but that in order for this equation to describe a constant growth rate

where output growth is a positive function of the steady-state real rate, it must be that β0 > 0.5.

Given this restriction we describe potential output by adopting the backward solution to the
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following rational expectation equation:

y∗t = y∗t−1 +
b
1− β0

c
β0

b
y∗t−1 − y∗t−2

c+ 1
β0
ωt . (23)

This is a valid solution but not the only stationary solution to equation (22), when β0 > 0.5. In

appendix D we show that other (more complicated) stationary growth rate solutions are possible.

But we also show that the backward solution is similar to the only unique solution that would hold

under a model with discounting, and on these grounds we retain equation (23) as our model of

potential output growth.

To conclude, we can now lay out the common information set of policymakers and agents at time

t :

It =
⎧⎨⎩ Hπ t,...,Hπ0, Hyt −Hyt−1, ...,Hy0 −Hy−1,Hnt, ...Hn0,Hyt −Hy∗t , ...,Hy0 −Hy∗0

λ, β0, β1, α0, α1, χ, ρω, ρε, ρη, ρ0, ρ1, σ
2
ω, σ

2
>, σ

2
η, σ

2
ν, σ

2
ψ.

⎫⎬⎭ .
Note that the only data the policymaker has are the current value and history of the four indicators.

However the policymaker also has information on all the parameters of the model, including

second-order information and also knowledge on the measurement error processes. In the next

section we show how that information can be used to derive an optimal link between data and

policy.

3.2.1 Some intuition on the nominal growth indicator

We can interpret both real and nominal GDP data as indicators for the true output gap. Equation

(18) shows that the effect that errors in real output growth have on the policymaker’s estimate of

the output gap is composed of both price/volume errors and technological progress shocks:

Hyt −Hyt−1 −
bHy∗t −Hy∗t−1

c− yt − yt−1 +
b
y∗t − y∗t−1

c
= ρ1ψ t

− (1− ρ1) (yt − yt−1 − y∗t − y∗t−1)

+ρ1
b
y∗t − y∗t−1

c
. (24)
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Thus, the variance of prediction errors in using real growth data to predict the change in the output

gap is

ρ2
1

r
σ 2
ψ + E

Kb
y∗t − y∗t−1

c2Ls
+ (1− ρ1)

2 E
d
(yt − yt−1 − y∗t − y∗t−1)

2e
− (1− ρ1) ρ1E

d
(yt − yt−1 − y∗t − y∗t−1),

b
y∗t − y∗t−1

ce
. (25)

Similarly, by inserting equation (19) in equation (15) we can see that errors in nominal GDP

growth data lead to errors in the estimates of the change in the true output gap because of GDP

deflator measurement error and technological progress shocks, and also due to the price/volume

error:

Hnt −
bHy∗t −Hy∗t−1

c−Hπ t = vt −
b
y∗t − y∗t−1

c+ (1− ρ1) (Hyt −Hyt−1)

= (1− ρ1)
b
yt − yt−1 − y∗t + y∗t−1

c
+ (1− ρ1)

b
y∗t − y∗t−1

c
+ (1− ρ1)ψ + vt . (26)

From equation (26), the variance of prediction errors in the nominal GDP growth indicator is

(1− ρ1)
2 E
Kb

yt − yt−1 − y∗t + y∗t−1
c2L

+ (1− ρ1)
2
r
σ 2
ψ + E

Kb
y∗t − y∗t−1

c2Ls
+σ 2

ν

+ (1− ρ1)
2 E
db

y∗t − y∗t−1
c b

yt − yt−1 − y∗t + y∗t−1
ce
. (27)

Subtracting equation (25) from equation (27), we have

(1− 2ρ1)
r
σ 2
ψ + E

Kb
y∗t − y∗t−1

c2Ls+ σ 2
ν − (1− 3ρ1) E

d
(yt − yt−1 − y∗t − y∗t−1),

b
y∗t − y∗t−1

ce
.
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When expressed in terms of the variance of the prediction of the true change in the output gap, the

trade-off between nominal GDP growth and real GDP growth data depends therefore on the

variances of deflator mismeasurement, of price/volume mismeasurement and of the growth in

technological progress. (There is a term capturing the covariance between potential output growth

and the change in the true output gap, but this matters only when overreaction leads to a ‘speed

limit’ effect).

The more deflator mismeasurement there is, the more real growth data would be favoured. And

the smoother it is assumed that potential output growth is, and hence the closer ρ1 is to 1, the

worse real GDP growth data would perform relative to nominal GDP growth data as an indicator

of the change in the true output gap. If we can assume ρ1 > 0.5 (as seems a fair reflection of

popular practice) then we can also say that a greater price/volume error and a more volatile

technological shock process would both imply that real GDP growth performs relatively worse as

an indicator of the output gap.

3.3 Our other calibrations

In order to carry out our experiments we need to calibrate the model for some values that broadly

describe the UK economy. The parameter values we used are summarised in the following tables

E and F, in the second column of each table.

The third column of each table contains calibrations and estimations from other authors, which

refer not only to the UK, but also the euro area. It is clear that it is difficult to pin down values for

even some of the most important parameters. A wide range of estimates are available, and

estimates based on other countries may not be relevant for the UK. Nevertheless we hope that our

parameters are not too far out of line with what others find plausible.

Note that we take the rate of discounting in our estimate of output gap measurement, ρ0, to be

0.93, as this is the number we get from our econometric estimates of the mechanical output gap

error in the previous section. Our calibration of ρ1 cannot be estimated, and so we set it at 0.7

which we think gives a plausible trade-off between output gap measurement error and the real

growth data measurement error; i.e. one which characterises smoothing as the more common

practice.
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Description Baseline
value

Other calibrations/
estimations

Forward vs backward weight in Phillips curve (α0) 0.4 (0.4)b

(0.50)c, (0.3)d , (0.5) f

Slope of Phillips curve (α1) 0.3 (0.002)d , (0.18) f

Forward vs backward weight in IS curve (β0) 0.625 (0.6)a , (0.25)d , (0.6) f

(0.25)d , (0.56) f

Interest rate multiplier (β1) 0.6 (0.7)a, (0.08)e, (0.06) f

Technological progress shocks autoregression ρω 0.95 (0.95)c

Price supply shocks autoregression ρε 0
Demand shocks autoregression ρη 0

Standard deviation 0.31% (0.03)d

of price supply shocks (σ eε) (0.16) f

Standard deviation 0.41% (0.41)a

of demand shocks (σ eη) (0.39)d , (0.18) f

Standard deviation 0.9% (0.925)e, (0.81) f

of technological progress shocks (σ eω)
Overreaction to technological progress shocks (χ) 0
a Banerjee and Batini (2003, table 3), b Batini, Jackson and Nickell (2000, table 7b, col i).
c Paez-Farrell (2003); d Lippi and Neri (2004); e Ellison and Scott (2000); f Smets (2003).

Table E: Table of Parameter Values (quarterly)

Description Baseline
value

Other calibrations/
estimations

Standard deviation 0.50% (0.24)d
of price/volume measurement error (σψ )
Standard deviation 0.25% (0.26) f

of deflator measurement error (σ v )
Elasticity of current price/volume error 0.7
in determining current output gap error (ρ1)

Discounting of past errors 0.93
in affecting current output gap error

b
ρ0
c

Weight on output costs in society
loss function (λ) 0.8
Discount on welfare losses (κ) 0.99

Table F: Table of Parameter Values 2 (quarterly)
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As a guide to interpreting our calculation, we can show that the unconditional variance of output

gap errors is

E
KbbHyt −Hy∗t c− byt − y∗t

cc2L = 1

1− bρ0
c2 E

KbHyt −Hyt−1 −Hy∗t +Hy∗t−1 − yt + yt−1 + y∗t − y∗t−1
c2L ;

(28)

that is 1
1−(ρ0)

2 = 7.4 times greater than the variance of real growth mismeasurement from equation

(25) (16).

3.4 The interaction of data uncertainty and economic uncertainty

When looking at the monetary policy implications of data uncertainty it is important to distinguish

between two different kinds of uncertainty in this model. One concerns the economic shocks in

(1) and (8), that is, εt , ηt and ωt . This type of uncertainty is often referred to in the literature as

additive uncertainty. These are unobservable at the time the policymakers set policy, their

expected values are often zero and the optimal policy decision does not depend on the variance of

these shocks. In fact, if the expected values of the shocks were zero, the coefficients of the policy

rule would be the same as if the economy described by equations (1) and (8) were completely

non-stochastic (17).

However, data uncertainty about the values of the state variables creates a form of non-additive

uncertainty in the model. Aoki (2003), Swanson (2004) and Svensson and Woodford (2003) show

that we can split our understanding of the non-additive data uncertainty problem into two stages.

The first stage is a linear relation between the policy instrument (the nominal interest rate) and the

expected values of unobserved targets. That first stage is certain-equivalent (and so independent of

any information about the variances of the shocks). The second stage tells us how those expected

values of the unobserved targets relate to the observed data. This second stage is not a

certain-equivalent relation, in the sense that policymakers (and agents) use their beliefs about the

noisiness of observed data when they choose how much emphasis to place on each indicator.

These two stages can, however, be calculated separately and then combined (18). We use the

MatLab programs developed by Gerali and Lippi (2003) and in appendix B below we show how

(16) Strictly speaking we should not be comparing the measurement error in the output gap estimate in predicting the
level of the true output gap to the measurement error in real growth in predicting the change in the true output gap.
(17) See, for example, the discussion in Ljungqvist and Sargent (2000, ch.4).
(18) This is the case providing policymakers and agents share the same information set, the transmission mechanism
in linear and that objectives are quadratic. See Svensson (2003) and Svensson and Woodford (2004).
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we set up the model in a form consistent with their software and the model seen in Svensson and

Woodford (2003): the first stage is derived as a solution to an optimal linear regulator problem and

the second stage that links the observed data to expectations of inflation and output, is derived as a

Kalman filter. We are interested in deriving measures of how the nominal interest rate is linked to

the observed data. In this way, this framework can be used to inform us about the emphasis that

should be placed on CPI inflation, real growth data, nominal GDP growth data and the estimated

output gap in setting interest rates, when there is substantial uncertainty about the price/volume

split.

That rule is however conditional on beliefs about variances, meaning that as policymakers’ views

about variance evolve, so will the rule change. To bring this out, we test the sensitivity of our rule

to different assumptions about variances (the mix of shocks).

4 Results

4.1 Monetary policy under no data uncertainty

As we discussed above, the results of our exercise can be split into two stages. The output from

the first stage is an instrument rule linking nominal interest rates to the expected but unobserved

values of variables. These coefficients are presented for two different types of policy setting. The

first is related to discretionary monetary policy, whereby the central bank minimises the loss

function subject to the constraints presented by the state of the economy. The resultant policy will

be time-consistent. However, the presence of forward-looking elements in the framework we are

analysing brings about a wedge between the optimal discretionary policy, and a policy that would

be obtained if the central bank could credibly commit to a certain path for policy, because of the

effect this commitment would have on private sector expectations (for a discussion, see, for

example, Woodford 1999, Woodford 2000, Walsh 2003c, McCallum and Nelson 2004). One thing

to note straight away is that this wedge between discretionary policy and policy with commitment

is different from the one that underpinned the ‘inflationary bias’ in policymaking analysed in

many papers, starting from Kydland and Prescott (1977) and Barro and Gordon (1983).

In the case of ‘inflationary bias’ monetary policy models, suboptimal policy outcomes were the

result of the policymaker’s attempts to expand real output levels above its potential level (or
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pushing unemployment below its natural rate) (19), and the private sector’s realisation of this in a

rational expectations framework. In the type of monetary policy we are analysing, the

suboptimality of discretionary policy is brought about by the fact that the policymaker

re-optimises in every period, without taking into account the effect of his actions on private sector

expectations (20). Another way of expressing this is (from Woodford 2000), is that it is the failure

of making the conduct of monetary policy history-dependent that makes discretionary policy

suboptimal (21). It may be interesting to assess whether the dominance of commitment carries over

to our case of price/volume data uncertainty.

Walsh (2003b, 2003d) discusses why indicators of rates of change might be important under these

circumstances. He explains the role of ‘speed limit’ policies, demonstrating that a central bank

concerned with stabilising inflation and the change of the output gap (instead of the level) can

usefully impart some inertia to eliminate some of the relative losses of a discretionary (compared

to a commitment) policy. However we should bear in mind that one circumstance when this

matters is when there are persistent price adjustment curve shocks, which is not a feature of our

calibrations.

In appendix B, we show the algebraic form of the first-stage instrument rule (22) as equation (B-13)

in the case of discretion and as equation (B-5) in the case of commitment. Our simulation (in the

baseline case) gives numerical values for the coefficients in the first stage as shown below first for

discretion

it = 0.93E
d
π t−1 | It

e+ 1.09E
db

yt−1 − y∗t−1
c | It

e+ 1.55E [εt | It ]

+1.67E
d
ηt | It

e+ 3.25E [ωt | It] (29)

(19) The reason for this being that the level of potential output (natural rate of unemployment) was too low (too high)
from a social welfare perspective.
(20) Lippi and Neri (2004) note that, technically, under discretion, policy is a function of the state variables alone,
while under commitment, policy also includes the Lagrange mulitipliers of the forward-looking variables (costate
variables).
(21) A further motivation for the existence of an inflationary bias may be the existence of asymmetric preferences in
the policymaker’s (or in society’s) objective function (see, for example, Cukierman and Gerlach 2003).
(22) See, for example, Svensson (2003) for a discussion on the difference between instrument rules, which express the
policy instrument as a function of current and lagged predetermined variables, and targeting rules, which are
equilibrium conditions involving the target variables only.
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and then under commitment

it = −6.78E
d
π t−1 | It

e− 2.76E
db

yt−1 − y∗t−1
c | It

e− 11.29E [εt | It ]

+1.67E
d
ηt | It

e+ 3.25E [ωt | It]+ 8.20E
d
µxt | It

e− 3.21E
d
µyt | It

e
(30)

where µxt and µyt are the costate variables associated with expected inflation and expected output

respectively, and are defined in appendix B, equation (B-5) . The costate variables, or Lagrange

multipliers, capture the marginal loss from having committed to react to past values of inflation

and output gap (in expectation only: these values are unobserved). These factors are absent from

the instrument rule under discretion, where no such commitment is possible.

4.2 Impulse responses of the model

We can illustrate how well the model describes the responses of inflation, output and interest rates

to each of three economic fundamental shocks: shocks to technological progress, the price shock

and the real demand shock. We produce responses both under commitment and discretion.

The responses of inflation, the output gap and interest rates to a temporary one percentage point

rise in technological progress are shown in the first column of chart 7. Interest rates track the

natural rate, rising and then very slowly falling back to their former value, taking about five years.

The slow return of interest rates is therefore consistent with our assumption that technological

progress features a strong autocorrelation. Having said that, interest rates are at first slow to react

and because of that the growth rate of output rises by slightly more on impact than does potential

growth. A small and short-lived output gap opens up and leads to higher inflation. The charts do

not show that the shock raises the potential growth rate, which reaches a peak of about 3% (on a

quarterly rate) and then very slowly dies out. On the whole though, the inflationary effects of a

rise in technological progress are small relative to the rise in output.

It should be remembered, however, that the simulations in chart 7 were carried out under the

assumption that there is no overreaction to the technological progress, i.e. that χ = 0.We relax
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this assumption in section 5.2 to show how technological progress can lead to higher inflation, and

a worse trade-off, when there are bottlenecks in supply.

The price supply shock (ε, in the third column) is assumed to have no autocorrelation and dies out

quickly. It raises inflation by about 1% (on a quarterly rate) immediately. The nominal interest

rate rises too because policy does not accommodate the shock but rather reacts to it. The net effect

is a higher ex-ante real rate and a fall in output (below potential, as potential output is invariant to

this shock) of about 0.8%.

The responses to the real demand shock (η, in the fourth column) are also not dissimilar to those

seen in other models. The shock raises the output gap by about 1% immediately and this feeds

onto inflation a year later (by about 0.4%). Nominal interest rates are immediately raised to

counter this inflationary impulse but then lowered as the inflationary pressure diminishes.

Column 2 in chart 7 describes the effect of a non-economic shock: a 1% rise in the measurement

error ψ . It is interesting to note that qualitatively the responses are very similar to those that would

result from a ‘policy shock’, i.e. interest rates rise, this subsequently drives down the output gap

and lowers inflation. The policymaker here is being misled by a data measurement shock which

initially has no impact on economic fundamentals, so perhaps it is not that surprising that the

results obtained are similar to what other models display in the case of a shock to the policy rule.
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Chart 7. Impulse response of variable i to 1pp temporary shocks in j

under commitment and discretion
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We should remember that the responses to all shocks depend on the policymaker’s priors with

regard to the variances of disturbances. As a stark illustration, charts 8 and 9 plot the impulse

responses of inflation and interest rates to a price/volume measurement shock under two very

different cases (23). The solid lines indicate cases where the model was solved with the policymaker

believing there is no data measurement error at all, i.e. when the price/volume error comes as a

complete surprise. The dashed lines show instead what happens if the central bank was prepared

for very significant measurement error. They do not react at all to the out-turns of real GDP and

the output gap estimates, in the knowledge that these data do not reveal any useful information.

(23) Under both cases, a discretionary policy is used.
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Chart 8. Response of quarterly inflation rates to a 1pp price/volume error shock
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Chart 9. Response of quarterly interest rates to a 1pp price/volume error shock
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5 Monetary policy with data uncertainty

Having described the properties of the model, we now turn to explore the effects of data

uncertainty. More specifically, we want to explain what effect price/volume uncertainty has on

policy setting. There are two ways we can gauge the influence of each data series: first as the

effect of expectational data errors on revisions to interest rates (without knowing why those errors

arise) and second by the size of impulse responses of interest rates to specific data-noise shocks.

To explain the first measure, recall that policymakers form expectations of next period’s data

according to a Kalman filter. So when the data outturns are different to these expectations they

will be led to revise both their policy decisions and their view of the underlying shocks. The
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principle behind the first measure of data relevance is that we can look at the revisions in each data

series, and see how these revisions, through the coefficients on the (expected) pre-determined

variables, affect interest rates. These coefficients are determined in our model when solved under

discretion as the vector FdU in the expression

E [it | It]− E
d
it | It−1

e = FdU
b
E [zt | It ]− E

d
zt | It−1

ec
. (31)

Appendix B shows how this equation is determined in more detail, but to summarise,b
E [it | It]− E

d
it | It−1

ec
is the revision in interest rates;

b
E [zt | It]− E

d
zt | It−1

ec
are the

surprises in the data that cause the revisions in interest rates; the vector Fd contains the coefficients

placed on the expectations of the unobserved pre-determined variables in setting interest rates and

are given in equation (29); and the matrix U links the expectations of the pre-determined variables

to the surprises in the four data variables. (We omit a measure of this under commitment because

the relationship is complicated by the fact that the history of past surprises in data also matter for

the current interest rate surprise. See appendix B.).

Chart 10 plots the results for different degrees of price/volume measurement error. It is worth

noting that the coefficients in chart 10 are not to be interpreted as coefficients of a policy rule, but

the extent to which expectational errors in the four sources of data affect interest rates.
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Chart 10. The coefficients of expectational errors in each series

in affecting interest rates (discretion)
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Three facts stand out.

1. Chart 10 shows how data measurement errors cause real output growth data to be less reliable.

The coefficient on real GDP growth (or, as labelled in the chart, the coefficient on the real

versus nominal split in growth rates) moves closer to zero while those on nominal GDP growth

and CPI inflation move away from zero as data measurement errors increase.

2. Note, though, that this only happens for very high levels of noise. This suggests that there is

still much to be gained from obtaining information separately from price and volume estimates

even when the standard deviation of the measurement error is as large as that of supply-side

price shocks (at 0.31%).

3. Although it decreases as the data become more noisy, the coefficient placed on the output gap

converges to a positive number. The implication of this is that the output gap has some role even

with substantial mismeasurement of prices and volumes.

A different way of assessing the importance of each observed variable is to capture how sensitive

interest rates are to data noise errors in those variables. The principle is that if a series is important
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then interest rates will erroneously react to an unexpected noise movement in that data series.

Appendix B shows how this measure is derived as the maximum impulse of interest rates to a data

noise shock in each of our four data series.

Chart 11 plots the calculations for our calibrations, showing how this evolves as the standard

deviation of measurement error increases from zero to the very high value of 1% (in units of

quarterly GDP growth rate) under commitment. Chart 12 replicates this chart with discretionary

policy.
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Chart 11. Commitment: Maximum* response of quarterly interest rates to a 1pp

measurement error shock in:
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Chart 12. Discretion: Maximum* response of quarterly interest rates to a 1pp

measurement error shock in:
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We can see that the results seen above are to some extent preserved even when viewed from this
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different perspective. The sensitivity of interest rates to nominal GDP and CPI inflation data rises,

whilst the sensitivity to real GDP growth and the output gap is lower. However this happens only

for high levels of noise, and there still remains some weight attached to the output gap estimate

even with a large degree of mismeasurement.

It might be worth explaining this last result. It should be recalled that we are experimenting with a

particular type of measurement error — price/volume uncertainty. A key feature is that this error

affects both real growth data and the output gap indicator, but because the output gap estimate also

depends on hindsight, it affects real output growth data and the output gap indicator in different

ways. Because the noise is common to both indicators the policymaker is able to compare the

behaviour of both and, from that comparison, extract useful information about the underlying

economic shocks. It is important to emphasise that this result is specific to our type of data

mismeasurement. If we were, for example, to increase the variance of a measurement error in the

output gap completely unrelated to any other indicator, the weight on that output gap estimate

would be driven down to zero.

Finally, we can confirm that even though our policymaker responds as best as he can by shifting

his emphasis to the data in which he has more confidence, data measurement errors do bring about

some welfare losses. Chart 13 describes what data noise means for inflation, interest rate and

output volatility. The volatility of the output gap increases, but less than that of inflation.

These results stand somewhat in contrast to the findings of McCallum (2003), who finds that

potential output mismeasurement raises inflation volatility the most (24). However, unlike

McCallum (2003), we are assuming that the policymaker has good inflation data and also that he

uses second-order information in forming expectations. This would make it easier for the

policymaker to control inflation.

Finally, in chart 14, we compare the welfare losses under discretion and under commitment. As

we would expect both increase with the measurement error. The losses under discretion increase

by more, so that the relative cost of discretionary policy rises with poor data. The chart does not

tell us how much more. One clue might be that from our impulse responses in chart 7 we detected

very little difference between the discretionary and commitment policies. On this basis it does not

(24) McCallum and Nelson (2004) use a different model of potential output mismeasurement to us. They embed that
in a forward-looking framework to show how output gap mismeasurement implies serious welfare losses.
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seem that the additional welfare loss resulting from following a discretionary policy with data

uncertainty rather than a policy with commitment is not quantitatively large. If we added a degree

of persistence to the Phillips curve shock (i.e. ρε /= 0), then we would find a greater welfare cost

of adopting a discretionary policy, and some greater role for rates of volume change. However,

this does not depend on the degree of price/volume error.

Chart 13 Volatility under greater price/volume uncertainty
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Chart 14. Losses under discretion and commitment
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5.1 Varying the economic shocks

In our set-up, the policymaker knows the distribution of the shocks that hit the economy and uses

that information in distributing weight among different information sources. Our results will

therefore be sensitive to different assumptions about the variances of the shocks to these

information sources. In this section we explore how our results vary with the mix of shocks. We

revisit our calibrations with different assumptions for the shocks that hit the economy.

Chart 15 reproduces our calculations on the sensitivity of interest rates to data noise but with five

times as large real demand shocks in the case of policy with commitment. Comparing that to chart

12 we can see that for a given amount of price/volume mismeasurement, the policymakers will

place more emphasis on inflation data if demand shocks were dominant. If the mismeasurement in

the GDP deflator were of a small scale, nominal GDP data might also become more important

under these shocks. In the absence of price/volume mismeasurement, the output gap estimate

would dominate as an indicator of inflationary pressure.

Chart 16 reproduces the calculations for the base case with five times as large price supply shocks.

When compared to chart 12, the coefficient on nominal GDP is little changed for a given

measurement error. Price supply-side shocks in this forward-looking model do not have powerful

second-round effects. It is not surprising, then, that nominal GDP growth data do not become a

more prominent indicator in the presence of price/volume mismeasurement and Phillips curve

shocks.

Chart 17 shows simulations with the standard deviation of technological progress shocks

multiplied by five compared to the baseline case. When technological progress growth is a major

source of shocks, real growth data matter more, and, correspondingly, output gap data matter less.

Perhaps one can think of this as a situation in which the policymaker uses real output growth data

to gauge what is happening to potential output growth and the natural real rate of interest, and rely

on real GDP growth data as a guide to policy decisions. But this happens when there is a small

amount of data mismeasurement. As the data error increases, the coefficient associated with real

GDP growth falls and that on nominal GDP growth data rises. The combination of an uncertain

potential output process and noisy real output data leads to both the real GDP growth data series

and the output gap estimates becoming less relevant as indicators. CPI inflation data become more
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important as it is used in conjunction with nominal growth data to understand where real activity

is, compared to its potential level.
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Chart 15. Large demand shocks
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Chart 16. Large price-supply shocks
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Chart 17. Large technology shocks
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5.2 Allowing for technological progress shocks with inflationary consequences

In our simulations so far we have only allowed for technical progress shocks with no

consequences for the output gap. Rewriting our original output gap equation:

b
yt+1 − y∗t+1

c = byt − y∗t
c− β2(it − Etπ t+1)+ ηt+1 + (1+ χ)ωt+1, (32)

we see that so far we have assumed that χ = 0, i.e. shifts in technological progress growth have an

equal impact on actual and potential output.

Charts 18 and 19 show what happens to the impulse responses of inflation and the output gap

when we relax that assumption in two opposite ways. Chart 18 features a technological progress

shock that pushes the output gap above a ‘speed limit’ (see discussion above in section 4), i.e.

χ = 1. Chart 19, on the other hand, features a technological progress shock which tends to reduce

the output gap, or to make it more negative (χ = −1). Now actual output is lagging developments

in potential capacity. The key message is that in the first case, technology shocks have an

inflationary effect but in the second that effect is disinflationary.
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Chart 18. Response of quarterly inflation and the output gap

to a temporary 1pp technological progress shock under (χ = 1)
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Chart 19. Response of quarterly inflation and the output gap

to a temporary 1pp technological progress shock under (χ = −1)
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We now repeat, and show in charts 20, 21 and 22, our baseline simulations but allow for: first, an

‘overheating’ reaction to technological progress shocks (χ = 1), and second, a supply-side

improvement following the technological progress shocks (χ = −1).
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Chart 20. Baseline case (discretion) (χ = 0)
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Chart 21. ‘Overheating ’ following technological progress shock (χ = 1)

0.0

0.5

1.0

1.5

2.0

2.5

0.01 0.109 0.208 0.307 0.406 0.505 0.604 0.703 0.802 0.901

Standard deviation of measurement error (% of quarterly GDP growth)
*as an absolute value

Maximum*  response of quarterly interest rates to a 1pp measurement 
error shock in...

Real versus nominal split in growth rates
Nominal GDP growth

The output gap level

CPI inflation

Chart 22. Supply-side improvement after technological progress shock (χ = −1)
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The responses to real output and nominal GDP growth data are sensitive to this ‘overreaction’ of

demand above supply given by a positive value of χ . If the output gap widens following χ-shocks,

then we can see that interest rates react more to real output growth data, or, if those are

mismeasured, nominal GDP data. This is because inflationary responses to technological progress,

perhaps arising through bottlenecks, are picked up by real output growing faster. Having said that,

we had to allow for a substantial widening of the output gap to obtain greater responses, and again

it seems sensible to argue that, based on our calibrations, the presence of ‘speed-limit’ effects (25)

would not by itself lead us to ignore levels data in favour of rate of volume change indicators.

6 Conclusion

We have found that the presence of price/volume uncertainty in data would lead monetary policy

makers to place more emphasis on nominal GDP data and less on real GDP data and the output

gap. But, at least in our calibrations, a policymaker would not completely ignore indicators such

as real GDP or the output gap even with a very high degree of uncertainty. In part this is because

we allow for the benefit of hindsight in our model of how the output gap is measured so that past

errors in estimating growth rates of real GDP and potential output do not just cumulate

undiscounted onto the estimate of the current level of inflationary pressure. We also show that if

technological progress shocks lead to a widening output gap, and an upward effect on inflation,

then ‘hindsight’ or discounted output gap estimates and nominal GDP data become even more

important.

It seems that such data measurement problems have to be severe to lead us to ignore real GDP data

altogether, a result which echoes the comments of Meltzer (2001). This is particularly true when

economies are hit by disturbances that require policymakers to get a firm grasp of the level of

inflationary pressure that is currently building up in the economy.

(25) This ‘speed-limit’ effect lacks microfoundations. We choose to do it as a link between the output gap (in the IS
curve) and the rate of change of technological progress but one can think of different ways of modelling this.
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Appendix A: A formal description of the model

Consider first equation (1)

π t = α0E
d
π t+1 | Ipt

e+ (1− α0) π t−1 + α1
b
yt−1 − y∗t−1

c+ εt+1 (A-1)

which we can rearrange as

E
d
π t+1 | Ipt

e = π t

α0
− (1− α0)

α0
π t−1 − α1

α0

b
yt−1 − y∗t−1

c− 1
α0
εt+1. (A-2)

Now turning to equation (8),

yt − y∗t = β0
b
E
d
yt+1 | Ipt

e− E
d
y∗t+1 | Ipt

ec+ b1− β0
c b

yt−1 − y∗t−1
c

−β1(it − E
d
π t+1 | Ipt

e
)

+ηt+1 + (1+ χ)ωt+1, (A-3)

we can also rearrange this as

b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec =
b
yt − y∗t

c
β0

−
b
1− β0

c
β0

b
yt−1 − y∗t−1

c
+β1

β0
it − β1

β0
E
d
π t+1 | It

e
− 1
β0
ηt+1 − (1+ χ)β0

ωt+1. (A-4)

Substituting out for expected inflation from equation (A-3)

b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec =
b
yt − y∗t

c
β0

−
b
1− β0

c
β0

b
yt−1 − y∗t−1

c
−β1

β0

t
π t

α0
− (1− α0)

α0
π t−1 − α1

α0

b
yt−1 − y∗t−1

c− 1
α0
εt+1

u
+β1

β0
it − 1

β0
ηt+1 − (1+ χ)β0

ωt+1. (A-5)
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Rearranging gives

b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec = 1
β0

b
yt − y∗t

c+ �α1β1

α0β0
−
b
1− β0

c
β0

�b
yt−1 − y∗t−1

c
+β1

β0
it − β1

β0

1
α0
π t + β1

β0

(1− α0)

α0
π t−1

+ β1

α0β0
εt+1 − 1

β0
ηt+1 − (1+ χ)β0

ωt+1. (A-6)

To convert to first-order form we write

E
d
π t+1 | It

e = π t

α0
− (1− α0)

α0
q1t − α1

α0
q2t − 1

α0
εt+1 (A-7)

and

b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec = 1
β0

b
yt − y∗t

c+ �α1β1

α0β0
−
b
1− β0

c
β0

�
q2t

+β2

β0
it − β1

β0

1
α0
π t + β1

β0

(1− α0)

α0
q1t

+ β1

α0β0
εt+1 − 1

β0
ηt+1 − (1+ χ)β0

ωt+1 (A-8)

where

q1t+1 = π t (A-9)

and

q2t+1 =
b
yt − y∗t

c
. (A-10)

Finally to eliminate the shocks from the equations for future variables we need to define

e1ωt+1 ≡ eωt+2,

e1ηt+1 ≡ eηt+2,

and

e1εt+1 ≡ eεt+2.
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Then we can write

b
E
d
yt+1 | It

e− E
d
y∗t+1 | It

ec = 1
β0

b
yt − y∗t

c+ �α1β1

α0β0
−
b
1− β0

c
β0

�
q2t

+β2

β0
it − β1

β0

1
α0
π t + β1

β0

(1− α0)

α0
q1t

+ β1

α0β0
ρεεt − 1

β0
ρηηt − (1+ χ)β0

ρωωt

+ β1

α0β0
e1εt − 1

β0
e1ηt − (1+ χ)

β0
e1ωt (A-11)

and

E
d
π t+1 | It

e = π t

α0
− (1− α0)

α0
q1t − α1

α0
q2t − 1

α0
ρεεt − 1

α0
e1εt . (A-12)

Our shocks are given by

ωt+1 = ρωωt + e1ωt,

εt+1 = ρ>εt + e1εt ,

and

ηt+1 = ρηηt + e1ηt .

Defining

gt+1 =
b
y∗t+1 − y∗t

c
, (A-13)

we can write

gt+1 =
b
1− β0

c
β0

gt + 1
β0

b
ρωωt + e1ωt

c
(A-14)

and

δt+1 =
b
1− β0

c
β0

gt + 1
β0

b
ρωωt + e1ωt

c+ ρ0δt . (A-15)

We also have

ht+1 = ψ t+1; (A-16)

γ t+1 = ψ t+1 + ρ0γ t ; (A-17)

and

ς t+1 = yt − yt−1 − y∗t + y∗t−1 + ρ0ς t . (A-18)
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Equations (A-7) - (A-18) can now be expressed in state-space form

Etxt+1 = A1xt + bit +Cet+1 (A-19)

where:

x1t+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1t+1

q2t+1

gt+1

ht+1

δt+1

γ t+1

ς t+1

εt+1

ηt+1

ωt+1

e1εt+2

e1ηt+2

e1ωt+2

π t+1b
yt+1 − y∗t+1

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

A2= [0] ;
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

b =
K

0 0 0 0 0 0 0 0 0 0 0 0 0 0 β1
β0

LT ;

and

et+1 =

⎡⎢⎢⎢⎢⎢⎣
eωt+2

eψ t+1

eεt+2

eηt+2

⎤⎥⎥⎥⎥⎥⎦ .
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A1=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 (1−β0)
β0

0 0 0 0 0 0 1
β0
ρω 0 0 1

β0
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 (1−β0)
β0

0 ρ0 0 0 0 0 1
β0
ρω 0 0 1

β0
0 0

0 0 0 0 0 ρ0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 ρ0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 ρ> 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 ρη 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 ρω 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− (1−α0)
α0

−α1
α0

0 0 0 0 0 −ρ>
α0

0 0 − 1
α0

0 0 1
α0

0

� 1 � 2 0 0 0 0 0 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

� 1 = (1− α0) β1

α0β0
;

� 2 = α1β1 − α0
b
1− β0

c
α0β0

;

� 3 = ρ>β1

α0β0
;

� 4 = −ρη
β0
;

� 5 = −ρω (1+ χ)
β0

;

� 6 = β1

α0β0
;

� 7 = − 1
β0
;

� 8 = −(1+ χ)
β0

;

� 9 = − β1

α0β0
;

and

� 10 = 1
β0
.
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We can also re-write equation (19) as

Hyt −Hy∗t = yt − y∗t + ρ1γ t + ρ1δt − (1− ρ1)
b
yt − yt−1 − y∗t + y∗t−1 + ρ0ς t

c
(A-20)

with

δt = y∗t − y∗t−1 + ρ0δt−1; (A-21)

ς t = yt−1 − yt−2 − y∗t−1 + y∗t−2 + ρ0ς t−1; (A-22)

and

γ t = ψ t + ρ0γ t−1 (A-23)

as in equations (A-13) - (A-18) above. The link between observables and the unobserved variables

that matter for welfare is given by

zt = D1xt + vt , (A-24)

with

zt =

⎡⎢⎢⎢⎢⎢⎣
Hπ tHyt −Hyt−1Hyt −Hy∗tHnt

⎤⎥⎥⎥⎥⎥⎦ ,

D1=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 −1 1 1 0 0 0 0 0 0 0 0 0 0 1

0 (1− ρ1) 0 0 ρ1 ρ1 − (1− ρ1) ρ0 0 0 0 0 0 0 0 ρ1

0 −1 1 0 0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎦ ,
and

vt =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

νt

⎤⎥⎥⎥⎥⎥⎦ .

The variances of the shocks are given by

Eet+1 (et+1)
) = �ee =

⎡⎢⎢⎢⎢⎢⎣
σ 2
ω 0 0 0

0 σ 2
ψ 0 0

0 0 σ 2
ε 0

0 0 0 σ 2
η

⎤⎥⎥⎥⎥⎥⎦ ,
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and

Evt+1 (vt+1)
) = �vv =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 σ 2
ν

⎤⎥⎥⎥⎥⎥⎦
assuming that the covariances between the measurement error uncertainty and the fundamental

shocks are zero. The policymaker’s period loss function can be re-expressed in the following way:

Lt = x)tQxt (A-25)

where

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · · · · 0

0 λ 0 0 · · · · · · 0

0 0 0 0 · · · · · · 0
...
...
...

. . .
...

. . .
...

...
...
... 0 0

0 0 0 0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Appendix B: Summary measures of the relative importance of different indicators

In this section we show formally how we derive our two summary measures of the relative

importance of different data indicators to policy setting. To summarise, from appendix A, the

problem that monetary policymakers solve is to minimise

E
K;

δs Lt+s | It

L

where

Lt = x)tQxt (B-1)

by choice of it given the state-space system

E
d
xt+1 | It

e = A1xt + bit +Cet+1 (B-2)

with et+1 being jointly normally distributed with zero means and a variance-covariance matrix

�ee; and the signal system written as

zt = D1xt + vt , (B-3)

with vt being jointly normally distributed with zero means and a variance-covariance matrix �vv.

The information set is

It =
j
zt, λ, β0, β1, α0, α1, χ, ρω, ρε, ρη, ρ0, ρ1, σ

2
ω, σ

2
>, σ

2
η, σ

2
ν, σ

2
ψ

k
.
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Let us divide the unobserved variables into the pre-determined variables (x1t+1) and

forward-looking variables (x2t+1) such that

x1t+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1t+1

q2t+1

gt+1

ht+1

δt+1

γ t+1

ς t+1

εt+1

ηt+1

ωt+1

e1εt+2

e1ηt+2

e1ωt+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

x2t+1 =
⎡⎣ π t+1b

yt+1 − y∗t+1
c
⎤⎦ .

We first describe the model solution under commitment, and then under discretion.

Commitment

Svensson and Woodford (2003) show that under commitment the solution can be described as a

function of current and past states

it = Fc0E [x1t | It ]+��t−1; (B-4)

�t = SE [x1t | It]+��t−1; (B-5)

and

x2t = Gc E [x1t | It]+ ��t−1 (B-6)

starting from �−1 = 0.

The solution to the noise-signal problem can be written as

E [x1t | It] = E
d
x1t | It−1

e+Kzt,
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or, in terms of expectational errors,

E [x1t | It] = E
d
x1t | It−1

e+U
b
E [zt | It]− E

d
zt | It−1

ec
,

where the Kalman gain matrix K is given by

K = PLT bLPLT +�vv
c−1 ;

and U is

U = K (I+N1K)−1 .

P = H
K
P− PLT bLPLT +�vv

c−1 LP
L

HT +�ee

and

L = D1
1 +D1

2G1

where D1
1 and D1

2 is the partition of D along the lines of the pre-determined variables (x1t+1) and

forward-looking variables (x2t+1) and so in our case D1
2 = 0.

To complete our description we define the matrices N1 and H below:

N1 = −D1
2G1 +G1;

H = A1
11 +A1

12G1;
with

G1 = − bA1
22
c−1 A1

21

and the matrices A1
11, A1

21, A1
12 and A1

22 being the partitions of A1 along x1t and x2t . Note that the

matrices that define the solution to the filtering problem do not depend on the matrices that define

the solution to the optimal control problem. That is because of the separation property.

Svensson and Woodford (2003) show that the dynamics of the model under commitment can be

summarised as combining (B-4), (B-5) and (B-6) with

x1t+1 = (A11 +A12G+ B1Fc) x1t + (A12� + B1�)�t−1 + et+1 (B-7)

zt = D1xt + vt , (B-8)

and

E
d
x1t+1 | It

e = (H+ Jc) E [x1t | It]+��t−1, (B-9)

starting from x1t+1 and �−1 = 0, where

� = A1
11� +A1

12�; (B-10)

G2
c = Gc −G1; (B-11)
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and

Jc = B1Fc +A1
11 +A1

12G2
c. (B-12)

Our second summary measure captures the maximum absolute impulse response of interest rates

to a ‘data-noise’ shock to each data source shown in Charts 11,12 and 15-20. The data-noise

shocks enter as elements of vector vt , for this experiment redefined as

vt =
d
τ − inf, τ − g row th, τ − gap, τ − nomg row th

e
T and the impulse responses would be

derived from solving (B-4), (B-5), (B-7), (B-8) and (B-9).

Discretion

The solution to the optimal policy problem under discretion can be expressed as a function of the

pre-determined unobservable variables only,

it = Fd E [x1t | It] ; (B-13)

and

x2t = Gd E [x1t | It] (B-14)

starting from �−1 = 0 as before. The solution to the filtering problem is as we described it under

commitment. Taking expectational errors of equation (B-13), we can write our first measure of

policy sensitivity to data releases — the interest rate response in terms of expectational errors — as

E [it | It]− E
d
it | It−1

e = Fd
b
E [x1t | It]− E

d
x1t | It−1

ec ;
⇒ E [it | It ]− E

d
it | It−1

e = FdU
b
E [zt | It]− E

d
zt | It−1

ec
.(B-15)

Chart 10 in Section 5 shows these coefficients in equation (B-15) as our first measure of the

importance of data (at least under discretion). Svensson and Woodford (2003) show that the

dynamics of the model under discretion can be summarised as combining (B-14) and (B-13) with

x1t+1 = (A11 +A12G+ B1Fd) x1t + et+1 (B-16)

zt = D1xt + vt , (B-17)

and

E
d
x1t+1 | It

e = (H+ Jd) E [x1t | It ] , (B-18)
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starting from x1t+1 and �−1 = 0, where

G2
d = Gd −G1; (B-19)

and

Jd = B1Fd +A1
11 +A1

12G2
d . (B-20)

Our second summary measure captures the maximum absolute impulse response of interest rates

to a ‘data-noise’ shock to each data source shown in Charts 11,12 and 15-20. The data-noise

shocks enter as elements of vector vt which for this experiment are redefined as

vt =
d
τ − inf, τ − g row th, τ − gap, τ − nomg row th.

e
T and the impulse responses would be

derived from solving (B-13), (B-14), (B-16), (B-17) and (B-18).

For completeness below we show the responses of inflation, the output gap and interest rates to a

1% unexpected temporary rise in the data-noise shocks called τ − inf, τ− growth, τ−gap and τ−
nomgrowth, under both commitment and discretion for baseline parameter values.

Effect of 1% shocks on j on variable i under commitment and discretion
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Appendix C: The negative correlation between growth and deflator revisions

LetHz denote the observed data on the true value z. Let us define the errors in measuring nominal

growth n and deflator inflation de f respectively as:

n =Hn + e

and

de f =Jde f + u

where e and u are jointly normally distributed errors, with mean zero, variances given by σ 2
e and

σ 2
u respectively, and covariance E(e, u). Assume that the variance of nominal growth is a2 times

larger than that of price growth, i.e. σ 2
e = a2σ 2

u. The covariance and the correlation coefficient ρeu

are therefore related by the following expression:

E(e, u) = ρeuσ eσ u = ρeuaσ 2
u (C-1)

Given these assumptions, real or volume growth will be given by:

yt − yt−1 = n − πdef =Hn + e −Jde f − u =Hn −Jde f + e − u =Hn −Jde f + ν

where ν = e − u.

Given that the error in real growth is equal to the error in nominal growth minus the error in price

growth, the variance of ν will be given by:

E(ν2) = E(e2)+ E(u2)− 2E(e, u) = σ 2
e + σ 2

u − 2ρeuσ eσ u.

Substituting (C-1) into the expression above we obtain:

E(ν2) = (1+ a2)σ 2
u − 2ρeuaσ 2

u = σ 2
u((a − ρeu)

2 + (1− ρ2
eu))

after some simple algebraic manipulations. The correlation of ν and u, which corresponds to the

negative relationship between revisions to inflation and real growth described in section 3, will be

given by:

ρνu = E(e − u, u)S
E(ν2)E(u2)

= E(e, u)S
E(ν2)E(u2)

− E(u2)S
E(ν2)E(u2)
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This will be equal to:

ρνu =
�

aρeu − 1S
σ 2

u((a − ρeu)
2 + (1− ρ2

eu)

�
σ 2

u = −
�

1− aρeuS
(a − ρeu)

2 + (1− ρ2
eu)

�
(C-2)

Looking at (C-2), we can see that ρνu is decreasing in a. This means that, for a given correlation

between price and nominal measurement errors (ρeu), larger measurement errors for prices will

imply a larger negative correlation between price and volume measurement errors.

If we consider the case in which a = 1, we will have:

ρνu = −
�U

(1− ρeu)

2

�
. (C-3)

The case in which a = 1 corresponds to one in which the variance of the error in nominal growth

is equal to the error in price growth. From table 1, we can see that in our data set, the values for σ e

and σν are similar. For a = 1, and ρeu = 7/8 (the value in table 1), ρνu is equal to −1/4, which is

not that different to the estimate reported in table 1.

In general, for a > 1/ρeu, the above expression will be negative, and the correlation between

errors in changes in prices and changes in volumes will be negative. Given that a ≡ σ e/σ u, this

implies that a > 1/ρeu implies σ eu > 1, i.e. that errors in nominal values and prices covary

positively.

61



Appendix D: An explicit expression for potential output

Our model for potential output is given by:

y∗t = β0E
d
y∗t+1 | It

e+ b1− β0
c

y∗t−1 − ωt+1 (D-1)

and

ωt = ρωωt−1 + eωt . (D-2)

Defining

zt =
b
y∗t − y∗t−1

c
,

vt = − ωt+1b
1− β0

c,
εt = − eωt+1b

1− β0
c

and

a =
t

β0

1− β0

u
we can write this model in terms of equations (D-3) and (D-4) below:

zt = aE
d
zt+1 | It

e+ vt (D-3)

and

vt = ρωvt−1 + εt (D-4)

with εt−1 not part of the information set at time t.

The ‘backward’ solution to equations (D-3) and (D-4) is given by

zb
t =

zb
t−1 − vt−1

a
(D-5)

or equivalently

yb∗
t = yb∗

t−1 +
b
1− β0

c
β0

b
yb∗

t−1 − yb∗
t−2
c+ 1

β0
ωt . (D-6)

We have shown in the text that β0 > 0.5. But then there are an infinite number of stationary

solutions (26). So as we need to assume β0 > 0.5, we need to choose some criteria to restrict the

(26) See, for example, Gourieroux and Montfort (1997) (pages 468-470). The forward solution

zF
t =

∞;
t=0

aiρi
ωvt

would converge if
nnaρωnn = nnn ρωβ0

1−β0

nnn < 1 but would be the only unique solution if |a| =
nnn β0

1−β0

nnn < 1.
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solutions.

If we were to allow for a discount rate then the model for potential output would instead be written

as

y∗t = β f E
d
y∗t+1 | It

e+ βd y∗t−1 + ωt+1 (D-7)

with β f + βd < 1. If we were to define stability as requiring that the level of output should be

stationary, then the unique stable solution to this new model would be(27)

y∗t = κ1y∗t−1 + κ2ωt+1 (D-8)

with

κ1 =
1−S1− 4β f βd

2β f

and

κ2 = 1
1− β f

b
κ1 + ρω

c .
For standard values for discounting, β f + βd can be very close to 1, and in this case
1−√1−4β f βd

2β f
 (1−β0)

β0
so that this unique solution to the problem with discounting is very close to

the backward solution in the problem without discounting. On these grounds it seems sensible to

adopt the backward solution even though it is not strictly speaking unique.

(27) To derive this solution, we find the roots of the characteristic equation and single out the only root that is less than
one in absolute value.
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