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Time series of financial market prices appear to exhibit fractal properties:  that is, under
magnification, their pattern becomes increasingly complex, and seems to repeat itself, with a
pattern that is qualitatively similar to that of the overall structure.

This paper examines why and how these fractal properties might arise, and considers their
implications for understanding the causes of financial (in)stability.  It offers a quantitative model of
investor behaviour and price formation that seeks to account for fractal properties of market prices.
It conjectures that the dynamic of market prices — in particular its self-similarity — might be caused
by the interactions of agents with different investment horizons and differing interpretations of
information.  This structure appears to be associated with a special sort of stability that can be
disrupted, causing prices to crash, if the normal interaction of these agents breaks down.

The Fractal Market Hypothesis and its
implications for the stability of financial
markets
Nicola Anderson and Joseph Noss
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Introduction

Consider a tree (Figure 1).  From a distance, it resembles the
smooth symmetrical shape of a child’s drawing or simple logo.
But zoom in closer, and a richer, rougher pattern of branches is
revealed.  Underlying the solid overall structure of the tree is a
sort of increasing complexity at finer levels of resolution.  And
within the network of branches successive generations become
progressively smaller, yet their shape resembles that of the
previous generation, and the overall tree.  The structure of the
tree exhibits ‘self-similarity’.

Such self-similarity — the tendency of an object to be similar
to parts of itself — is a defining property of fractals, a structure
found across the natural world.  Such structures appear simple
and smooth from a distance.  But, under magnification, their
pattern seems to become increasingly complex, and seems to
repeat itself, with the pattern qualitatively replicating that of
the overall structure.  It turns out this is a property that can
also be observed in time series of some financial market prices.

This paper examines why and how these fractal properties
might arise, and considers their implications for understanding
the causes of financial (in)stability.  In particular, it revisits the
‘Fractal Market Hypothesis’ (FMH), a theory of market
behaviour proposed by Peters (1991), which seeks to account
for fractal properties of market prices.  It conjectures that the
dynamic of market prices — in particular its self-similarity —
might be caused by the interactions of agents with different
time horizons and differing interpretations of information.
This structure appears to be associated with a special sort of
stability that can be disrupted, causing prices to crash, if the
normal interaction of these agents breaks down.
Self-similarity also implies a greater degree of persistence than
we might expect to observe under alternative theories of
financial market pricing.

This line of research is still in its embryonic stages, but has
potentially important implications for the regulation of
financial markets, including of their major participants.

At the most basic level, integral to any assessment of risks to
financial stability is also the ability of investors to model and
manage their own risks, which relies on their understanding of
the statistical properties of financial market prices.  It turns out
that the FMH is able to replicate many of the distributional
characteristics of financial market prices where more standard
models fail.  While the FMH is insufficiently developed to
provide a methodology upon which to base risk management
practices or a rigorous assessment of the financial stability,
there are nevertheless some important lessons that both
investors and regulators should bear in mind, not least in
developing a better understanding of the structure of the
markets and their risk.

The key insight of this paper is that fractal structures typically
imply some sense of stability.  If we can understand precisely
what market mechanics generate the fractal structure of
prices, we can understand some of the defining elements of
stable markets and even formulate policies to foster those
elements — relating to, for example, the incentives for
different agents to interact at different time horizons.
Equally, we may be able to identify why financial markets
often give rise to periods of illiquidity and suggest policy
recommendations designed to counter them.  Finally, a
better understanding of how market prices behave, including
what can cause their persistent deviation from
fundamentals, is essential to guiding potential policies that
may be targeted towards leaning against exuberance in
financial markets.  It may also help explain, and guide
regulation designed to mitigate, the occurrence of ‘flash
crashes’ linked to the activities of high frequency traders
(see Haldane (2011)).

The contributions of this paper are broadly threefold.  First, it
considers how the fractal properties of market prices — and in
particular the FMH that seeks to account for them — might
inform an understanding of the structure of financial markets,
and the causes of their stability and instability.  In doing so, it
reaches far beyond the traditional paradigm of market
behaviour, the Efficient Market Hypothesis (EMH).  Second —
and, to the best of the authors’ knowledge, uniquely — it offers
a quantitative model of investor behaviour and price formation
that formalises the qualitative conjecture of the FMH, and
demonstrates its ability to match some of the observed
features of financial market prices, including their fractal
properties.  Third, it draws from this analysis some implications
that are relevant to a number of ongoing debates regarding the
regulation of financial markets and of their major participants.

This text proceeds as follows.  The next section recaps some
salient features of financial market prices and their statistical

Figure 1 A fractal tree
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distribution, including their self-similarity over time.  It reviews
the reasons why the EMH — a sometime dominant paradigm
to describe market behaviour — fails to provide an adequate
characterisation of the distribution of market prices.
Section 2 introduces an alternative framework of markets
and investor behaviour, the FMH, which better matches some
of the observed characteristics we observe in prices.
Section 3 provides a simple model that seeks to provide a
quantitative formulation of the FMH and shows how it is able
to replicate some of the observed fractal characteristics of
prices.  The implications for the persistence of financial
market prices are examined in Section 4, while Section 5
offers some tentative policy implications.  A final section
concludes.

1 The characteristics of financial market
prices and the limitations of the Efficient
Market Hypothesis

The statistical properties of financial market prices — and, in
particular, the distribution of their changes — is one of the
most basic, yet important, properties of markets.  To investors,
it is the statistical distribution of price fluctuations that
determines the return on their investments, and the risk they
incur in making them.  To a regulator or central bank, the
distribution of prices has implications for their assessment of
risks to individual institutions and to financial stability.  Most
obviously, the behaviour of the ‘tail’ of the distribution of price
changes (the likelihood of a large adverse market move under
circumstances of market stress) can pose threats to financial
stability.

The Gaussian paradigm
Intuitive (if naïve) arguments based on the Central Limit
Theorem (CLT) (Rice (1995)) suggest that prices are
log-normally distributed.  If p(t) is the price at time t, define
the return over an interval T as:

(1)

If T is divided into a number of smaller subintervals, then the
total return rT(t) is — by definition — the sum of the returns
over each of these smaller intervals.  And if the log price
changes in each subinterval are independent and identically
distributed (iid) — and under the (seemingly benign)
assumption that its variance is finite — then the CLT provides
that the probability distribution of log prices over the sum of
all intervals, should converge to the normal, for a large number
of subintervals.

Under the normal distribution, the probability of observing an
event of a given severity — that is, an outcome that lies a
certain distance from the distribution’s mean — decays
smoothly as that distance or severity increases.(1) More

precisely, the probability density of observing an outcome
distance x from the mean, scales exponentially with x;  that is:

(2)

where a is a constant.  Under this exponential scaling, a single
parameter, a — the distribution’s variance, describes how its
probability density changes as x (the outcome whose
probability is being measured) increases.  That is:

(3)

So, under the Gaussian distribution, a single parameter
connects behaviour on different magnitudes — that is, the
probability of observing outcomes different distances from the
mean.  The distribution’s tails scale smoothly and are exactly
described by its variance.

The Efficient Market Hypothesis
The assumption that price changes over small intervals are
independently and identically distributed is consistent with the
notion that markets are ‘efficient’.  Under the EMH, the current
price of a security reflects the entirety of all available public
information on the underlying source of its return (eg the
profit outlook for a firm or the default characteristics of a pool
of mortgages).(2) Unexpected changes in its price occur
independently over time, and arise only due to the
announcement of unanticipated information that affects its
value.  Consequently, the only remaining uncertainty — and,
indeed, ‘unknown’ left to be modelled — is the statistical
distribution of future price changes in response to information.

The EMH leaves us with a simple and intuitive theory.
Markowitz (1952) further showed how, under assumed
normality, standard deviation can be used as a measure of risk,
and the covariance of returns could be used to explain
precisely how diversification (grouping stocks whose
performance are less than perfectly correlated) reduces their
aggregate risk (the standard deviation of the returns of the
portfolio).  These are concepts that are still used widely today
by firms in their risk management and by regulators in their
evaluation of models such as Value-at-Risk.

Fat tails, (in)finite variance and stochastic volatility
But the ability of the Gaussian distribution to capture the
likelihood of rare events has been extensively criticised.(3) A
wealth of evidence suggests that the normal distribution
provides a systematic underestimate of the actual probability
of observing an extreme outcome, or large movement in price.
Charts 1 and 2 compare the distribution of returns of the

r t p t p tT T( ) = +log ( )-log ( )

P X x is proportional to e
x
a=( )

− 2

2

dp
P x dx

is proportional to a
( )

.

(1) The history and properties of the Gaussian distribution, along with the consequences
of its embedded assumption for finance, is given by Haldane and Nelson (2012).

(2) Technically this is the ‘weak form’ of the EMH.
(3) A survey is provided by Haldane and Nelson (2012).
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Dow Jones industrials stock index from 1896, over weekly and
annual horizons, compared to the normal distribution.
Empirical distributions, at least at these short horizons, are
characterised by a high ‘peak’ around their mean, and ‘fatter
tails’ than that of the normal.(1) This casts doubt on the key
assumptions underlying the Gaussian paradigm.

Consider, for example, the assumption that returns are
identically and independently distributed (iid).  This is clearly
open to empirical contention — the standard deviation of the
distribution of price changes varies over time, a phenomenon
commonly referred to as ‘clustered volatility’.  While the
autocorrelation of log-returns (that is the degree to which a
return reflects its previous value), is generally very small on
time scales longer than a day (see Farmer (1999)), the same is
not true for volatility.  Volatility on successive days is positively
correlated, and these correlations remain positive for weeks or
months.  Chart 3 shows the volatility of the returns of the
Dow Jones over rolling intervals of a year.  This phenomenon of
clustered volatility is consistent with the fat tails in the
resulting distribution of returns.(2)

The assumption of finite variance — critical to the application
of the CLT — also fails to hold.  Chart 4 shows the sample
variance of daily returns of the Dow Jones index, plotted over
expanding samples, between 1896 and the present day.  The
resulting series is clearly unsettled.  Rather than converging to
a single number — ie some well-defined population (or ‘finite’)
variance — it jumps with some regularity.  No single parameter
adequately describes the second moment of the distribution as
would be the case for a distribution with finite variance (as
given by equation (2)).

The observed distribution of prices therefore fails to match
that of the Gaussian distribution and that predicted by
standard interpretations of the EMH.  In particular it appears
that changes in price are not independently and identically
distributed over different periods, and their behaviour over
events of different scales of extremity (distance from the
mean) cannot be adequately described by a single
characteristic scale, their variance.

Self-similarity, and a mixture of global determinism
and local randomness
Another less discussed property of financial market prices is
the similarity of their behaviour when viewed over multiple
times scales.

From a ‘distance’ — that is, viewed on a long-time scale —
series of financial market prices appear smooth, almost
deterministic.  Chart 5 plots the daily prices of the Dow Jones
from 1896.  Apart for an abrupt reduction visible in the end of
the series, and around the early 1930s, the overall pattern
appears roughly to conform to an exponential pattern (and
even the recent fall is small when compared to the growth

over the century preceding it).  Viewed at this level, any
particular portion of the series appears relatively smooth.  But
zero in on a shorter-time scale and two phenomena appear:

First, under magnification, the series yields increasing
complexity or ‘roughness’.  The smoothness of any particular
portion of the series gives way to a rougher pattern at
increasing orders of magnitude (Chart 6).

Second, under this magnification, the pattern of the prices
series seems qualitatively similar to that at lower levels of
resolution.  Charts 7 and 8 show the Dow Jones index
between 1988 and 1997,(3) but with the price series sampled at
different frequencies.  Thus, for example, the annual series
shows the movements in price observed over the course of a
year;  whereas, the ‘four-yearly’ series shows the movements
in price over the course of four years (note that each series is
constructed as an average over the relevant time period and
has been rescaled to begin at 100 and have the same mean
value).  Chart 9 shows the series overlaid on each other.

While the two series clearly differ, there are some marked
qualitative similarities.  Notice, for example, the generally high
level of prices in the first half of the period — up until the
summer for the annual series, and up until the second year of
the four-yearly series.  This is followed by a slump around
two thirds of the way through — around autumn and towards
the end of the third year respectively — and then a flourish
towards the end of both series.  For comparison, Chart 10
shows a similar phenomenon for the FTSE All-Share index.

Price series would therefore appear to exhibit self-similarity —
an increasing complexity under magnification (so that series
that are smooth viewed over a long time period are less
smooth over shorter time periods) and an invariance of
structure to the scale on which they are viewed (so that
patterns are similar despite representing movements over the
course of different length time periods).  Theorists have yet to
agree on an exact mathematical definition of fractals,(4) but
there is a broad consensus that this self-similarity — whether it
be exact, or (as in this case) just a qualitative similarity — is
their defining characteristic.

(1) This fat tailed property can be formally measured by using the statistic kurtosis; see
Farmer (1999).

(2) For example, it is possible to show that the sum of normally distributed variables with
different variances exhibits higher kurtosis than that of the normal distribution.

(3) The Dow Jones index is used here as its price history was available to the authors over
the longest period.

(4) Even Mandelbrot (1982), who originally defined fractals based on their topological
dimension, later rejected this definition.  Others define it in more general terms as
being a structure whose ‘parts are related to its whole’ (Peters (1991)).
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Charts 1–6 The Dow Jones industrials index
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Chart 5 Prices:  1896–1991
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Chart 6 Prices:  1962–66
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Chart 3 Volatility (over 250-day rolling windows)
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Chart 4 Variance of daily returns taken of expanding
windows of daily observations (from 1 January 1896)
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It is such insights that make fractals a promising tool with
which to analyse capital markets and motivates a search for a
‘better theory’ of market behaviour.  Desirable properties of
such a theory are already clear.  Besides matching the
distribution of market prices (with their fat tails and
time-varying volatility), it should also connect behaviours
across a number of time scales;  that is, it should address the
‘self-similarity’ property we witness in financial market prices.
If we can better understand the structure of financial markets,
we can improve the way in which risk is managed and
regulated, and guide policies that may serve either to enhance
or detract from the stability of those markets.

2 The Fractal Market Hypothesis

This section sets out the main features of the FMH, first
proposed by Peters (1991).  This aims to address the short
comings of the EMH, and in particular understand why
self-similarity exists in financial market prices.

The role of liquidity and information
At the heart of the FMH lie two elements missing from its
Efficient Market predecessor:  that is, a role for liquidity and
(relatedly) the impact of information.  Liquidity in this context
is defined as ‘market liquidity’:  that is, the relative ease with
which an investor is able to buy/sell a security without their
act of buying/selling having a substantial effect on its price.
Loosely speaking, liquidity is generated whenever investors
trade with each other.(1) For this to be the case, it is posited
that two investors must have different views on a security’s
value.  This can arise either because:

a. One investor has information on its value to which another
investor does not have access (or to which he or she has yet
to gain access).  Abstracting from the possibility of ‘insider
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Chart 8 Four-yearly observations of the Dow Jones
industrials index (1988–97)
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Chart 9 Annual/four-yearly observations of the
Dow Jones industrials index (1988–97)
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Chart 10 Annual/four-yearly observations of the FTSE
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Charts 7–10 Financial market price series viewed over different horizons

(1) But, importantly, market liquidity is distinct from trading volume.  It is possible for a
market to endure a crash — that is a sharp imbalance in supply and demand, leading
to a large discontinuous fall in price — with low liquidity, but high trading volume
(given the pressure to sell).



Financial Stability Paper August 2013 9

trading’, where an investor trades on information not yet
revealed to the market, this may arise whenever some
investors receive information that affects the fundamental
value of a security before others.  For example, so-called
‘high-frequency traders’ are able to pay a premium to
observe market prices — information relevant to valuing a
security — at a higher frequency than the wider investment
community (see Haldane (2011)).

b. Or two investors receive information simultaneously, but
place a different weight on its importance, given the
differing time horizons over which they invest.(1) For
example, in an equity market, there are investors with
short-term horizons such as hedge funds.  For these
investors, the daily distribution of returns may have a large
bearing on their buying/selling behaviour.  In particular, a
fall in prices commensurate with, say, three standard
deviations of daily returns, might be seen as highly adverse.

But to a longer-term investor — for example, ‘real money’
investors such as pension funds — these daily high and lows
may be less important.  Such investors might judge their
performance against the longer-term distribution of prices.
As Charts 1 and 2 show, this distribution is of a similar
shape, but, under it, a three standard deviation move is
commensurate with a far more extreme movement in price
than under that of daily returns.

Under the FMH, market liquidity — that is investors’
willingness to trade with each other — is caused by
information having a different effect on different investors,
either because they obtain it at different times, or because
some property of their own preferences means they interpret
information differently.  Viewed in this context, it seems
unlikely that market prices are ‘entirely random’, with
independent increments, as predicted under the EMH.  But
neither should we expect them to be entirely deterministic.
Rather, it would seem they lie somewhere in between.
Intuitively, prices reflect a combination of short-term technical
information, used by short-term traders, and long-term
fundamental information of importance to long-term
investors.  This particular mix of local randomness over
short-time scales, and global determinism over longer time
scales, is a defining characteristic of ‘self-similarity’, as
observed in fractal structures.

The Fractal Market Hypothesis:  a ‘special’ sort of
(financial) stability

Importantly, particularly from the perspective of a regulator or
macroprudential policymaker, differences in the interpretation
of information may also imply price stability, at least under
standard market conditions.  When a day-trader experiences a
price move that they judge to be of a severity that causes
them to sell, an investor with a longer horizon can step in and

buy from them.  This longer-term investor is willing and able to
do so, because, with their longer-term horizon, the
day-trader’s n-sigma event is not unusual (unless, of course,
n is very large):  judged by the longer-term distribution of
returns, it is closer to the mean.  As long as another investor
has a longer-trading horizon than the investor experiencing a
crisis, and as long as the n-sigma event does not convey any
longer-term negative news on fundamentals, the market will
stabilise.

In this way, financial markets can be considered as embodying
a ‘special sort’ of stability.  Indeed, self-similar fractal
structures seem to be favoured by nature as a way of ensuring
the stability of systems in the natural world.  In the case of the
tree, for example, it is determined globally that each branch
will divide to yield two or more branches, defining its overall
structure.  But, importantly, branches of successive
generations are not identical.  This ensures that if one branch
of the tree were malformed, there would be other branches to
compensate.  The global determinism of the structure and its
local randomness combine to mean the overall structure of the
whole tree is not threatened by the presence of malformed
branches.  The fractal structure seems to embody a certain
‘tolerance to error’ that guarantees the stability of the
system.(2)

Intuitively, it follows that financial markets can become prone
to instability when this fractal structure is broken.  The obvious
case for a breakage to occur is when investors with a longer
horizon either stop participating in the market, or become
short-term investors.

Reasons for such an eventuality can be mapped to the two
differing interpretation of investor horizon (a and b) described
above.

• The original explanation offered by Peters (1991) in his
exposition of the FMH, matches (b);  in this case, an
exogenous event occurs that causes, short-term investors to
sell.  The consequent fall in prices causes long-term investors
to doubt the validity of the longer-term information on
which they base their behaviour.  This could, for example, be
because it causes them to be uncertain as to their
longer-term view of the longer-term payoffs of a security,
formed through some measure of long-term economic
fundamentals.

Peters (1991) suggests that such an event could, for
example, be some ‘natural’ disaster such as the events of
11 September 2001.  Because the consequences of such an

(1) Intuitively, investors may have different horizons according to the structure of their
funding;  eg investors funding on the basis of repo borrowing may have shorter
horizons than investors employing long-term savings.

(2) Goldberger and West (1987) first formalised this insight.
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event for the long-term prospects for the economy were so
uncertain, it caused long-term investors to ‘lose faith’ in
their longer-term view of economic fundamentals, and
subsequently either stop trading or themselves become
short-term traders and begin trading on overwhelmingly
negative short-term market dynamics.

• A more subtle and endogenous explanation, explored by
Haldane (2011), is that, because long-term investors view
the market less regularly than short-term players, they come
to doubt the veracity of the information given by prices in a
market where some investors view prices more frequently
than others.

In either case, the removal of longer-term investors from the
market, or reduction in their horizon, causes liquidity to
evaporate as there is no longer heterogeneity of investor
valuations to facilitate trading.  This insight has potentially
important policy implications, which are explored in further
detail in Section 5.  Before doing so, it is worth examining a
quantitative model of the FMH, which should further our
intuition as to the role of different horizon investors in
determining the path of financial prices, including
susceptibilities to loss of liquidity and associated crashes —
both of which can contribute to a loss of financial stability.

3 A simple quantitative model of the
Fractal Market Hypothesis

This section proposes a simple theoretical model of investor
behaviour that seeks to replicate that conjectured under the
FMH.  This model offers a quantitative counterpart to the
existing descriptions of the FMH, which, until now, have only
been set out in qualitative terms, as above, and in
Peters (1991).  It seeks to capture how the different
interpretation of information by investors of different horizons
affects the stability of the resulting price series.  In doing so,
and through the subsequent effect that investors’
buying/selling behaviour have on prices, it is able replicate
many of the non-Gaussian properties of markets (including
fat tails, stochastic volatility and self-similarity), described in
Section 1.

A simple quantitative model
The model is devised in the spirit of interacting agents alluded
to in the description of the FMH in Section 2.  At its core lie
two agents with different investment horizons.  Both invest
based on the information gleaned from the change in price
they witness in the previous period, but the distribution on
which they condition their behaviour varies depending on
their horizon.

For the sake of simplicity, agents of each investment horizon
have the same ‘shape’ of demand function.  Under normal

circumstances, they are ‘mean reversionists’:  that is, they
observe the price change in the previous period, assess that
against their expectation (reflecting a ‘fundamental’ view) and
seek to react in a way that profits from any deviation:  buying
if this relative price movement is negative (exhibiting positive
demand), or selling if it is positive (exhibiting negative
demand).  Their demand is therefore the simple product of the
extremity of the periods’ price movement relative to its
expected change and some (negative) constant that represents
their readiness to buy/sell.

But if investors witness a decline in price in the previous period
that is particularly extreme, their demand becomes negative
and they sell in some fixed (large) quantity.  This is compatible
with the more ‘traditional’ explanation of market crashes
postulated by Shiller (1987), whereby investor ‘stop-loss’ limits
force investors to sell when prices decline by a certain
magnitude, in order to limit their individual loss, and so
exacerbate market-wide price falls.

Algebraically, the response to prices of the demand of short
and long-term mean reversionist agents can be represented by
functions hS and hL respectively, where:

(4)

where x is the return witnessed in the previous period relative
to that explained by fundamentals;  ti is the ‘threshold
amount’ which, if the return is above, causes the investor to
buy (sell) if the price change is negative (positive);  di is the
amount by which they ‘force sell’ otherwise;  and ai is the
‘aggression’ of their mean reversion (the level of buying/selling
they exhibit in response to a given level of price change x > ti).
This function is illustrated in Chart 11.

Crucially, and in keeping with the FMH, the distribution of past
returns against which investors condition their behaviour —
ie how extreme they regard a given change in price in the last
period to be — varies depending on their horizon.  In normal

h xi di otherwise
ai x if x ti( ) = {−

− >

x
ti

hi(x)

Chart 11 An illustration of the function governing the
demand of the mean-reversionist investors
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times, it requires a larger upward (downward) price deviation
from fundamentals, in absolute terms, to provoke as strong a
selling (buying) reaction from the long term investor compared
to the short-term investor.  This is because the variance of the
long-term investors’ price distribution, to which they compare
any change, is far larger.  And, in stressed times, the magnitude
of the negative price movement that causes a long-term
investor to force sell (ie their n-sigma selling event) is far larger
than that of the short-term investor.  This means that tL < tS.

Finally, there is also a ‘momentum trader’, who follows bull
runs;  that is they exert positive buying pressure when the price
change in the previous period, is positive, but do not trade
when it is negative (for example, due to a short-selling
constraint).

(5)

This trader serves as a natural ‘antidote’ to the occasional
forced selling pressure exerted by the mean reversion
investors, ensuring that prices do not, in the long term, fall
to zero.

If markets always cleared at some ‘fundamental value’ of
assets, these demand functions would obviously offset to have
no impact on the resulting evolution of prices.  But in practice,
there is nothing to guarantee such market clearing.
Nevertheless, we assume that prices are broadly anchored to a
fundamental path, so that the three demand functions defined
by equations (4) and (5) serve to create fluctuations around
this path.  Representing this in terms of returns, Rt:

(6)

Here r denotes the fundamental expected return on the asset,
εt is a shock assumed to be normally distributed with mean
zero variance one;  together, these terms capture the drift rate
in market prices alongside the arrival of hitherto unknown
information (Fama (1965)).  r is set to 0.05, σ to 0.05;  these
values are not crucial to the narrative, but they accord roughly
with the long-term ‘risk-free’ rate of interest rates on one-year
UK government bonds,(1) and the volatility of the Dow Jones
series used in Section 1.

The model is calibrated using the methodology described in
Annex 1.

Empirical results
The ability of this model and its interacting investors to match
the market dynamic postulated by the FMH is clear from the
resulting price time series.  Chart 12 shows the prices
corresponding to one series of random innovations {εt}.(2)

Chart 13 shows a portion of same series but ‘zoomed in’ over a
shorter-time scale.  Different colours denote different
combinations of investor behaviour:

• In both charts, the periods where the blue line is without
coloured overlay are those in which neither investor is forced
selling.  That is, the price movement in the previous period
has triggered neither investor’s forced selling constraint.

• The light orange areas in Chart 13 are those where the
short-term investor is short selling;  but, in keeping with the
market dynamic postulated by the FMH, this selling pressure
is compensated for immediately in the next period by the
buying of the longer-term investor, who sees the resulting
price fall as a ‘buying opportunity’ (see the qualitative
description in Section 2).

• The periods in magenta in both charts are those of ‘market
instability’.  Here both investors force sell simultaneously. 

As suggested by the FMH, in standard market conditions, the
interaction of short and long-term investors ensures market
stability:  long-term investors buy as a result of short-term
investors’ forced selling.  But, on some rare occasions,
short-term investors’ forced selling in one period is — by
chance — accompanied by a downward movement in the
arrival of random noise (ε) in the next that is sufficient to
cause long-term investors to force-sell in the period that
follows.  Periods of instability ensue, as this leads to a
self-perpetuating spiral of forced selling by both short and
long-term investors (the magenta dots in Chart 12).  These are
only reversed when information happens to arrive that is
sufficient to ‘reverse’ the destabilising effect of long-term
investors force selling, and produce a price movement that is
sufficiently non-negative to avoid continued forced selling in
the next period.(3)

The resulting distribution of price returns is able to match
several of the empirical features of the Dow Jones examined in
Section 1.  In particular, it reflects the respect in which these
observed series — and their associated distribution of price
returns — deviate from that under the normal distribution and
the associated naïve form of the EMH.  Chart 14 shows a
quartile-quartile plot of modelled daily returns, comparing
returns (on the y-axis) observed at each percentile of their
distribution (on the x-axis).  For observations below the
median (ie the 50th percentile), the nth percentile of
modelled prices is below that of the normal distribution,
indicating that its left-hand tail is ‘fat’.  The combination of
stability under normal market conditions with occasional
bouts of instability postulated by the FMH, also combine to
capture the stochastic volatility of prices witnessed in

M x otherwise
aM x if x( ) ={ >
0

0
.

R r h x h x M x with x R rt t s l t= + + + + = −
−

ε ( ) ( ) ( ) .1

(1) In practice, of course, we might expect fundamental returns also to include a risk
premium component.

(2) For this series, tS and tL were calibrated to values of 0.8% and 2.5% respectively.
(3) In reality, it is also some possible that at least some (perhaps longer-term) investors

are likely to place some weight on a measure of deviation of price from some
measure of economic fundamentals (somehow defined);  so that the (random) arrival
of such positive information is not the only reason such adverse cycles of forced
selling are broken.
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Charts 12–16 Results of a theoretical model of the Fractal Market Hypothesis
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Section 1.  Chart 15 compares the volatility of modelled prices
to those of the Brownian motion.  Modelled prices displays a
series of ‘spikes’ in excess of that of the latter, in keeping with
the pattern seen in Chart 3.  Finally, the model produces a
price series that are qualitatively similar when viewed over a
quarterly compared to an annual horizon (Chart 16).

A restricted version of the model without the
long-term investor
To illustrate the posited stabilising effect of investor
interaction, consider a version of the model above but without
the long-term investor;  ie one with only the short term and
momentum traders.  The model is calibrated to the same
information arrival process as before, but now only the volume
with which the short-term investor force sells (their
‘d parameter’) need be calibrated, subject to the requirement
that they force sell when they witness a price move three
standard deviations below the mean of the distribution of price
returns at their horizon.

This is still a model with investor interaction (with the short
term and momentum traders) and many of the properties of
the full model are consequently preserved;  for example, the
resulting price series show signs of self-similarity (Chart 20).
But we now see clear signs of a less stable market.  The
resulting price series is shown in Chart 17, where the
magenta dots indicate the forced selling of the short-term
trader only.  Now that the long-term trader is absent, periods
of instability — that is significant impact of forced selling by
the remaining short-term trader — are much more frequent.
There is no other trader to see extreme price movements as a
buying opportunity, and support markets with their
countervailing buying pressure.  The price distribution also has
‘fatter’ tails than found under both the normal distribution,
and under the full model, reflecting the more frequent
occurrence of extreme price movements (Chart 18).  And
volatility (Chart 19) is again greater than that of the normal
distribution — but now more so than under the full model.
Notice, however, that the abrupt spike in volatility,
experienced under the full model is now absent (compare
with Chart 15).

60 

70 

80 

90 

100 

110 

120 

130 

140 
Index

Time
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A taxonomy for price formation and the provision of
liquidity
This last observation suggests that the level of heterogeneity
in investor strategy seems to control a trade-off in markets —
between the frequency of their periods of instability, and their
severity.  The full model, with its larger range of
heterogeneous investors, gives rise to a price process that —
under normal market conditions — is more stable:  its
interacting agents of multiple horizons provide consistent
flows of liquidity.  But it also has occasional ‘spikes’ of high
volatility, illiquidity and discontinuous price movements when
prices crash.  On the other hand, the restricted model has a
price series that is fundamentally less stable in that it contains
frequent periods of illiquid forced selling by the short-term
investor.  Its volatility is therefore higher than that of the
restricted model, but is less volatile.  These findings are
summarised in Table A.

4 ‘Measuring’ fractals using rescaled range
analysis:  persistence and fat tails

The previous section highlighted the role of long-term
investors in ensuring periods of market stability.  In this
section, we now focus more precisely on the property of
self-similarity.  Charts 16 and 20 compare the behaviour of
the series produced by the full and restricted models over
‘quarterly’ and ‘annual’ horizons.  As with the actual market
price series observed in Charts 7–10, the two bear at least a
qualitative similarity over the two time windows, the hallmark
of fractal series discussed in Section 2.  As it appears in both
models, this would appear to be a property of the investor
interaction required to generate market liquidity under the
FMH;  in the case of our model, between the short-term
reversionist trader and the momentum trader.

This self-similarity is interesting because it implies a level of
persistence in financial market prices that we would not expect
to see if returns were independently and identically
distributed, as posited under the EMH.  This in turn implies
that prices can travel further than they might otherwise — that
we might see prolonged periods during which they deviate
from some concept of their fundamentals.

But the measurement of self-similar structures and their
degree of ‘travel’ — that is the quantification of how they fill
space — is not straightforward.  Take the example of a
coastline.  Measured with an imaginary mile-long ruler, the
coast of the United Kingdom would appear a certain length.
But measured with a shorter, meter-long ruler, the resulting
length would grow.  The same phenomenon would be true
were ‘rulers’ of different lengths used to measure the lengths
of the time series of financial prices, for example, those in
Charts 5 and 6.  This changing measurement arises typically
when a regular line segment, such as a ruler, is used to
approximate the length of nested self-similar structures.
There is no ‘true’ or ‘characteristic’ value for their length;
instead, it grows as a power function (plus a constant) of the
precision of the ruler used to measure its length.(1) This lack
of characteristic scale is another frequently observed property
of fractals.

This difficulty in measuring self-similar structures complicates
the measurement of variation in fractal time series, such as
those of financial market prices.  Under an assumption of
normality, the incidence of market movements of a given
severity, compared to the mean, decreases exponentially with
variance (equation (2)) — its characteristic scale.  But, as we
have seen, the distribution of financial market prices yields no
such Gaussian simplicity.  An alternative measure for the
‘spread’ of fractal market prices needs to be ‘distribution free’
— and go beyond the restrictive parametric assumptions of
the Gaussian.

Rescaled range analysis
A candidate solution is provided by the work of Hurst (1951).
Hurst postulated that the variation of fractal time series can
be described through a power law relationship, where the
range increases in proportion to a power of the horizon over
which the time series are viewed.  Suppose we define Yk as the
sum of k small increments of a demeaned time series that
extends up to n increments.  We define the adjusted range
to be the maximum minus the minimum of the series
{Y1,….,Yn}, or:

(7)

This adjusted range can be thought of as the ‘distance’ the
series travels over n increments of time.  In the case of Y
being a ‘random walk’ — ie a series whose increments are
Gaussian — it is well known that this range increases with
the standard deviation of the series multiplied by the square
root of n.(2) Hurst’s contribution was to generalise this
relationship to:

R Y Y k nn k k= ( ) ( ) < <max -min , .1

Table A A taxonomy of investor interaction, and resulting
distribution of returns

Model Distribution Volatility 
of returns of returns

Full model of the FMH with Fat tailed. Stochastic;  low, with 
long and short-horizon a spike.
investors.

Restricted investor interaction:  Fat tailed, and more Stochastic;  higher 
only a short-horizon investor so than full model. without a spike.
(and a momentum trader).

No interacting investors. Normally distributed. Non-stochastic.

(1) This was first observed by Mandelbrot (1967).
(2) Note that, absent the two mean-revisionists and momentum trader, the description

in equation (6) gives rise to a price that is Gaussian distributed with mean 
(r – 0.5σ2)dt and variance σ2dt.
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(8)

Here S is the standard deviation for the same n observations of
the demeaned time series and c is a (positive) constant.
Rescaling the range of a series, by dividing by its standard
deviation, allows for the measurement of time series that have
no finite variance.  In other words, it allows for the
measurement of fractals.  This method makes no assumption
as to the underlying distribution of the series’ increments.  It
measures only how it scales through time, as measure by H,
known colloquially as the Hurst exponent.

Rescaled-range:  a taxonomy of the
persistence/jaggedness of fractal structures
The H statistic gives a measure of the degree of persistence in
the time series that applies regardless of the time scale over
which it is viewed.  The greater range scale witnessed in a
series with H>0.5 means that a high value in one period is
likely to be followed by a higher value in a later period (the
reverse applies if H<0.5).  Importantly, and unlike with a series
that exhibits standard serial correlation, this persistence
applies regardless of the time scale on which it is viewed.  All
six-month periods influence all following six-month periods;
all weekly periods influence subsequent weekly periods.  This
‘long range’ form of dependence has been observed in a
number of self-similar processes.(1)

Empirical results for the Dow Jones industrial index
and for the models of Section 3
Measuring Hurst coefficients of actual time series involves
performing the calculation in (8) across a range of values for n.
Technical details are contained in Annex 2.  Chart 21 shows
the range scales for 20-day returns (increments of 20 days) on
the Dow Jones index, between 1896 and the present day.  The
blue line shows the ratio of the range scale, R/S to sqrt(n), for
window sizes, w (so that the number of observations is n x w)
between 10 and 150.  Also plotted is the expected value of this

ratio, under the null hypothesis that the system is an
independent process (ie with H=0.5).(2) If the series exhibits
persistence (H>0.5), then the ratio between the two lines will
increase with the number of observations.  If it is a random
walk (H=0.5), the ratio will remain constant.  The ratio clearly
stops growing at 1,040 trading days (corresponding to a value
of w of 52).  This suggests the presence of persistence
(ie values of H in excess of 0.5) over observation windows
shorter than this.

Table B shows the results of estimating H for values of w
between 10 and 50 over these 20-day observations.  The
calculation yields H=0.72, compared to an expected value,
E(H) (under the null, Gaussian hypothesis) of 0.62.  The
standard deviation of this estimate of E(H) is 0.025.  Thus the
estimated value for H is more than three standard deviations
above its expected value — a highly significant result.  From
this analysis, the 20-day changes in the Dow Jones industrial
index are characterised as a persistence process, with Hurst
coefficient significantly in excess of that commensurate with a
random walk, for periods of up to four years (1,040 trading
days).

Similar results are shown in Table B for both the full and
restricted models of investor behaviour and price formation
given in Section 3.  Both give rise to Hurst coefficients (of 0.66
and 0.73, respectively) that are significantly larger than their
expected values, suggesting that both series exhibit a degree of
persistence similar to that of the Dow Jones series.

In summary, both the Dow Jones industrials index — and the
price series produced by the models in the previous section —
seem to be characterised by the sort of persistence present in
Hurst processes.  Put another way, financial markets show a
systemic deviation from the dynamic predicted by the
Gaussian distribution.  In particular, they display persistence
irrespective of the scale over which they are viewed:  daily
returns are correlated with future daily returns, monthly with
monthly, and so on.

( / ) .R S cnn
H=

(1) Though, importantly, not all series exhibiting long-range dependence are fractal;
Granger and Joyeux (1980) provide a summary.

(2) The expected value of the Hurst coefficient, and its standard deviation, are calculated
using the methodology in Anis and Lloyd (1976).
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Table B Estimated Hurst coefficients

Series Window Estimated Expected value Standard
size value under null deviation of

hypothesis estimated
that H=0.5 value

Dow Jones (20-day returns) 10–50 0.72 0.62 0.025

Full model 10–50 0.66 0.53 0.032

Restricted model 10–50 0.73 0.53 0.032
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But, at least with the Dow Jones index of equities, this
‘long-term’ memory is not infinite.  Chart 21 suggests that this
memory effect seems to dissipate around 1,040 days (or
four years).  At frequencies longer than this, the Hurst
coefficient returns to a value closer to 0.5.  Prices behave more
like those of a random walk.  At these longer frequencies,
prices may be tied more to the economic cycle — following
random innovations in the macroeconomy — and less to the
effects of investor interaction.

One way of checking the robustness of this result, and that it is
not just an artefact of the time window over which the data is
sampled, it is instructive to check it is independent of the time
period over which returns are taken in the range-scale analysis.
Chart 22 shows the comparable estimates to Chart 21 but
using five-day returns.  A break is clearly visible, and at around
1,040 trading days.  This persistence for periods under
four years therefore seems robust to the frequency with which
the data is sampled.

5 Possible policy implications

The model presented in this paper is purely illustrative, and is
intended as a means of motivating the observed statistical
distribution of financial market prices and its fractal properties.
But it might shed some light on a range of important issues
that regulators and policymakers could usefully bear in mind:

Managing and regulating market risk
Risk managers and regulators have long recognised that the
distribution of changes in financial market prices is not
necessarily Gaussian.  Nevertheless, this fact is often still
overlooked in certain key contexts, and there remain certain
risk management systems that are still based on an underlying
implicit assumption of normality.  Moreover, attempts to
overcome their limitations are purely statistical, and often

consist of tweaking the assumptions of the normal distribution
to help fit observed market data across different markets.(1)

In contrast, the model in this paper has demonstrated that —
rather than being a mere statistical anomaly — the cause of
the non-normality of market prices may be inherent in its
underlying (fractal) structure, which may be determined by the
nature of investor interaction — this will arguably differ from
market to market.  Moreover, different varieties of investor
interaction and behaviour are likely to result in different
dynamics.  This suggests that, when examining the
measurement and management of market risk, risk managers
and regulators should consider the structure of the market,
including the time horizons of its key investors and the manner
in which liquidity is formed.  In doing so, they should be more
alert to the likelihood of sharp corrections and sudden losses in
liquidity.

Unintended consequences of mark-to-market
accounting
A key insight from the FMH is that, under standard market
conditions, stability is likely to be enhanced when a market
contains investors with different time horizons.

Recent reforms in accounting standards require banks to value
their assets according to the price available for those assets in
the market place.  This is driven by a desire to ensure a firm’s
assets are valued at prices commensurate with those at which
it would be possible to sell them in the market.  Shin (2007)
highlights the potential implications of such a regime,
including greater balance sheet volatility, which may not
always be justified by market ‘fundamentals’.  Haldane (2010),
meanwhile, considers how, if the prices of an asset become
misaligned, fair-value market accounting could lead their
prices to ‘over correct.’  In the present context, the concern is
that more frequent and volatile valuations may risk leading to
a reduction of the investment horizon of certain sorts of
investor.(2) And if the interaction of investors with a wide
variety of investment horizons is, as the FMH postulates,
inherent to the provision of market liquidity then this could be
to the detriment of financial stability.

Enhancing the veracity of market information
A related concern is the potential for longer-term investors to
leave the market suddenly — potentially causing significant
price falls in otherwise relatively stable markets.

Under the FMH, one reason longer-term investors could leave
the market is when they come to doubt the veracity of price
information caused by the interaction of investors who viewed
the market at a higher frequency than themselves (see
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(1) See Noss (2010), for an example pertaining to the risk management of structured
credit instruments.

(2) For example, Mayer (2001) concludes that quarterly reviews of pension fund
managers encouraged them to focus on short-term performance.
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Section 3).  Haldane (2011) suggests that this accounted for
the lack of market liquidity during the 2010 Flash Crash.  With
high-frequency traders operating at frequencies more minute
than lower-frequency market makers were able to observe, the
fractal characteristics of markets — including the risk of
dispersion in future prices — emerged at shorter time scales.
This dynamic aggravated the risk that lower frequency firms
faced, and in the extreme meant they could not see the price
at which they could trade.  In other words, they lay at an acute
information disadvantage in times of stress, unable to make
markets without risking being arbitraged by higher-frequency
traders.  This may have caused them to withdraw from the
market, reducing liquidity, and causing the crash.

The FMH is certainly not the only methodology available for
motivating the observed statistical distribution of financial
market prices.  For example, it is possible to simply assert that
the properties we observe reflect time variation in the arrival
of fundamental information.  But the key insight the FMH
supports, that long-term investors are important for market
stability, is an intuitive one and suggests three specific possible
responses of public policymakers that could help reinforce the
confidence of longer-term investors, and thereby bolster
market stability:

First, market-making guidelines would seek to ensure a
commitment by market makers to provide liquidity at all
times.  This would in effect ensure some heterogeneity of
investor actions, and hence maintain investor interaction, and
market liquidity — even during times of stress.(1) This would
therefore reduce the most pernicious aspect of the FMH, by
reducing the occurrence and severity of market crashes.
Unsurprisingly, however, the implementation of market
making guidelines is fraught with difficulty, not least around
how to specify the size of the quotes at which such dedicated
market makers should be required to transact (for further
discussion see Benos and Wetherilt (2012)) and how all this
interacts with regulatory changes, including capital
requirements attached to market-making activity.

A second variety of policy response supported by the FMH is
that of market ‘circuit breakers’.  Proposals to introduce such
mechanisms date back a number of decades, including in
response to the stock market crash of 1987, as outlined in the
report of the so-called Brady Commission.(2) At their most
basic, circuit breakers are simple rules under which all trading
of a given product on a given exchange is halted if prices move
too erratically, as judged by some pre-set criteria.  Again the
justification under the FMH is clear:  such a break in trading
would allow for the resolution of any informational
asymmetries between investors who view the market at
different frequencies.  This would allow longer-term investors
to regain confidence in market information and lessen the
probability of their withdrawal from the market during times of
stress.

A third type of policy proposal is that of minimum resting
periods.  These impose a minimum delay between the time at
which a trade on a given exchange is submitted, and that at
which it is executed.  The justification, and its auspices under
the FMH are clear:  minimum resting periods serve as an
ex-ante counterpart to market circuit breakers, that has the
effect of ‘slowing trading down’ and maintaining longer-term
investors’ confidence in market information across all states of
the world (rather than just those of liquidity draughts).  But
their drawbacks are also clear:  minimum resting periods would
increase the costs of transactions by high-frequency traders.
Depriving the market of this class of (short-horizon) investor
may have an adverse effect on liquidity, at least during normal
times (Hasbrouck and Saar (2011)).

Minimum resting periods therefore involve a trade-off
between lowering the risk of liquidity evaporating during times
of stress, but at the same time lowering the average liquidity
at other times.  The FMH does, however, remain a useful prism
within which to view this trade-off.

6 Conclusion

This paper examined the fractal properties of financial markets,
considered how they might arise and their implications for
financial stability.  In particular, it revisited the FMH, under
which the self-similarity of financial price series comes about
due to the interaction of investors with different investment
time horizons.  It offered a quantitative model that formalised
its predictions and was able to match some of the observed
properties of financial market prices.

The FMH has potential implications for our understanding of
financial markets, their dynamics, and the causes of their
instability.  In particular, and in contrast with more traditional
paradigms of asset pricing, it highlights the role of market
liquidity and heterogeneity of investors’ interpretation of
information as determinants of market stability.  Fractal
structures give rise to a sort of robustness, whereby, under
normal market conditions, the differing interpretation of
information by, and behaviour of, investors at different time
horizons combines to ensure market liquidity and orderly price
movements.  But, this fractal structure also implies a certain
type of fragility.  Its breakage — that is the loss of long-term
investors or a change in their behaviour (either becoming short
horizon, or leaving the market) — can cause this liquidity to
evaporate, producing panic selling and associated market
crashes.

This investor interaction gives rise to persistence in the fractal
structure, whereby its changes are correlated over different

(1) Venkataraman and Waisburg (2007) find evidence that dedicated market makers
increase liquidity on equity markets.

(2) See US Department of the Treasury (1988).
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time scales.  The exact nature of this seems to depend on the
exact nature of the investor behaviour and their degree of
interaction.  Its further investigation is, however, left as
further work.

Finally, from a practical standpoint, the FMH clearly supports
the crucial role of securities regulation in maintaining financial
stability.  The incentives and behaviour of different types of

investor are highlighted as key elements in determining the
stability of markets, both under normal conditions and during
times of stress.  Effective securities regulation is a necessary
component to ensuring that — as far as possible — all types of
investor are properly incentivised, or restricted, to exhibit
behaviours that are in concert with a well-functioning financial
system.
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Annex 1
Calibration of the model in Section 3

Recall from Section 3 that the return in the tth period, relative
Rt can be represented algebraically as:

(6)

where εt is normally distributed with mean zero and variance
one;  r is set to 0.05, σ to 0.05.

The average price return resulting from this model (6) is fitted
to that of the Dow Jones index examined in Section 1.  This
requires six parameters to be calibrated:  the aggression
parameters for the short horizon, long horizon and momentum
traders (aS, aL and aM respectively);  thresholds at which the
short and long-horizon investors force-sell (ts and tL);  and a
volume d that they force-sell that is common to both.  To
avoid the problem of over-identification, the aggression
parameters of the short and long-horizon mean reverting
investors, aS and aL, are set to 0.4.  That of the momentum
trader is set to 1.

The horizons of the short horizon and long-horizon traders are
arbitrarily set to values of 1 and 10 respectively.  In keeping
with the spirit of the FMH, the thresholds at which the short
and long-horizon investors force sell (ts and tL), are set to a
fixed point on the distribution of price returns as observed at
their differing time horizons:  both investors force sell when
they witness a price move three standard deviations below the
mean of the distribution of returns at their horizon;  that is 

(9)

In summary, the calibration problem reduces to finding a
volume of forced-selling, d, common to both investors, that
best fits the average annual return of the price resulting from
the model (given in (6)) to the 5% average return on the
Dow Jones, subject to the investor behaviour specified in (9)
being maintained.  That is, it is required to find:

(10)

The complication in the procedure comes in how, for any
random series of Gaussian disturbances {εt}, this distribution of
prices is itself a function of the choice of parameters.  This is
solved by a two-step numerical procedure:  for a given random
series {ε}, an arbitrary d is selected.  The corresponding ts and tL
that satisfy (9) are then solved for numerically.  The procedure
is then repeated with a different value of d, until the
minimisation above is achieved.

Under the above calibration, only the mean of the modelled
returns is matched to that of observed returns.  A more
advanced approach might be to calibrate multiple moments of
the distribution, though this would significantly add to the
complexity of the procedure.  It is, therefore, left as future
work.
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Annex 2
Estimating the Hurst exponent

The Hurst exponent H can be approximated by calculating
range scales across a range of values of n.  Taking logs of (8) it
can be found easily through ordinary least squares regression
as a coefficient estimate:

(11)

The following is a step by step methodology for applying
range-scale analysis to financial market price data (used in
Section 4), as given in Peters (1991):

1. Begin with a time series of prices {Pt}, and convert this into a
time series {Xt} of N returns:  Xt = log(Pt/Pt-1).

2. Divide this time series (of length N) up into a series of A
contiguous subperiods of length n, such that A*n = N.
Label each subperiod la with a = 1, 2, 3,…, A.  Label each
element in la as Nk,a where k = 1, 2, 3, … ,n.  For each
subperiod, la, of length n, calculate the mean 

3.Calculate the time series of accumulated departures from
the mean for each subperiod, la, as:

4.Define the range as the difference between the maximum
and minimum value of Xk,a within each subperiod la:  Rla =
max(Xk,a) - min(Xk,a) where 1 < k < n.

5. Define the sample standard deviation for each subperiod la
as:

6.Each range, Rla is now normalised by dividing by its
corresponding Sla.  Therefore the rescaled range for each
subperiod la is equal to Rla/Sla.  From step 2, this yields A
contiguous subperiods of length n.

The average R/S value for length n is defined as:

7. The length n is then increased until there are only two
subperiods, ie n = N/2.  A least squares regression is then
performed with log( n) as the independent variable and
log(R/S)n as the dependent variable.  The slope of the
equation is the estimate of the Hurst exponent, H.
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