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Probability distributions of future asset prices implied by
option prices

Introduction

Many monetary authorities routinely use the 
forward-looking information that is embedded in financial
asset prices to help in formulating and implementing
monetary policy.  For example, they typically look at
changes in the forward rate curve implied by government
bond prices to assess changes in market perceptions of
future short-term interest rates.(1) But, although implied
forward rates are informative about the market’s mean
expectation for future interest rates, they tell us nothing
about the range of expected outcomes around such
estimates.  For this, we can turn to options markets.

An option on a given underlying asset is a contract that
gives the holder the right, but not the obligation, to buy or
sell that asset at a certain date in the future at a
predetermined price.  Options that give the holder the right
to buy the underlying asset are known as call options, while
those that give the holder the right to sell the underlying
asset are known as put options.  The predetermined price at
which the underlying asset is bought or sold, which is
stipulated in an option contract, is known as the exercise
price or strike price.  The date at which an option expires is
known as the maturity date, exercise date or terminal date.
Options that can be exercised only on the maturity date are
known as European options, while those that can be
exercised at any time up to and including the maturity date
are known as American options.(2)

If the option holder decides to take up his/her right to buy or
sell the underlying asset then he/she would exercise the
option against the person with which the contract was
agreed (known as the writer of the option).  So, for example,
if the holder of a call option were to exercise that option
against its writer, the writer would be obliged to supply the
underlying asset to the holder at the pre-agreed exercise
price.  Of course, the holder of a call option would consider

exercising it only if the price of the underlying asset lay
above the strike price at that time.

Consider a set of European options on the same underlying
asset, with the same time-to-maturity, but with different
exercise prices.  The prices of such options are related to the
probabilities attached by the market to the possible values of
the underlying security on the maturity date of the options.
Intuitively, this can be seen by noting that the difference in
the price of two options with adjacent exercise prices will
reflect the value attached to the ability to exercise the
options when the price of the underlying asset lies between
the two exercise prices.  This price difference in turn
depends on the probability of the underlying asset price
lying in this interval.

Such probabilities can be estimated, using the full range of
exercise prices, from observed options prices in the form of
a risk-neutral probability density (RND) function.  A
probability density is a measure of the frequency with which
a particular event occurs.  The area under a probability
density function for a given range of possible outcomes
gives the probability of the eventual outcome being in that
range.  Since probabilities must sum to one, the total area
under a probability density function must be one.  Risk
neutral, as used here, means that the probability density
function depicts the weights attached by a representative
risk-neutral market participant to the possible future values
of the underlying asset.

This article describes a technique for estimating implied
risk-neutral probability density functions from options
prices, and illustrates how the information they provide is
additional to mean estimates of future asset prices.  Further
details on the theory, and a comparison of different
techniques for estimating implied RND functions will be
given in a forthcoming Bank of England Working Paper on
the topic.(3)

By Bhupinder Bahra of the Bank’s Monetary Instruments and Markets Division.

The most widely used measure of the market’s views about the future value of an asset is the mean or
average price expectation—a point estimate.  This article shows how this information set can be extended
by using option prices to estimate the market’s entire probability distribution of a future asset price.  It
also illustrates the potential value of this type of information to the policy-maker in assessing monetary
conditions, monetary credibility, the timing and effectiveness of monetary operations, and in identifying
anomalous market prices.  Finally, the article looks at the limitations in data availability and details
some areas for future research.

(1) See, for example, Breedon (1995) and Deacon and Derry (1994).
(2) For further details about options and other derivative securities, see Hull (1993).
(3) Bahra, B (1996), ‘Implied Risk-Neutral Probability Density Functions From Option Prices:  Theory and Application’, Bank of England Working

Paper series, forthcoming.
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How are option prices determined?

The current price of a European option on a non dividend
paying asset depends on five underlying parameters:

(i) the current price of the underlying asset on which the
option is written;

(ii) the time remaining until the maturity date of the 
option;

(iii) the (annualised) risk-free rate of interest over the
remaining life of the option;

(iv) the exercise price of the option;  and

(v) the annualised volatility of the underlying asset price
over the remaining life of the option.

In order to calculate an option’s price, one has to make an
assumption about how the price of the underlying asset
evolves over the life of the option.  Many option pricing
models specify a stochastic process for the price.(1) Each
stochastic process is consistent with a particular RND
function for the price of the underlying asset on the expiry
date of the option.  For example, the classic Black-Scholes
(1973) option pricing model assumes that the price of the
underlying asset evolves according to the stochastic process
known as geometric Brownian motion.  This implies that the
underlying asset is expected to earn a constant rate of return,
although the price is subject to independent, normally
distributed shocks over the life of the option.  Under the
geometric Brownian motion assumption, the risk-neutral
probabilities attached to various possible outcomes for the
price of the underlying asset on the maturity date of the
option take the form of a lognormal distribution:  a
lognormal distribution is a tilted, or ‘skewed’, bell-shaped
curve.

Implied volatilities

Out of the five parameters that determine the price of an
option, the only one that is currently unobservable is the
future volatility of the underlying asset price.  But an
estimate of this can be inferred from the prices of options
traded in the market:  given an option price, one can solve
an appropriate option pricing model to obtain a market
estimate of the future volatility of the underlying asset price.
This type of volatility estimate is known as implied
volatility.

Under the Black-Scholes assumption that the price of the
underlying asset evolves according to geometric Brownian
motion, the implied volatility ought to be the same across all
exercise prices of options on the same underlying asset and
with the same maturity date.  But the implied volatilities
observed in the market typically vary with the exercise
price.  In particular, the implied volatilities associated with

exercise prices a long way from the current price of the
underlying asset tend to be higher than those associated with
exercise prices which are closer to the current price of the
underlying asset.  The relationship between implied
volatility and exercise price is described by what is known
as the implied volatility smile curve, as illustrated in 
Chart 1.

The existence of the volatility smile curve indicates that
market participants make more complex assumptions than
geometric Brownian motion about the path of the underlying
asset price.  And as a result, they attach different
probabilities to terminal values of the underlying asset price
than those that are consistent with a lognormal distribution.
The extent of the curvature of the smile curve indicates the
degree to which the market RND function differs from the
Black-Scholes (lognormal) RND function.  In particular, the
greater the curvature, the greater the probability the market
attaches to extreme outcomes.  This causes the market RND
function to have ‘fatter tails’ than a lognormal density
function.  In addition, the direction in which the smile curve
slopes reflects the direction in which the market RND
function is skewed.(2)

Any variations in the shape of the smile curve are mirrored
by corresponding changes in the curvature of the call
pricing function—the plot of call prices across exercise
prices for options on the same underlying asset and with 
the same time-to-maturity.  The slope and curvature of
the smile curve, or of the call pricing function, can be
translated into probability space to reveal the market’s 
(non-lognormal) implied terminal RND function.  There are
a number of techniques for doing this, all of which can be
related to an approach first taken by Breeden and
Litzenberger (1978).

(1) A variable whose value changes over time in an uncertain way is said to follow a stochastic process.
(2) The skewness of a probability density function characterises the distribution of probability either side of the mean.

Chart 1
Implied volatility smile curve for LIFFE December 1996
options on the short sterling future(a)
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The Breeden and Litzenberger approach

Breeden and Litzenberger (1978) derived a relationship
linking the curvature of the call pricing function to the
terminal RND function of the price of the underlying asset.
In particular, they showed that the second partial derivative
of the call pricing function with respect to the exercise price
is directly proportional to the terminal RND function.
Details about the derivation of the Breeden and Litzenberger
result are given in Bahra (1996).  The rest of this article
focuses on how this result can be applied in order to
estimate market RND functions for short-term interest rates
in the future and how such RND functions can be used for
policy analysis.

The simplest approach to estimating RND functions is to
approximate the second derivative of the call pricing
function by calculating the second difference of actual call
prices observed across a range of exercise prices.(1) This
approach produces the implied risk-neutral histogram of the
price of the underlying asset at the maturity date of the
options.(2) Chart 2 shows how the implied histogram for the
three-month sterling interest rate on 19 June 1996 (as
implied by the June short sterling futures price) changed
between 6 March and 8 March 1996, a period which
included a cut of 25 basis points in official UK interest rates
and the publication of stronger-than-expected US non-farm
payrolls data.(3)

The main drawback of this approach is that it does not
smooth out irregularities in observed call pricing functions.
These may be due, in cases where bid-ask spreads are

observed instead of actual traded prices, to measurement
errors arising from using middle prices.  Irregular call
pricing functions may also arise if readings are taken at
slightly different times.  Such irregularities can result in
negative implied probabilities.  Also, the procedure provides
no systematic way of modelling the tails of the probability
distributions, which are not observable due to the limited
range of exercise prices traded in the market.

But sensible continuous RND functions can be obtained by
smoothing the call pricing function in a way that places less
weight on data irregularities while preserving its overall
form under the assumption of no arbitrage.  Since option
prices are only observed at discrete intervals across a limited
range of exercise prices, the procedures for doing this
essentially amount to interpolating between observed
exercise prices, and extrapolating outside their range to
model the tail probabilities.

Three related approaches have been used in the literature:

(i) the RND function is derived directly from a particular
specification of the call pricing function (or of the
implied volatility smile curve);(4)

(ii) assumptions are made about the stochastic process that
governs the price of the underlying asset and the RND
function is inferred from it;(5) and

(iii) an assumption is made about the form of the RND
function itself and its parameters are recovered by
minimising the distance between the observed option
prices and those that are generated by the assumed
functional form.(6)

The lognormal mixture distribution approach

In our research we have adopted the third approach, which
focuses directly on the RND function.  This means we
impose a minimum of structure on the stochastic process of
the price of the underlying asset.  For the purposes of policy
analysis, the functional form assumed for the RND function
should be relatively flexible.  In particular, it should be able
to capture the main contributions to the smile curve, namely
the skewness and the kurtosis (ie fatness of the tails) of the
underlying distribution.  In light of these criteria, we assume
that the RND function is a weighted sum of two
independent lognormal density functions and we then
estimate their parameters from observed option prices.(7)

Each lognormal density function is completely defined by
two parameters.  The values of these parameters, and the
relative weighting applied to the two density functions,
together determine the overall shape of the implied RND
function.

(1) Such second difference estimates are directly proportional to the probabilities attached by the market to the underlying asset price lying in a fixed
interval around each of the strike prices when the options expire.  The constant of proportionality is the present value of a zero-coupon bond that
pays £1 at maturity, with the discount rate being the risk-free rate of interest.

(2) For further examples of this approach, see Neuhaus (1995).
(3) The histograms were calculated using data for the LIFFE June 1996 option on the short sterling future.  The LIFFE settlement prices were used to

avoid the problems associated with asynchronous data.
(4) See Bates (1991), Jarrow and Rudd (1982), Longstaff (1992, 1995), Malz (1995a) and Shimko (1993).
(5) See Bates (1991, 1995), and Malz (1995b).
(6) See Bahra (1996), Jackwerth and Rubinstein (1995), Melick and Thomas (1994), and Rubinstein (1994).
(7) Details of the minimisation problem are given in the Technical annex.

Chart 2
Implied risk-neutral histograms for the three-month
sterling interest rate in June 1996(a)
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Chart 3 shows an example of an implied RND function
derived from LIFFE options on the short sterling future using
the method described above, which we call the 
two-lognormal mixture distribution approach.  It also shows
the (weighted) component lognormal density functions of
the RND function.  

Chart 4 further illustrates the method, showing how the
implied RND function for the three-month sterling interest
rate on 19 June 1996 changed between 6 March and 

8 March 1996.  The left axis of the chart depicts probability
density.  This is a measure of the frequency with which
events occur.  On the chart, the probability density
associated with a given future interest rate is approximately
equal to the probability of the outcome lying in a corridor of
five basis points either side of that rate.

The shape of the distribution would be expected to vary
over time as news arrives and option prices adjust to
incorporate changing beliefs about future events.  The two-
lognormal mixture distribution can incorporate a wide
variety of possible functional forms which, in turn, are able
to accommodate a wide range of possible scenarios.  This
includes, for example, a situation in which the market
believes that the terminal price of the underlying asset is
most likely to take one of two possible values, in which case
it attaches high probabilities around those levels, giving rise
to an implied RND function with two modes, ie the market
has a bi-modal view.

It is important to remember that the implied density
functions derived are risk neutral, that is, they are equivalent
to the true market density functions only when investors are
risk neutral.  In reality investors are likely to be risk averse,
and option prices will incorporate these preferences towards
risk as well as beliefs about future outcomes.  To distinguish
between these two factors would require specification of the
aggregate market utility function (which is unobservable)
and estimation of the corresponding coefficient of risk
aversion.  But, even if the market does demand a premium
for taking on risk, the true market implied density function
may not differ very much from the RND function, at least
for some markets.(1) Moreover, on the assumption that the
market’s aversion to risk is relatively stable over time,
changes in the RND function from one day to the next
should mainly reflect changes in investors’ beliefs about
future outcomes for the price of the underlying asset.

Using the information contained in implied
RND functions
We now illustrate how the information contained in implied
RND functions may be used in formulating and
implementing monetary policy.  We begin by describing
various summary measures for density functions and then
suggest a way to validate the two-lognormal mixture
distribution approach.  Next, we outline different ways in
which implied RND functions may be used by the 
policy-maker.  Finally, we discuss some caveats and
limitations in data availability, and detail some areas for
future research.

Summary statistics

Much of the information contained in RND functions can be
captured through a range of summary statistics.  For
example, the mean is the expected future value of the
underlying asset, or the average value of all possible future
outcomes.  Forward-looking information, whether derived
directly from futures prices, or indirectly via bond yields is
typically based on the mean.  The median, which has 50%
of the distribution on either side of it, is an alternative
measure of the centre of a distribution.  The mode, on the
other hand, is the most likely future outcome.  The standard
deviation of an implied RND function is a measure of the

Chart 3
An implied RND function derived using the 
two-lognormal mixture distribution approach(a)
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(a) Shown with its (weighted) component lognormal density functions.  This RND
function was derived using LIFFE December 1996 options on the short sterling
future as at 10 June 1996.

Chart 4
Implied RND functions for the three-month sterling
interest rate in June 1996(a)
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(a) Derived using LIFFE June 1996 options on the short sterling future, as at 6 March 
and 8 March 1996.  These graphs illustrate the result when using the two-lognormal 
mixture distribution approach.

(1) For example, Rubinstein (1994) converts an RND function for an equity index to a ‘subjective’ density function under the assumption that the
representative investor maximises his/her expected utility of wealth with constant relative risk aversion (CRRA).  He finds that for assumed market
risk premia of between 3.3% and 5%, the subjective distribution is only slightly shifted to the right relative to the risk-neutral distribution, and that
the qualitative shapes of the two distributions are quite similar.
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uncertainty around the mean and is analogous to the implied
volatility measure derived from options prices.  An
alternative dispersion statistic is the interquartile range
(IQR).  This gives the distance between the 25% quartile
and the 75% quartile, that is, the central 50% of the
distribution lies within it.  Skewness characterises the
distribution of probability either side of the mean.  A
positively skewed distribution is one for which there is less
probability attached to outcomes higher than the mean than
to outcomes below the mean.  Kurtosis is a measure of the
‘peakedness’ of a distribution and/or the likelihood of
extreme outcomes:  the greater this likelihood, the fatter the
tails of the distribution.  These summary statistics provide a
useful way of tracking the behaviour of RND functions over
the life of a single contract and of making comparisons
across contracts.

Charts 5 and 6 show the RND functions, as at 4 June 1996,
for the three-month sterling interest rate in December 1996

and in March 1997.  Charts 7 and 8 depict the RND
functions, also as at 4 June 1996, for the three-month
Deutsche Mark interest rate in the same months.  Table A
shows the summary statistics for these four distributions.

The means of the distributions are equivalent to the interest
rates implied by the current prices of the relevant futures
contracts, and are lower in Germany than in the United
Kingdom.(1) For both countries, the dispersion statistics
(standard deviation and IQR) are higher for the March 1997
contract than for the December 1996 contract.  One would
expect this since, over longer time horizons, there is more
uncertainty about the expected outcome.  Chart 9 confirms
this, showing the upper and lower quartiles with the mean
and the mode for the three-month sterling interest rate on
four different option maturity dates as at 15 May 1996.  It
can be seen that the IQR is higher for contracts with longer
maturities.  Also, the standard deviations of the two
distributions for the sterling rate are higher than the

Chart 8
Implied RND function for the three-month 
Deutsche Mark interest rate in March 1997(a)
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(a) Derived using LIFFE March 1997 options on the Euromark future, as at 4 June 1996.

Chart 7
Implied RND function for the three-month 
Deutsche Mark interest rate in December 1996(a)
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(a) Derived using LIFFE December 1996 options on the Euromark future, as at 4 June 1996.

Chart 5
Implied RND function for the three-month sterling
interest rate in December 1996(a)

Chart 6
Implied RND function for the three-month sterling
interest rate in March 1997(a)
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(a) Derived using LIFFE March 1997 options on the short sterling future, as at 4 June 1996.

(a) Derived using LIFFE December 1996 options on the short sterling future, as at 4 June 1996.

(1) The mean of an implied RND function should equal the forward value of the underlying asset.  In this case the underlying assets are short-term
interest rate futures contracts.  The expected growth rate of a futures price in a risk-neutral world is zero.  Hence, the means of the implied RND
functions are equal to the interest rates implied by the respective current futures prices.
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corresponding standard deviations of those for the Deutsche
Mark rate, suggesting greater uncertainty about the level of
future short-term rates in the United Kingdom than in
Germany.  Another feature of all four distributions is that
they are positively skewed, indicating that there is less
probability to the right of each of the means than to their
left.  The fact that the mode is to the left of the mean is
usually also indicative of a positive skew.  This feature is
discussed in greater detail below.

Validation

In deciding whether to place reliance on the information
extracted using a new technique, one not only needs to be
confident of the theory, but must also test whether in
practice changes in the expectations depicted are believable
in light of the news reaching the market.  In the case of
short-term interest rate expectations, we sought to do this by
examining the way RND functions for short-term sterling
interest rates change over time, and by comparing the RND
functions for short-term sterling interest rates with those

from Germany, a country with different macroeconomic
conditions and monetary history.

Analysing changes in implied RND functions over time

Charts 10 and 11 show a convenient way of representing the
evolution of implied RND functions over the life of a single
option contract.  Chart 10 shows the market’s views of the
three-month sterling interest rate on 19 June 1996 (as
implied by the prices of LIFFE June short sterling futures

options) between 22 June 1995 and 7 June 1996.  Chart 11
shows the same type of information for the three-month
Deutsche Mark interest rate on 17 June 1996 (as implied by

the prices of LIFFE June Euromark futures options) between
20 June 1995 and 7 June 1996.  Both charts depict the
mean, mode, and the lower (25%) and upper (75%) quartiles
of the distributions.

Table A
Summary statistics for the three-month 
sterling and Deutsche Mark interest rates in  
December 1996 and March 1997(a)

Sterling December 1996 March 1997

Mean 6.33 6.66
Mode 6.18 6.43
Median 6.27 6.56
Standard deviation 0.66 1.01
Interquartile range 0.80 1.19
Skewness 0.83 0.76
Kurtosis (b) 4.96 4.67

Deutsche Mark

Mean 3.45 3.73
Mode 3.29 3.47
Median 3.39 3.62
Standard deviation 0.55 0.84
Interquartile range 0.69 0.95
Skewness 0.75 1.16
Kurtosis 4.27 6.06

(a) Derived using LIFFE December 1996 and March 1997 options on the
short sterling and Euromark futures, as at 4 June 1996.

(b) A normal distribution has a fixed kurtosis of three.

Chart 9
Implied RND summary statistics for the three-month
sterling interest rate on four different option maturity
dates(a)
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Chart 10
Implied RND summary statistics for the three-month
sterling interest rate in June 1996(a)
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Chart 11
Implied RND summary statistics for the three-month
Deutsche Mark interest rate in June 1996(a)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5
Three-month interest rate (per cent)

Mean
Mode

75% Quartile

25% Quartile

Option trade date

July Oct. Jan. Apr.
0.0

1995 96

(a) Derived using LIFFE June 1996 options on the Euromark future.



Probability distributions of future asset prices implied by option prices

305

These time-series representations of implied RND functions
convey how market uncertainty about the expected outcome
changed over time;  an increase in the distance between the
lower and upper quartiles indicates that the market became
more uncertain about the expected outcome.  Charts 10 and
11 also convey information about changes in the skewness
of the implied distributions.  For example, the location of
the mean relative to the lower and upper quartiles is
informative of the direction and extent of the skew.
Movements in the mean relative to the mode are also
indicative of changes in skewness.

Generally, both sets of implied RND functions depict falling
forward rates over the period analysed, as evidenced by the
downward trend in the mean and mode statistics.  At the
same time, the gaps between these measures narrowed,
suggesting that the distribution of market participants’
expectations was becoming more symmetrical as the time
horizon shortened.  Charts 10 and 11 also show that as the
maturity date of a contract is approached, the distributions
typically become less dispersed causing the quartiles to
converge upon the mean.  This is because as the time
horizon becomes shorter, the market, all other things being
equal, becomes more certain about the terminal outcome
due to the smaller likelihood of extreme events occurring.
Another feature of the distributions is that the mode is
persistently below the mean expectation in both countries,
indicating a positive skew to expectations of future interest
rates.  In the United Kingdom, this might be interpreted as
reflecting political uncertainty, with the market attaching
some probability to much higher short-term rates in the
future.  However, in Germany the macroeconomic and
political conditions are different and yet the RND functions
are also positively skewed.

One possible explanation is that the market perceives there
to be a lower bound on nominal interest rates at zero.  In
this case, the range of possible outcomes below the current
rate is restricted, whereas the range of possible outcomes
above the current rate is, in principle, unlimited.  If market
participants are generally uncertain, that is, they attach
positive probabilities to a wide range of possible outcomes,
the lower bound may naturally result in the RND function
having a positive skew.  Moreover, the lower the current
level of rates, the more positive this skew may be for a
given degree of uncertainty.

Charts 12 and 13 show how the skewness and kurtosis for
the three-month sterling interest rate on 19 June 1996
changed between 22 June 1995 and 7 June 1996.  It is
notable that, unlike the measures of dispersion, these
statistics exhibit no clear trend over their life cycles.  Also,
they appear to become more volatile towards the end of the
contract’s life.

Analysing changes in implied RND functions around
specific events

A detailed example of a change in perceptions following a
particular news event is given in Chart 14 which shows the

Chart 13
Implied kurtosis for the three-month sterling 
interest rate in June 1996(a)

Chart 14
Change in the implied RND function for the 
three-month sterling interest rate in June 1996 around
the publication of the May 1996 Inflation Report(a)
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(a) Derived using LIFFE June 1996 options on the short sterling future.

Chart 12
Implied skewness for the three-month sterling 
interest rate in June 1996(a)
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change in the shape of the implied RND function for the
three-month sterling interest rate in June 1996 around the
publication of the May 1996 Inflation Report on 14 May.
The Inflation Report concluded that it was marginally more
likely than not that inflation would be above 2.5% in two
years’ time were official rates to remain unchanged
throughout that period.  This was followed by an upward
revision of the market’s mean expectation for short-term
interest rates between 13 May and 15 May.  However, it
seems that this upward move was not driven so much by a
rightward shift in the distribution as by a change in the
entire shape of the distribution;  a reallocation of probability
from outcomes between 5.6% and 5.9% to outcomes
between 5.9% and 6.6% resulted in a fatter right tail which
was in part responsible for the upward movement in the
mean.  This type of change in the shape of implied RND
functions is illustrative of how they can add value to
existing measures of market expectations such as the mean.

A similar change in market sentiment can be observed in
Germany between 16 and 21 February 1996, ahead of the
publication of the German M3 figure on 23 February.  
Chart 15 shows how the implied RND function for the
three-month Deutsche Mark interest rate in June 1996
changed between these two dates.  There was a significant
shift in probability from outcomes between 2.5% and 3.3%
to outcomes between 3.3% and 4.5%, apparently driven by
market speculation ahead of the publication of the data.  In
particular, on 21 February the market attached a much
higher probability to short-term rates being around 4% in
June than it did on 16 February.

The cut in UK official interest rates on 6 June 1996 provides
an illustration of how market perceptions may change
around a monetary policy decision.  Chart 16 shows the
change in the shape of the implied RND function for the
three-month sterling interest rate in September 1996
between 5 and 6 June 1996.  Table B shows the summary
statistics for the RND functions on each of these dates.  

The first point to note is that the mean moved down by 
25 basis points, which was the size of the interest rate cut.
Second, the distribution on 6 June was more symmetrical (in
fact the mean was almost equal to the mode) and had a
higher standard deviation compared to the previous day;  ie
the market was more uncertain on 6 June than on 5 June
about the short-term interest rate in September, and attached
the same weight to it being above the mean as to it being
below the mean.  The change in the degree of skewness can
also be seen by the shift in probability from outcomes
between 6% and 7% to outcomes between 5.5% and 6%,
resulting in a much thinner right tail and a left tail which
was only slightly fatter.  By comparison with other 
day-to-day movements, this particular change in the shape
of the implied distribution was quite large indicating the
extent to which the market was surprised by the rate cut.

The above examples suggest that the two-lognormal mixture
distribution approach is validated by recent market
developments in the United Kingdom and in Germany.
Although the mean expectation remains a key summary
statistic, on the basis of these and other examples there is no
reason to doubt that implied RND functions can add to our
understanding of short-term interest rate expectations.

Use of implied RND functions by monetary authorities

We now discuss four ways in which the policy-maker may
use implied RND functions.

Chart 15
Change in the implied RND function for the 
three-month Deutsche Mark interest rate in 
June 1996(a)
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Chart 16
Change in the implied RND function for the 
three-month sterling interest rate in September 1996(a)

Table B
Summary statistics for the RND functions in Chart 16

5 June 1996 6 June 1996

Mean 6.16 5.91
Mode 6.11 5.91
Median 6.12 5.91
Mean minus mode 0.05 0.01
Standard deviation 0.35 0.30
Interquartile range 0.27 0.31
Lower quartile 6.00 5.76
Upper quartile 6.27 6.07
Skewness 0.85 0.22
Kurtosis (a) 6.61 7.02

(a) A normal distribution has a fixed kurtosis of three.
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Assessing monetary conditions

Assuming that financial market expectations are indicative
of those in the economy as a whole, RND functions have
the potential to improve the authorities’ ability to assess
monetary conditions on a day-to-day basis.

In principle, the whole probability distribution of future
short-term interest rates is relevant to the determination of
economic agents’ behaviour.  A lot of this information is
captured in the mean of the distribution, which can already
be observed directly from the yield curve or forward rates,
but other summary statistics may add explanatory power.
For example, suppose that agents tend to place less weight
on extreme interest rate outcomes when taking investment
or consumption decisions than is assumed in the mean of
the interest rate probability distribution.  In this case, a
trimmed mean—in which the probabilities attached to
extreme outcomes are ignored or given reduced weight—
may reflect the information used by agents better than the
standard mean, and so may provide a better indication of
monetary conditions for the monetary authorities.  Much of
the time the standard mean and the trimmed mean may
move together, but one could envisage circumstances in
which the standard mean is influenced by an increase in the
probabilities attached to very unlikely outcomes, while the
trimmed mean is less affected.  Similar issues would arise if
investors or consumers placed more weight on extreme
interest rate outcomes than allowed for in the standard
mean.

At present, this kind of scenario is entirely speculative.
Further empirical research is required to assess whether
summary statistics such as an adjusted mean, the mode,
median, interquartile range, skewness and kurtosis can add
explanatory power to the standard mean interest rate in
conventional economic models.

RND functions may also provide evidence of special
situations influencing the formation of asset price
expectations.  For example, if two distinct economic or
political scenarios meant that asset prices would take very
different values according to which scenario occurred, then
this might be revealed in bi-modal probability distributions
for various asset prices.

Assessing monetary credibility

A monetary strategy to achieve a particular inflation target
can be described as credible if the public believes that the
government will carry out its plans.  So, a relative measure
of credibility is the difference between the market’s
perceived distribution of the future rate of inflation and that
of the authorities.(1) Some information on this is already
available in the United Kingdom in the form of implied
forward inflation rates, calculated from the yields of 
index-linked and conventional gilts.  But this only gives us
the mean of the market’s probability distribution for future
inflation.  Even if this mean were the same as the

authorities’ target, this could mask a lack of credibility if the
market placed higher weights on much lower and much
higher inflation outcomes than the authorities.

Unfortunately, there are at present no instruments which
enable the extraction of an RND function for inflation.
Future research on implied probability distributions for
long-term interest rates revealed by options on the long gilt
future may, however, help in this respect, to the extent that
most of the uncertainty over long-term interest rates—and
hence news in the shape of a long gilt RND function—may
plausibly be attributed to uncertainty over future inflation.

Assessing the timing and effectiveness of monetary
operations

Implied RND functions from options on short-term interest
rates indicate the probabilities the market attaches to various
near-term monetary policy actions.  These probabilities are
in turn determined by market participants’ expectations
about news and their view of the authorities’ reaction
function.

In this context, implied RND summary statistics may help
the authorities to assess the market’s likely reaction to
particular policy actions.  For example, a decision to raise
short-term interest rates may have a different impact on
market perceptions of policy when the market appears to be
very certain that rates will remain unchanged, (as evidenced
by a narrow and symmetric RND function for future interest
rates) from when the mean of the probability distribution for
future rates is the same, but the market already attaches 
non-trivial probabilities to sharply higher rates, albeit
counterbalanced by higher probabilities attached to certain
lower rates.

Equally, implied RND functions may help in the ex post
analysis of policy actions.  For example, if the shape and
location of the implied RND function for short-term interest
rates three months ahead remains the same following a
change in base rates, this suggests, all other things being
equal, that the market fully expected the change in monetary
stance.  By contrast a constant mean is less informative
because it could disguise significant changes in skewness
and kurtosis.

Implied probability distributions may also be useful for
analysing market reactions to money-market operations
which do not involve a change in official rates, or events
such as government bond auctions.  These can be assessed
either directly by looking at probability distributions from
the markets concerned, or indirectly by looking at related
markets.

Identifying market anomalies

All of the above uses of RND data assume that markets are
perfectly competitive and that market participants are
rational.  But provided one has overall confidence in the

(1) For further explanation, see King (1995).
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technique used, RND functions may help to identify
occasional situations where one or other of these
assumptions does not hold, essentially because the story
being told is not believable.

For example, in the face of  an ‘abnormal’ asset price
movement—such as a stock market crash or a sharp jump in
the nominal exchange rate, which is not easily explained by
news hitting the market—the information embedded in
options prices for this and related assets may help the
authorities to understand whether the movement in question
is likely to be sustained with consequent macroeconomic
effects, or  whether it reflects a temporary phenomenon,
possibly due to market failure.  For example, if RND
functions suggest that the market factored in the possibility
of the very large asset price movement because it purchased
insurance against the move in advance, then the amount of
news required to trigger the change might reasonably be
expected to be less than in the situation where there was no
advance knowledge.  This in turn might make it more
believable that the move reflected fundamentals and hence
would be sustained.

Limitations in data availability

The most important limitation, from the point of view of a
monetary authority, is that there are no markets that allow us
directly to assess uncertainty about future inflation.  To learn
about the market’s future inflation distribution would require
a market in options on inflation, for example, options on
annual changes in the retail prices index (RPI), or a market
in options on real rates, as in index-linked bond futures.
This would reveal what price agents were willing to pay to
insure themselves against the risks to the inflation outturn,
and hence the probabilities they attached to various future
inflationary outcomes.  Neither inflation options, nor options
on index-linked bond futures are traded on exchanges
anywhere in the world.  However, such instruments could
conceivably be available in the future.

Another limitation is that the technique is restricted to
European options, whilst many of the more liquid 
exchange-traded options are often American.(1) This
restriction is a feature of most of the existing techniques for
deriving RND functions.  Fairly complex extensions of these
techniques are required to estimate terminal RND functions
from the prices of American options.(2) Even then the RND
function can only be derived within a bound that allows for
the possibility that the options may be exercised at any time
before the maturity date.

There are also limitations to the quality of the data that is
available.  Some option contracts are fairly illiquid,
particularly at those strike prices which are a long way
above or below the prevailing market price of the underlying
asset.  The prices of such contracts may be less informative

about market expectations, or may not be available.  This
data limitation sometimes results in sudden changes in the
degree of curvature of the option pricing function.  The 
two-lognormal mixture distribution approach may in turn be
sensitive to this.  Chart 17 shows an example of the sort of
(implausibly) spiked RND function that has on occasion
resulted when there are relatively few data observations
across strike prices.

To derive implied RND functions we need options prices
across the widest possible range of strike prices.  To ensure
that they are representative of the market’s views, and that
they can be estimated regularly, we use exchange-traded
options contracts.  But these have a limited number of fixed
maturity dates, which is problematic when deriving time
series of distributions and when assessing changes in market
perceptions of short-term rates in the very near future.  For
example, if there are three months remaining until the
nearest option maturity date, it is not possible to determine
the market’s perceptions of the short-term rate in one
month’s time.  Also, because it is not possible with
exchange-traded options to ensure that intra-day call and put
prices are observable across exercise prices at the same
time, only (end-of-day) settlement prices are usable in
practice.

Conclusions
This article has shown how the information contained in
implied risk-neutral probability density functions estimated
from options prices can add to the type of forward-looking
information available to policy-makers.  To the extent that
the distribution around the mean is observed to change in
shape over time, measures such as the standard deviation,
mode, interquartile range, skewness and kurtosis are useful
in quantifying these changes in market perceptions.  But, a

Chart 17
Implied RND function for the three-month sterling
interest rate in September 1996(a)
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(1) LIFFE options on interest rate futures, although American, can be treated as European.  This is because they are margined daily, which means that
the buyer is not required to pay the option premium up front.  So, the buyer can keep the position open at zero cost for as long as favourable
movements in the underlying price generate positive cash flows into his/her margin account, whilst losses can be mitigated by closing out the
position.  This means it is never optimal for the buyer to exercise such options early.

(2) See, for example, Melick and Thomas (1994).
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good deal of further research, including event studies and
the use of RND summary statistics in addition to the mean
in classic economic models, is required to extract the
maximum benefit from such information.

As a first step, it is important to be able to identify when a
particular change in an implied probability distribution is
significant by historical standards.  One way of doing this is
to establish suitable benchmarks.  This would enable a large
change in the shape of an RND function to be compared
with changes in market perceptions at the time of a
significant economic event in the past.  In addition, RND

functions could be estimated over the life cycles of many
historical contracts for the same underlying asset in order to
calculate average values for their summary statistics at
particular points in the life cycle.  These average values
would identify the characteristics of a typical implied RND
function during its life cycle.  The Bank plans to calculate
this information for the implied RND functions of 
short-term sterling and Deutsche Mark interest rates.  It is
also in the process of implementing the technique discussed
in this article for options on long-term interest rate futures
and for currency and equity options.
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Technical annex

This annex describes the objective function that we minimise in the two-lognormal mixture distribution approach to estimating
RND functions.

The price of a European call option can be written as the discounted sum of all expected future payoffs in a risk-neutral world,
that is,

 (1)

where c(X) is the price of a European call option with exercise price X, r is the (annualised) risk-free rate of interest over the
remaining life of the option, T - t is the time remaining until the maturity date, T, of the option, ST is the price of the underlying
asset on the maturity date, and q(ST) is the RND function of ST.

In theory any functional form for the RND function, q(ST), can be specified in equation (1), and its parameters estimated by
numerical optimisation.  But, given that options are traded across a finite range of exercise prices, there are limits on the
number of distributional parameters that can be estimated from the data.  As noted in the article, a flexible and numerically
tractable parametric specification for q(ST), which is consistent with observed financial asset price distributions, is a weighted
sum of two independent lognormal density functions.  Under this assumption the call pricing equation becomes:

(2)

where the weight parameter, q, lies between zero and one, and L(ai,bi;ST) denotes a lognormal density function for variable ST
with parameters ai and bi.

For fixed values of X and T - t, and for a set of values for the five distributional parameters and r, equation (2) can be used to
provide a fitted value of c(X).  This calculation can be applied across all exercise prices to minimise the sum of squared errors,
with respect to the five distributional parameters and r, between the option prices generated by the mixture distribution model
and those actually observed in the market.  In practice, since we can observe interest rates which closely approximate r, we use
this information to fix r, and thereby reduce the complexity of the minimisation problem.  So, the minimisation is carried out
with respect to the five distributional parameters only.

Since both call and put options are priced off the same underlying distribution, we include both sets of prices in the
minimisation.  Also, in the absence of arbitrage opportunities, the mean of the implied RND function should equal the forward
price of the underlying asset.  In this sense we can use the incremental information provided by the forward price of the
underlying asset by including it as an additional observation in the minimisation procedure.  The minimisation problem is:

(3)

subject to b1,b2 > 0 and 0 ≤ q  ≤ 1, over the observed strike range X1, X2, X3,....,Xn, where c(Xi) and p(Xi) are the observed
prices of call and put options, respectively, with exercise prices Xi, and St is the time-t (current) price of the underlying asset.
The (weighted) sum of the first two exponential terms in the last bracket in equation (3) represents the mean of the mixture
RND function.
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