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New estimates of the UK real and nominal yield curves

By Nicola Anderson and John Sleath of the Bank’s Monetary Instruments and Markets Division.

This article presents some new improved estimates of the UK yield curve, both nominal and real.  It
describes the rationale for changing the estimation techniques that we have previously used, in the light
of our own experience and developments in the academic literature.  The article also illustrates the use of
data from the general collateral repo market to derive estimates of the nominal yield curve at short
maturities.

Introduction

Nominal yield curves have been estimated in the Bank for
more than 30 years.  For the past five years, in common
with many other central banks, we have used the estimation
method proposed by Svensson (1994, 1995).  This is a
parametric method, with the entire curve described by a
single set of parameters representing the long-run level of
interest rates, the slope of the curve and humps in the curve.
Previously we used an in-house non-parametric method
described by Mastronikola (1991).  And before that we used
another parametric approach, with the parameters reflecting,
among other things, segmentation in the market and the
planning horizons of different investors.

Estimation of the real yield curve is a more recent
innovation, made possible by the introduction of 
index-linked bonds in the United Kingdom in 1981.  As
these bonds are indexed only imperfectly to the price level,
we have to use information from the nominal yield curve to
extract the real risk-free rates of interest embodied in their
prices.  Until now we have been using an iterative technique
developed by Deacon and Derry (1994), in which the real
yield curve is described by a restricted version of Svensson’s
model.

As discussed by Breedon (1995), the Svensson method was
preferred both to the earlier in-house method and the range
of alternative options available at the time, on the basis of
three key criteria.  Specifically:

● the technique should aim to fit implied forward rates 
(rather than, for example, yields), since the final 
objective is to derive implied forward rates;

● it should give relatively smooth forward curves, rather 
than trying to fit every data point, since the aim is to 
supply a market expectation for monetary policy 
purposes, rather than a precise pricing of all bonds in 
the market;  and

● it should allow as many economic restrictions as 
possible to be imposed.

For maturities of less than two years, estimates of both the
real and nominal yield curves have not been thought to be
reliable, and as a result have not been used by the Bank’s
Monetary Policy Committee, nor published in the Inflation
Report or Quarterly Bulletin.  This is partly because there
are few gilts at the short end of the yield curve (ie with
terms to maturity of two years or less), where expectations
may be relatively precise and where the curve may be
expected to have quite a lot of curvature.  More recently,
experience has led us to question whether the Svensson
estimates, even at the longer maturities, are the best guide to
monetary conditions in the United Kingdom.

The opportunity to shed new light on the performance of
these models has arisen, partly through the relatively recent
arrival of additional information from the gilt market (in the
form of strips prices), and partly through the development of
new techniques for estimating the yield curve.  In the latter
case, we find that a new model developed by Waggoner
(1997) offers a number of improvements on the parametric
methods currently used to estimate both the real and
nominal yield curves.  In addition, improvements in
extracting the real yield curve from index-linked bond prices
can be found using the non-iterative technique developed by
Evans (1998).

The following two sections describe the problem of
extracting information from the bond market and the choice
of techniques currently available.  We then examine some
estimates of the Svensson nominal yield curve.  In the light
of these observations, we describe a number of criteria for
comparing different methods of estimating the yield curve,
and discuss how these relate to four different models.  The
final two sections present estimates of the yield curve using
our preferred model, first extended to include general
collateral (GC) repo data at the short end, and then applied
to index-linked gilts.

Extracting information from the bond market

The most useful information that can be derived from the
government bond market is implied forward interest rates.
These are important in their own right as they reflect, albeit
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imperfectly, the market’s expectations about the future path
of interest rates.  But they also provide the building-blocks
for other types of information, including zero-coupon yields
and the synthetic bond prices we create to derive credit
spreads from corporate bonds.

Implied forward rates are the marginal rates of return that
investors require in order to hold bonds of different
maturities.  Ideally, we would like to measure
‘instantaneous’ forward rates, which are related to the price
of a bond as follows:

(1)

where f is the forward rate, B is the price of a zero-coupon
bond and τ is its maturity.  Given these forward rates, it is
straightforward to derive the implied forward rate of interest
between any two dates in the future, and at any point in
time.(1)

To measure the set of instantaneous forward rates directly
from the market requires a set of observable zero-coupon
bond prices across a continuum of maturities (the ‘discount
function’).  In practice, however, as we can only observe the
prices of coupon-bearing bonds,(2) the discount function is
not directly observable.  All we can do is to write the price
of each observable bond as follows:

(2)

where τ denotes the maturity of the bond, c is the coupon
payment made in each period, and n refers to the number of
such payments outstanding.  A more fundamental problem is
that these bonds are issued across only a finite set of
maturities.  We therefore need a method of disentangling the
discount function and ‘filling in the gaps’ to give a
continuous curve.

Parametric versus spline-based methods

The simplest method is to define the forward rate curve,
f(m), as a function, f(m,β), of a set of unknown parameters,
β.  This is the approach taken both by Nelson and Siegel
(1987) and by Svensson (1994, 1995).  In these models, the
parameters are related to the long-run level of interest rates,
the short rate, the slope of the yield curve and humps in the
curve.  Svensson’s model can be regarded as an extended
version of Nelson and Siegel’s model, with an additional
hump to help fit bond prices in the market.  The precise
specification of each of these models is described in the
Appendix.

In each case, via equations (1) and (2), the functional form
can be used to derive a fitted value for each bond price,

given the set of underlying parameters.  The parameters are
estimated to minimise an objective function that compares
these fitted values with observations from the gilt market.  A
variety of objective functions are available to us;  over N
bonds, we choose to minimise:

(3)

where Pi is the observed price of the ith bond, Di is its
modified duration, and Πi(β) is the fitted price.  This is
approximately equal to minimising the sum of squared yield
residuals (although it is much quicker to calculate), and so
implies roughly equal yield errors, irrespective of maturity.

Rather than specifying a single functional form to describe
instantaneous forward rates, spline-based techniques fit a
curve to the data that is composed of many segments, with
constraints imposed to ensure that the overall curve is
continuous and smooth.  This is the principle advantage of
spline-based techniques over parametric forms since, subject
to the continuity constraints, individual segments can move
almost independently of one another.

This is clearly illustrated in Charts 1a and 1b, which shows
an example of a simple non-linear least squares regression to
a set of arbitrary data points, using both the Svensson
functional form and a cubic spline.(3) When a single data
point is changed at the long end, the Svensson curve
changes dramatically, particularly at the short end, whereas
the spline moves only slightly to accommodate the new
data, and only at the long end.  Methods for fitting cubic
splines to the data differ in a number of ways, including the
objective function used.  The effect that this has on the
resulting yield curve estimates is discussed in later sections.

UK nominal interest rates estimated using
Svensson

At the long end of the yield curve, the Svensson model is
constrained to converge to a constant level.  The rationale
for this constraint is based on the assumption that forward
rates reflect expectations about future short interest rates, or
equivalently that the unbiased expectations hypothesis holds.
Assuming that this is true, it seems implausible that agents
will perceive a different path for the future short rate in 
30 years time compared with, say, 25 years.  So we should
expect to see constant expectations and forward rates at the
long end.

But how does this compare with data from the strips
market?  In theory, the observed strips’ yields should
provide a direct reading on the underlying term structure
that the Svensson method is attempting to describe.  Chart 2
compares the estimated yield curve with the yields on strips
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(1) The implied forward rate at time 0 between s and τ, for example, is given by 

(2) In fact, zero-coupon gilts have existed since the introduction of the strips market in December 1997.  These separate the two components of a
coupon-bearing gilt to give a principal strip with maturity equal to its redemption date and a series of coupon strips related to each payment date.
The market in strips is, however, still small relative to coupon-bearing gilts.  We therefore do not use strips prices to estimate the yield curve.

(3) The spline has been chosen to have the same number of degrees of freedom as the Svensson curve.
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on a day chosen at random, 19 June 1998.  The strips prices
clearly display a downward-sloping term structure at the
long end, compared with the constant level imposed by the
Svensson yield curve.  Assuming that expectations do

converge at longer maturities, this implies that there are
other factors driving strips’ prices (for example, risk premia
and convexity terms), so that the unbiased expectations
hypothesis does not hold.

Of course, the strips may be mispriced.(1) Direct evidence
from the gilt market, however, suggests that a 
downward-sloping yield curve may be justified, at least over
the maturity range that we consider.  Moreover, forcing the
long end of the curve to converge to a constant level can
produce a significant amount of instability in the estimated
yield curve.  This is shown in Chart 3, where we plot the
redemption yields on the 10-year benchmark bond and the
longest-maturity bond (with maturity of 29 years), together
with 20-year zero-coupon yield estimates derived using
Svensson.

This illustrates that, as the observed bond yields have
diverged more and more, the yield curve estimates have
been increasingly unstable.  We attribute this to the
parameterised nature of the Svensson curve.  Estimates at all
maturities rely on a single set of parameters, of which one is
the long-run level, determined largely by the yield on the
longest bond.  But the increasing divergence of the two
redemption yield series suggests that the level of this
asymptote is not well defined, at least in this maturity range.
As a result, the asymptote itself is likely to be unstable, and
this volatility will be transmitted into estimates of the yield
curve as in Chart 1.

A comparison of techniques

In the light of this experience, we examined a number of
alternative methods of yield curve estimation.  In particular,
we compared the performance of the Nelson and Siegel 
and Svensson methods with two spline-based models due 
to Fisher, Nychka and Zervos (1995) and Waggoner (1997).
(See Appendix for details of these models.)

Our preferred model is a modification of the spline-based
technique developed by Waggoner (1997), which he refers

Chart 1 Svensson method versus cubic spline
(a)  Original set of data points
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Estimated yield curve on 19 June 1998—Svensson 
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Chart 3
Time series of redemption yields at the long end
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(1) There is some concern about the reliability of strips prices in practice.  This is because the market is relatively new (introduced in December 1997),
and trading in strips is quite thin compared with conventional coupon gilts.
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to as the ‘variable roughness penalty’ (VRP) method.  This
model was chosen on the basis of a number of key criteria,
and on its performance relative to the alternative models in a
number of tests.  For the sake of brevity, the results of these
tests are not reported here.(1) Instead, we describe the
intuition for our choice of yield curve model.  The box
above describes the main features of our preferred model,
alongside our criteria.

In the Nelson and Siegel and Svensson methods, the yield
curve estimates are guaranteed to be smooth by the
parsimonious nature of the functional form—the curves are
simply not flexible enough to capture the idiosyncratic price
movements of every bond in the market.  But this raises the
question as to whether or not these methods are sufficiently
flexible to capture movements in the underlying term
structure.  We conducted an out-of-sample test.(2) Each
estimation method will produce a high in-sample goodness
of fit, but this may not be indicative of the underlying term
structure.  The important test is whether the estimated curve
can accurately price a bond that has not been used to
estimate the curve.

Comparing results for the Nelson and Siegel and Svensson
methods confirms Svensson’s view that additional flexibility
may be needed to capture variation in the underlying data.
Both methods give qualitatively smooth forward curves, but

the out-of-sample performance of the Nelson and Siegel
method is inferior to the Svensson model.

So how do the spline-based methods compare?  These
techniques are specifically designed to be more flexible than
the parametric forms.  However, when fitting a cubic spline,
we can control the smoothness of the curve by means of a
roughness penalty.  The objective function described in
equation (3) is modified, so that we now minimise XS,
where:

(4)

f″(m) is the second derivative of the fitted forward curve
(and so is a measure of its curvature) and M is the maturity
of the longest bond.  The choice of roughness penalty, λt(m),
marks the main distinction between the two spline-based
models we investigated.  Fisher, Nychka and Zervos
(‘FNZ’)(3) chose λt(m) to be constant across all maturities,
but variable from day to day.(4) In contrast, Waggoner
(1997) allowed λt(m) to vary across maturity, but kept it
constant from day to day.

Waggoner chose a three-tiered step function for his
smoothing parameter, with steps at one and ten years to
maturity.  This was based on the segmentation of the US
market into bills, notes and bonds.  The UK market cannot

X X m f m dmS P t

M
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(1) A forthcoming Bank of England Working Paper will discuss the results in full.
(2) See footnote (1) in the box above for a description of this test.
(3) Fisher, Nychka and Zervos (1995).
(4) The value of the smoothing parameter is chosen using a procedure known as generalised cross-validation.  This attempts to find the optimum value

based on the trade-off between goodness of fit and parsimony.

Criteria Properties of the VRP model

Smoothness

The technique should give relatively smooth forward Forward rates are estimated to maximise the fit of the 
curves, rather than trying to fit every data point, since the model to observed bond prices while penalising 
aim is to supply a market expectation for monetary policy curvature in the forward curve.
purposes rather than a precise pricing of all bonds in the 
market.

Flexibility

The technique should be sufficiently flexible to capture The extent to which curvature in the forward curve is 
movements in the underlying term structure.  It should penalised—the value of the penalty parameter—depends
also be relatively less flexible at the long end than at on maturity;  the shorter the maturity, the more structure
shorter maturities, but should not necessarily asymptote is allowed in the curve.  The penalty parameters are 
within the range of maturities defined by the market. chosen to maximise the out-of-sample(1) goodness-of-fit 

of the model estimates.

Stability

Estimates of the yield curve at any particular maturity Forward rates are described by a number of segments
should be stable, in the sense that small changes in data joined together.  This in effect localises the influence of 
at one maturity (such as at the very long end) do not have maturity idiosyncratic price movements to a specific 
a disproportionate effect on forward rates at other portion of the curve.
maturities.

Summary of key criteria and properties of the VRP model

(1) The term ‘out-of-sample’ here refers to the fit obtained for a bond excluded from the estimation.  To estimate the overall out-of-sample goodness of fit we leave out each bond in turn, estimate the 
yield curve, and calculate the average fitting error of the omitted bonds, a procedure known as cross-validation (Davison and Hinkley (1997)).
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be naturally divided in the same way.  We chose instead to
define λ(m) as a continuous function of only three
parameters.(1) Following Waggoner, the main criterion for
choosing these parameters was to maximise the 
out-of-sample goodness of fit averaged over our sample
period.(2)

Intuitively, there are a number of reasons to suspect that the
VRP method will provide us with more reliable estimates of
the yield curve.  First, by constraining the smoothing
parameter to be maturity-invariant, FNZ assume that there is
the same degree of curvature along the length of the term
structure.  But there are strong reasons to believe that this is
not the case.  In particular, investors are likely to be more
informed about the precise path of interest rates at short and
medium maturities (when interest rates are determined by
monetary policy and business cycle conditions) than at
longer maturities.  Hence FNZ’s curve may be too stiff at
the short end (and so unable to capture the true shape of the
underlying term structure) and/or too flexible at the long end
(and so over-fit the data).

Comparing the goodness of fit of the two spline-based
techniques supports these observations.  In particular, the
VRP curve outperforms the FNZ curve, which in fact does
worse than both parametric forms.  Intuitively, this is
because it suffers from the same lack of flexibility at the
short end as Nelson and Siegel.  At the same time, the long
end of the curve appears to be too flexible, fitting too
closely to bonds included within the sample.  Results for the
VRP method, on the other hand, are very similar to those
obtained with the Svensson model.

The main differences between the VRP and Svensson
models relate to the stability criterion (see the box on
previous page) and the constraints imposed at the long end.
As mentioned above, the Svensson model is constrained to
converge to a constant at long maturities, a property that
appears to contradict evidence from the strips market.  The
VRP curve, on the other hand, is constrained only to be very
smooth at these maturities.  Chart 4 illustrates the effect that
this difference has on the estimated yield curves.

Chart 4 shows that the spline-based curve is better able to
capture the shape of the underlying term structure implied
by strips, particularly at the long end.  Note that data from
the strips market were not used to derive these estimates.(3)

The effect that this has on the stability of our estimates is
shown in Chart 5.  This compares the 20-year zero-coupon
yields estimated using the new technique with those derived
from the Svensson model, and shows clearly that the former
are more stable.

More generally, the fact that the new model is 
non-parametric suggests that it is less likely to display the
sort of instability highlighted above.  To formalise this
property and the effect that it has on the stability of the

resulting yield curve estimates, we conducted a stability test.
All bond prices are subject to a measurement error, because
of the finite minimum price change (the ‘tick size’).  So we
require the estimated curve to be virtually unchanged if
bond prices are perturbed by an amount smaller than a half
of the tick size, and this forms the basis for the test.  As
expected, the two spline-based methods outperformed the
parametric models in this test.  The VRP method also
outperformed the FNZ method, probably reflecting the fact
that at longer maturities, the FNZ model is able to fit too
closely to individual bonds.

The short end of the yield curve

At the short end of the yield curve, there are relatively few
data from which estimates can be derived.  An alternative
approach is to introduce data from the money market.  But

Chart 4
Estimated yield curve on 19 June 1998—VRP model
versus Svensson versus strips
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(1) We specify the following function:  log λ(m) = L – (L – S)exp(-m/µ), where L, S and µ are the three parameters to be estimated.
(2) In practice, many combinations of these parameters gave similar out-of-sample goodness-of-fit measures.  Within this set of combinations, we chose

the set of parameters that corresponded to the highest level of smoothing.
(3) Market participants may use a similar yield curve to price non-trading strips from the gilts curve.  If so, this reinforces our belief that the VRP curve

captures the market’s views.

Chart 5
Comparison of 20-year yields since January 1999

4.0

4.6

5.2

5.5
Per cent

Jan. Feb. Mar. Apr. May June July Aug. Sept.

Svensson

VRP

1999

0.0

4.9

4.3



New estimates of the UK real and nominal yield curves

389

since we aim to measure the risk-free (or default-free) term
structure of interest rates, the choice of data is limited.
Although many short-term instruments are traded on the UK
money market, their prices are not generally consistent with
gilt prices, because they include a credit-risk premium.  This
leaves a choice of only two instruments:  Treasury bills 
(T-bills) and GC repo rates.

T-bills are short-term zero-coupon bonds issued by the
government, and so have the same risk-free characteristics
as gilts.  The outstanding stock of T-bills is, however, quite
small, and because commercial banks use them for cash
management purposes, their prices are widely accepted as
being unrepresentative of the underlying fundamental rate
determined by expectations.

A GC repo agreement is equivalent to a secured loan, and so
the credit risk is much lower than on unsecured Libor.  In
addition, the repo is marked to market daily, thereby
limiting the exposure of either party to large moves in the
value of the collateral.  The risk premium is further reduced
because the collateral comprises gilts or similar instruments,
for which there is virtually no chance that the issuer will
default during the term of the repo.  GC repo therefore
provides us with the only widely traded, virtually risk-free
short-term instrument.(1)

Chart 6 compares the yield curve estimates (based on the
VRP method) with and without the inclusion of GC repo
data, and the repo rates themselves.  The difference between
the two curves is striking.  When the GC repo data are
included, the curve exhibits a significantly different shape at
the short end.  At the same time, however, the two sets of
estimates are virtually identical at maturities longer than one
year.  This is important as it indicates that, even if there is
reason to doubt the reliability of the GC repo data or if these

are not available, we can still have confidence in estimates
at longer maturities.

Estimation of the real term structure

The estimation of the real term structure from the prices of
index-linked gilts (IGs) is considerably more complex than
deriving the nominal yield curve from conventional bond
prices.  This is mainly because IG coupon payments are
indexed to the level of RPI eight months before the 
cash flow occurs;  for the last eight months of its life, an IG
offers no inflation protection at all, and it therefore trades as
a purely nominal bond.  As a result, IG prices generally
reflect a mixture of both the real and nominal term
structures.

The approach we have been using up to now is described by
Deacon and Derry (1994).  By making an initial assumption
about the expected future path of inflation, the real forward
rate can be fitted (using a truncated Svensson curve).  The
difference between the real and nominal yield curves is then
calculated where, assuming zero inflation-risk premia, this
is determined by the market’s inflation expectations.  The
real curve is then re-estimated using this new inflation
assumption, and the process is repeated until convergence is
obtained.

Evans (1998) introduced a new framework for dealing with
the problems outlined above, avoiding the use of an iterative
procedure.  He derives a relationship between the nominal
and real term structures and the term structure of
(incompletely) indexed bonds,(2) allowing an interest rate
curve to be fitted directly to IG prices.  We have extended
his work to account explicitly for the variation of the
effective indexation lag for each IG’s constituent cash flows,
and also to deal with the delay in publication of the retail
price index.  A major advantage of this approach is that it is
significantly more transparent than the iterative procedure.Chart 6

VRP model:  short-end yield estimates with and 
without repo rates (19 June 1998)
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(1) On the other hand, we should be aware that GC repo rates can be affected by other factors.  One example is gilt collateral shortages, although this
effect may be diminished now that eligible collateral to be used in the Bank’s operations has been extended to include many euro-denominated
bonds (see Quarterly Bulletin, August 1999, pages 249–50).

(2) The index-linked term structure is a mathematical construct that simply allows us to price IGs using the standard discounted present value formula.
It is not in itself an interesting term structure, since it is a mixture of the real and nominal curves.

Chart 7
Nominal, real and inflation forward curves 
(19 June 1998)
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Chart 7 presents preliminary estimates of the real and
nominal yield curves using the VRP curve within this
framework.  It also shows the set of implied inflation
expectations, calculated as the difference between these two
curves.  The real yield estimates do not differ markedly
from those derived using the iterative technique.  Instead,
any differences in the nominal curve tend to be reflected by
the set of inflation expectations.  Work is still in progress to
assess the relative performance of the two techniques.

Conclusion

In recent years, the Bank has used a model put forward by
Svensson to estimate the UK nominal yield curve, and
currently employs a similar parametric approach to derive
the real yield curve.  Experience of using these models has
highlighted a number of problems.  We have shown in this

article that these problems can be resolved by using a
spline-based technique.  Moreover, this technique can be
extended to provide estimates at the short end of the
nominal yield curve, by including GC repo data.  Further
improvements relating to estimates of the real yield curve
may by found by applying the spline technique to the
theoretical framework put forward by Evans (1998).

In this article and in the November 1999 Inflation Report,
we have presented our improved estimates of the nominal
yield curve using the VRP technique.  As work is still
ongoing in relation to the real yield curve and inflation term
structure, estimates presented continue to be based on
Deacon and Derry’s (1994) iterative technique.  We intend
to replace these with our new estimates of the real yield
curve and inflation term structure in future editions of the
Quarterly Bulletin and Inflation Report.
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This Appendix outlines the four methods for estimating the
instantaneous forward rate curve discussed in the main text.
The two parametric models were proposed by Nelson and
Siegel (1987) and Svensson (1994, 1995).  One of the
spline-based models is the preferred choice of Fisher,
Nychka and Zervos (1995), and the other is a modification
(for the UK market) of the technique proposed by Waggoner
(1997).

Parametric models

Nelson and Siegel proposed that the instantaneous forward
rate curve could be parsimoniously modelled at all
maturities by a parametric function of the form:

where β = (β0, β1, β2, τ1)′ is the vector of parameters
describing the curve, and m is the maturity at which the
forward rate is evaluated.  The functional form has three
components:  a constant term, an exponential decay term,
and a ‘hump-shaped’ term.  The curve asymptotes to a
constant value of β0 at the long end, and has a value of 
(β0 + β1) at the short end.

To allow for additional flexibility in fitting the yield curve,
Svensson proposed an extension to Nelson and Siegel’s
model, adding an extra hump term to give:

The curve is now described by six parameters:  
β = (β0, β1, β2, β3, τ1, τ2)′.  Once again, the curve asymptotes
to a constant value of β0 at the long end, and has a value of
(β0 + β1) at the short end.

Smoothing cubic spline models

A generic spline is a piecewise polynomial, ie a curve
constructed from individual polynomial segments joined at
‘knot points’, with coefficients chosen such that the curve
and its first derivative are continuous at all points.  The
most commonly used polynomials are cubic functions,
giving a cubic spline.  The continuity constraints mean that
any cubic spline can be written in the form:

for some constants, α, β, γ, δ, ηi, where ki, i = [0,N] is the
set of knot points.

Though this is the simplest expression for a cubic spline, it
is numerically unstable,(1) and so instead we prefer to
represent our splines as a linear combination of cubic 
B-splines.  This is a completely general transformation (any
spline can be written as such a combination of B-splines of
the appropriate order), which cures the numerical problems.
B-splines of order n are most simply represented by the
following recurrence relation:

with Bi,1(x) = 1 if ki ≤ x < ki+1, and Bi,1(x) = 0 otherwise.  For
further details see Lancaster and S̆alkauskas (1986).

With a sufficiently large number of knot points, a cubic
spline can be used for interpolation.  If this approach were
adopted when fitting yield curves, the resulting term
structures would be very different from the smooth curve
that we require for monetary policy purposes.  To reduce 
the flexibility of the spline, we can either reduce the number
of knot points or impose a penalty on ‘excessive’ curvature
(or non-smoothness).  In both our spline-based models we
use the latter approach, and the difference between the two
methods lies in the different specifications of the penalty.

As described briefly in the main text, Fisher, Nychka and
Zervos (1995) specify a roughness penalty that is constant
across maturities, but which varies from day to day.  So the
objective function can be written:

where XP is the duration-weighted sum of squared price
residuals, and f ″(m) is the second derivative of the forward
curve, and so a measure of its curvature.  The constant λt is
chosen for each day.  If a large value is used, the curve is
very smooth, and the effective number of parameters is
reduced.  Alternatively, a small value results in a very
flexible curve, increasing the (in-sample) goodness of fit.
The ‘generalised cross-validation’ technique is used to
derive the optimum value of λt based on this trade-off
between parsimony and goodness of fit, using the estimated
curve and the observed bond prices.

Waggoner’s VRP method (and our modification) uses a
roughness penalty that is constant from day to day, but
depends on maturity.  The objective function can be written:
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(1) Computers have only finite accuracy, and the calculation of a spline using this expression typically involves subtracting very large, similar
numbers, resulting in (potentially) large errors.
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In this case, we need to specify a functional form for the
smoothing function.  We use:

log λ(m) = L – (L – S) exp (-m / µ)

where, L, S and µ are parameters to be estimated.  The
smoothing parameters were chosen to maximise the 
out-of-sample goodness of fit, with a preference for 
higher smoothing when (as was found to be the case in
practice) several combinations of the parameters gave
similar out-of-sample goodness of fit measures.

X X m f m dmVRP P

M

= + ′′[ ]∫ λ( ) ( )
2

0
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