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1 Introduction

Financial assets are usually valued as the discounted sum

of expected future cash flows from holding the asset.

Viewed in this way, market prices may be thought to

embody an aggregate ‘market view’ about expected

future cash flows, discount rates and any other variables

used in their valuation.  These views, in turn, are likely to

be related to the expected future economic environment

and so asset prices may provide policymakers with a

source of information about market expectations of

future economic prospects. 

Furthermore, derivatives traded on these assets allow

market participants to take views on the future values of

the assets themselves.  Option markets are an important

example of this.  Previous work published by the Bank of

England has illustrated the sort of forward-looking

information that options embody.(1) One useful

application for policymakers is that they can use option

prices to infer a set of probabilities attached by financial

markets to various future asset price levels.  In the jargon

this is referred to as an option-implied probability

density function (pdf) for the price of the underlying

asset in the future.  The width of the pdf will reflect

uncertainty about future asset prices.  And the extent to

which the pdf is asymmetric can potentially tell us about

market views on the relative risks that future asset prices

will be higher or lower, the so-called ‘balance of risks’.(2)

In inferring this sort of information from implied pdfs it

is important to bear in mind that the pdfs are extracted

under the assumption that investors are risk-neutral, that

is, investors do not require any compensation for

bearing risk.  However, investors are more likely to be

risk-averse and so care about risk.  As a result, the 

risk-neutral option-implied pdfs will reflect both investor

preferences toward risk and market participants’ ‘true’

pdf.(3)

Information about the shape of implied pdfs for different

asset prices forms part of the information set regularly

examined by the Bank in pursuing its two Core Purposes

of monetary stability and financial stability.  It is

primarily of use in helping policymakers to understand

market expectations about a range of future asset prices

— and, by extension, perhaps the economy.  For

monetary stability, interest rate probability distributions

implied by option prices are one way of assessing market

views about risks around the path of expected future

interest rates.  Such views could reflect market

uncertainty about the monetary policy reaction function

or about the nature of exogenous risks facing future

interest rates and the economy.  Turning to financial
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stability, information from option prices could be useful

in monitoring and assessing potential risks to the

financial system.  For example, concentrations of

probability in the tails of the probability distributions

for future asset prices may indicate growing perceptions

of a risk of unusual movements in asset prices.(1) More

generally, indicators from implied distributions are

widely used in the Inflation Report, Financial Stability

Review and Quarterly Bulletin in interpreting and

reconciling developments in a wide range of asset prices

including interest rates, exchange rates, oil and equity

prices.(2)

Some examples of pdfs for short-term UK interest rates

(three-month Libor) are shown in Chart 1.  The relative

width of the pdfs suggests that market uncertainty

declined between October 2002 and August 2003.  In

addition, relative to 2002, the pdf became more

symmetrical in 2003.  This suggests that market views

had moved from attaching a greater risk to lower, relative

to higher, future UK interest rates in October 2002,

towards a more neutral view of the balance of risks by

August 2003.

Comparing how probability distributions — or market

views — have changed between two dates is easily

achieved by such visual inspection.  But we may wish to

compare the shapes of distributions on many dates to

say something about how these market views of the

balance of risks have changed over an extended time

period.  In this case, visual analysis is less useful;  instead

we need to be able to measure the degree of symmetry or

asymmetry of a distribution and, having done so, relate

this measure to market views about the balance of risks.

That is, we need a statistic — a number each day — that

can summarise the shape of the distribution and that

can be compared across different days.  How might we

go about constructing such a measure?

Statistical theory can provide us with some guidance.

There are a number of well established measures for

evaluating degrees of asymmetry of probability

distributions.  Examples include the skew coefficient or a

comparison of aggregate probabilities above and below a

particular point in the distribution.  In deciding which

measure to use, there are, however, a number of issues

that we must first address.  This article looks at what we

need to consider in terms of choosing a measure of

market views about balances of risk to future asset

prices.  We look at the general question of choosing a

statistic to summarise the degree of asymmetry of any

pdf, ie not just those implied by option prices.(3)

Section 2 illustrates the potential pitfalls we face when

making this choice.  Our goal is then to identify

measures of asymmetry that are consistent with the

other information that we may take from a pdf — such

as a view of the most likely outcome or the expected

outcome.  

We begin by recognising the need to specify a reference

point, around which to look at asymmetry.  To this end,

we employ a so-called ‘loss function’ which we may

combine with information from a pdf to guide us in our

choice.  Section 3 introduces the concept of a loss

function and looks at some alternative functions and

what they imply for our choice of reference point.

Section 4 continues with this framework in obtaining

measures of pdf asymmetry that are consistent with

common reference points in a pdf.

Having set out some measures of asymmetry, we look at

how the choice of units when measuring changes in the

underlying asset price can affect the shape of the

option-implied pdfs.  For example, should we look at a

Chart 1
Option-implied pdfs for three-month Libor in six months’
time
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(1) The usefulness of the information from option prices is subject to the liquidity of the option contracts.  In particular, a
lack of liquidity in contracts that are far away from the money — that is, in the tails of the implied distributions —
means that reliably estimating the tails can be difficult.  Liquidity also tends to diminish the longer the time to expiry
of the contract.  In addition, there may be liquidity differences between call and put options so that the upper and
lower tails of the pdf may differ due to liquidity premia.  As a result, implied pdf asymmetry can reflect factors other
than market views on balances of risk.  The reliability of the pdf estimates is also subject to the smoothing of prices by
exchanges in calculating settlement prices and the discrete nature of both option price tick sizes and exercise prices.

(2) For examples see Inflation Report, August 2004, Section 6.2;  Financial Stability Review, December 2003, pages 12–13;
Quarterly Bulletin, Summer 2004, page 116.  

(3) However, throughout our discussion we illustrate our thinking using examples with pdfs implied by option prices.  
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probability distribution for changes in the level of the

asset price or changes in the logarithm of the asset

price?  This could have implications for how we relate a

measure of asymmetry for pdfs to market views on the

balance of risk to future asset prices.  Section 5

motivates this point further and sets out our analysis.

Finally, we consider some empirical findings on the

relationships between the various measures of

asymmetry suggested as well as with other frequently

used measures.        

2 Pdfs and asymmetry — setting up the
problem

To help to understand the problem of choosing an

appropriate measure of asymmetry, consider the example

of someone, say a policymaker, presented with a set of

probabilities for different values of a random variable

occurring.  In principle, this random variable could be

anything — from the number of sunny days in the

United Kingdom during summer to the level of the

sterling/euro exchange rate in six months’ time.

Continuing with our asset price focus, let us take the

random variable to be the level of the FTSE 100 equity

index in six months’ time.  

As for our interest rate example above, the policymaker

can plot the probability associated with each potential

FTSE 100 level to get a visual idea of the distribution of

probability — we do this in Chart 2.  Now the

policymaker, seeking to summarise the information in

the distribution, would like to choose a ‘point’ estimate

of the future level of the FTSE 100, six months hence.

Such point estimates are usually chosen from the

‘centre’ of the distribution and are often referred to as

measures of central tendency.  Common examples

include the outcome with the highest probability — the

mode, or the ‘expected’ outcome — and the mean,

calculated as the sum of all outcomes, weighted by their

probability.  

Let us suppose the policymaker chooses the mean

outcome as a point estimate.  Relying on a sole point

estimate may not be advisable and so the policymaker

will also want to know the spread of outcomes around

this point and whether the risks around this point are

stacked in one direction more than another (ie the

‘balance of risks’ mentioned earlier).  How might the

policymaker measure the balance of risks around the

point estimate?  One way might be to measure the

difference between the probability, in aggregate,

attached to outcomes above and below the point

estimate.  Alternatively, we could look to statistical

theory and use the well established method of

calculating the degree of skew of the probability

distribution.(1) We use both and compare the results.

Chart 2 shows that the distribution has a longer lower

than upper tail.  Visually we would say it has negative

asymmetry or that it is negatively skewed.  Calculating

the skew coefficient confirms this:  it is around -1.  From

this we might infer that the risks around our reference

point — the mean — are tilted towards lower, rather

than higher, outcomes.  However, measuring the

probability attached to the outcome being above and

below the mean, we arrive at a different conclusion. 

To see this, Chart 2 also plots the median of the

distribution:  that point at which there is equal

probability, in aggregate, attached to outcomes above

and below it.  The mean outcome lies below the median,

so the probability attached to outcomes above the mean

is greater than that attached to outcomes below the

mean.  We find that there is about 20 percentage points

more probability attached to FTSE 100 outcomes above

the mean than to those below the mean.  So from this we

might infer that the balance of risks around the mean

FTSE 100 outcome is actually positive — in contrast to

what the skew measure had indicated.  How can we

understand this difference?

Chart 2
Option-implied pdf for FTSE 100 in six months’ time 
on 22 March 2004
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(1) The skew is calculated by summing up each of the distances between potential outcomes and the mean, raised to the
power of three, and multiplied by the probability attached to each outcome.  This sum is then divided by the third
power of the standard deviation of the pdf to adjust for any effects due to changes in the width of the pdf. 



Using option prices to measure financial market views about balances of risk to future asset prices

445

3 Pdfs, reference points and loss functions —
a framework for thinking about asymmetry

In our example above, the first step in measuring the

degree of asymmetry of a pdf lay in our choice of a point

estimate or a reference point in the distribution.  Having

suggested some points of central tendency as candidates,

we arbitrarily picked the mean.  We then sought to apply

some well known measure of asymmetry to the

distribution and to infer something about the balance of

risks around this reference point.  But this choice is not

as innocuous as it may seem.  Below we consider the

choice of a reference point in a more structured

framework — that is, in the context of loss functions —

and show that this choice can depend, either implicitly

or explicitly, on the preferences of the person making

the estimate.(1) Our choice of asymmetry measure

should also be consistent with these preferences.  Thus

we should not be surprised that simply picking an ad-hoc

reference point and applying an ad-hoc measure of

asymmetry around it can provide conflicting indications

about the balance of risk in the distribution.  So our

challenge is to use this preference dimension or loss

function framework to derive measures of asymmetry

associated with common measures of central tendency

that we might use as point estimates. 

In principle, any point in a probability distribution may

be used to provide a reference point.  Can we set

ourselves some criterion against which to judge which

point is best?  An obvious reference point is our best

point estimate of the future value of the variable, given

our preferences.  So at a simple level, one criterion is to

say that an estimate is ‘best’ when it exactly matches the

subsequent outturn and that it suffers a loss of ‘quality’

when it differs from it.  Pursuing this line, we can

quantify this loss of quality by using what is termed a

loss function — a mathematical function that sets out

the loss or penalty incurred in picking an estimate that

is not the best that we could choose.(2) In economics,

loss functions are complementary to utility functions —

with the former we measure a cost/dissatisfaction

associated with a particular event whereas the latter

measure the benefit/satisfaction associated with an

event.  As a result, an individual’s preferences as revealed

in their utility function will also be revealed in the

corresponding loss function.(3)

How we measure this loss might depend on the purpose

for which an individual selects a point estimate.  So, for

example, one individual may express a preference that

puts all emphasis on getting the forecast exactly right

such that incorrect forecasts are equally bad, be they

incorrect by a very small margin or a very large margin.(4)

Another may be more willing to accept small errors so

that forecasts that are close, but not equal, to the actual

outturn are valued more (or penalised less) than those

that are very far away from it.  

Some visual examples may help to cement the idea;

Chart 3 shows three loss functions that are often used in

economics, engineering and other sciences:  the

quadratic, indicator and absolute loss functions.  The

horizontal axis shows the set of point estimates for the

random variable that we may choose from.  Also marked

on the horizontal axis is the location of the actual

outturn.  The vertical axis measures the loss that one

would incur for each point on the horizontal axis as the

point forecast, given the actual outturn.(5) For all three

Chart 3
Alternative loss functions
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(1) In our example, we have chosen to refer to this person as a policymaker.  However, when thinking about pdfs implied
by option prices we are examining the ‘market’s’ probability distribution or forecasts so should we not be concerned
with the preferences of the market?  For now, we continue with our example and address this point at the end of
Section 4.  

(2) This is analogous to a problem in engineering where products from a production process need to be
monitored/assessed to see if their quality matches the desired specifications of the product.  Loss functions are often
employed as tools to deal with the problem.  See Joseph (2004) for more details. 

(3) In a previous Quarterly Bulletin article (see Vickers (1998)), possible loss functions for the Monetary Policy Committee
were examined in terms of theoretically describing potential preferences of the Committee in pursuing its inflation
objectives as specified in the Bank of England Act 1998.  For more examples of applications involving loss functions in
economics, see Svensson (2004). 

(4) Consider someone placing a conventional bet on a horse race:  the nature of the bet will mean that picking the winner
and getting the forecast right is crucial and so the punter will place no value on forecasts that are incorrect by a small
(eg second place) or a large (eg second-last place) margin.  

(5) To facilitate a comparison of the three loss functions, the losses calculated under the quadratic and absolute loss
functions are normalised by dividing by the average loss under the respective function.



446

Bank of England Quarterly Bulletin: Winter 2004

functions, a zero loss is incurred when the estimate that

is picked is the same as the outturn.  Picking points away

from this best estimate incurs positive loss and the

different mathematical functions are designed to show

some alternative ‘loss schemes’.  The three alternative

schemes imply three different ‘attitudes’ towards

alternative point estimates.

● Beginning with the most basic loss function — the

indicator loss function — all points that are

different from the best estimate are deemed to

incur the same penalty.  In other words, all value is

placed on picking the best estimate and all other

potential forecasts are viewed as being of equally

poor quality.  

● In contrast, the quadratic and absolute loss

functions penalise different points according to

how far they are from the best point estimate 

(see the appendix for mathematical definitions).

Those points that are ‘close’ to the best estimate

incur a smaller penalty under the quadratic loss

function than under the absolute loss function.

But moving further away from the best estimate,

the quadratic loss function gradually begins to

penalise mistakes more than the absolute loss

function.  

The criterion set out above was based on choosing the

best estimate as the one that is equal to the actual

outturn.  Of course, this is of little practical use to us —

the reason that we are picking an estimate is because we

do not know what the outturn will be.  So, remaining

within the loss framework, we instead need to think

about the loss we would be expected to incur were we to

pick a given point as our best estimate.(1) To quantify

expected losses we need to use the information we have

about the probabilities attached to different outcomes

— the probability distribution.  So we can identify the

best estimate to choose as the point that we expect to

result in the smallest loss, given the probability that 

we attach to each outcome being realised.  In this 

sense the ‘best’ estimate now depends both on the

probability distribution of possible outcomes, as seen by

the person selecting the estimate, and on individual

preferences.

We show in the appendix that the ‘best’ point estimate

differs across the three loss functions as follows:

● For an indicator loss function, the best point

estimate is the mode of the distribution (the most

likely outcome).  Intuitively, this makes sense;

remember that our exercise is to choose the

estimate that will minimise our expected loss, 

given the probability attached to each point

actually occurring.  And our loss function is such

that we have an all-or-nothing character.  It then

follows that the logical thing to do must be to 

pick that point that is most likely to occur — the

mode — as our best forecast given our

preferences. 

● The mean of the distribution (or the average of all

possible outcomes) is the best point estimate

under a set of preferences given by a quadratic loss

function.  

● Finally, the best point estimate with an absolute

loss function is the median (the point in the

distribution such that there is equal probability of

the outcome being higher or lower than it).   

4 Characterising and measuring pdf
asymmetry

The previous section looked at how we could use loss

functions as a tool in helping us to choose our best

point estimate from our probability distribution.  How

can we use the concept of a loss function to arrive at

measures of pdf asymmetry that are consistent with the

best point estimates that our loss framework provides us

with?  We start by measuring asymmetry in terms of the

difference between the expected losses attached to

outcomes above and below the point estimate.(2) By

doing so we are assessing the balance of risks around a

reference point (ie making a relative assessment of the

upside and downside risks).    

So for a given distribution and loss function, we first

need to compute our best estimate and then we may use

the relative expected losses around this reference point

to compute the associated asymmetry measure.  Taking

the three loss functions mentioned above, we can derive

the asymmetry measures that are consistent with each of

them;  these are shown in Table A1.1 in Appendix 1.  We

briefly set out their key properties here:  

● Taking the indicator loss function first, we

mentioned earlier that the mode was the 

(1) It is important to acknowledge that focusing on ‘expected loss’ is in itself a preference-based choice.  For example, one
could choose to minimise the modal loss or the median loss. 

(2) We standardise the difference in expected losses by dividing by the total expected loss.
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best point estimate and hence that is our reference

point.  Under this loss function, the difference

between expected losses above and below the 

mode is shown to be the difference between the

aggregate probabilities of the future outcome

being above, and below, the mode.  Put simply, 

our asymmetry measure is just the difference 

in the probability masses above and below the

mode.  

● Turning to the absolute loss function, the loss

appears slightly less intuitive, with the relative

expected losses now the standardised sum of

probabilities weighted by the distance, in absolute

terms, of each potential outcome from the

reference point (the median).  This has a simple

form driven by the difference between the mean

and the median.  

● Finally, asymmetry under the quadratic loss

function is measured in terms of squared distances

of future outcomes from the mean outcome

weighted by the corresponding probabilities.  As a

result, those outcomes that are further away from

the mean will have a proportionately greater

influence in determining the magnitude/sign of

our measure.  Just how much influence they have

will be determined by their probabilities.  In this

sense, this asymmetry measure is closely related to

the statistical measure of skew.

For all measures, a positive (negative) number indicates a

greater expected loss attached to outcomes above

(below) the central projection than to those below

(above).  In terms of the option-implied pdfs, the positive

(negative) number would indicate that the market views

the balance of risks to point to a relative upward

(downward) risk to asset prices.  In the case of a

unimodel symmetric probability distribution, the mean,

mode and median all coincide and so the best point

estimate under each of the three loss functions is the

same point in the probability distribution.  In this case

the asymmetry of the distribution will be zero, reflecting

the fact that the expected losses above and below the

single reference point are equal, regardless of the loss

function with which they are measured.  So, for example,

the bell-shaped ‘normal’ probability curve — a

frequently used symmetric distribution — has zero

asymmetry under all three loss functions discussed

above.  This feature of the normal distribution means

that it is a useful benchmark when assessing the degree

of asymmetry of probability distributions.

To illustrate how the loss function combines with a pdf

to produce an expected loss function we examine an

option-implied pdf for the FTSE 100 equity index and

the three loss functions in Chart 4.  The lower part of

Chart 4 illustrates the expected losses at each index level

for the three loss functions, with the upper part showing

the FTSE 100 pdf.  That is, for each level of the 

FTSE 100, we evaluate the expected loss were that level

chosen as our best estimate.  Plotting the resulting

expected losses against associated FTSE 100 levels

provides the expected loss functions in the lower part of

Chart 4.  The expected loss for the indicator loss

function is minimised on the mode;  that for the

quadratic on the mean;  and that for the absolute on the

median.  The asymmetry of expected loss for projections

above and below the best estimates is also evident,

reflecting the negative asymmetry of the probability

distribution.  This negative asymmetry arises because

market participants are paying more for insurance

against a large fall in the FTSE 100 than they are for

protection against a corresponding large rise in the

index.

Chart 4
FTSE 100 pdf, expected loss functions and optimal
central projections
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We should now be able to understand why we obtained

seemingly inconsistent measures of asymmetry for the

FTSE 100 pdf in the example in Section 2.  Our 

loss-based framework implies that loss functions, central

projections and asymmetry are linked.  It was the

arbitrary mixing of the reference point and asymmetry

measures that created the inconsistency.  Recall that in

Section 2, we compared two measures of asymmetry —

the skew and difference in upper and lower cumulative

probabilities, using the mean as our point of reference.

But our analysis has shown that the mean is associated

with the quadratic loss function and so neither of these

measures may be fully consistent with it.  Instead we

should be using the measure of asymmetry appropriate

for the quadratic loss function.(1) Using appropriate

measures of asymmetry with different central projections

should provide consistent measurement of the degree of

pdf asymmetry.  We demonstrate this empirically in

Section 6.

Though we set out our example using a ‘policymaker’, we

have already noted that it may be applied to anyone

wishing to summarise the information in a probability

distribution for any variable.  But our emphasis from the

start lay with the information that we can get from

option prices on market views about future asset prices.

And the set of probabilities that we extract from option

prices are market probabilities rather than those of the

policymaker.(2) This might beg the question:  whose

preferences should we be concerned about in choosing a

loss function?  Strictly speaking, if our aim is to

summarise market views it should be those of the

market.  The views we are considering are aggregate

market views — the result of many interactions of

individual heterogeneous agents and we have no idea

what might be a reasonable loss function.  But we argue

that we need not be so concerned with this point.  What

is important is that, in considering market views, we use

asymmetry measures that are consistent with alternative

central projections.  The loss functions may be viewed

simply as tools that allow us to identify these measures

for commonly used central projections.

Until now our discussion has focused on ‘how’ we can

measure pdf asymmetry.  But before we can interpret this

measure of asymmetry in terms of market views about

where the risks lie, on balance, to asset prices in the

future, we need to think about ‘what’ it is that we want to

measure the asymmetry of.  Our examples above used

pdfs of the level of a random variable — the FTSE 100

— but is there a case to be made for looking at the pdf

of future logarithmic changes in the level of financial

variables instead?  And does this affect our

interpretation of asymmetry as an indicator of market

views on the balance of risks to asset prices? 

5 Asset price levels, logarithmic changes
and option-implied pdf asymmetry

The shape of a pdf will depend on the units with which

we choose to measure the variable;  whether, for

example, we look at levels of asset prices (or, equivalently,

simple proportional changes in price levels) or

logarithmic changes in asset prices.(3) But why might we

choose to look at units such as logarithmic changes

instead of asset price levels themselves? 

When evaluating the performance of different

investment assets — such as equities, bonds and futures

contracts — logarithmic growth rates are often preferred

to simple (proportional) changes in asset prices for a

number of reasons: 

● Asset prices cannot be negative, which means that

the distribution of possible asset price levels

should naturally be asymmetric.  Looking at the

logarithm of the underlying asset price may allow

us to get around this because the logarithm of

positive numbers does not have a lower bound at

zero. 

● In addition, for assets like exchange rates,

logarithmic changes are not dependent on the way

prices are quoted.  That is, a given appreciation of

sterling against the euro implies the same

depreciation of the euro against sterling when

changes are calculated in logarithmic terms.  That

is not true when calculated using levels.  

● A further advantage of logarithms, when

considering probability distributions, lies in the

equivalence of pdfs in log levels and pdfs in log

changes.  That is, as the price today is known, the

logarithmic change over some future horizon is

(1) However, we show in a later section that, empirically, the measure of asymmetry based on the quadratic loss function is
strongly associated with the skew measure.  

(2) As noted earlier, the risk-neutral nature of the option-implied pdfs means that the implied probabilities will reflect
both market views on probabilities and compensation for risk.  The latter factor means that the probabilities
themselves are also likely to reflect the preferences of the person selecting the estimate.

(3) By changes in asset prices we mean the change in the asset price at some horizon relative to today’s futures price for
that horizon. 
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simply the logarithm of the price level in the future

minus a constant.

● Finally, logarithmic changes (or growth rates) and

their sum provide a better description of the actual

change over a period than the sum of simple

proportional changes.(1)

So how will pdfs in terms of logarithmic changes for

asset prices differ from those in terms of price levels?

Let us consider the special case where asset prices are

assumed to be ‘lognormally’ distributed.  What do we

mean by this?  A random variable, say an asset price, is

by definition said to have a lognormal distribution if the

logarithm of the asset price is normally distributed.  And

a lognormal distribution for the level of asset prices

necessarily means that simple proportional changes of

the asset price level will also follow a lognormal

distribution.  In contrast, the logarithmic price level or

logarithmic price level changes would have a normal

distribution.  

Chart 5 illustrates the difference for two theoretical

random variables – x1 and x2.  It shows the frequency

distributions for 30,000 random observations for x1,

drawn from a lognormal probability distribution.

Taking the logarithm of the lognormal variable x1, we

obtain normally distributed random observations for x2.

We can see that x2 takes both positive and negative

values while x1 observations are only positive.

Furthermore, x2 is symmetrically distributed, in contrast

to the asymmetric distribution for x1.

What significance does this have for pdf asymmetry?

Suppose we are considering an option-implied pdf for

asset price levels or changes.  In terms of its shape, the

lognormal distribution for levels or simple price changes

would have a natural positive asymmetry under each of

our asymmetry measures.  But the pdf for logarithmic

price levels or changes would be symmetric.  In this

sense, by looking at the asymmetry of the pdf for

logarithmic changes, what we are really considering is

the excess skew in asset prices — that is, how

asymmetric the pdf for asset prices is relative to some

‘natural’ benchmark (which we take to be lognormal).  A

further illustration of this point in the context of option

pricing and implied volatilities is provided in the box on

page 450.

How realistic is this assumption?  Much of the empirical

finance literature has shown that probability

distributions for historical logarithmic changes in asset

prices, especially for equity indices, exhibit non-normal

features.  This is especially so for short-horizon changes

such as those at the daily frequency.  But we focus on

pdfs for much longer horizon changes — those over

three, six, nine and perhaps twelve months.  For such

horizons the evidence in the literature is less clear:

empirically it is difficult to estimate reliably probability

distributions for changes over these horizons due to

insufficient numbers of independent past observations.

However, at a theoretical level, the Central Limit

Theorem is sometimes cited to reason that logarithmic

changes at these horizons may be better approximated

by a normal distribution than short-horizon changes.(2)

To illustrate the effect of using an asymmetry measure

from the implied logarithmic changes pdf (or

equivalently, the logarithmic level pdf) and the implied

price level pdf to assess market views on the balance of

risks to asset prices, Chart 6 shows time series of an

asymmetry measure from each of the six months ahead

implied pdfs for oil prices. 

It is clear that the two series are highly correlated.  The

level difference between the two means that asymmetry

(skew) in level space would imply a positive balance of

risks most of the time.  But this is not the case for

(1) Consider an asset price which changes from 100 to 150 in period 1 and back to 100 in period 2.  The sum of
proportional (arithmetic) changes is 0.50 – 0.33 = 0.17 while the sum of logarithmic (geometric) changes is 
0.41 – 0.41 = 0.  The sum of arithmetic changes is positive despite the price of the asset at the end of period 2 being
the same as in period 1.

(2) See Campbell, Lo and MacKinlay (1997, page 19) for more details.

Chart 5
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The assumption that asset price levels (or simple
proportional changes in asset prices) are lognormally
distributed is frequently used in the pricing of option
contracts.  For example, the Black-Scholes (1973)
model, a benchmark model for option pricing, is
consistent with this assumption.  One of the reasons
it is a useful benchmark for option pricing is because
the logarithmic growth rate of asset prices in the
Black-Scholes model is normally distributed.  
In practice, however, the implied pdfs that we 
observe often deviate from that implied by the 
Black-Scholes model.  Nonetheless, if we look at pdfs
based on logarithmic changes then the model may
still be useful as a benchmark for assessing
asymmetry.   

To see why this may be so, let us consider the
volatilities derived from the prices of option contracts
(often referred to as option premia).  The 
Black-Scholes formula can be used to infer, from the
option premium and other characteristics of the
contract, the ‘implied volatility’ of the price of the
underlying asset.(1) If the Black-Scholes model is
correct then this implied volatility should provide a
measure of the expected volatility of the underlying
asset over the remaining life of the option contract.
Plotting the Black-Scholes implied volatilities across
different exercise prices is called the ‘implied
volatility smile’.  The information that goes into a pdf
is essentially the same as that on which the relevant
volatility smile is based.(2) In fact it is the slope of the
implied volatility smile that determines the shape,
and hence the degree of asymmetry, of the implied
pdf.  A flat volatility smile is consistent with the
assumptions of the Black-Scholes framework, and so is
often used as a convenient benchmark for assessing
deviations from the Black-Scholes implied
distribution for logarithmic changes (ie the normal
distribution).(3)

In practice, a flat volatility smile is rarely observed.
Charts A and B provide an example of an
(interpolated) volatility smile implied by FTSE 100
option contracts with December 2003 expiry (as of 
3 November 2003), together with the corresponding
implied probability density function for logarithmic
changes.  For comparison, the volatility smile and
implied pdf under a Black-Scholes framework are also
shown.(4) The observed smile for the FTSE 100 is

downward sloping and thus deviates from the 
Black-Scholes flat volatility smile.  That is, the implied
volatility smile suggests that investors are paying
higher premia for contracts with low FTSE 100 strike
prices than suggested by the Black-Scholes model.(5)

This is then reflected in the implied pdf with lower
outcomes (ie more negative logarithmic changes)
having relatively more probability than implied by the
Black-Scholes normal pdf.  Consequently the
associated FTSE 100 implied pdf is not normal, in
contrast to the Black-Scholes benchmark.  

Option-implied pdfs, the Black-Scholes model and implied volatility smiles

Chart A
FTSE 100 volatility smile and corresponding flat
volatility smile
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Chart B
FTSE 100  implied pdf and corresponding normal pdf
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(1) The ‘implied volatility’ is the annualised standard deviation of logarithmic changes in the price of the underlying asset over the remaining life of the
option contract. 

(2) All of the techniques for extracting pdfs from option premia have as their input a set of option prices corresponding to different strike prices or
equivalently a set of implied volatilities with corresponding strike prices.  More information on the technique used to extract the implied pdfs in this
article can be found in Clews, Panigirtzoglou and Proudman (2000).

(3) More specifically, an underlying asset stochastic process with constant volatility is consistent with the Black-Scholes framework. 
(4) The normal pdf is fitted with the same mean and variance as that of the FTSE 100 implied pdf.  Logarithmic change is with respect to the current

futures price. 
(5) There is a one-to-one positive relationship between option premia and implied volatility so one may think of implied volatility as a transformed

premium. 
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logarithmic changes.  Asymmetry on average is very close

to zero.  Here we take zero to represent the benchmark

level of skew for both pdfs.  However, if the level pdf is

naturally asymmetric then zero would not be the

appropriate benchmark level of skew.  On the other

hand, if the distribution of longer-horizon logarithmic

changes is closer to a normal distribution then we may

use zero as the benchmark for the corresponding pdf

asymmetry series.  So focusing on the asymmetry of the

logarithmic changes pdf provides a more straightforward

read on asymmetry and market views about the balance

of risks.  

6 Empirical comparisons of alternative
asymmetry measures

Thus far we have set out and considered some

theoretical aspects on appropriately measuring

asymmetry of option-implied pdfs and on relating this

measurement to market views.  We now turn to some

empirical analysis to support our reasoning, using

option-implied pdfs that we estimate on a daily basis.  In

addition, we compare the measures of asymmetry

recommended above with other often-used measures of

asymmetry.     

Appendix 2 shows the empirical associations between

our measures of quadratic, absolute and indicator

asymmetry from implied pdfs for logarithmic changes,

over a large sample of option-implied probability

distributions.  Table A2.1 shows correlations between

the measures, while Table A2.2 shows the percentage of

days for which the measures have the same sign.  These

suggest that the absolute, indicator and quadratic

asymmetry measures are all very highly correlated.  In

addition, the percentage of days when the quadratic and

absolute asymmetry measures have the same sign is high

(89%).  However, the percentage of days for which the

indicator asymmetry measure has the same sign as either

the quadratic or absolute measure is somewhat lower —

around 78%–80%. 

It may be surprising that the three asymmetry measures

do not have the same sign for an even higher proportion

of our sample.  One possible reason for this is

measurement error.  This is especially the case with

mode-based statistics, as the mode is difficult to

estimate accurately relative to the other points of central

tendency.  In addition, most of the observations where

the three asymmetry series have different signs are

where the pdf is nearly symmetric.  

Overall, these findings suggest that the measures are

fairly consistent in measuring the asymmetry of the

implied pdf, but may provide different signs for

asymmetry at times when measurement error is high

and/or asymmetry is close to zero.

Finally, we compare our asymmetry measures with a

number of other commonly used measures: 

● The skew (third central moment standardised by

the standard deviation) of the logarithmic changes

implied pdf.  This is the preferred measure of

asymmetry in analyses of balances of risk for most

asset prices at the Bank and is often reported in

Bank publications. 

● The difference between the mean and the mode

and between the mean and the median of the

logarithmic changes implied pdfs standardised by

the corresponding standard pdf deviation.

● The risk reversal — or the difference between the

costs of insurance against increases in the

underlying asset price (beyond a certain level) and

insurance against decreases.(1) The risk reversal is

regularly traded and quoted by investment banks

in the over-the-counter foreign exchange options

Chart 6
Six months ahead option-implied oil price asymmetries(a)
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(a) These statistics are obtained from pdfs derived from option prices on the West 
Texas Intermediate light, sweet crude oil contract traded on the New York Mercantile
Exchange.

(1) So a positive (negative) risk reversal suggests market participants are paying more (less) for insurance against increases
in the underlying asset price than against decreases and thus suggests that the balance of risks for the underlying
asset price is positive.  Formally, it is the difference between equally out-of-the-money (25-delta) call and put-implied
volatilities and gives an idea of the slope of the implied volatility smile (see the box on page 450).  We standardise it by
dividing by the at-the-money implied volatility.  As a benchmark, a lognormal distribution (which is positively skewed)
has a risk reversal of zero.
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market for example.  As a result, it is the preferred

measure of balances of risk for exchange rates in

analysis at the Bank.

Each of these measures is very highly correlated with the

three loss-based asymmetry measures.  There are strong

relationships between the sign of the quadratic loss

asymmetry measure (which corresponds to the mean

central projection) and both the skew and risk reversal;

and between the mean minus the median and the

absolute loss asymmetry (which corresponds to the

median central projection).  

This suggests that both the skew and risk reversal are

reliable measures if one chooses the mean of the implied

pdf as a central projection.  In addition, the difference

between the mean and the median is useful when the

median is chosen as a central projection.  In contrast,

the lower same-sign percentage statistic between the

mean minus the mode and the indicator loss asymmetry

measure suggests that the mean minus the mode is a less

reliable indicator of asymmetry when using the mode as

a central projection. 

7 Conclusions

The above analysis explores many of the issues involved

in measuring and interpreting probability distribution

asymmetry.  It is worth emphasising that much of the

analysis arises out of a need to summarise how the

information in a probability distribution evolves over

time.  To do this, it is necessary to use a framework

based on loss functions in order to ensure that our

measures of asymmetry are consistent with other

information that we can take from a probability

distribution.  But if we were not interested in

summarising the information in the probability

distribution, an analysis of the probability distribution

would not need to involve consideration of loss

functions.

The article has focused on the analysis of two summary

measures of a probability distribution, the central

reference point/point estimate and the asymmetry.

These are both shown to depend on an assumed loss

function and, as a result, matching the two is important.

Taking three commonly used point estimates, we derive

the corresponding measures of asymmetry as the

difference between expected losses above and below a 

decision-maker’s best point estimate.  For the symmetric

normal distribution, the asymmetry measures are all zero

under the three loss functions we consider.  Given this,

the normal distribution is a commonly used benchmark

when examining asymmetry.  

Turning to the units in which we measure changes in

asset prices, we show that this choice will affect the

shape — and thus the degree of asymmetry — of 

a probability distribution.  For example, under the

popular metric of logarithmic changes in asset 

prices, the normal distribution benchmark coincides

with that implied by the Black-Scholes option-pricing

model.

Taking these general considerations into account, the

article finally turns to the specific task of relating the

information in probability distributions implied by

option prices to market views about the asymmetry 

or balance of risks to future asset prices.  Empirically, 

we found the loss-based asymmetry measures to be 

fairly consistent in measuring the asymmetry of 

option-implied pdfs, but they may provide different

signs for asymmetry at times when measurement error is

high or when asymmetry is close to zero.  Other well

known measures of asymmetry were found to be reliable

indicators.  That is, the risk reversal and implied pdf

skew are useful when the mean is used as a point

estimate, while the difference between the mean and the

median is useful when the median is used as a point

estimate. 
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Appendix 1:  Loss functions and associated central projections and asymmetry measures

Table A1.1

Loss function Central projection(1) Asymmetry 

Indicator Mode:  

Absolute Median: x50

where 

Quadratic Mean:

(1) Where f(x) refers to the probability distribution of x.

Appendix 2:  Relations between alternative measures of asymmetry for option-implied pdfs for
logarithmic changes in oil price(1)(2)

Table A2.1:  Correlations

Absolute Quadratic Indicator Risk reversal Skew Mean-mode Mean-median

asymmetry asymmetry asymmetry

Absolute asymmetry 1.000

Quadratic asymmetry 0.953 1.000

Indicator asymmetry 0.813 0.848 1.000

Risk reversal 0.952 0.999 0.849 1.000

Skew 0.951 0.999 0.845 0.999 1.000

Mean-mode 0.883 0.923 0.986 0.923 0.921 1.000

Mean-median 1.000 0.952 0.814 0.951 0.951 0.885 1.000

Table A2.2:  Percentage of observations with same sign

Absolute Quadratic Indicator Risk reversal Skew Mean-mode Mean-median

asymmetry asymmetry asymmetry

Absolute asymmetry 100.0

Quadratic asymmetry 88.8 100.0

Indicator asymmetry 79.6 78.3 100.0

Risk reversal 88.3 97.5 76.5 100.0

Skew 88.8 99.4 77.9 98.0 100.0

Mean-mode 85.6 84.3 94.0 82.5 83.9 100.0

Mean-median 100.0 88.8 79.6 88.3 88.8 85.6 100.0

(1) These statistics are obtained from pdfs derived from option prices on the West Texas Intermediate light, sweet crude oil contract from 1987–2000, traded on the New
York Mercantile Exchange.

(2) See Section 6 for definition of risk reversal, mean-mode and mean-median asymmetry measures.
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