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Motivation

• Disentangling the source behind an in�ation surge is crucial for the assessment of

in�ation persistence and monetary policy trade-o�s.

• Typically challenges around identifying:

1. the role of demand and supply

2. non-linearities

• Use machine learning (ML) methods to capture non-linearities

• ML often subject to a �black box" critique

• We propose an interpretable boosted tree model with economic intuition:

• structured into Phillips curve type blocks to linearly separate di�erent components

driving in�ation

• disentangling supply- and demand-like contributions via monotonic constraints on

the direction of association between predictors and in�ation 1



Existing literature

In�ation supply & demand drivers

• Decomposition using disaggregated prices and quantities: Shapiro et al. (2022); Firat and Hao (2023),

• DFMs, SVARs with sign restrictions: Eickmeier and Hofmann (2022); Kabaca and Tuzcuoglu (2023);

Banbura et al. (2023); Ha et al. (2024); Giannone and Primiceri (2024).

Non-linearities or ampli�cation mechanisms in in�ation

• due to in�ation expectations, supply constraints, and non-linear Phillips curve slope: Hazell et al. (2022);

Cerrato and Gitti (2022); Benigno and Eggertsson (2023); Gitti (2024); Ascari and Haber (2022); Harding

et al. (2023); Di Giovanni et al. (2023).

In�ation forecasting using machine learning

• Medeiros et al. (2021); Lenza et al. (2023) (among others)

Machine learning literature

• Monotonic constraints (Cano et al., 2019; Martens et al., 2011)

• Additive models that sum non-linear signals of predictors (Lou et al., 2012; Agarwal et al., 2021)

Neural network for in�ation with Phillips curve components (Goulet Coulombe, 2022)
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Main �ndings

1. Block structure and monotonic constraints help separate demand and supply drivers

2. Non-linearities in all blocks in recent episode.

• demand: non-linear Phillips curve association with unemployment and v/u ratio

• supply: non-linear e�ects from global supply chain pressures

3. Competitive out-of-sample forecast performance.
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The Blockwise Boosted Tree

In�ation Model



Boosted Tree method - no economic structure yet

πt+h = F (Xt−p) =
∑

fi(Xt−p) + εt

• πt+h; h = 1 - one month ahead monthly in�ation rate

• Xt−p; p ∈ 0, 1, 2; - large set of monthly indicators at period t and two lags

• fi(·) - decision trees

• Sum predictions of decision trees to form overall prediction.

• Decision trees are �t sequentially. Fit trees between the input variable and in�ation.

Each tree learns from errors of previous trees.

4



Blockwise Boosted In�ation Model (BBIM) with Phillips curve components

Inspired by Phillips curve framework:

πt+h = ρπt−p + βEt−p(πt+h) + λgt−p + φcost_push∗t−p + εt

Our speci�cation:

πt+h = Trendt−p + Supplyt−p +Demandt−p + εt

Block-wise boosted tree model:

πt+h =

M∑
i=1

fTrend
i (XTrend

t−p )+

M∑
i=1

fDemand
i (XDemand

t−p )+

M∑
i=1

fSupplyi (XSupply
t−p )+ ...+ εt

• Blocks based on di�erent groups of indicators: expectations, wages, activity,

supply indicators.

• Non-linear decisions trees within blocks

• Blocks conditionally linear with respect to each other.
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Training the blocks conditionally on each other � step-wise learning algorithm

• Initialise boosting model F with target in�ation: F0 = 2

• Fit trees f to residuals of previous trees rim = π − Fj−1

• Update model with learning rate ν = 0.02: Fj(x) = Fj−1(X) + νfm(Xk
i )

f1(X
Trend)

f1(X
Demand)

f1(X
Supply)

f2(X
Demand)

f2(X
Supply)

f2(X
Trend)

Learn tree on residuals: π − F0

Learn tree on residuals: π − F1(x)

Update predicted value: F1(x) = F0 + νf1(x)

Update predicted value: F2(x) = F1(x) + νf2(x)

...

...

...

Trees

Error

Trend tree

Demand tree

Supply tree

Demand tree

Supply tree

Trend tree
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Inside the blocks � Illustration of decision trees

Fitting an arbitrary non-linear function with a

decision tree, in this case, Y = 1
1+exp(−X)

 < 0.011
 >= 0.011

x

0.088
51%

0.92
49%
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Inside the blocks � Illustration of decision trees

Fitting an arbitrary non-linear function with a

decision tree, in this case, Y = 1
1+exp(−X)

 < 0.011

 < −1.5  < 1.6

 >= 0.011

 >= −1.5  >= 1.6

x

x

0.031
41%

0.32
10%

x

0.69
10%

0.97
40%
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Separating demand-type and supply-type associations: monotonic constraints

on tree splits

The bottom-left split violates restriction of a positive

association and is discarded.
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Separating demand-type and supply-type associations: monotonic constraints

on tree splits

Functional form constrained to be monotonically

increasing

• Splits that violate restrictions (when x1 < x2, then

ŷ1 ≤ ŷ2) cannot be used

• Tree algorithm �nds alternative splits or does not

split

• Implemented in standard packages
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Model blocks and groups of indicators: monotonic constraints

GROUP INDICATORS DEMAND SUPPLY

Expectations, services in-
�ation, wage growth

time indicator, 1-y ahead household in�. expectations, 5-y ahead �nancial
market expectations, regular wage growth, services in�ation, sub-components
by sector

Global activity global PMI; US, EA: industrial production: US, EA: imports + −
global activity shock, oil consumption demand shock (Baumeister and Hamil-
ton, 2019)

+

UK activity industrial production, index of services; exports, imports, PMIs: services, man-
ufacturing, construction; retail sales; consumer sentiment, quarterly (interpo-
lated): consumption, investment

+ −

Labour market: v/u ratio, employment, + −
Labour market: unemployment rate − +

Global supply & costs commodity prices: energy, non-energy, metals, food, agriculture +

global supply chain pressures: GSCPI (Fed), SCI (BoE) +

US PPI, EA PPI +

oil supply news shock (Känzig, 2021), global oil supply shock (Baumeister and
Hamilton, 2019)

+

UK supply & costs CPI components: goods, food, electricity, gas; +

PPIs: input, output, gas, electricity; UK spot gas price +
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Empirical set-up

• Cross-validation (CV) estimation over whole sample period: 1988�2024

• Consistent model learned on all time periods, to derive decomposition of in�ation

• Repeated CV (10x) to obtain stable estimates and estimate model stability.

• Missing values imputed with median values (alt.: EM algorithm).

• Out-of-sample forecasting

• forecast performance against other models: AR(2), random forest, Lasso

• Initial training window 1988�1999, then expanding window forecasts. Retrain every quarter.

Not accounting for data release calendar or revisions for now.

• Use Shapley values (Lundberg and Lee, 2017) to derive contributions from individual

indicators to prediction & show functional forms learnt Shapley values
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Results



UK CPI in�ation decomposition, 1989-2024

Mean importance of indicators Decomp. with �nancial & MP components
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Domestic demand - functional forms: kinked Phillips curve in UE and tightness

(V/U ratio), less evidence for non-linearity in other activity measures
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Supply: non-linear association with supply chain pressures, food, goods price

in�ation
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Role of monotonic constraints: un-identi�ed model with activity and input

costs components, no monotonic constraints

Demand (baseline)
Global demand (baseline)
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Activity contribution does not capture relevant demand �uctuations.

Supply contribution under-estimated recently. 14



Results: Forecasting performance



Model performs competitively in out-of-sample forecasting

Complete sample 2000�2019 2020�2024

AR2 1.00 ( N/A) 1.00 (N/A) 1.00 (N/A)

Random forest 0.89*** (0.00) 0.90*** (0.00) 0.86** (0.01)

Lasso regression 0.87*** (0.00) 0.88*** (0.00) 0.82*** (0.01)

BBIM 0.87*** (0.00) 0.90*** (0.00) 0.79*** (0.00)

Unrestricted boosting model 0.86*** (0.00) 0.89*** (0.00) 0.80*** (0.00)

Notes: Mean absolute error relative to mean absolute error of AR(2). In parentheses:

p-value of Diebold-Mariano test. ***, **, * indicate signi�cance at 1%, 5%, or 10%.

Sample period up to 2000�2024M12.

Performance at di�erent horizons Comparing components in cross-validation and forecasting
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Takeways

• We propose a novel block-wise machine learning approach as a tool for

economically interpretable analysis & detection of non-linearities.

• In�ation decomposition: block structure and restrictions on decision trees help

separate demand and supply drivers.

• Recent UK in�ation episode:

• surge initially explained by supply, to lesser extent demand

• non-linearities mattered, but have by now un-wound

• short-term expectations added in�ation persistence, but long-term expectations

e�ects remained weak
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