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e Disentangling the source behind an inflation surge is crucial for the assessment of
inflation persistence and monetary policy trade-offs.

e Typically challenges around identifying:
1. the role of demand and supply
2. non-linearities

e Use machine learning (ML) methods to capture non-linearities

e ML often subject to a “black box" critique

e We propose an interpretable boosted tree model with economic intuition:
e structured into Phillips curve type blocks to linearly separate different components
driving inflation
e disentangling supply- and demand-like contributions via monetonic constraints on
the direction of association between predictors and inflation 1



Existing literature

Inflation supply & demand drivers

e Decomposition using disaggregated prices and quantities: Shapiro et al. (2022); Firat and Hao (2023),
e DFMs, SVARs with sign restrictions: Eickmeier and Hofmann (2022); Kabaca and Tuzcuoglu (2023);
Banbura et al. (2023); Ha et al. (2024); Giannone and Primiceri (2024).

Non-linearities or amplification mechanisms in inflation

e due to inflation expectations, supply constraints, and non-linear Phillips curve slope: Hazell et al. (2022);
Cerrato and Gitti (2022); Benigno and Eggertsson (2023); Gitti (2024); Ascari and Haber (2022); Harding
et al. (2023); Di Giovanni et al. (2023).

Inflation forecasting using machine learning
e Medeiros et al. (2021); Lenza et al. (2023) (among others)
Machine learning literature

e Monotonic constraints (Cano et al., 2019; Martens et al., 2011)
e Additive models that sum non-linear signals of predictors (Lou et al., 2012; Agarwal et al., 2021)

Neural network for inflation with Phillips curve components (Goulet Coulombe, 2022)



Main findings

1. Block structure and monotonic constraints help separate demand and supply drivers
2. Non-linearities in all blocks in recent episode.

e demand: non-linear Phillips curve association with unemployment and v/u ratio
e supply: non-linear effects from global supply chain pressures

3. Competitive out-of-sample forecast performance.



The Blockwise Boosted Tree
Inflation Model



Boosted Tree method - no economic structure yet

Teph = FI(Xi—p) Zfz (Xi—p) + &

e Tiip; h =1 - one month ahead monthly inflation rate
e Xi ,; p€0,1,2; - large set of monthly indicators at period ¢ and two lags

e fi(+) - decision trees

e Sum predictions of decision trees to form overall prediction.

e Decision trees are fit sequentially. Fit trees between the input variable and inflation.
Each tree learns from errors of previous trees.



Blockwise Boosted Inflation Model (BBIM) with Phillips curve components

Inspired by Phillips curve framework:

Terh = pTit—p + BEt—p(Teyn) + Agt—p + pcost_pushy_, + e

Our specification:

Teqn = Trendi—p + Supply;—p + Demand;—, + €



Blockwise Boosted Inflation Model (BBIM) with Phillips curve components

Inspired by Phillips curve framework:
Tyh = PTt—p + BEt—p(Tin) + Age—p + pcost_push;_, + e

Our specification:
Teqn = Trendi—p + Supply;—p + Demand;—, + €
Block—wise boosted tree model:

M
Tiph = Z Trend XTrend Z Demand XDemcmd _i_szupply(Xﬂngly)_’_m_’_et
i=1
e Blocks based on different groups of indicators: expectations, wages, activity,

supply indicators.
e Non-linear decisions trees within blocks
e Blocks conditionally linear with respect to each other.



Training the blocks conditionally on each other — step-wise learning algorithm

e Initialise boosting model F' with target inflation: Fy = 2

e Fit trees f to residuals of previous trees 7y, = 7 — F;_1

e Update model with learning rate v = 0.02: Fj(x) = Fj_1(X) 4+ v fm(XF)
Error

Learn tree on residuals: ™ — Fy

Update predicted value: Fy(z) = Fy + v fi(z)

JriexEsretd) Learn tree on residuals: 7 — F ()

Update predicted value: Fh(x) = Fy(z) + v fa(x)

fl (XSupply)
fo(X Demand)

Trees




Inside the blocks — lllustration of decision trees

Fitting an arbitrary non-linear function with a

.. . . _ 1
decision tree, in this case, Y = TTop(=X)
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Inside the blocks — lllustration of decision trees
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Separating demand-type and supply-type associations: monotonic constraints

on tree splits

The bottom-left split violates restriction of a positive

80
association and is discarded. /
[x]
| T
o <0.94 ‘
inotessaing, >=0.94
decreaseiny
R
<25
>= 2.5|




Separating demand-type and supply-type associations: monotonic constraints

on tree splits

Functional form constrained to be monotonically ” /
increasing —

60
e Splits that violate restrictions (when z1 < x5, then

71 < 92) cannot be used

>40
e Tree algorithm finds alternative splits or does not /

split
20 /
e Implemented in standard packages



Model blocks and groups of indicators: monotonic constraints

GROUP INDICATORS DEMAND SUPPLY
Expectations, services in- time indicator, 1-y ahead household infl. expectations, 5-y ahead financial
flation, wage growth market expectations, regular wage growth, services inflation, sub-components
by sector
Global activity global PMI; US, EA: industrial production: US, EA: imports —+ —
global activity shock, oil consumption demand shock (Baumeister and Hamil- +
ton, 2019)
UK activity industrial production, index of services; exports, imports, PMls: services, man- —+ —

ufacturing, construction; retail sales; consumer sentiment, quarterly (interpo-
lated): consumption, investment

Labour market: v/u ratio, employment, —+
Labour market: unemployment rate - +
Global supply & costs commodity prices: energy, non-energy, metals, food, agriculture +
global supply chain pressures: GSCPI (Fed), SCI (BoE) +
US PPI, EA PPI +
oil supply news shock (Kénzig, 2021), global oil supply shock (Baumeister and +
Hamilton, 2019)
UK supply & costs CPIl components: goods, food, electricity, gas; +
PPls: input, output, gas, electricity; UK spot gas price +




Empirical set-up

e Cross-validation (CV) estimation over whole sample period: 1988—-2024

e Consistent model learned on all time periods, to derive decomposition of inflation
e Repeated CV (10x) to obtain stable estimates and estimate model stability.
e Missing values imputed with median values (alt.: EM algorithm).

e Out-of-sample forecasting

e forecast performance against other models: AR(2), random forest, Lasso
e |Initial training window 1988-1999, then expanding window forecasts. Retrain every quarter.
Not accounting for data release calendar or revisions for now.

e Use Shapley values (Lundberg and Lee, 2017) to derive contributions from individual
indicators to prediction & show functional forms learnt
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Results




inflation decomposition, 1989-2024
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» Mean importance of indicators » Decomp. with financial & MP components
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Domestic demand - functional forms: kinked Phillips curve in UE and tightness

(V/U ratio), less evidence for non-linearity in other activity measures

L
o

Contribution to inflation

0.1

0.3

0.1

4 56 7 89
Unemployment rate (t-2)

Contribution to inflation

-0.1

0.3

0.1

[
=25

-15 -0.5
v/u ratio (t-2)
(log level)

1988M2-1992M9
1992M10-2020M12
2021

2022

2023

2024

12



Supply: non-linear association with supply chain pressures, food, goods price

inflation
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Role of monotonic constraints: un-identified model with activity and input

costs components, no monotonic constraints

7] = Demand (baseline)
Global demand (baseline)
—— Activity (un-identified)

Contribution to prediction of CPI inflation
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Activity contribution does not capture relevant demand fluctuations.

Supply contribution under-estimated recently.
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Results: Forecasting performance




Model performs competitively in out-of-sample forecasting

Complete sample 2000-2019 2020-2024
AR2 1.00 ( N/A) 1.00 (N/A)  1.00 (N/A)
Random forest 0.89*%** (0.00) 0.90*** (0.00) 0.86** (0.01)
Lasso regression 0.87*** (0.00) 0.88*** (0.00) 0.82*** (0.01)
BBIM 0.87%*%* (0.00)  0.90%** (0.00) 0.79*** (0.00)
Unrestricted boosting model  0.86*** (0.00) 0.89%** (0.00) 0.80*** (0.00)

Notes: Mean absolute error relative to mean absolute error of AR(2). In parentheses:
p-value of Diebold-Mariano test. *** ** * indicate significance at 1%, 5%, or 10%.
Sample period up to 2000-2024M12.

» Performance at different horizons » Comparing components in cross-validation and forecasting
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e \We propose a novel block-wise machine learning approach as a tool for
economically interpretable analysis & detection of non-linearities.

e Inflation decomposition: block structure and restrictions on decision trees help
separate demand and supply drivers.

e Recent UK inflation episode:

e surge initially explained by supply, to lesser extent demand

e non-linearities mattered, but have by now un-wound

e short-term expectations added inflation persistence, but long-term expectations
effects remained weak
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