Estimating the Term Structure
of Interest Rates

by

Mark Deacon

Andrew Derry*

*Bank of England, Threadnecdle Street, London, EC2R 8A 1.

The views expressed are those of the authors and not necessarily those of the Bank of
England. We are extremely grateful to our colleagues Nicola Anderson, lan Bond,
Francis Breedon, Martin Brookes, Katerina Mastronikola and David Miles for many
helpful comments and suggestions. We would also like to thank Dr Nick Webber of the
University of Warwick who made extensive comments on an earlier draft.
Rosemary Denney and Jim Lewin provided excellent research assistance. The usual
disclaimer applies.

©Bank of England 1994
ISBN 185730 082 3
ISSN 0142-6753




Contents

Abstract
1 Introduction
2 Notation and some definitions

3 Estimating yield curves

4 Modelling the effect of tax
(the "Coupon Effect")

5 A comparison of the three models
6 Conclusion

Appendix A

Appendix B

Appendix C

References

17

36

52

56

58

69




Abstract

This paper examines various techniques used to estimate the term
structure of interest rates from the prices of government bonds; in
particular comparing the current Bank of England model with two
approaches suggested in the academic literature. There are two main
aspects of this problem: estimating the relationship between bond
yields and maturity, and the relationship between bond yields and
coupon. The paper outlines how these problems are approached by the
three models, and compares them on both theoretical and practical
grounds. It concludes that there is a trade-off between theoretical
rigour and practical considerations.




1 Introduction

When pricing financial instruments, agents throughout the financial
markets are (either explicitly or implicitly) revealing information on the
interest rates that they regard as being appropriate for the particular
transactions they are making; but these prices or yields may also reflect
other factors such as the effect of taxation rules and the perceived risk
of default by the issuer. Isolating the implied interest rates is therefore
a far from trivial task. It can reasonably be assumed that a unique
(theoretical) underlying rate exists for each maturity, and so when
trying to recover these we are aiming to construct a function that
describes a single interest rate for each maturity - the terin structure of
interest rates. This is used for a number of purposes. For example, the
Bank of England advises HM Treasury on appropriate interest rates to
charge local authorities and some nationaliscd industries who borrow
money through the National Loans Fund (NLF) or the Public Works
Loan Board (PWLB). Institutions or individuals undertaking financial
transactions may want to know how their own opinions relate to
‘market’ opinions. It is also useful for financial economists; for
example, such data are/can be used to estimate the parameters of
general equilibrium term structure models, and to test their stability (eg
Cox, Ingersoll and Ross 1985, Longstaff and Schwartz 1992).

Government securities are generally used in the estimation of the term
structure of interest rates, since they are frece of default risk. If there
were a ‘suitable’ government bond (ie single payment, liquid, etc)
maturing at every future date we could simply take the interest rate on
that bond as the underlying interest rate for that maturity. In the UK,
however, government bonds - gilt-edged securities - are not equally
spaced through the maturity spectrum: there are ‘gaps’ for which we
need some form of interpolation to identify a continuous term
structure. Morceover, there are no single payment (zero coupon) UK




government bonds,V so the problem is further complicated by the
existence of semi-annual® interest or ‘coupon’ payments.

This paper examines various techniques used to recover the term
structure of interest rates from UK government bond prices. Some
fundamental concepts are defined in Section 2, while the rest of the
paper compares the Bank’s current yield curve model with two
commonly used term structure models in the academic literature.
Section 3 describes how the various models estimate the fundamental
term structure (or yicld-maturity relationship), and Section 4 outlines
how each model accounts for the complications caused by coupon
(interest) payments. Section 5 presents examples of curves produced
by the various methods and Section 6 concludes.

2 Notation and some definitions

Before discussing the issues involved in estimating yield curves, it is
useful to set out the notation and terminology used in the rest of the
paper. Whilst some of the analysis is specific to the gilt-edged market,®
the main issues are relevant when estimating the term structure of
interest rates for any government bond market.

n Other than short-term Treasury bills.
(¢) 2 172 % Consols pays interest quarterly, but is the exception rather than the rule.
3) In particular the treatment of taxation (Section 3) is specific to the UK case, the details

of which can be found in "British Government Securities: The Market in Gilt-Edged
Securities” (pages 24-5) published by the Bank of England.
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2.1 The bond price equation

A bond is simply the obligation on the bond’s issuer to provide one or
more future cashflow(s). For a conventional® UK government bond,
the stream of cashflows consists of regular (semi-annual) fixed interest,
or ‘coupon’ payments and a redemption payment which is paid with
the final coupon payment on the gilt's maturity date. The market price
of a conventional bond is the market valuation of the stream of
cashflows associated with that bond.

A spot interest rate is the rate at which an individual cashflow (either a
coupon or a redemption payment) is discounted. If spot rates for
payments at all dates in the future are known, then the price® of a
bond maturing in m periods can be equated to the present value of
future cashflows:

, € G R+ C
Price = + TR A R + (1)
2 m
(e (e ) (l+r )
1 2 m
where: C = coupon
R = redemption payment
r, = the spot rate applicable for a payment in period i
(i=1, ..., in)
(©)) There are other kinds of UK government bonds: index-linked (with payments linked to

the Retail Price Index). irredeemable (with no contractual redemption date),
double-dated (with a period. usually of several years. in which the government can
repay the bond) and convertible (which give the holder the option to convert into other
(conventional) bonds at particular dates).

(5) Where ‘price’ is the sum of the quoted (‘clean’) price and accrued interest - see section
2.3 below.




2.2 Discount factors and the discount function

The bond price equation (1) describes how the price of a bond can be
calculated if all the spot rates r, (i=1,...,;n) are known. This equation is
often written in terms of discount factors, so that the present value of
each cashflow is written as the product of its nominal value and its
discount factor:

Price = dlC v d:C + e + dm(C+R)

or:
m

Bricem = sCul idi. 4 Jc¥ R (2)
At 1 m
A=

where d_ is the discount factor for period i (i=1,...,m) and is simply a
transformation of the i'" period spot rate:

d = S T m (3)

sl
(18 %)
i

It is often useful to think of the continuous analogue to the set of
discount factors, the discount function 8(t), as a continuous function that
maps time ¢ to a discount factor. Equivalently 8(t) is the present value
of £1 receivable at time ¢, and so given a continuous discount function
the present value of a cashflow at any point in the future can easily be
calculated. A set of discount factors d. (i=1,...,m) can therefore be
thought of as discrete points on the continuous discount function &(¢):

d, = 8(t)




where ¢, is the time to the end of the i*" period. In terms of the discount
function, the bond price equation becomes:

m
Priiicie =l GRERDI(Eg) SR SN R (4)
ar i m

23 Accrued interest and continuous compounding

The bond price equation (1) is over-simplified since it assumes that the
next cashflow is due in exactly one period’s time. In fact, while coupon
payments on individual bonds are made at fixed dates, bonds can be
traded on any working day. Whenever a bond is traded on a day that
is not a coupon payment date, the valuation of the bond will reflect the
proximity of the next coupon payment date. In the UK, for example,
the buyer pays accrued interest to compensate the seller for the period
since the last coupon payment during which the seller has held the gilt
but for which they will receive no coupon payment.®®” The accrued
interest is by market convention calculated simply as the proportion of
the coupon foregone by the seller, expressed algebraically in
equation (5):

Elol " Salleple 4 (& (S)

where: a1 = accrued interest
t1 = time to the next receivable dividend payment (as the
actual number of days divided by the number of
days in a "standard" year.”)

(6) There is a period (usually 37 days) before each coupon date when the bond is traded
ex-dividend, ie without the right to the next coupon payment, and in this period
(between the ex-dividend date and the coupon payment date) accrued interest
is negative since it is the buyer who is giving up part of the next coupon
payment.

) For the United Kingdom, the market convention is to assume that a "standard” year
consists of 365 days. In some other countries, such as the United States, accrued
interest is instead calculated on a 360 day basis.
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A bond’s price can therefore be decomposed into two components: the
accrued interest and the bond’s clean price. It is the clean price of a gilt
that is usually quoted, since movements in the clean price are
independent of the (exactly predictable) changes in accrued interest.
The dirty price is the actual market valuation of the bond as given by
equation (1), at which transactions take place; and is simply the clean
(quoted) price plus any accrued interest.

Between coupon payment dates, the bond price equation (1) needs to be
modified to allow for the fact that the next coupon payment is not
exactly one period in the future.® This is straightforward with either
discrete discount factors or a continuous discount function; the latter
case (for a bond with m remaining coupon payments) is shown in
equation (6) below:

P+ ai = C8(t1) + C 8(tl+l) + ... + (C+R) 8(tls(m-1)) (6)
where: P = clean price
ai = accrued interest (equation (5))
t1 = time to first coupon payment (as a fraction of a
period)
C = coupon
R = redemption payment

Although accrued interest calculations are conceptually
straightforward, in practice they can be an awkward complication to
empirical work. To avoid this, McCulloch (1971, 1975) approximates

(8) There are further complications when considering a bond that has recently been issued.
If (as is usually the case) it was not issued on a coupon payment date, the first-ever
receivable dividend will be less than the usual coupon payment, reduced to reflect the
fact that the holder will not hold the bond for the full coupon period. Furthermore, gilts
are often issued partly paid, which reduces the first coupon payment still further and
introduces negative cashflows into the right-hand side of the price equation (amounts
payable by the holder). The required (algebraic) alterations are reasonably
straightf erward but are not given here.
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the bond price equation (1) by assuming that coupon payments are
made continuously rather than at discrete points in time, so interest
does not accrue. This assumption of continuous compounding means that
the price equation can be slightly simplified:

Pz C 8w du+ R B(m (7
where: P = clean price
m = maturity of the bond

(C, R and § as defined before)

The continuous compounding approximation can significantly alter
estimates of the discount function (and of the derived yield curves), so
this approximation error should be weighed against the perceived
benefit from simplifying the calculations if continuous compounding is
to be considered. The following sections describe the methodology for
both the continuous and discrete compounding cases, but all results in
Section 5 were produced using only the (more precise) discrete method.

2.4 Yields

Since the coupon and the redemption payment are known, it is
straightforward to measure the return on a gilt trading at a particular
price. There are two mcasures commonly used: the flat yield
(sometimes referred to as the current or running yield) and the
redemption yield.

The flat yield is analogous to the ‘dividend yield’ on an equity, and is
defined as:

] Coupon
Flat Yield = (8)

Clean Price
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The flat yield is essentially used to value the return from holding a
bond for a short period - and is often thought of as the income from the
bond. Common market practice is to compare the flat yield on a bond
with a short-term interest rate - if the flat yield is below the short-term
interest rate, the holder is ceteris paribus incurring a short-term cost by
holding the bond.

The redemption yield (or yield to maturity) corresponds to the internal rate
of return on the bond. As sucl, it can be seen that the redemption yield
is derived from the bond price equation (1) with all cash flows
discounted at the same rate:

c c R+ C
PR Sail = + Swlo o olbio 8o + (9)
2 m
(1+y) (1+y) (1+y)
where y = (gross) redemption yield

(P, ai, C and R are defined as before)

Given a price, equation (9) is solved for the redemption yield y using
some form of non-linear iteration technique (eg Newton-Raphson). If
the bond is to be held to redemption, the redemption yield is clearly a
better measure of return than the flat yicld. However, it rarely equals
the realised return since it assumes that all future coupon payments can
on average be reinvested at the internal rate of return.

Of the two measures, the redemption yield is the more widely used.
For the rest of the paper the term ‘yicld” will specifically refer to the
redemption yield.

12




2.5 Yield curves

The discount function 8(t) can be uniquely transformed into other
useful functions, such as the spot rate (or zero coupon) curve, par yield
curve and implied forward rate curve. Similarly, a set of regularly
spaced discrete discount factors d, (i=1,...,m) can be transformed into
corresponding discrete spot rates, par yields and implied forward rates
which, if sufficiently closely spaced, can be plotted as a continuous
curve. This section describes how, given a discount function or set of
discount factors, the other curves can be derived. Itis important to
note that all these transformations are unique, so given any one of the
four curves the other three can be derived.

Implied forward rates

In equation (3) the discount factor for period 7 (in discrete time), d,, is
given in terms of the corresponding spot rate, r, by the relationship:

d=Q0+r)

The spot rate r, can be thought of as an average® of all the implied one
period forward ratesf,,f,, ..., f, so that:

1/d, = (14r)) = (1+f)

1/d, = (14r))* = (1+£)(1+f,)

1/d,= (1+1) = (1+£)(14f,) .. (14f) (10)
1/d, = (147, )" = A+ )(1+f,) ... (1+f,)
) From equation (10) it is clear that (l+r‘) is the geomnetric mean of (1 +f]), 4] +f2), .

(+f).
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The implied forward rate f. for any period can therefore be isolated using:

1l/4d, (6 DL ) w0 SIOIYE ) (1+F )
1 1 2 i-1 il
Aa., (BN CLRE) 5. o (Rl )
1-1 ) 2 1-1
d,
1=1
et kG g )
il
d.
5
d - d
1-1 il
=
1
d,
i
- Ad.
1
= where Ad = d - d. (11)
g = 1 i 1-1

The above is the discrete compounding case. Using the continuous
discount function 8(t) and assuming that interest is compounded
continuously we can therefore derive an instantaneous forward rate curve
p(t) by considering equation (11) with periods i and (i-1) infinitesimally
close:

- 8§ (t
plt) = L (12)

s(¢c)

The instantaneous forward rate curve is a theoretical construct,
providing the interest rate applicable on a future loan that is repaid an
instant later. A more useful measure to consider (when using
continuous compounding) is the average of p(t) over a particular
interval (¢, t,]. This mean forward rate f(t , t,) is given by:

14




"

BRI ERS)
1 2 p(u) du (13)

The forward rate f(t, ,t) in equation (13) therefore represents the
continuous compounding approximation to the discrete forward rate f,
in equation (11).

Spot (or zero coupon) curve

The spot rate r, is sometimes called the zero coupon yield since it
represents the yield to maturity on a (hypothetical) pure discount or
zero coupon bond, and can be easily derived from the appropriate
discount factor using equation (3). The continuous compounding
approximation 5(t) to the terin structure of spot rates, or zero coupon yield
curve, can be derived from equation (13) since the spot rate for payment
at time t in the future is the average instantaneous forward rate
between now (t,=0) and time ¢ (t,=t). So:

n(c) = £(0,¢0)

and hence from equation (13):

il t
)= Ji s ple) dp
o
(=
- 1n 8(¢t)
(=) I =T TS (14)
(G
(assuming 8(0) = 1).0'®
(10) The assumption that the discount function equals unity at time t=0 is a sensible

restriction, implying that an amount receivable now is not discounted. This,
and other, restrictions are discussed in more detail in Section 3.
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The equivalent of (14) for the case of discrete compounding is:

il Ly
T Sl : -1 (15)
1 di

The zero coupon yield curve is the construct to which economists
usually refer when talking about the term structure of interest rates.

The par yield curve

A (coupon-paying) bond is said to be priced at par if its current market
price is R , its face (or par) value. From equation (9) it can be shown
that for a bond to be trading at par, its redemption yield must equal its
coupon. Using this fact, the par yield y_ can be derived from
equations (2) and (9) for any period m (given a series of discrete

discount factors d,,....d, ) by setting the coupon C =y _ and the price
P=R:

s Y = (16)

i=H)

Similarly, the continuous compounding approximation to the par yield
curve y(t ) can be estimated using a rearranged version of equation (7),
setting C = y(t_):

16




R (1-6(ct ))
Y(Em) - ___L (17)

(where ¢, is the time to the i*" regular coupon payment on the notional
m period bond.)

The par yield curve y(t ) describes the coupon required on a (notional)
coupon-paying bond with time to maturity ¢ for that bond to trade at
par.1)

3  Estimating yield curves

The previous section detailed the relationships between different
variables and curves on the basis that either a set of discrete discount
factors or a continuous discount function is known. Also, since the
discount function, par yield curve, zero coupon yield curve and
implied forward rate curves are all algebraically related, knowing any
one of these four means that we can readily compute the other three. In
reality, however, none of the four curves is directly observable; they
must instead be derived from bond prices.

Two fundamental problems need to be addressed by any model
attempting to identify the term structure of interest rates implied by
prices of government bonds. The first is the problem of ‘gaps’ in the
maturity spectrum - there is not always a suitable bond, or any bond at
all, maturing at a date of interest. Second, the term structure is defined
in terms of zero coupon bonds - but all UK government bonds pay

(11) The par yield curve is essentially the same as a swap rate curve (in the absence of
default risk), since a par yield represents the fixed interest payments required by the
market to match the same number of future (unknown) floating payments. However,
there are a number of practical differences in estimating the two curves.

|7




coupons, so a zero coupon yield cannot be inferred directly from the
price of a coupon-paying bond.

These two problems lead to further practical estimation problems. First,
the problem of filling the gaps - what shapes should the term structure
be allowed to take? To answer this question, a decision on the
appropriate trade-off between ‘smoothness’ (removing ‘noise’ from the
data) and ‘responsiveness’ (flexibility to accommodate a genuine
movement in the term structure) is required. For example, it might be
felt that the estimated term structure should be smooth, but not to the
extent that it is seriously misrepresented. Second, is it preferable to
estimate the term structure via the discount function or via the par
yield curve? There are other practical hurdles to overcome: for
example, in the UK many investors pay income tax on coupon
payments whereas any capital gain is tax-free. This differential taxation
of coupon payments and capital gains results in taxpayers preferring,
and hence paying a premium for, low coupon bonds; so the size of the
coupon on a bond will affect its yield. Such coupon effects, along with
any other tax effects, need to be removed from any estimate of the term
structure.

The rest of this paper describes three models used to estimate the term
structure of interest rates: the model currently used by the Bank of
England (Mastronikola 1991) and two from the academic literature, due
to McCulloch (1971, 1975) and Schaefer (1981). The many problems
inherent in any estimation of the term structure can be neatly split into
three categories: which curve to estimate (Section 3.1), how the chosen
curve should be estimated (Section 3.2), and how to deal with other
factors which might influence relative bond prices, such as tax effects
(Section 4).

18




3.1 Yield curve or discount function?

Models used to estimate the term structure of interest rates fall into two
distinct categories: those that fit the par yield curve and those that fita
discount function. The Bank’s current model (Mastronikola op cit) is an
example of the former, whereas most of the latter are based on fitting
discount functions, pioneered by McCulloch (1971).

Fitting a curve through redemption yields

The Bank’s yield curve model essentially fits a curve through
redemption yields, derived directly from observed prices using
equation (9). This methodology, while simple to understand, has the
theoretical drawback that it does not explicitly restrict payments due on
the same date to be discounted at the same rate. To see why this is the
case consider two bonds; the first, bond A, maturing in one periods’
time and the second, bond B, in two periods:

R # €
Price of a a
Bond A ]
(1+y )
a
(18)
C R + C
Price of b b b
== +
Bond B 3
(l+y ) (l+y )
yb yb

Estimating the yield curve by fitting a curve through the redemption
yields on these two bonds does not restrict the first coupon payment on
bond B to be discounted at the same rate as the redemption payment on
bond A even though both payments are due at exactly the same time.
Instead, when estimating a yield curve in this manner the assumption
must be made that the first coupon on bond B is discounted using the
rate indicated by the yield on bond A, the yield on bond B reflecting the
difference in rates between period 1 and period 2. In other words,
bond A is assumed to provide all the information required for

19




inferences about how the earlier coupon payments on bond B are
discounted.

Given a specification of the functional form for the yield curve (see
Section 3.2), the estimation procedure is simply to fit a curve of the
given functional form to minimise the sum of squared differences
between the observed and fitted yields. The estimated curve is
implicitly a par yield curve. This approach is reasonable if other
aspects of the model define this curve explicitly as the par yield curve
(eg as in Mastronikola 1991 - see Section 4). However, whether or not a
regression of redemption yield against maturity is a realistic
approximation to the par yield curve depends on market conditions. If
bonds are trading so that the average redemption yield at each
maturity - the rate derived from a yield against maturity regression - is
close to the par yield at that maturity, then the assumption is
reasonable. However, the less well this assumption matches the reality,
the worse the approximation.

Fitting a discount function

Most of the academic literature follows McCulloch (1971) in explicitly
constraining cashflows from different bonds due at the same time to be
discounted at the same rate, and estimates a discount function from
which the term structure can be derived.'? McCulloch uses the form
of the bond price equation with a continuous discount function and
makes the assumption of continuous compounding - that the coupon
payments are made continuously through time rather than at regular
discrete intervals."® Under this assumption interest does not accrue,
and equation (7) is used to give the price on bond i (i=1,...,n) :

m

1
P=CJf &6(u) du + R_6(m) (19)
i i i i
o
(12) In particular, Schaefer (1981) follows this approach.
(13) As stated in Section 2 this is merely a simplifying assumption, and the results

presented later in this section were derived using McCulloch’s technique with discrete
compounding. For clarity the description here follows the original.
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where P, C, m, and R, are the price, coupon, maturity and redemption
payment of the i*" bond.

To estimate the discount function, §(n), it is defined to be a linear
combination of a set of k (linearly independent) underlying basis
functions:

SI(m = SRR PR o BN * () (20)

where f,(n) is the j*" basis function, and a; is the corresponding
coefficient (j=1,...,k). There are a number of functional forms that the
basis functions fj(m) can take to produce a sensible discount function,
and this choice is discussed in detail in Section 3.2.

A system of n linear equations can be derived'¥ by combining
equations (19) and (20), with the function weights a; as the coefficients
in each equation:

k
AW ety = (21)
I Jip 113)
j=1
where: Y. Ryamt Colnmy R
1 1 Sk 5t )|
m .
bl
=] G e i f (u) du + R, £ (m )
1j 1 St ] d

The coefficients 4, (j=1,... k) can be estimated from equation (21) using
ordinary least squares, and the estimated discount function can then be
calculated using equation (19).

(14) See Appendix A tor the full derivation.
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Having estimated the discount function, equations (13), (14) and (17)
can be used to estimate the implied forward rate, zero coupon and par
yield curves respectively. Given the assumption made by the Bank'’s
model, the same inferences about the term structure of interest rates
can be drawn from the estimated curves regardless of methodology.

The advantage of McCulloch’s technique is that it makes explicit the
assumption of an efficient market, ie one in equilibrium. Fitting
through redemption yields can be regarded as simply fitting a curve
through data and as such requires no assumption about the state of the
market; however, the assumption is implicit as soon as such a curve is
interpreted as a par yield curve.

3.2 Estimating functions

As described so far, both the McCulloch and Bank methods require a
specification of one or more estimating function(s): when fitting
through redemption yields, the functional form needs to be specified;
whereas estimating a discount function using McCulloch’s
methodology requires the specification of basis functions (f,(n) in
equation (20)). The choice of functions in both cases is crucial since it
ultimately determines the trade-off between smoothness and flexibility
discussed earlier, and therefore reflects prior beliefs about the shapes a
yield curve should be able to take. This choice is unavoidably
subjective but certain properties are essential; in particular an
estimated discount function should be both positive and monotonic
non-increasing (to avoid negative forward rates) and should equal
unity at time ¢=0 (the present value of £1 receivable now is £1).

The simplest approach to fitting the discount function is that used by
Carleton and Cooper (1976), who estimate the term structure of interest
rates for the US government coupon securities (ie notes and bonds)
market. They utilise the fact that the semi-annual interest payments
made by nearly all securities in this market are made on only four days

22



of each year.!"> This even-spacing of data points means that the
discount factors can be estimated directly from equation (2) using
ordinary least squares for maturities up to seven years,!'®) thus
avoiding the need for approximating functions (and McCulloch’s
formulation) altogether. Although Carleton and Cooper did not
constrain their estimates of the discount function, they apparently
displayed the correct properties in most cases - ie were monotonic
decreasing and non-negative. The main problem with this approach is
the reliance on regularly spaced interest payment dates and as such it s
not suitable for application to the UK market (or even to the US market
beyond seven years). Furthermore, this method imposes no
smoothness on the discount function, so the corresponding implied
forward rate curve is jagged.

Polynomial splines

If data are not regularly spaced (as is the case in the UK and most other
markets) the approach used by Carleton and Cooper is not feasible and
instead an approach based on estimating or approximating functions is
often used. McCulloch’s (1971, 1975) implementation is given in
equation (20) in which the discount function 8(in) is described as a
linear combination of k approximating functions fj(m) (j=1,...,k) on
which the coefficients (a]., J=1,...,k) are estimated. One of the simplest
implementations (discussed by McCulloch, 1971) is to let f.(n)=m’ for
j=1,...k. The discount function generated by this set of approximating
functions will then be a simple k'" degree polynomial.!'” However,
unless observations are spaced equally through the maturity range,
such a polynomial tends to fit well at the short end and badly at the

(15) Namely, 15 February, 15 May, 15 August and 15 November.

(16) Data beyond seven years could not be used due to the sparsity of observations in that
maturity range.

(17) Chambers. Carleton and Waldman (1984) apply such a polynonual directly to the spot
curve. They decide on k using a stepwise procedure.
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long end or vice versa. To solve this problem it is possible to increase k,
the order of the polynomial, but this can cause instability in the
parameter estimates.

To solve these problems McCulloch suggested the use of piecewise
polynomial functions or splines to approximate the discount function.
Intuitively, a polynomial spline can be thought of as a number of
separate polynomial functions, joined "smoothly" at a number of so-
called join, break or knot points. The word "smooth" has a precise
mathematical meaning, but in the context of a piecewise r -degree
spline it is generally taken to mean that the (v -1)" derivatives of the
functions either side of each knot point are continuous."® Using this
piecewise approach the polynomials can be of much lower order and
generate a more stable curve.

In his first paper McCulloch (1971) uses a quadratic spline to estimate
the discount function. This has superior propcrties to that of the simple
polynomial but also has several shortcomings. A major drawback is
that use of a quadratic spline for the discount function can lead to what
McCulloch terms "knuckles” in the corresponding forward rate curve.
This effect is illustrated in Figure 3.1, and is caused by the fact that
specifying the discount function by a piecewise quadratic function
means it has a discontinuous second derivative, resulting in a forward
rate curve with a discontinuous first derivative."”

(18) One consequence of this definition is that the r' derivative of the spline is a step
function.
(19) If §(in) is the discount function and p(m) is the forward rate curve it can be

shown that p'(m) = (8'Gn)/ §0n))2 - (8" (n)/ §0n)).
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Figure 3.1

McCulloch "Knuckle' Effect on
forward rates

Per cent g

The obvious way to avoid this effect is to increase the order of the
estimating functions and use (for example) a cubic spline. The simplest
implementation of a cubic spline is that presented by McCulloch (1975).
In this formulation the basis functions f,(in) in equation (20) are
specified as a family of cubics that are constrained to be smooth around
each knot point.??  This specification is certainly flexible enough to
model any reasonably-shaped discount function (and yield curve). It
can in fact be too flexible, as it does not constrain the discount function
to be non-increasing; so forward rates calculated using equation (13)
may be negative.

The current Bank methodology uses a slightly more complicated
technique to fit a cubic spline through observed redemption yields on

(20) The actual forms specified by McCulloch are reproduced in Appendix B, but in
practice any set of cubic equations that are constrained to be smooth around the knot
points could be used. Note also that the basis functions are defined along the length
of the estimation space (ie from zero to the maturity of the longest bond) and
combined using equation (20) (and the weights estimated by equation (21)) to obtain
the estimated discount function.
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stocks. Unlike McCulloch’s methodology, where cubic functions define
basis functions along the length of the discount function which are
weighted and then added together, the Bank methodology uses a set of
cubic functions each of which fits a sub-interval of the yield curve (ie
each function fits the curve in the space between two consecutive knot
points). The second derivatives of adjoining functions are constrained
to be equal at the knot point, meaning that the entire estimated curve is
"smooth” in the sense described above. If the two ends of the curve are
also constrained, then each individual function is a cubic with two
constraints and (for a set of fixed knot points) is therefore unique, so
the entire fitted curve is unique. In the Bank’s model, the short end of
the yield curve is constrained to have constant slope (ie zero second
derivative) and the long end is constrained to be flat (ie zero first and
second derivatives). The number of knot points and their maturities
are fixed,?" and the yields at each knot point are estimated such that

the sum of squared residuals between observed and fitted yields is
minimised.??

(21) There are currently six knot points. equally spaced in transformed time (see
Mastronikola 1991, page 8).

(22) It could be argued that the Bank's model in fact uses a third order exponential spline
(see below), since the time to maturity on each bond is transformed using
equation (22) before estimation. However, since the motivation for using the
transformation is different from that for using an exponential spline, it seems
more useful to describe the Bank’s model as using a cubic spline (in
transformed time).
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Bernstein polynomials

Schaefer (1981) uses approximating functions to estimate the discount
function in the same manner as McCulloch, but instead of cubics he
uses Bernstein polynomials. It can be shown using the Weierstrass
approximation theorem (eg Williams 1991, page 74) that combinations
of Bernstein functions will approximate any continuous function with
arbitrary accuracy. An advantage of these functions over conventional
polynomial approximating functions is that they give considerably
better approximations to the derivatives; important since the forward
curve depends on the first derivative of the discount function.?® By
imposing constraints, Schaefer ensures that the a}.’s are non-negative,
that the estimated discount function is non-negative and that §(0)=1.
With these conditions, negative forward rates are avoided.*"

(23) For a more detailed account of the use of Bernstein functions in this context see
Schaefer (1982).
(24) If p(in) is the forward rate curve and 6§(m) the discount function it can be

shown that p(m) = -8 n)/ §(n) (equation (12)). Clearly, p(in) will be negative
- if either &' (i) is positive or &(m) is negative - Schaefer’s constraints ensure
that neither of these conditions arise. Since Schaefer’s discount function is a
linear combination of monotonic non-increasing approximating functions he
ensures that it is monotonic by constraining the a;s to be non-negative.
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Exponential splines

One of the main criticisms levelled at both cubic and Bernstein
polynomial functions as a choice of approximating functions is that
these can lead to forward rate curves which exhibit undesirable (and
unrealistic) properties for long maturities ie rise or fall steeply. Vasicek
and Fong (1982) detail a method that can be used to produce
asymptotically flat forward curves. Central to their approach is the
characterisation of the discount function as essentially exponential in
shape. They argue that splines, as piecewise polynomials, have a
different curvature from exponentials and so will not provide a good
local fit to the discount function.?® Vasicek and Fong claim that this
poor local fit will result in the spline "weaving" around the discount
function, thus producing highly unstable forward rates. Also,
polynomial splines cannot be forced to tail off in an exponential form as
maturity increases.

Vasicek and Fong suggest applying a transform to the argument m of
the discount function 8(in). This transform has the form:

m= - (1/a)ln(l-x), where 0sSx<l (22)

and has the affect of transforming the discount function from an
approximately exponential function of m to an approximately linear
function of x.%®  Polynomial splines can then be employed to estimate
this transformed discount function. Using this transform it is easy to
impose additional constraints on the discount function.?”) The

(25) This is refuted by Shea (1985) who insists that a piecewise polynomial function
should be able to mimic well a piecewise exponential function.

(26) Here, x is referred to as transformed time.

(27) One such condition that they impose is the non-negative condition.
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parameter a constitutes the limiting value of the forward rates, and can
be fitted to the data as part of the estimation.

Vasicek and Fong use a cubic spline to estimate the transformed
discount function. In terms of the original variable m this is equivalent
to estimating the discount function by a third order exponential spline
ie between each pair of knot points §(in) takes the form:

8(m) = by + be™™ + b,e 2" + b, (23)

Although Vasicek and Fong claim to have tested exponential splines
successfully, they provide no evidence. Consequently, Shea (1985)
presents some empirical results on the suitability of exponential splines
for yield curve modelling. He concludes that there is no evidence to
support the claim that exponential splines produce more stable
estimates of the term structure than polynomial splines - the discount
function often deviating from the expected exponential decay. Shea
found that the asymptotic property only constrained the forward curve
to flatten at maturities beyond the longest observable bond and
exhibited little influence over its shape or level at other maturities. An
additional observation was that one of the factors driving the instability
of the Vasicek and Fong model was the data-conditioning properties of
the exponential transform, x=1-e®". For small a, this caused the
observed x to become bunched so that substantial portions of the
estimation interval [0,1] contained no data, leading to particularly
unstable and unrealistic asymptotic forward rates. In such
circumstances Shea had to coax the nonlinear estimation program to
converge to a solution. It is possible that this problem was caused by
Shea’s choice of knot points, which appears to be in line with
McCulloch’s convention of placing equal numbers of observations (if
possible) between knots.®

(28) This was certainly the rule used in Shea (1984).
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Chambers, Carleton and Waldman (1984) have incorporated the
exponential characteristic in a different manner. Here, a polynomial
functional form is applied directly to the spot curve. The spot curve
can then be related to observable bond prices by exponentiation of this
functional form.

B-splines

An important observation made by Shea (1984) concerns the choice of
basis functions when defining a spline function. He reports that some
spline bases, such as that chosen by McCulloch (1971,1975) can generate
a regressor matrix with columns that are nearly perfectly collinear,
resulting in possible inaccuracies arising from the subtraction of large
numbers. As a solution he advocates the use of a basis of "B-splines”.
These are functions which are identically zero over a large portion of
the approximation space (unlike those used by McCulloch) and so
prevent the loss of accuracy due to cancellation. By using a B-spline
basis it is also easier to impose constraints on the spline function.

Steeley (1991) also recommends the use of B-splines for the same
reason. He provides comprehensive details of how B-splines can be
used to fit a discount function, and concludes that by their use spline
functions can be viewed as a robust alternative to both cubic and
Bernstein polynomials.

Problems using spline functions as estimation functions

Shea (1984) considers some of the pitfalls encountered when using
splines to model the term structure. First, he demonstrates that the
constraints implicit in the McCulloch cubic spline do not restrict the
discount function to its desired negative slope, and can consequently
produce an estimate for the discount function which starts to slope
upward at the longest maturities. The forward rate curve generated by
such a discount function will feature negative interest-rate estimates.
Without the imposition of constraints (discussed earlier) the Schaefer
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polynomial would display similar characteristics. Shea argues that
Schaefer’s constraint on the slope of the discount function to be
everywhere negative, though serving to prevent negative forward rases
does nothing for the general stability of the forward curve.

One alternative "fix" suggested by Shea on such occasions is the use of
ad hoc constraint specification. In its more obvious form this might
consist of changing the number or location of the knot points.
However, Shea goes on to suggest the use of localised constraints to
deal with specific problem areas. One such constraint suggested was a
simple restriction of fixed proportions between the first derivatives of
the discount function at different maturities. This is of particular use at
the long end where it canbe applied to ensure that the discount
function remains negatively sloped. Although these manual
adjustments to the term structure are acceptable in a research and
development context, they will clearly be of limited use for
practitioners in an operational environment, where yield curve updates
may be required on a real time basis. Also, changes in the curve may
be wrongly attributed to events in the market when in fact they are
solely due to a change in the constraint specification.

Knot points

Another decision that needs to be made when using any kind of spline
function is the appropriate number of knot points. If the number of
knots is too low then the model will not fit the data closely when the
term structure takes on difficult shapes, while if it is too high the
estimated curve may conform too readily to unrepresentative outliers.

The Bank yield curve model currently uses six knots, which are spaced
evenly in transformed time (see above). The approach adopted by
McCulloch (1975) and several subsequent researchers is to set the
number of knots to be equal to the square root of the number of bonds
to be used in the estimation process. These knots are then spaced
evenly amongst the number of observations (maturities). Given the
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current number of bonds in the UK market, this approach also suggests
the use of six knot points. One advantage of the McCulloch convention
is that the positioning of the knots will automatically change with a
shift in the structure of government debt - unlike the knot points in the
Bank’s model, which will remain fixed. On the negative side, allowing
the knots to move on a day to day basis may give the false impression
that the term structure has changed.

Figures 3.2-3.5 illustrate the kinds of effect that changing the number or
location of the knots in the Bank model can have on the forward rate

curve.(?

Figure 3.2 Figure 3.3
Forward curve for different Forward curve for different
numbers of knot points numbers of knot points
cob 30/3/92 Per ceot ok cob 30/9/92 Per ceat "

Figures 3.2 and 3.3 show the effect of reducing the number of knots to
four or five, but still spacing these points evenly in transformed time.
In the case of 30 September 1992, reducing the number of knots from six
to four raises the forward curve by over 30 basis points in places. This
smoothing also removes the point of inflection at the 3 year horizon.

(29) Such effects also occur when considering a par or zero coupon yield curve. but are
less significant.

32



Figure 3.4 Figure 3.5
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Figures 3.4 and 3.5 compare the effect of switching from knots spaced
evenly in transformed time to knots spaced evenly by number of
observations. In the example of 30 September this produces a shift in
the forward curve of up to 13 basis points.

Surprisingly, aside from Steeley (op cit), therc scems to have been little
effort in the literature devoted to testing sophisticated techniques for
specifing the optimal number and location of knot points. That such
techniques already exist (eg de Boor, 1978) makes this all the more
surprising.
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Nelson and Siegel (1987)

A very different approach is that due to Nelson and Siegel (1987), who
explicitly attempt to model the implied forward rate curve (rather than
the term structure of interest rates). They choose a functional form for
the forward rate curve that allows it to take a number of shapes that the
authors feel are "sensible”. The functional form that they suggest is:

fim) = B+ B,exp(-m/7) + B,[(m]7)exp(-m/7)] (24)

where f(mn) is the forward rate at maturity m, and B, B, B, and r are the
parameters to be estimated. This function can be transformed to a
discount function (using the relationships in Section 2) from which the
parameters are estimated.®?

By considering the three components that make up this function (sce
Figure 3.6) it is clear how, with appropriate choices of weights, it can be
used to generate forward rate curves of a variety of shapes, including
monotonic and "humped”. An important property of this model is that
B, specifies the long rate to which the forward rate asymptotes
horizontally. Furthermore, this approach avoids the problem in spline-
based models of choosing the "best" knot point specification.

(30) Equation (24) can also be transformed to a spolt rate curve, to which Nelson and
Siegel fit US Treasury Bill data (because Treasury Bills are zero coupon instruments).
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Figure 3.6

Components of the forward rate curve
_(Nclson & Sicgel, 1987) Model curves

From the Nelson and Siegel forward rate equation it is possible to
derive algebraic expressions for the spot curve and the discount
function, though not unfortunately for the par yield curve.®?

It is interesting to note that Svensson (1993) estimates spot and forward
rate curves using McCulloch’s (1971,1975) approach of fitting a
discount function to bond price data, but uses the Nelson and Siegel
functional form instead of a spline function. Svensson argues that for
monetary policy applications a simplistic functional form of this nature
is perfectly acceptable. In his paper on estimating Swedish forward
rates (Svensson 1994) he increases the flexibility of the original Nelson
and Siegel model by adding a fourth term to the forward rate equation
(equation (24)). This term takes the form ﬂJ(m/rz)exp(-m/ 72) and
provides two extra parameters for estimation. However, Svensson
concludes that the original Nelson and Siegel model produced a
satisfactory fit on most occasions.

31) To obtain a par yield curve numerical methods must be applied.
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4 Modelling the effect of tax (the "Coupon Effect")

The techniques outlined in the previous section can be thought of as
methods to estimate the yield-maturity structure of a bond market.
However, the existence of coupon paying bonds complicates estimation
of the term structure. In particular, tax rules can greatly affect the
prices of bonds and, if their effects are ignored in the modelling
process, can distort any estimate of the term structure of interest rates.
This is what is commonly known as the coupon effect and is particularly
important in the UK because of the wide range of coupons on bonds
currently trading in the market (the current range of coupons on
conventionals being 3% to 15 1/2%).%?

A substantial proportion of investors in the UK government bond
market are taxed at their marginal rate of tax on any coupon income
they receive, but are exempt from taxation on capital gain. Bonds with
high coupons clearly provide more of their return in the form of
coupon income than do bonds with low coupons. Therefore investors
facing a non-zero marginal income tax rate but no tax on capital gain
will ceteris paribus prefer low coupon to high coupon bonds, whereas
those paying no income or capital gains tax will be indifferent between
the two types. The preference of tax-paying investors for low coupon
bonds will increase their price relative to high coupon bonds, a
distortion that needs to be removed when attempting to measure the
underlying term structure. This section outlines and compares three
methodologies for taking account of the coupon effect.

32) Another possible effect caused by bonds paying coupons is what nught be termed a
*duration effect’, since two bonds of the same maturity but with different coupons
will have different durations and different exposure to interest rate risk. Such effects
are not considered by any of the three models described here, presumably since the
tax effect is considered to dominate.
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McCulloch (1975)

In his original work, McCulloch (1971) overlooked the possible effect of
taxation rules on bond prices, but developed the model to take account
of such effects in his second paper (1975). In this paper, McCulloch sets
up a number of equations for various types of bonds not all of which
are relevant to this study as they reflect US tax laws in the early 1970s.
Instead, when applied to the UK, only one equation is required - an
amended version of the price equation assuming continuous

compounding (equation (7)):%¥

m
BL=d G ETIG Iob(u) du + R 6(m) (25)

where: 7 = effective income tax rate
(P, m, C,R and 6 as defined before)

From equation (25) a least squares estimation procedure analogous to
equation (21) can be formulated.®? The effective income tax rate 7 is
the rate that minimises the sum of squared residuals (between actual
and fitted prices) produced by the model, and therefore requires some
form of nonlinear search to find the optimal value of 7. It is not clear
how 7 should be interpreted (see below), but McCulloch describes it as
"the approximate rate at which the Treasury recaptures its interest
payments when it floats new debt".

(33) Note that the formulation of equation (25) implies that there is no tax on capital gains.
While any capital gain made is indeed exempt from Capital Gains Tax, under certain
circumstances market-makers have to treat capital gain as profit for tax purposes and
therefore it may be taxed at their (corporation) rate of tax. In this sense equation (25)
may be an over-simplification. Also, the continuous compounding approximation is
again not necessary but we follow the original.

(34) Once the post-tax discount function has been estimated (using equation (20)) the
equivalent pre-tax implied forward rate, zero coupon and par yield curves can be
obtained by using equations (13). (14) and (17) respectively with 7 as a scaling factor.
See Appendix A for details.
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Schaefer (1981)

Schaefer begins from a slightly different perspective, using a simple
example to highlight the fact that, given a set of bond prices it is
impossible to derive a unique term structure using the bond price
equation (1) (which he calls the "no-arbitrage” condition) if there exists
more than one category of taxpayer in the market and the tax treatment
of long and short positions is symmetric. His example is as follows:

Suppose there are two investors in the market - one tax-exempt and the
other facing an income tax rate of 50% - and two one-period bonds with
coupons 4% and 10%. Both bonds make payments only at maturity,
when each pays a coupon payment and repays the principal (£100, say).
Using the bond price equation (1) and the after-tax cashflows we get the
following price equations for the tax-exempt investor:

104 10110
p = and B = (26a)

(dlbsirs ) (514 Iing)
1 1|

whereas, for the tax-paying investor:

102 NoS
p and B = (26b)

(1+r1) (1+r1)

The two pairs of equations are evidently inconsistent: if p, and p, are
fixed then r, and r'| cannot be equal, implying that for each bond one
class of investor values it higher than the other. In turn this implies
that costless arbitrage would be possible between the different
categories of investors (to the cost of the tax authorities). Since this is
inconsistent with equilibrium as well as being unrealistic, Schaefer



assumes that short-sales are banned.® This assumption implies
(amongst other things) that no arbitrage is possible and hence that no
bond can be underpriced. Therefore, for any given tax rate 7, the price
equation (1) becomes:

Price 2 + (QLES I B + (27)

2 n
(BI04 irs W) (1+r ) (1+r )
1 2 n

where all cashflows are post-tax and the term structure r, is specific to
the tax rate 7. For an investor facing an income tax rate 7 each bond is
either efficient (if its market price exactly equates to the investor’s
valuation of that bond) or inefficient (with a market price greater than
the value of the bond to the investor). Thus, Schaefer argues, there is
no unique term structure of interest rates but rather a series of tax-
specific term structures, each of which should be estimated using only
those bonds which are efficiently held by investors in that tax bracket.
The estimation involves one further (and essentially arbitrary)
assumption about the series of cashflows required by investors, and
requires the solution of a linear program to select the group of bonds
that minimises the cost of providing these cashflows, subject to price
constraints on each gilt (based on equation (27)).

Schaefer’s specification of the problem highlights a number of
difficulties with McCulloch’s approach. First, by definition,
McCulloch’s methodology will calculate the term structure for only one
category of taxpayer (facing the effective tax rate) and thus ignores the
problem outlined above caused by the existence of more than one
category. Also, the effective tax rate calculated using equation (25) will
be some kind of "average"” of all income tax rates faced by investors,

(35) In practice this is not the case - gilt-edged market makers are allowed to short sell -
but Derry and Pradhan (1993) suggest some reasons why the market might behave in
a manner that is analytically equivalent to the simplif ying assumption of no short
sales.
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rather than the marginal rate of the investor determining prices of
bonds. Second, this tax rate is (implicitly) assumed to apply to all
bonds along the length of the curve, which is unrealistic if any of the
categories of investors have preferences for the maturity of debt they
want to hold.

The model specified by Schaefer is well suited to an individual
institution making decisions on which bonds to hold, since the
applicable tax rate is clear and the profile of cashflows required should
also be known (or at least reasonably well approximated). However,
problems arise when using this model to identify a (single) "market”
term structure. There are two possible ways forward:

(a) Simply select one of the various tax specific term structures and
use this as a "representative"” term structure, for example the term
structure for 0% taxpayers. The problem with this approach is
that it ignores information from all bonds other than those used to
determine the particular term structure.®® This data shortage
problem can be alleviated a little by also including "near-efficient
bonds" - those within a tolerance limit of being efficient bonds -
and including these in a McCulloch-type regression,®” but a lot
of information is still being ignored and the term structure cannot
be described as being representative of the whole market without
further assumptions being made.

(b) Another method derives from a suggestion in Schaefer (1981)
outlining how a representative par yicld curve can be estimated
from a set of tax specific term structures. Using equation (16) and

scaling by 7 (sce Appendix A), the (pre-tax) coupon C,_ = required

T.m

(36) Typically around ten bonds (from a total of approximately 45) are selected as
"efficient” by Schaefer's criterion and therefore eligible for use in the estimation.

37) This was a suggestion made to the authors by Professor Schaefer and his colleague,
Roger Brown.
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by an investor facing tax rate r to value an m period bond at its
face value R is:

R (1-d )
m

m
(1-1) L 4

, 1

=l

Since the market price of a bond is determined by the investors
who give it the highest value, the "market par yield" y(in) is given
by the lowest coupon stock with maturity m that at least one
investor will price at par:

y(m) = min (C ) (28)
rlm

T
from which a representative zero coupon curve and forward rate
curve can be calculated using the relationships detailed in
Section 2.

Approach (b) has the advantage over approach (a) that it does
represent the whole market, rather than a specific category of taxpayer.
However, to obtain an accurate term structure in this way requires the
identification of all distinct tax categories (not an easy task) and the
estimation of all their separate term structures.

Both approaches suffer from two drawbacks when used to estimate
market representative curves. First, both require a function specifying
the cashflows required by at least one category of investor in all
periods. This is essentially an arbitrary selection and itis not clear what
effect different functional forms may have on resulting term structures.
Second, the estimation method depends crucially on the assumption
that no bonds are underpriced and so, as Schacefer states (page 429):
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"To the extent that...underpricing does occur, our estimates [of term
structures] may be upward biased.”

The Bank of England model (Mastronikola, 1991)

The Bank of England yield curve model is primarily used to provide
advice to the Treasury on the level at which to set PWLB and NLF
lending rates. Essentially, these are the respcctive rates at which local
authorities and nationalised industries can borrow funds from the
Government, and are calculated by adding a margin to the yield curve
in order to ensure they are close to market rates.

The current yield curve model tackles the problem highlighted by
Schaefer by noting that this tax effect manifests itself entirely through
the bond coupons®® and attempts to correct for it by modelling the
relationship between yield and coupon as well as that between yield
and maturity explicitly. The Bank’s model therefore estimates a yield
surface (yield as a function of coupon and maturity), thus allowing the
size of the coupon effect to vary with maturity.®® The par yield curve
can be obtained from such a surface by noting that the yield of a bond
trading at par must equal its coupon (the same condition used to derive
equations (16) and (17) above); so the par yield curve can be thought of
as the intersection between the yield surface and the "yield = coupon”
plane (Mastronikola 1991, Diagram A).

The Bank models the yield-coupon relationship for a given maturity
using Capital-Income curves that describe the trade-off between capital

gain (assuming the bond is held to maturity) and income. For a bond
with coupon C and redemption payment R (equal to £1, say) trading
at price P, capital gain and income (the latter being defined as the
bond’s running yield - see Section 2.4) are given by:

(38) Assuming that investors are exempt from paying tax on capital gains.
39) Unlike McCulloch (1975).
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Capital Gain = -1 Income = E (29)
Note that, for a given maturity, describing the relationship between
capital gain and income is equivalent to describing the relationship
between yield and coupon since the only variables in (29) are coupon
and price (which, if maturity is fixed, is a function of yield and coupon
only). So having modelled the relationship between capital gain and
income, this relationship can be transformed to provide the relationship
between yield and coupon.

For a particular (fixed) maturity m, a capital-income diagram describes
the trade-off between capital gain and income received on a bond. For
a fixed yield (y), capital gain (CG in what follows) can be shown“? to be
a linear function of income (r):

i
- -1 =8 A {(y-r) (30)
P y
where:
il m
1 + i y (l—r)] 1
A = (31)

y

This relationship is shown graphically in Figure 4.1(a) below. It can be
interpreted as an indifference curve describing the various balances
between capital gain and income to which an investor (facing tax rate r
- see below) is indifferent.

(40) See Mastronikola (1991), equations (3) and (4) on page 11. Note that r is the
running yield here and has no connection with the spot rates r defined
previously.
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Figure 4.1(a) Figure 4.1(b)
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Note in Figure 4.1 the line CG = 0 is called the par line since a bond
bought at par and held to maturity yield no capital gain. Figure 4.1(b)
shows the relationship between capital gain and income if the coupon C
is fixed; clearly (from equation (29)) as the price rises both income and
capital gain fall. The relationship is linear with slope (1/C) since, from
the definition of income (r):

(YL )

i\ (32)

For a fixed maturity and yield, the constant term A in equation (30)
depends only on the tax rate 7 and therefore it is this income tax rate
alone that determines the slope of the indifference line in Figure 4.1(a).
Figure 4.2 demonstrates this by displaying the indifference lines for two
categories of investors: gross investors (who are exempt from paying
income tax, ie 7=0) represented by the line GG’ and a tax-paying
investor represented by the line HH’ (defined by 7>0).



Figure 4.2

Capital Gain v Income :
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Since tax-paying investors pay tax on income but not on capital gain,
they require a larger increase in income than gross investors to offset a
unit decrease in capital gain - hence HH' is less steeply sloped than GG’
in Figure 4.2.

Figure 4.3 illustrates how two bonds (1 and 2) with the same maturity

m but different coupons (C, and C,) are priced in a market with these
two categories of investors.
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Figure 4.3

Capital Gain v Income

G '
Capital

Gain

The slopes of the constant coupon lines representing the bonds
(denoted C, and C, in Figure 4.3) are 1/C, and 1/C, (from
cquation (32)) so, since the gradient of C, is greater than the gradient of
C] in Figure 4.3, l/C2 > ”Cv' ie the coupon C, must be larger than the
coupon C,. This illustrates the general property of such diagrams that
constant coupon lines representing high coupon bonds are less steep
than those representing low coupon bonds.

The intersections of C, and C, with GG’ (denoted (P,(G) and P,(G))
indicate how gross investors will value the stream of cashflows from
bonds 1 and 2 respectively. Likewise, I (H) and P,(H) represent the
valuations of the same two bonds made by taxpayers. It has already
been noted that an increase in a bond’s price moves it along its constant
coupon line towards the origin on a capital-income diagram (see
Figure 4.1(b)), and so it is clear from Figure 3.3 that the gross investors
will value bond 1 higher than the tax-paying investors (since P (G) is
closer to the origin than I’ (H)), whereas bond 2 will be priced higher by
the taxpayers. So, if investors are rational, the higher coupon bond’s
price will be set by the tax-exempt investor, whereas the lower coupon
bond’s price will be determined by the tax-paying investor. Such a
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specification models a market assumed to be in "equilibrium under
switching" (Mastronikola 1991, page 10), in which no investor can
switch from one stock to any combination of other stocks if such a
switch results in:

- higher capital gain and maintained income, or
- higher income and maintained capital gain, or
- higher income and higher capital gain.

These conditions define an equilibrium equivalent to the "no arbitrage”
equilibrium in Schaefer’s model“" - for each bond it is the category of
taxpayer who values it the highest who determines its price.

Figure 4.4(a) shows the two extreme indifference lines, for the gross
investors and 100% taxpayers. The line for an investor facing a 100%
income tax rate is horizontal, since such an investor will only invest in
bonds providing a pure capital gain.

Figure 4.4(a) Figure 4.4(b)
Capital Gain v Income : Cupitul Guin v Income :
Extrcmc Cascs Intermediate Cases
Capital f‘ Gy *
Gain Copad
\ i Gain
Hee it ,.\ n"
100 00
& » 0 S
X g I
G;) Income ‘(;.0 Inc
- 1
(41) Therefore this madel also depends on an assumption that shert sales are restricted.
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This model can easily be generalised to any number of categories of
taxpayers, as illustrated in Figure 4.4(b). All the intersections between
indifference curves are assumed to occur above the par line, since all
bonds trading below the par line are priced above par and therefore
cause a capital loss if held to redemption (this loss being balanced by
above par coupon payments). Such bonds should therefore be held
only by gross investors, and only bonds lying above the par line will be
held by tax-paying investors of any kind.“4? 43

If the market is in equilibrium under switching, the prices of bonds in
this diagram will be set along the heavy boundary (corresponding to an
"efficient frontier"). However, as mentioned earlier (with reference to
Schaefer’s model), it is difficult to specify a number of distinct
categories of taxpayers since, apart from the four current personal rates
in the UK (0%, 20%, 25% and 40%), there are a number of institutions
that have exemptions (including pension funds and some foreign
investors) whilst others pay at their corporation tax rate (currently 25%
or 33% in the UK) and may be able to offset some income against other
losses for tax purposes. For this reason, therefore, the Bank model
allows for a continuous spectrum of income taxpayers between the
gross investor and 100% tax rate payer, and the boundary in
Figure 4.4(b) becomes the capital-income curve in Figure 4.5. So,
although the theory behind Schaefer’s model and the Bank’s model is
the same, there is an important difference in implementation. Schaefer
a priori determines the specific tax rates for which term structures are
required, whereas the Bank’s model defines how categories of

(42) This assumption may be too restrictive since there may be other reasons why some
taxpayers might want to hold bonds that will provide them with a capital loss. The
model could be amended to relax this assumption if it was felt unreasonable by (for
example) restricting all intersections to occur above the constant coupon line
representing the highest coupon bend in the market.

43) The Bank model does not constrain the gross investor’s tax rate to be 0% but instead
allows it to vary with maturity. The estimated value of this parameter at each
maturity perhaps gives an indication of whether or not bonds with that maturity and
prices above par are in fact held by 0% taxpayers.
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taxpayers interact and thereby estimates a single term structure
representative of the market as a whole.

Figure 4.5

Capital Income Curve

A

Capital
Gain

0 \ z«:omc

The capital-income curve is defined in the Bank’s model by the
following equation:

a (y(m)-r) r 2 y(m)

o= () (33a)

a (y(m)-r) + N(m) (y(m)-r) r < y(m)
where“4) ;

1 m

1+ 3 y(m) (l-7(m))| - 1
a = (33b)
y (m)

(44) Compare equation (33b) with equation (31). Note also that 6 here is not related to the

discount function in Section 2.
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and y(m) is the (given) par yield at maturity m. Note from these
equations that the straight line segment of the capital-income curve
(below the par line) is, for a given maturity m and associated par yield
y(m), dependent on the value of 7(in) (the so-called effective tax rate at
par at maturity m), whilst the segment above the par line is dependent
on r(m), A(n) and 6.4> Although 7(m) represents the tax rate faced by
gross investors and should therefore in theory equal zero, it is not
constrained to be so in the Bank’s model. Deviations from zero can to
some extent be interpreted as a measure of the number of taxpayers
holding high coupon bonds that are trading above par, but may also
reflect underpricing in the market. The model uses a linear function

(defined by two parameters) to specify how 7(n) varies with maturity
m.

To specify the capital income curve completely, specifications of § and
A(mn) are required. The model assumes a priori that § is fixed, and also

assumes two extreme forms that the capital income curve can take
(Figure 4.6):

Figure 4.6

Extreme Capital Income Curves
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(45) 8 can be thought of as the "degree" of curvature of the capital-income curve above the
par line (eg quadratic if §=2, etc.) whilst A(m) can be thought of as a "weight” that
specifies how much this curvature comes into play at maturity m.
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The upper extreme curve corresponds to the case where all bonds
above the par line are held by gross investors, and can be represented
by A(mn) = 0. Conversely, the lower extreme curve represents the largest
tax effects. It is constructed by assuming a 100)% taxpayer is holding the
lowest coupon bond in the market, so the capital income curve becomes
horizontal as it crosses the constant coupon line representing the lowest
coupon bond. A(m) is then estimated to represent the true curve lying
between these two extremes, and a linear function (defined by two
parameters) is used to represent the relationship between A(m) and
maturity m (see Mastronikola (1991) pages 9-18 for the full derivation).

The four parameters that specify the relationships between 7(m) and m,
and A(m) and m (and hence how the yield-coupon relationship varies
with maturity) are combined with six parameters to specify the yield-
maturity relationship y(in). A nonlinear estimation technique that
minimises the sum of squared residuals between the observed and
fitted yields is used to estimate the values of these ten parameters
(along with two others)“® simultaneously. The Bank’s model therefore
uses a curve fitting technique to estimate the tax rate faced by the
category of taxpayers who determine the price of each bond. In a sense
this is the reverse of Schaefer’s approach, which involves determining
the optimal set of bonds that each category of taxpayer should hold
then, from the prices of bonds in this subset, calculating the tax-specific
term structure.

(46) Two other effects are modelled using dummy variables to represent whether or not a
bond 1s trading ex-dividend (XD) and/or Free of Tax to Residents Abroad (FOTRA).
See Mastronikola (1991), pages 18-9.
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5 A comparison of the three models

Figures 5.1 and 5.2 illustrate zero coupon curves for the Bank,
McCulloch and Schaefer methodologies. The Schaefer curve is for a 0%
income taxpayer and includes near efficient bonds. Although the three
curves are of broadly similar shape there are differences between them
of up to 100 basis points. This is primarily due to the lack of constraints
on long rates in the McCulloch/Schaefer methodology.

Figure 5.1 Figure 5.2
Zero Coupon Curves Zero Coupon Curves
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(a) Schaefer yield curve generated for 0% Laxpayer () Schaefer yield curve generated for 0% laxpayer
(including near -efficsent bonds) tincluding near-efficient bonds)

Figures 5.3 and 5.4 show the forward rate curves corresponding to the
zero coupon curves in Figures 5.1 and 5.2. These graphically illustrate
the sensitivity of the forward rate curve - in particular to long end
constraints and to the number and location of knot points.
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Figure 5.3 Figure 5.4
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The choice between fitting a par yicld curve (the Bank model) and
fitting a discount function (McCulloch 1971,1975 and Schaefer 1981) is
to some extent a matter of taste and prior beliefs about market
behaviour. The discount function approach is explicitly consistent with
economic theory but can be very difficult to estimate, leading to the
sensitivity of the forward rate curve to small changes in the discount
function. The approach of fitting through yields, whilst theoretically
less attractive, appears more robust in practice (particularly when
producing implied forward rate curves), and can be justified if it is
believed that it better reflects market practice. This choice is
inextricably linked with the choice of basis functions - the properties of
the estimated term structure depend to a large degree on the properties
of the chosen underlying basis functions.

The choice of model for the tax effects is a different matter, and is to
some degree independent of the choice between fitting through yields
or fitting a discount function For example, there is no reason why the
Bank’s method for estimating the coupon effect cannot be used in
conjunction with a model that fits a discount function. McCulloch
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(1975) introduced the methodology for adjusting yield curves for
taxation, and he demonstrates in his paper that adjusting for tax using
his technique is substantially better than not adjusting at all. However,
his approach for handling tax has a number of disadvantages; in
particular, it is unclear what the "effective" tax rate actually
represents - and yet it is assumed constant along the length of the
curve.

Schaefer (1981) notes that there are in fact multiple term structures, one
for each distinct category of tax-paying investors - highlighting the
drawback with McCulloch’s approach. Schaefer’s suggested approach
of estimating a separate term structure for each category of taxpayer is
useful for an individual institution attempting to decide which bonds
are efficient to hold and thereby assessing its own term structure of
interest rates, but causes problems when trying to estimate a single
"market" yield curve. It is necessary either to identify all distinct
categories of taxpayer, something that could easily change on a daily
basis, or to assume that one particular term structure is somehow
representative of the market and, in the process, discard information
from all bonds that are inefficient for that particular category of
investor. The assumption that no bond is underpriced also leaves open
the possibility that the estimated term structure is biased.

The current Bank model (Mastronikola, 1991) attempts to model both
the yield-maturity and the yield-coupon relationships of the bond
market and, in a way different from that adopted by Schaefer, also
models which bonds are held by which category of investor. Despite
the (possibly restrictive) assumption that all bonds trading above par
are held by gross investors“” the Bank’s model effectively estimates the
gross investors’ par yield curve using information from all bonds in the
market, rather than just the efficient subset. Although the Bank’s

47) Although, as explained previously, this assumption is not as restrictive as it first
appears since a "gross” investor as defined by the Bank's model can face an
(estimated) tax rate 7 > 0.
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model will not produce tax-specific term structures, it is possible for
each bond to measure the tax rate of the investor determining its

price 4®

Schaefer’s model is therefore theoretically superior, since it precisely
models the behaviour of a set of rational investors facing different tax
rates. However, it has a number of drawbacks from a practical
viewpoint - particularly when a representative market curve is
required:

(i) A function defining the size and timing of required future
cashflows needs to be specified. This is essentially an arbitrary
choice and it is not clear what effect this choice has on the
derived term structures.

(ii)  The assumption that no bond is underpriced may lead to bias in
the estimated term structures.

(iii)  If a representative market curve is required, then either all
distinct categories of taxpayers need to be identified, or the
assumption that one category is "representative” needs to be
made.

The Bank model avoids these drawbacks, but at the expense of
theoretical precision. For these reasons, Schaefer’s model seems
preferable when attempting to estimate the term structure for a
particular category of investor but is less suitable for estimating a term
structure that is intended to be representative of the market as a whole.

(48) This is done by calculating the slope of the capital-income curve (for the bond's
maturity) where it crosses the appropriate constant coupon line. and using
equation (31) to deternune 7.
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6

Conclusion

This study has investigated the properties of three models that estimate
the term structure of interest rates - two prominent models from the
literature due to McCulloch (1975) and Schaefer (1981), and the model
used currently by the Bank. The three models were compared (on

theoretical grounds: their methodologies for handling tax effects in

particular. Examples of curves produced using each of the

methodologies were also presented.

There are (at least) three aspects to the estimation problem that are
more or less distinct. These are:

(a)

(b)

Which curve should be estimated first? McCulloch developed the
methodology for fitting the discount function (and Schaefer also
uses this approach), which is theoretically attractive but can be
difficult to estimate in practice. In particular it can prove difficult
to derive sensible forward curves from an estimated discount
function. Alternatively, the approach of simply fitting a curve
through redemption yields to obtain a par yield curve (as the
Bank’s model does) can be used. This is less attractive
theoretically (although it may be justifiable if it is common market
practice), but more robust in practice. Until satisfactory curves
can be derived from an estimated discount function it seems
sensible to continue fitting a par yield curve.“?

What basis functions should be used to define the shape of the
estimated discount function/par yicld curve? This is a separate
choice to (a), although many applications use variations on the
cubic spline for estimation, and depends to a large extent on the
required flexibility of the derived curves. The choice of basis
functions may be critical to the shape of the curves produced by

(49)

The approach due to Nelson and Siegel (1987) - and augmented by Svensson
(1994) - may prove useful in this respect.

56




either method in (a), but appears to be a more important
consideration when the discount function approach is used. The
consensus view in the literature appears to be a choice between
using B-splines (most recently endorsed by Steeley, 1991) or a
more restrictive functional form of the kind suggested by Nelson
and Siegel.

()  How should tax effects be accounted for? McCulloch produced
the first solution to this problem, which is probably a little too
restrictive. Schaefer highlighted that there are in fact as many
separate term structures as there are distinct categories of tax-
paying investors, and his approach is well suited for an individual
or institution to estimate the tax-specific term structure that they
face. However, there are drawbacks to this methodology when
attempting to estimate a single "market” term structure of interest
rates, an area where the current Bank tax model has practical
advantages over Schaefer’s model, but at the expense of
theoretical rigour.

Finally, it is worth reiterating that the choice of tax model is a separate
issue from the choice of methodology for estimating the term structure.
For example, an approach based on fitting the discount function and
modelling tax effects using the Bank'’s technique might be desirable.
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Appendix A: Deriving the McCulloch Equations
Using continuous compounding
To estimate the discount function §(m) from observed prices of n

bonds, the discount function is written as a linear combination of basis
functions:

§(m) = 1 + T a f (m) (A1)

where f,(in) is the j*" basis function, and a; is the corresponding
coefficient (j=1,... k).

The price of the i*" bond is given by:

m

1
P=CJ &(u) du + R 6(m) (A2)
1 i i

4 o

where P, &, R ,and m, are the price, coupon, redemption payment and
maturity of the ™" bond.

Substituting the expression for the discount function (A1) into the i*"
price equation gives:
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m, Kk k
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P =C ifi 1 +X a f (u)| du + R T ol a f. (M)
1 1 L) 1 Ul ) 1
o J:l ]:1
m, Kk k
1
B o m_ + [ L af (uw) duel + R + R L af (m)
1 1 1 : ] i il o JJ 1
© =l =
k m k
P =C m +R+L acCc f f (u) du + T R a f (m)
1 ot dy J i 5] ; TR
j=1 o j1=
k m1
P =€ m =R =2 a Ge Mf f (u) du + R £ (m )
1 B 1 ; , 1 J] 17 1
VEN ] o

k
y. B a. x. . (A3)
1 : J 1)
Jj=1
where: Y. P C. m, R
i i ST 1
m .
1
X = © J f (u) du + R E (m)
o) 1 Jj a0l
o

Equation (A3) can then be used to obtain least-squares estimates 5/., and
the estimate of the discount function 8(in) is then given by:

6(m) =1+ L a f (m (A4)
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Using discrete compounding

The analogy of (A2) using discrete compounding is:

y n
P +ai = - E 8(1) + R b(n) (AS)
2 1=1 1

where P, ai; and 1 are the clean price, accrued interest and the number
of outstanding (semi-annual) coupon payments of size c,/2 of the i'"
bond.

Substituting the expression for the discount function (A1) into the "
price equation gives:

] )}E k
P + ai (1 + UG L s ey e e ()
1 bi —21:1 = ) 1 J= U]
G G
; i -

J2RE A ) F + R+ é a. @ (s ‘}E a R f (n)
1 1 B i j=1 3 = 1=1 ] J= j 1 J
2

Ci k Ci n
P+ al n R = a . L £ (1) + R, f (n)
ol 1 F 1 : J = J 2L )
2 =i 2 1=

which can be written:



i j=1 J 1iJj (A6)
where:
G
y = P + ai — l - R
il 1 1 2 1
Ci n
X = P\ N (1) + R £ (n)
ity 3 S|
7 =t

As with the case of continuous compounding, (A6) can then be used to
obtain least-squares estimates 3,., and the estimate of the discount
function dm is then given by:

Tax-adjusted discrete compounding formulae

Using the formulae in the previous section ignores any effects caused
by taxation of coupon payments. In this section we list the analogous
formulae allowing for taxation of income at some rate 7. Incorporating
the Accrued Interest Taxation Scheme the relationship between the
price of the i'" bond and the discount function is now given by:

Ci n
P + ai S5 Epl b(tl) + (1-r) T &6 (1) + R _&8(n)
dl - i 1
2 185!
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Following the same process as in the previous section leads to the result
that:

X
= B a x

yl Ily=pll 7. )1

where:

Yy =P + (ai - n °i ) (1-7) - R

7 1 1

2
fol n
x s.ad  rf (k) + (1-r) T f (1) + R f (n)
1) 1 Jj V)

It is also possible to derive analogous equations for the relationships
between the discount function and the par yield, zero coupon yield
and forward rate curves derived in Section 2.

The equation relating the forward rate curve to the discount function
[the analogy of equation (11)] is:

-ad
1

(1-1)d,

The zero coupon curve can be derived from the discount function
[analogous to equation (15)] using the equation:

1 47
T - =1l
{ s

=i l
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Finally, the equation linking the par yield curve to the discount
function [analogous to equation (16)] is:

R(1-d))

m

(1-7) L d,
sl=il
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Appendix B: McCulloch’s cubic spline specification
Assume k knots x, ..., k, where k, = 0 and k, = maturity of the longest
existing bond, the other knots positioned so that there is
approximately the same number of bonds between each pair of knots.
The functions used are (for j < k)

for n < Koy

f)-(m) =0

for k.. S < k.
)-1 J

2)
(m-x 1)

I YRS ’

y G = i)

J) gl
for ijm< Ky
2 2 3
ce e e

f (m) . S

3 6 2 2 6(x K )

g = K~K.
where: ¢ = kK,

€ =m- Ki




for Kivy S

f (m) = (K, K, ) i
J J+l j-1

forj=k

And: f,(n) = mn for all .




Appendix C: Deriving an Implied Forward Rate Curve

from a Par Yield Curve

The price equation for an n-period is:

. c c c 1
(1+r)) (1ar,)* (1+rn)n (1+rn)n

where:

4 = price of bond (per £1 nominal)

C = coupon (per £1 nominal)

g = i year spot/zero coupon rate

Let:

Y, = i year par yield

f, = 1 year forward rate from period a i-1 to period 1

L (14r) = (+£)(1+,)..(1+f) (C1

d = ith discount factor

il

(+r)*

Note: y, =r,=f,




The par yield curve is constructed from notional bonds selling at par.
Hence P=1 and the n year par yield y, = C, the coupon on the notional
n year par bond:

1=y E di+d (c2)

n
Now get an expression for I d. in terms
; =1 i
of the par yields (y,s):

n-1

n
Since da = ¥ d d

1 1
I jl= il

it follows that

n
L d =(1+ I d)/il+y) (c3)
= =il 1 n
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From equation (C3):

L 1
n=1: b ) d
=N &
(1+y,)
2 1 1 2 1
n=2 S = + = )
2.=3! i JENL P (1 )
(1+y,) (1+y,) (1+y,) I vy,
iL=15]
: i 1 il
n=3: .Zl d, = + +
=
(1+y1) (1+y2)(1+y3) (1+y1)(1+y2)(1+yﬂ
n n 1
.Zl = Zl
1= L& JE
'[’I (1+y1)
gl
n
But d =1 y B nd (from equation (C2))
o L NEHE
b pades
= 1 -
dn yn le =)
(1+y))
-n
Simiee d "=, L % rn)
-1/n
n n
r - l-y Z =
n Ry=3 3=

S

1

The implied forward rates can then be calculated from equation (C1).

;‘ (1+y,)
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