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Abstract 

We develop in this paper an analytical analogue to the Monte Carlo 

techniques previously used by banking supervisors to assess the 

potential credit exposure of interest rate swaps, which permits a more 

thorough examination of swap exposure. We do so by using the Cox, 

Ingersoll and Ross (1985) one-factor model of the yield curve to 

generate interest rate paths from which swap credit exposure paths can 

be determined. 

Even with such a relatively simple interest rate process, we find that the 

patterns of credit exposure are more complex than the supervisors' 

previous techniques allow: they vary with the level of interest rates, 

the slope of the yield curve and the volatility of the short rate - all 

factors which are ignored in the supervisors' risk measurement 

methodology - and have a significantly non-linear relationship with 

swap maturity. We conclude that market traders and regulators need 

to be alert to these factors in determining the appropriate level of 

capital to hold as protection against counterparty default. 
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I Introduction 

The proliferation of new financial instruments confronts financial 

institutions and their supervisors with the problem of assessing their 

riskiness. Capital charges for credit risk inherent in the more 

established OTC derivative instruments such as interest rate swaps and 

forex forwards are covered by supervisors' existing guidelines (as 

detailed, for example, in the Basle Accord [BIS (1988)] and elsewhere). 

These rules adopt a very simple approach, which requires firms to 

distinguish only between interest rate and currency derivatives and 

between short-term (under one year) and long-term (over one year) 

contracts. The capital charges themselves are based on 'typical' 

maturity and vintage profiles within each of these four categories, as 

would be represented by a well-balanced and mature portfolio of deals, 

and do not pretend to be an accurate measure of risk on a transaction 

by transaction basis. Recent proposals from the Basle supervisors' 

committee [BIS (1994)] extend the classification somewhat, both in 

terms of distinctions between instruments and of maturity categories, 

bu t preserve the general 'balanced portfolio' assumption. So even for a 

'typical' portfolio for which this approach will provide a reliable 

overall assessment of risk, it is of little relevance for tackling issues such 

as the design of internal risk management systems or of pricing models 

- for which an understanding of the risk characteristics of each deal is 

essential. 

The established approach to assessing risk or capital charges on OTC 

derivatives is to use Monte-Carlo simulations to model the path of an 

instrument's likely value over time. This entails simulating the path of 

underlying variables (for example, interest rates or exchange rates) 
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many times, evaluating the instrument's value (and therefore the credit 

exposure to the 'in the money' counterparty) which each path implies, 

and then choosing a particular quantile of the resulting value 

distribution to represent the "risk" of the instrument. [See Hull (1 989) 

and Hull (1993), Ch. 1 1  for brief accounts of this approach and Bank of 

England ( 1 987) for a description of the simulations underlying the 

weightings in  the Basle Accord .] 

Numerical methods of this kind are essential for precise evaluation of 

the risk of products when the behaviour of the underlying variables is 

not a nalytically tractable. But they are not especially transparent and, 

in particular, do not reveal, other than by exhaustive and 

time-consuming experimentation, how an instrument's characteristics­

coupon, maturity, cash flow profile - and the volatili ty of the 

u nderlying variables contribute to i ts riskiness. I t  is therefore difficult 

to assess whether simple rules of thumb for calculating risk-weights 

and capital requirements - such as those in the Basle Accord - are 

reliable simpli fications, and the ranges of parameter values for which 

they are appropria te. 

In order to answer these questions, we here measure credit risk for 

plain-vanilla interest rate swaps using a relatively simple model of the 

term structure which avoids numerical simulation. In essence, we 

compute the quantiles of the state variable underlying the value of the 

swap and determine critical values for the path of the value of the swap 

i tself (given that there is a strict monotone relationship between the 

swap value and the state variable). Measures of exposure are 

calculated from the swap value quantile paths. 
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This approach has two principal advantages over Monte-Carlo 

simulation: it makes it easier and quicker to evaluate an instrument's 

riskiness; and it greatly facilitates exploration of the relationship 

between its riskiness, its contractual terms and the behaviour o f  

u nderlying variables. We demonstrate this by evaluating the risk 

inherent in interest rate swaps using not only the naive (flat yield 

curve) model implicit in the Basle weightings but also using the term 

structure model proposed in Cox, Ingersoll and Ross ( 1985) (CIR 

hereafter), which allows us to assess the effects on risk of mean 

reversion and of changes in the slope of the yield curve. The principal 

disadvantage of the method arises from the assumptions of the CIR 

framework. The issue here is not so much the utility maximising 

representative investor in a continuous time general equilibrium 

economy - which naturally bears little relation to the real environment 

of setting interest rates - but, rather, the inability of the model to 

capture the varieties of interest rate term structure which are frequently 

observed. This is  particularly true of humped yield curves which only 

seem possible for relatively unrealistic settings of the model 

parameters, eg very high volatility levels. 

The paper is arranged as follows. In Section 11 we set out some basic 

definitions used in the rest of the paper. Section III briefly describes the 

standard Monte-Carlo method and its analytical analogue. Section IV 

applies this alternative procedure to the most widely-used OTC 

derivative, the interest rate swap, with interest rates detennined by a 

CIR tenn structure model. Section V concludes. 
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II Exposure, Replacement Cost and Capital Risk 

Weights 

Unmargined OTe derivatives give rise to credit exposure to the 

'in-the-money' counterparty ( that is, the counterparty for whom the 

mark-to-market value of the contract is positive). This mark-to-market 

profit represents a credit  exposure because it is not already earned (or 

secured - as i t  would be, if fully collateralised by margin payments) but 

is  today's best estimate of the profit which can be expected to accrue to 

the 'in-the-money' counterparty over the remaining life of the deal. It 

will of course do so only if  both parties continue to meet their 

contractual obligations to each other or if the in-the-money 

counterparty is able to assign or otherwise transfer their interest in the 

contract a t  fair value to a third party. As a result, the profi t is correctly 

viewed as a claim on the 'out-of-the-money' counterparty. I f  that party 

defaults, the profit is  likely to be lost. 

On any deal, exposure in this sense can be posi tive or negative. But 

negative values do not constitute credit exposure: the out-of-the-money 

party is a debtor, and his posi tion does not change if the other party 

defaults because he would still be required to meet his contractual 

obligations. Different considerations arise if there are other deals 

between the parties to which rights of offset or other legally enforceable 

netting rules apply, but these are not considered further here. 

I f  the credit  exposure at time t (for t�O, where t=O is the present) is 

denoted by St then the replacement cost in  the event of default by the 

counterparty is given by Kt = max{SI'0}. Noting that the value of a 

derivative at  some fu tu re date t can be decomposed into i ts current 
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value, So' and the change in value between now and time t, (SI - So), 

we can rewrite replacement cost as: 

or 

(1) 

(2) 

The latter therefore decomposes replacement cost at some future date 

into current mark-to-market value, which is known with certainty, a nd 

potential future expoSlIre, which is random since i t  depends upon future 

realisations of value, SI" Because OTe derivatives are not readily 

transferable, it is prudent for the parties to a deal to assume that their 

participation commits them to whatever credit  exposures will arise 

during the deal's l ife. So in measuring credit risk, they should be 

concerned (as are supervisors) as much with potential future exposure 

as with the exposure implied by the deal's current mark-to-market 

value. 

It is replacement cost, as just defined, wi th which we shall be concerned 

in the rest of this paper al though, in our illustra tive swap examples in  

Section IV, we assume that current mark-to-market value is  zero so that 

potential future exposure simpl ifies to maxIS"D}. The analogy 

between credit risk measurement and option pricing is evident since 

both are convex functions of the underlying variable(s). Whilst the 

approach in this paper explores credit risk using quantiles as the main 

tool of analysis, i t  could equally have been replica ted using contingent 

claims techniques. 
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In assessing the potential credit  exposure of a swap, we require a 

measure of risk which summarises all possible paths which potential 

credi t  exposure can take. If  there were risk of default only at time T, 

the 1 00a% quantile of KT (that is, the value which is exceeded only with 

probability a) would summarise the riskiness of the financial security 

for a given degree of confidence. But the risk of default is not 

concentrated at any point in time: it exists throughout the term of the 

contract. So we require a measure of risk which summarises the a% 

quantiles of the credit  exposure over the remaining life of the deal. 

If K� denotes the a% quantile of Kt at time t, then the most conservative 

summary measure of risk for the given degree of confidence is 

max{K�, O:stsT}: we can be a% confident that the loss will not exceed 

that value even if default occurs a t  the worst possible time. But if  

default is equally likely at  a1lY time, this summary measure is 

unsa tisfactory because i t  takes no account of the (lower) levels of loss 

which we can similarly be a% confident will not be exceeded at other 

times. A natural measure to reflect losses in all relevant time periods, 

and on which we will therefore focus in the rest of the paper, is the 

average a% quantile path over an interval T which is measured as 

(3) 

These risk measurement quantiles depend on the parameters 
describing the probability distributions of the underlying variables 
(drift, volatility etc) and the structure of the derivative (maturi ty, 
coupon etc). We will illustrate the way in which the average a% 
quantile replacement cost changes for di fferen t values of these 
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parameters, standardised by expressing the cost as a percentage of the 
contract's face value or notional principal. 

We are aware that this measure of overall riskiness is not as intu i tive as 
perhaps is the expected replacement cost, where the expectation is  taken 
jointly over time [O,n and the support of the underlying asset [0,00], 
which is a variation on the contingent claim credit risk measurement 
technique mentioned in Hull ( 1989). Implicitly the a veraging above 
assumes a uniform probability of default (conditional on the event of 
assuming default occurring) over the life of the instrument. However, 
joint averaging cannot be easily rationalised in response to questions 
like "will this measure cover risk 90% of the time, if an indi vidual 
capital requirement is set for the swap". Our a verage quantile 
measures will answer questions like this assuming that l i ttle is known 
about the time of default, ie a uniform distribu tion. 

III The Monte-Carlo method and its analytical analogue 

Let SI be the value of a pay-floating/receive-fixed swap at time t, 

which depends upon the time t interest rate r/ 1) and time thus: 
SI=!(rl,t). Suppose for the moment that rl is log-normally distributed 
conditional on an ini tial interest rate r 0' ie 

where IJ is the drift of rl and a is i ts volatili ty. This time-dependent 
family of distributions for (SI, t�O) is equivalent to SI being a 
geometric Brownian motion (GBM). I f  we define II=[og(rl)-log(ro)­
(lJ-a2/2)t, then we have 51=!(ro.exp(lt+(IJ-a2/2)t), t ) .  Thus we may 

(4) 

(1) Implicit in the price formula is an interest rate term structure which is 
generated by a single stochastic factor, eg a flat yield c urve or the term 
str ucture model of Cox, Ingersoll and Ross (1985). If the yield c urve is flat, then 
the instantaneo us (short) interest rate s uffices to specify the whole yield curve. 
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write St as a function of It .... N(O,o2t) and time t which aids the 
construction of quantile paths. 

The Monte-Carlo simulation approach to measuring St ' the riskiness 
of the swap, is to simulate the path of Tt many times over the time 
interval [O,n. Given the distributional assumptions for Tt (which 
specify how Tt can change over time), these paths will generate 
corresponding paths for the swap exposure St on [O,n. A t  any given 
time t between 0 and T, there will be a distribution of simulated values 
for Se The cx% quantile of this sample of simulated values of St is an 
estimate of the population cx% quantile of SI' Having obtained the cx% 
quantile, there are several ways in which this information may be 
summarised. For example, capital requirements have been calculated 
on the basis of averages derived from these sample paths. Our 
proposed a nalytical method is to select a path for the random variable 
Tt (in the case of an interest rate swap, the single underlying interest 
rate factor which is assumed to drive the yield curve) which 
corresponds to the cx% quantile of i ts d istribution. This path for interest 
rates can then be substi tuted into the derivative pricing formula to 
obtain the cx% quantile of the derivative price where there is a 
monotone relationship between 5/ and Tr For example, if: 

where 1/ .... N(O,o2t), then the average cx% quantile for 5/ over the 
interval [0, d is given by: 

where It is set equal to q(cx) o..ft where q(o:) is the number of standard 
deviations appropriate to the 0:% quantile of the standard normal 
distribution. We compute this quantity by approximating it with the 
a verage half-yearly exposure. 
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This measure of risk depends on (i) �, the drift rate of rt; (ii) u, the 
volatil i ty of rt; Oii) T, the length of the time interval over which the 
average is taken; (iv) q(cx), and (v) the terms of the financial instrument, 
which define its cost given the value of the underlying stochastic 
variable. It provides an analytical framework in which to compute a 
measure of risk which is much quicker and more accurate than the 
measure provided by Monte-Carlo simulation. 

To illustrate the use of this analytical method, suppose - as in the 
simulations underlying the Basle requirements - that the yield curve is 
always fla t and subject only to parallel shifts. 111is allows us to 
concentrate on a single interest rate - the instantaneous short rate, rt, 
appropriate for all terms to maturi ty. 111e value of the swap just after 
payment date t is given by: 

S 
t 

(T-t) -5 
((r -r )In) � (1+r In) (t�1In) 

o t 5=1 t 
(7) 

where T is the time when the last payment is made, 11 is the number of 
payments per year and ro is the fixed coupon. This formula can be 
rewri tten as: 

s = (1' / r - 1  )( 1 -( 1  +r / n)-n(T-t) 
t O t t (8) 

The swap is then evaluated at  the cx% quantile of the interest rate, rt, 
and a measure of average potential exposure over the life of the swap is 
calculated, as described in formula (6) [see Appendix (a) for deta ils of 
calculations}. This measure of risk is evaluated for a variety of 
numerical values of the initial short rate and its volatil i ty u .  The cetens 
parib1ls effects of each of these factors on potential credit exposure is 
assessed by keeping constant all but the parameter of interest. The 
results of these experiments are displayed in Figures 2 to 5 .  In all the 
graphs, the units on the vertical axis are percentages of notional 
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principal. A list of all the parameters underlying the plots in this paper 
i s  given in Appendix (d). 

Figure 1 Exposure(percentage) 
- 20 

5 

o 
o 2 4 6 8 10 

time (years) 

Figure 1 illustrates the 95% quantile path over its full l i fe for the 
replacement cost of a 1 0  year, 6% coupon swap wi th semi-annual 
exchange of floating ra te and fixed ra te payments. This displays the 
familiar "hump" shape, which reflects the changing balance between the 
effects of falling interest rates (which increase the credit exposure faced 
by the receiver of the fixed coupon flows) and the falling number of 
remaining payments (which decrease credit  exposure as the swap 
approaches maturity). 

Figure 2 gives the average replacement cost of swaps of di ffering 
original maturi ties (where the average is calcula ted over the life of the 
swap) and also the corresponding maximum replacement cost (as 
defined in Section II above). Comparison of the two charts shows that 
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average replacement cost is  equal to (approximately) three-quarters of 
the maximum replacement cost. 

Figure 2 

o 2 4 

Exposure(percentage) 
- 20 

maximum exposure r 

� 
� 

� 

6 

� 
� 

ll1aturity (years) 

� 
/ 

8 

� 
� - 15 

- 10 

- 5 

o 
10 

Figure 2 also shows clearly that replacement cost increases more than 
proportionately wi th maturi ty: a 2-year swap has average replacement 
cost of about 1 % of notional principal, whereas the corresponding 
figures for 5-year and lO-year swaps are abou t 4 .5% and 1 0% 
respectively. 
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Figure 3 
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Figure 3 illustrates the effect of changes in coupon on average 
replacement cost and Figure 4 the effect of interest rate volatility .  
Though the plots i n  these latter d iagrams appear to be linear, they are 
in fact slightly concave - the concavity of Figure 3 being more 
pronounced. But the non-linearity of  the maturity-related curve is for 
practical purposes the more significant, because i t  is most pronounced 
at the shorter maturities typical of the majori ty of transactions. I t  is 
interesting to note that even the original Bank of England /Federal 
Reserve Board proposals, which were more detailed than those 
included in the eventual Basle Accord [see Bank of England (1987)], 
largely ignored this feature. 

IV Interest Rate Swaps in a CIR environment 

This approach can be used to evaluate the riskiness of an interest rate 
swap in a more realistic environment where short interest rates evolve 
in the manner described by the eIR term structure model. Under the 
eIR model, the instantaneous short rate evolves according to the 
stochastic process: 

(9) 

where K(8-rt) is the drift of the short rate, o';r, is the instantaneous 
standard deviation and Zt is a Wiener process.(2) This implies that rt is 
distributed as a non-central chi-square distribu tion [(see Appendix (b)]. 

This model has a number of a ttractive properties, including: 

(i) the error-correction term, K.(8-r) .dt, ensures that the short rate 
gravi tates towards the steady-state level, 0, at a rate K, ie short 

(2) The short rale drifts towards 8 (the mean of the short rate in the in fin ite future). 

The speed with which it drifts towards 8 is given by the mean reversion 
parameter K. The volatility of the short rate is determined by a and the square 
root of the short rate at that point in time. Heuristically, dZI - N(O,dt). 
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rates mean-revert around (J. This determines the slope of the 
yield curve generated by the erR model and allows us to analyse 
swap exposure when the short-{!nd of the yield curve tends 
towards (J. TI1e long-run short rate 9 is not to be confused with 
the yield on a perpetuity which equals 2 K/ (K+}.+1) where 
1= -I« K+ }.)2+202); 

(ii) the second term ensures that the short rate cannot become 
negative: the volatili ty of interest rate changes is proportional to 
the square root of the interest rate; 

(Hi) the eIR interest rate process allows the derivation of closed-form 
price formulae for zero coupon bonds (and hence the yield curve 
and implied forward rates) and therefore for other interest rate 
derivatives. 

The eIR model is of cou rse unrealistic in a number of respects: i t  was 
derived for an economy without any medium of exchange, so that the 
term structures derived are effectively real interest rate term structures; 
i t  implies that the Ta te on perpetui ties is constant, which may be true 
for real interest rates [see Brown and Schaefer (1991 )] but not for 
nominal interest rates; and empirical evidence for the United States 
suggests that volatility is proportional to a higher power of the interest 
Tate than i ts square root [see ehan et al (1992)]. Forthcoming work by 
one of the au thors suggests UK 3-month and 6-month L IBOR data may 
be consistent with the eIR short-rate process, though the estimated 
equa tions have poor predictive power, ie R20f less than 0.01 . It is 
nevertheless a significant improvement on the assumption of a fla t  
yield curve, being both analytically tractable and capable of generating 
yield curves which are upward sloping, downward sloping and 
humped. The value (a t time t) of a pure discount bond P(r,T-t) (which 
matures at time n given the current value of the short rate, (denoted by 
r instead of rt)' is of the form P(r,T-t) = A(T-t)e-rB(T-t). The functions A 

and B depend on K,9,o,T,t and the market price of short rate risk (A) 
[their functional forms are set out in the Appendix (b)]. TI'\Us the 
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continuously compounded yield-to-maturi ty, y(r,T-t), of a pure 
discount bond, issued at  time t to mature at time T, is given by:(3) 

y(r,T-t) = (rB(T-t) -log A(T-t» /(T-t) 

The above equation defines the interest rate term structure in a CIR 
economy. 

(10) 

The value of a pay-floating/receive-fixed interest rate swap wi th 
half-yearly payments, a coupon Co and maturity at time T is given as 

SI = 1: ;=�(T-t) {O+Co/2) P(r,i/2) - P(r,(i- 1 )/2)} (11) 

Generally, the coupon (fixed side) of a swap is set so that the net 
discounted flows equal zero. In effect, this means that the coupon is a 
par yield corresponding to the maturity of the swap. Equation (11) can 
be solved (with 5,=0, where the swap is initially 'a t-the-money' at 
t=O), to give the coupon as 

��1 P( r, (i-1) /2 
c = 2 - 1 0 

�%1 P( il2 ) r, 

Clearly, the swap value SI is a function of the current value of the 
short rate r which has a non-central chi-square distribution. By 
rewriting equation ( 10), one can check that SI is a monotone 
decreasing function of r (see Appendix (c) for details). This 
monotonicity allows us to establish quantiles for the value of a swap. 
For example, i f  we find the 5% quantile of the short ra te, rO.05, then 
S/(rO.05) will give the 95% quantile for the value of the swap (which 

(3) We recognise that this solution provides yields which assume continuous compounding: 
however. for our purposes. this approach is computationally faster and will not change 
any of the indiviuual results. 
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was previously denoted by �.95). We will focus, in  particular, on the 
a% swap quantile paths {St(rt I-a): O$t$T}. 

Capital requirements must protect against interest rate developments 
d uring the life of the swap. In this section we make a (stylised) 
d istinction between two sets of factors which determine the capital 
requirement: 

(a) structural factors which affect interest rate developments and 
determine the parameters ro (the ini tial short rate), 9, ", A and 0 

u nderlying the model. For example, the mean reversion 
parameter may be a consequence of the monetary policy of the 
time which determines the speed with which short-term interest 
rates adjust and the ampli tude of the interest rate cycle. TI1ese 
parameters affect (i ) the ini tial level of the short-end of the yield 
curve, (ii) the slope of the yield curve and (iii) the direction of 
yield curve movements over time and (iv) the speed with which 
the yield curve shi fts and they are fixed over the life of the swap; 

(b) random movements in the short rate which cause unexpected 
shifts in the yield curve over time. 

A more sophisticated model might allow the parameters in (a) to be 
random variables, thus allowing for a degree of structural change over 
time which may be consistent wi th observed interest rate cycles. 
Longstaff and Schwartz (1993) allow the volatility parameter to be 
generated by a mean-reverting square root process. The only random 
variable in this  model is the short rate. TI1e results of the following 
section explore the effect on swap exposure for different  settings of the 
factors in (a). In the case of (b), the effect of random movements in the 
short rate enters the capital requirement through the short-rate quantile 
path which ensures that the capital requirement protects against a fixed 
percentage of random (interest rate) events. 
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1: The effect of a sloped yield curve on swap exposure 

Given a short rate ro at  time 0, the 1 00(1-a)% quantile (�-a) bounds the 
short rate (at time t) from above 1 00( 1-a)% of the time. TIle quantile 
K7 = St(rt I-a) sets a capi tal requirement which protects against 1 00a% of 
the possible swaps values at time t. We plot the 100a% quantile path of 
the swap over i ts li fetime. These plots are the main tool employed to 
analyse the riskiness of swaps in this paper. 

We investigate the 5% and 95% swap quantile paths under three 
different interest rate scenarios: 

Scenario 1: 

Scenario 2: 

Scenario 3: 

Initial short rate 6% 
Long-run short rate, e=6% 
Initial short rate 6% 
Long-run short rate, e=3% 
Initial short rate 6% 
Long-run short rate, e=9% 

19 



Figure 5 Exposure(percenlage) 
- 15 

- 10 

- 5 

Kappa = 1 
Ka a = 2 

o 
o 2 4 6 8 10 

time (ye:m) 

Figure 5 shows the 95% quantile exposure for a 1 0-year swap under 
scenario I where the mean reversion parameter K=O,1 and 2. Zero 
mean reversion (K=O) generates a 95% quantile exposure profile which 
resembles that of Figure 1 .  In comparing the GBM model with the CIR 
model it is helpful - for the purposes of establishing a benchmark for 
comparison - to identify the case of no mean reversion (K=O) in the CIR 
model with an interest rate process generated by GBM. 

Observe tha t the effect of mean reversion is to reduce the exposure of 
the swaps dramatically. This is the case even when the yield curve is 
almost flat, ie the K(8-rt) is small because '0 equals 8, but becomes more 
pronounced when the short rate is reverting to a point which is 
different from the initial starting rate - the maximum quantile 
exposures (over the life of a 1 0-year swap) for K=l and 2 are less than 
2% of notional principal for scenarios 2 and 3.(4) I n  this respect, capital 

(4) In the cases of scenarios 2 and 3. K=1 and 2 c orrespond to the cases where (in a 
detenninistic world, (1=0) the short-rate ch anges after one year equal 1.9% and 
2.6% (percenti'lge points), respectively. 
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requirements calculated on the basis of the CIR model will be srnalIer 
than those of the GBM model. Section 3 considers the effect of mean 
reversion in more detail. 

Figure 5 shows the 95% quantile exposure profiles for a 
(receive-fixed /pay-floating) 1 (}year swap whcn the yield curve is flat 
and unchanging - scenario 1 .  In fact, the 5% quantile path looks 
(almost)(S) identical for this swap except that the (credit) exposure is 
negative. Thus there is a close symmetry between the 5% and 95% 
quantiles of the receive-fixed /pay-floating swap when the yield curve 
is flat. Thus when the yield curve is flat (and unchanging) over the 

life of the swap, neither side of the swap will be predominantly in (or 

out of) the money. 

When 8 (the long-run short rate) is d ifferent from the initial short rate 
in the presence of mean reversion (,,;t!O), the yicld curve will have an 
upward or downward slope. Figures 6(a,b,c) and 7(a,b,c) show the 
effect of sloped yield curves under scenarios 2 and 3. Plots of the 
quantile exposure profiles over the lives of swaps of maturity 2.5, 5, 7.5 
and 1 0  years are drawn. The plots have been drawn so that the swap 
value is (almost) always posi tive by taking the appropriate side of the 
swap in each case. 

Figure 6(a) shows the 95% quantile path of the 
(receive-fixed Ipay-floating) swaps where the yield curve is downward 
sloping over the li fe of the swap. Figure 6(b) shows the 5% quantile 
path of the swaps. 

(5) There is a slight diff.:rence in exposure due to the fact that each tail corresponds to 
interest rates at different levels above and below 6%. The 5% quantile of a 
receive-fixedlpay-floating swap corresponds to a higher level of interest rates (above 
6%) than the 95% quantile swap exposure where interest rates are lower. 
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_Figure 6a 
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Figure 6(a) shows the 95% quantile path for receive-fixed/pay-floating 
swaps of different maturi ties. The curves have inverted-U shapes 
w here credit  exposure increases for (roughly) the first 35% of the 
swap's l ife and declines thereafter. Bearing in mind that the short rate 
d eclines monotonically along i ts quantile path, giving rise to a series of 
downward sloping yield curves which are shifting downwards over 
time, the decline in swap credi t  exposure is the result of (i) the effect of 
fewer remaining payments as maturity approaches (which reduce 
credit  exposure) domina ting (iD the downward yield curve shifts 
(which increase credit  exposure). 
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I n  the cases of swaps of maturity greater than five years, the credit 
exposures in figure 6(b) change sign as the swap approaches maturity. 
In  scenario 2, the ini tial yield curve is downward sloping and implies a 
l O-year coupon of 3 .31 % on the fixed side, ie 1 .655% of notional 
principal is paid every half year. Since the short rate evolves along its 
95% path, it remains above i ts asymptotic mean of 3%. Therefore, all 
the yield curves genera ted along this 95% path are downward sloping. 
In particular, the half-yearly implied forward rate curves (which are 
expected future payments on the floating side) are (a) downward 
sloping and (b) particularly high at  the short end because of the 95% 
quantile short rate path. The short end of the forward rate curve will 
lie above the half-yearly coupon rate of 1 .655%. As the swap 
approaches ma turi ty, the half-yearly investment rates at the long end 
drop out of the swap value formula, leaving only the higher rates at the 
short end. For a receive-fixed /pay-floating swap, the ini tial positive 
exposure is due to the greater number of payments (at the long end) 
which lie below 1 .655%. However, as the forward rate curve evolves 
over time, these rates at the long end drop out and only the rates at the 
short end are left. As these lie above 1.655% (due to the particularly 
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high short rate quantile path which determines the short end of these 
curves) therefore the exposure on a receive-fixed /pay-floating swap 
will be negative. 

Figure 6c Eltposure(percentage) 
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Figure 6(c) shows the 90% confidence interval for exposure over the life 
of a ID-year swap. ll1e conclusion which emerges from Figures 6(a,b,c) 
is that when the yield curve is downward sloping and shifting 

downwards, the credit exposure on a receive-fixedlpay-floating swap 

is mostly positive. Furthermore, the grea ter the maturity, then larger 
is the probability that the value of the swap will be negative at  some 
stage in i ts lifetime. 
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Figure 7a Exposure(percentage) - 3.5 
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In terms of shape, Figures 7(a,b) are the reverse of Figure 6 since the 
former correspond to a pay-floating/receive-fixed swap while the latter 
correspond to a pay-fixed/receive-floating swap, therefore similar 
explanations apply as above. Thus when the yield curve is upward 

sloping and is shifting upwards, the receive-floatinglpay-fixed swap 

has (mostly) positive credit exposure. 
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2: The effect of the level of interest rates on swap 
exposure 

The difference between the swap exposures in scenarios 2 and 3 is only 
evident from the maximum exposure, which in scenario 2 is 2.5% of 
notional principal whereas in scenario 3 is 3% of notional principal .  
This i s  due to the different levels of interest rates being considered in 
both scenarios. To investigate the effect of the level of interest rates 
more fully, Figure 8 plots the average replacement cost(6) against the 
maturities of the swaps (1 to 10 years) for scenarios 1,2 and 3 with ,,=l. 
The top two curves correspond to scenarios 2 and 3. Average 
replacement cost for scenario 3 exceeds that of scenario 2 d ue to the fact 
the interest rates are higher in the former case. When the yield curve is 
flat as in scenario 1 - implying l ittle movement due to mean reversion -
average replacement cost is  lower. In summary, Figure 8 illustrates (a) 
the effect of a sloped yield curve and (b) the effect of a higher level of 
interest rates on swap credit exposure. 

Figure 8 
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(6) The average replacement cost of a swap is defined to be the average of the lOO(l(% 
quantile replacement cost at each payment date in the life of the swap, ie 
n-l t=�l max (K�/O} if there are no payment dates. 
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3: Effect of I( on swap exposure 

If we compare Figure 1 and Figure 8 - in both graphs average 
replacement costs are plotted against the maturities of the swaps - we 
s e tha t, in the case of the GBM model, the graph is convex whereas in 
the la tter case (with mean reversion, K,=l) average quanti le 
replacement cost rises along a concave path with maturity.  Figure 9 
i llustrates this point for the CIR model for the cases K=O,l and 2 by 
plotting average (quantile) replacement cost against maturity under 
scenario 3 .  

Figure 9 
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Figure 1 0  explores the mean reversion effect for a 1 0-year swap under 
scenarios 1 ,  2 and 3 by plotting average (quantile) replacement against 
K where K ranges from 0.5 ot 5.5. When K is small, the volatility term in 
equation (9), o./r, dictates the credit exposure. Since this depends on 
the short rate, the credit exposures vary according to the level of 
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interest ra tes. For 1(=0.2 (approxima tely), the ordering reverts to that of  
Figure 8. Scenario 1 has the least average (quanti le) replacement cost 
due to the flat yield curvc, ie no mean rcversion effect. The interest ra te 
effect places the average replacement cost of scenario 3 above tha t of 
scenario 2. The size of the interest rate effect declines as I( increases. 

Overall, I( has a pronounced impact on swap exposure and the steeper 
the yield curve the less swap exposure will be. This result can be 
rationalised by noting from the short ra te dynamic equation (9) that, as  
I( becomes small, the drift term of  the short rate has less effect and the 
short rate resembles a pure random variable, ie without drift. As the 
mean reversion parameter falls, the variance of the short rate (and the 
yields along the term structure) increases (see appendix), thus the 
quantile paths are further displaced from the mean short-ra te path. 

Alternatively, one could say that the initial yield curve (from which the 
swap coupon is calculated) incorpora tes less information about future 
movements in interest rates when the mean reversion parameter is 
small. Since it takes a long time for the short ra te to settle down around 
the long-run short rate, this means that future movements in the 
implied half-yearly future investment rate curve will show greater 
d ivergence from the swap coupon ra te. 
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Figure 1 0  Average exposure(percentage) 
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4: Effect of volatility on average replacement cost 

The (local) volatility of the short rate in the eIR model is given by (J .fr. 
By varying (J, we can investiga te the effect of changes in short-rate 
volatility on swap exposure. A rise in (J has the effect of widening the 
tails of the distribution of the short rate, thereby shi fting the quantile 
pa ths further away from the mean short rate path. The variance of the 
yield a t  time t given the short ra te at time 5 (s<t) is an increasing 
function of (J .  Thus if  (J increases, the variability of the yield curve 
increases . 
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Figure 1 1  Average ex posure(percentage) 
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Figure 1 1  illustrates the effects of different levels of volati l i ty under 
scenarios 1 ,2 and 3. In each graph, the average replacement cost of a 

l O-year swap (assuming an ini tial short rate of 3%, 6% or 9%) is plotted 
against the volati lity parameter o. Average replacement cost increases 
linearly with volatility in all cases. TIle ordering of the curves is 
consistent with Figures 9 and 8. TIle slope of the curves is positive: as 
the level of interest rate rises, volatility of the short rate (o-Ir) rises. 
However, the slope of the curves is the most in teresting feature. As 
volatility rises, the short-rate gap (8-r) which determines the slope of 
the yield curve (along with le) becomes less significant and the effect of 
the volatility term in equation (9) becomes more pronounced. For this 
reason, the curves corresponding to scenarios 1 and 3 are steeper than 
that of scenario 2 where interest rates eventually settle around 3%. 
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V Conclusion 

This paper has developed an analytical analogue to the Monte-Carlo 
methods which lie behind banking supervisors' rules for assessing the 
credit exposure on OTe derivative instruments, and has extended the 
analysis using a one-factor model of the interest rate term structure to 
examine the potential exposure created by fixed for floating interest 
rate swaps. 

Even in the naive GBM model, it is clear that the very simple maturity 
distinction in the supervisory rules is an inadequate representa tion of 
the riskiness of individual swaps and that those rules should not be 
relied upon in assessing the risks (or pricing) of individual deals. This 
does not of itself invalidate the use of  such simple rules for assessing 
the riskiness of a typical portfolio of deals. But even there, it suggests 
that the supervisors need to be alert to changes in the maturity profile 
and currency composition of portfolios and to changes in the level and 
volatility of interest rates - all of which affect the level of risk - to ensure 
that banks have adequa te capital cover for this business. A t  a 
minimum then, periodic re-evaluation of the add-ons would seem to be 
required. And in dealing with 'untypical' portfolios - for example, 
those which would arise if a bank were significantly to al ter the scale of 
i ts deriva tives business - the in ternationally-agreed rules could 
mis-state the risks involved; this suggests tha t supervisors need the 
capacity to evaluate the risks of such portfolios more precisely than 
their rules of thumb allow, to assure themselves that risks are not 
materially undercapitalised. 

Extending the analysis to a one factor model of the interest rate term 
structure, with the sloping yield curves and mean reversion of interest 
ra tes which are a more realistic representation of the interest rate 
environment in which swap traders operate, further emphasises the 
l imi tations of the existing capital rules and confirms that accurate 
pricing of such deals to reflect their capital usage cannot safely rely on 
simple rules of thumb bu t should be based explicitly on the 
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characteristics of each deal and on a model of the interest rate process. 
Sophisticated traders are of course well aware of this and already 
employ a range of complex techniques to price and manage these risks. 
But the discrepancy between such 'best practice' approaches and the 
supervisory rules must be of some concern if less sophisticated fi nns 
are tempted to rely on the rules; or, indeed, if the supervisors 
themselves lose sight of the factors which actually determine the risks, 
and so are not alert to circumstances in which they cannot rely on the 
simple methodology to deliver adequate capital cover. 
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APPENDIX: Details of calculations 

(a) Interest Rate Swap (flat yield curve) 

Where the yield curve is flat for all states of the world, the value of a 
swap just after the payment at time t is given by: 

where 71 is the number of payments per year, T is the maturity of the 
swap and ro is the coupon (ie the fixed side of the swap) which has been 
determined on the basis of the initial (flat) yield curve. 

Since the value of the swap at time t, 5" is a strict monotone function 
of rt' it follows that quantiles of rt imply quantiles of St when the value 
of the swap is evaluated at these quantile points. Since rt is 
condi tionally distribu ted as 

rt = ro exp«ll-a2/2)t + It)' a1ld It - N(O, a2t), for t�O, 

then the 5% quantile path for rt is given by 

Substituting this into S/(rt) we obtain the 95% quantile path for the 
value of the "naive" swap. 

The average replacement cost along the 95% quantile path is 
determined as a simple average of the swap exposures at each payment 
date over the life of the swap. This approximates to integrating under 
the graph of the replacement cost quantile path and dividing by the 
maturity - the approximation becomes more accurate as the payment 

frequency (11 ) increases. 
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(b) Interest Rate Swap (CIR yield curve) 

Cox, Ingersoll and Ross (1 985) specify a stochastic differential equation 
for the short rate which is given by 

This implies that Tt is a non-central chi-squared distributed random 
variable (conditional on ro' O<t), ie 

where c = 2 ,, 9 / 02-1 and ro is the short rate at time O. This implies that rt 

has a conditional mean of 

and a conditional variance of 

One factor models of the yield curve allow the notion of a quantile 
yield curve path. In the case of the CIR model, we determine the "5% 
quantile" yield curves and hence the 95% quantile replacement cost of  
the swap at each point  in time during the li fe of  the swap. The 5% 
quantile paths for the instantaneous short rate have been derived by 
approximating the non-central chi-square distribution. We use the 
central chi-square cumulent approximation to this distribution given in  
Kendall and Stuart ( 1961 ), ie 



Given an initial short rate, this allows the construction of a 5% quantile 
path for the short rate over the life of the swap. The "5% quantile" yield 
curves are those yield curves which are generated by short rates on 5% 
quantile path. The "95% quantile" path for the replacement cost of the 
swap is determined on the basis of this sequence of yield curves. 

In the CrR model, the price of a pure discount bond at time t which 
pays £1 at time T is shown to be: 

P (r, t, T) = A (t,T).e-B(t,D-r 

where: 

A ( t , T) -

B ( t , T)  -

21exP [  ( " +)... +1) ( T-t ) /2 ] 

2 ( exp [:y ( T-t ) ] - 1  ) 

( "+ )...+ 1 )  ( exp [ '1 ( T- t ) ] - 1 ) +2 1 

2 2 1 / 2  
'1 == [ ( ,,+)... ) + 2 0  

2 
2 ,, 8/0 

(c) Monotonicity between the short rate and swap 
exposure 

Consider equation (11) which gives the value of a receive-fixed /pay­
floating swap at time t (where t is just after a coupon payment date). 

(11) 
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This can be rewritten as: 

St=I:i=l 2(T·t}- 1  {(Co/2)P(r,i/ 2)-P(r,(i-l )  /2»)  +(1 +Co/2)P(r, T-t)-P(r,O) 

Since (i ) dP(r, r)/ dr=-B( r)A( r )exp(-rB( r »<0 for r>O and (iD dP(r,O)/ dr=O 
and (iii)  the tenns in the summation will not be positive for reasonable 
parameter values, it follows that dS/dr<O. 

(d) Parameters underlying the graphs 

GBM model SI. a ro maturity 

Figure 1 0 0 . 15  6% 10 years 

Figure 2 0 0. 1 5  6% x-axis 

Figure 3 0 0 .15 x-axis 10  years 

Figure 4 0 x-axis 6% 1 0  years 

eIR model /( a ro maturity 9 

Figure 5 0, 1 ,2 0.04 6% 10  years 6% 

Figure 6(a,b,c) 1 0.04 6% 2 .5,5,7.5,10  years 3%,9% 

Figure 7(a,b,c) 1 0 .04 6% 2 .5,5,7.5,10 years 3%,9% 

Figure 8 1 0.04 6% x-axis 3,6,9% 

Figure 9 0,1 ,2 0.04 6% x-axis 9% 

Figure 1 0  x-axis 0.04 6% 10  years 3,6,9% 

Figure 1 1  1 x-axis 6% 10 years 3,6,9% 
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