
It 

Modelling UK Inflation Uncertainty: 

The Impact of News and 

the Relationship with Inflation 

by 

M A S Joyce 
It 

Bank of England 

April 1995 

The views expressed are those of the author and do not 
necessarily reflect those of the Bank of England. I am grateful to 
an anonymous referee and several col leagues at the Bank for 
helpful comments. In particul ar, I would like to thank 
Francis Breedon, Andrew Derry and Bahram Pesaran. The usual 
disclaimer applies. 

Bank of England 1995 
ISSN 0142-6753 



Contents 

Abstract 3 

1 Introduction 4 

2 Empirical Framework 6 

3 Preliminary Data Analysis 10  

4 Testing for ARCH Effects 1 7  

5 ARCH Model Results 24 

6 Inflation Uncertainty and the 

Level of Inflation 39 

7 Conclusions 47 

References 49 

Annex 1 52 

Annex 2 53 



Abstract 

This paper estimates UK quarterly inflation uncertainty over 1950-94, 
conditional on a univariate specification of mean inflation, using a 

variety of ARCH-related volatility models. To discriminate between 

these models, we employ the partialJy non-parametric methodology of 

Engle and Ng (1993), which focuses on measuring the 'news impact 

curve'. Our results reject the symmetry restriction imposed in standard 

ARCH and GARCH models, suggesting that inflation uncertainty is 

much more sensitive to 'bad news' than 'good news'. Our preferred 

estimates of the conditional variance of inflation are found to be 

positively associated with the level of inflation. 
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1 Introduction 

Uncertainty about future inflation is often claimed to be one of the most 
important costs of inflation, since it distorts the workings of the price 
system and leads to allocational inefficiencies. Moreover, starting with 
Okun (1971) and Friedman (1977), it has been argued that high inflation 
itself leads to greater uncertainty about the path of future inflation 
rates.1 But, although high rates of inflation have often been shown to be 
associated with greater inflation variability (eg as measured by the 
unconditional standard deviation or variance), this need not imply a 

l ink with greater inflation uncertainty. The latter depends on 

inflation'S forecastability, which may be invariant to its level. 

A natural framework for measuring inflation uncertainty is the class of 

autoregressive heteroscedasticity (ARCH) models originally introduced 

by Engle (1 982), which allow the conditional variance to change over 

time according to past forecasting errors.2 Indeed, although the use of 

ARCH models is more commonly associated with the finance literature, 

the first applications of ARCH and its subsequent generalised version 

(GARCH) were to modelling quarterly inflation [see Engle (1982), Engle 

(1983), Engle and Kraft (1983) and Bollerslev (1986)] .  

More recent extensions of the ARCH framework - motivated primarily 

by the inability of these simple models to explain important features of 

financial data3 - have resulted in a variety of models which allow the 

conditional variance to be affected asymmetrically by positive and 

For a more recent formalisation of t his view. see Ball (1992). A number of other models 
generate a relat ionship between the level and variabilit y of inflation; eg Tsiddon (1993). 
Devereux (1989) and Cukierman and Meltzer (1986). For funher discussion of t he costs of 

inflation see Driffill. Mizon and Ulph (1990). 

2 The uncert ain t y  measures produced by such models are obviously conditional on t he 
specifications of t he mean and variance equations. See discussion in Section 2. 

3 In particular. t he so-called 'leverage' effect ,  whereby an unexpected st ock price fall 
produces a bigger increase in volatility t han a similar rise. 
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negative shocks. The 'news impact curve', recently proposed by Engle 

and Ng (1 993), provides a convenient means of comparing these 

models. This curve is simply the relationship between current volatility 

and the previous period's news, holding other information constant. 

Engle and Ng (op cit) suggest several diagnostic tests (termed sign and 

size bias tests) based on the news impact curve to evaluate how well 

volatility models capture asymmetries in the data and they also 

propose a partially non-parametric ARCH model, which provides a 

more direct means of estimating the relationship between news and 

volatility . 

These developments have obvious implications for measuring inflation 

uncertainty which this paper attempts to explore. Following on from 

the arguments of Okun (op cit), Friedman (op cit), and others, it seems 

plausible that higher-than expected inflation ('bad news') will generate 

more uncertainty about future inflation than lower-than-expected 

inflation ('good news') .  When in flation rises unexpectedly, the 

authorites are, for example, more likely to come under pressure to 

change policy than when inflation is lower than expected. If there is 

greater uncertainty about future policy, then uncertainty about future 

inflation is also likely to increase. Another reason for expecting 

asymmetries follows if agents use good and bad inflation shocks to 

infer the preferences of the authorities towards inflation. Evidently, 

bad shocks are more likely to raise doubts over the au thorities' 

commitment to fight inflation, thereby increasing inflation uncertainty. 

Whatever their source, if such asymmetries exist, then conventional, 

symmetric ARCH and GARCH models will provide misleading 

estimates of inflation uncertainty. 

This paper has two main objectives. First, using Engle and Ng's  

methodology, we examine several common asymmetric volatility 

models and attempt to identify the best parsimonious ARCH 

representation of inflation uncertainty. This is obviously important in 

its own right since inflation uncertainty might be expected to explain 

other economic behaviour (eg, the inflation risk premium attached to 
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equities may be a function of the conditional variance of inflation) . The 
second objective of the paper is to examine whether any relationship 

exists between measured inflation uncertainty and the level of inflation. 

Using a slightly different framework and US data, Brunner and Hess 

(1993) have recently shown that once news asymmetries are allowed for 

there is a much stronger relationship between the level of inflation and 

its conditional variance. We try to establish whether the same holds 

true for UK retail price inflation over the postwar period. 

The paper is structured as follows. Section 2 introduces the ARCH 

framework followed in the paper. Section 3 describes the data used 

and some of the stylised facts about UK inflation variability over the 

post-war period. In Section 4 we estimate univariate models of 

quarterly RPI, RPIX and RPIY inflation and test for ARCH effects. Then 

in Section 5 we estimate several ARCH models of inflation uncertainty, 

including a partially non-parametric specification, and compare them 

i n  terms of their implied news impact curves. In Section 6 we 

investigate the association between our preferred measures of the 

conditional variance of inflation and the level of inflation. Conclusions 

are presented in Section 7. 

2 Empirical Framework 

The framework we adopt for measuring inflation uncertainty can be 

described in the following general terms. Suppose 11' t is the rate of price 

inflation in period t and 0t-1 is the information set available in period 
t-l, then the conditional mean and conditional variance of inflation in 

period t may be defined as 

m = E (11' I Cl ) 
t t t-l 

b = Var (11' In ) 
t t t-l 
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A necessary condition for inflation expectations to be rational must be 

that 

1r - m + f 
t t t 

where *= t is a random error which can be thought of as a measure of 

inflation 'news' arriving at time t. Thus a positive realisation of f t 
implies that inflation is worse than expected, whereas a negative 

realisation implies that it is better than expected. 

In principle, the information set available at period t-l (ie 0t-l) should 

include everything that might be relevant to forecasting inflation. In 

this paper, however, we shall restrict it to past inflation rates and 

quarterly seasonal factors. Thus we estimate mt using the following 

specification 

n 

1r = a + t a 1r + s8asonals + e 
t 0 1-1 1 t-1 t 

In the absence of an accepted structural model, this seems a useful 

benchmark to adopt, but it obviously means that we need to be 

cautious in interpreting the resulting measures of the conditional 

variance as measuring 'inflation uncertainty' in the strict sense. 

Nevertheless, we shall use the word s volatility and uncertainty 

interchangeably for convenience. 

In Engle's ARCH model, ht is specified purely as a function of lagged f t 
terms. This was generalised by Bollerslev (1986) to include terms in the 

lagged conditional variance to allow for longer memory processes. 

Thus in the well-known GARCH(1,I) model, ht has the following 

specification: 
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� 
b - 1 + 1 e + 6 b 

t 0 1 t -l 1 t -l 

The presence of the lagged ht term means that the impact of inflation 
shocks declines geometrically over time. The conditional mean and 
variance are estimated jointly under the assumption that 

Although we find that the GARCH(l ,l) model appears to measure inflation 

volatility reasonably well, the symmetry restriction - implying that good and 

bad news have identical effects on volatility - appears questionable on a priori 

grounds. We shall therefore also examine several other volatility 

models, originally developed in the context of measuring stock return 

volatil ity, which specifica]]y a]]ow for asymmetric effects. 

In their recent study Engle and Ng (1993) compare a variety of such 

models in terms of the implied 'news impact curve': the relationship 

between the conditional variance, ht, and the lagged error term, et , 

holding everything else constant. In the case of an ARCH or GARCH 

process, the news i mpac t curve wi ll be a quadratic (and hence 

symmetric) function centred on e t-l =0. Bu t, for the asymmetric models 

they consider, the implied news impact curves are distinguished by 

either not being centred at the origin or by having different slopes on 

their positive and negative sides. Bearing this distinction in mind, we 

also estimate the following three asymmetric volatility models: the 

asymmetric ARCH model of Engle (1990), henceforth the AGARCH 

model; the exponential GARCH (EGARCH) model of Nelson (1990); 

and the model origina]]y proposed by Glosten, Jagannathan and Runkle 

(1989) and Zakoian (1990), henceforth the GJR model. These are 

represented by the fo]]owing equations: 
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AGARCH 

b t • 1 + 1 f f 
o 1 l t-l 

EGARCH 

+ 6 b 1 t-l (2.1) 

f r' f , 1/21 
log b =1 +1 t-l +1 " t-l '-f 2 1 1+6 log b (2.2) t 0 l-bl-I-2-- 2 1 -b-l -I-2-- l-U-J I 1 t-l 

t-l l t-l J 

b = 1 + 1 e + 1 D f + 6b t 0 1 t-l 2 t-l t-l t-l 

wbere D • 1 j� f >0 and D • 0 j� e SO t t t 

(2.3) 

These models were chosen because between them they allow the news 

impact curve to be centred away from the origin (AGARCH) or to have 

different slopes on their positive and negative sides (EGARCH and 

GJR). For the AGARCH model, it is easy to show that the news impact 

curve will be centred at the point where 't-1 = - '2' Thus if bad news 

on inflation has a disproportionate effect on inflation uncertainty then 

we expect '2 to be positive. In the case of the EGARCH model, the 

term in the level of e t-1 / '/ht-1 allows the slopes of the news impact 

curve to be asymmetric; for 12>0, we expect 11 >0. The GJR model 

captures asymmetry in a similar way to EGARCH; the '2 parameter 

acts to reinforce or offset the '1 parameter, thus we expect 12>0 if 

11>0. 

Following Engle and Ng (op cit), we compare these models by 

computing diagnostic statistics for sign and size bias which test how 

adequately they pick up asymmetries in the data. As a further test, we 

compare the implied news impact curves based on their parameter 

estimates with the curve revealed by the data using a partially non-
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parametric procedure. More precisely, we estimate the following linear 
spline model of the conditional variance of inflation 

n + n b =.., + 1: .., D (e - T ) + 1: .., D (e + T )+6 b 
t o 1-0 1 1  It -1 t - 1  1 1.0 �1 It - 1  t -1 1 1 t -l 

+ + 
D • 1 1� e > T and D • 0 1� e � T 

It t 1 It t 1 

D • 1 1� e < T and D • 0 1� e � T 
It t 1 lt t 1 

where the knot points are the l' (s.  The implied news impact curve 

from this model is contrasted with the curves from the estimated 

GARCH, AGARCH, EGARCH and GJR models, in order to choose the 

best, parsimonious representation of the data. 

Finally, we investigate whether there is an association between our 

preferred measure of inflation uncertainty and the level of inflation, by 

looking at correlations between lagged inflation and ht, as well as by 

directly including lagged inflation terms in the ht function itself to see 

whether they are statistically significant. 

I 
3 Preliminary Data Analysis 

(a) Measuring inflation 

As our measure of aggregate UK inflation, we use three measures of 

retail prices: RPI, RPIX and RPIY . The RPI has been published 

monthly since 1947, allowing us to derive results for the entire post-war 

period. As is well known, however, the inclusion of mortgage interest 

payments in the index (since 1974) causes movements in this measure 

to be distorted by interest rate changes. The measure of retail prices 

known as RPIX gets round this problem by excluding mortgage interest 
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payments, but at the expense of excluding any measure of the cost of 

housing. Although data on RPIX are only available from 1974, we have 

spliced this series together with the RPI series before 1974 to allow us to 
extend our sample back to the immediate post-war period. 

Both RPI and RPIX are sensitive to the short-run impact effect of  

changes in  indirect taxes. In the empirical work described below (see 

Section 4), we made further adjustments to allow for particularly large 

Budget changes. A more systematic attempt to take out the direct 

impact effect of Budget changes has been made to produce the measure 

of retail prices known as RPIY [see Beaton and Fisher (1995)], which we 

also examine. However, this series is not available before 1976, 

severely restricting the degrees of freedom available in using it. Our 

estimation results therefore use all three measures of prices. (For 

precise data sources see Annex 1.) 

(b) Descriptive statistics and time series properties 

Quarterly percentage growth rates of RPI, RPIX and RPIY are shown in 

Chart 3.1 and summary descriptive statistics and time series properties 

for these series are shown in Tables 3.1 and 3.2 respectively. Here and 

throughout the rest of this paper, quarterly price inflation data are 

calculated from the logarithmic changes of the end-month figures, in 

order to avoid well-known problems of spurious correlations which 

can be induced by averaging [see Working (1960»). 

One striking thing to emerge from Table 3.1 is that over the longest 

common sample period (1976 Q2 - 1994 Q1), RPIY inflation, as well as 

being lower, also exhibits less variation than either RPI or RPIX, 

suggesting that indirect tax plays an important role in amplifying short 

term inflation variability. Another, perhaps surprising, finding is that 

RPIX exhibits slightly greater positive skewness and greater excess 

kurtosis ( fatter tails) than RPl. This would seem to suggest that the 

inclusion of mortgage interest payments acts to smooth the RPI series. 
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The unit root tests reported in Table 3.2 suggest that quarterly inflation 

is stationary over the longer sample periods since 1947 Q3 and 1974 Q2. 
However, over the shorter sample period since 1976 Q2 the Augmented 

Dickey-Fuller test is unable to reject the unit root null. Given, that these 

tests are known to have lower power and the short sample periods 

involved, we treat inflation as a stationary throughout the analysis 

reported here. 

Chart 3.1: Quarterly Price InRation, 
_1947 Q3 - 94 QI (End Quarter Fi�cClll'_ 11 
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TAB LE 3.1: QUARTERLY PRICE INFLATION D ESCRIPTIV E  
STATISTICS (END QUARTER) 

Sample Max Min Mun Standard Skewne .. Kurtosis-3 
deviation 

RPI 19470�9401 9.80 -1.65 1 .59 1.53 1.37 4.28 

1974 02-94 01 9.80 -0.14 2.13 1.77 1.54 3.28 

197602-9401 6.01 -0.14 1.83 1.40 0.99 0.47 

RPIX 194703-94 01 + 10.07 -1.65 1.58 1.54 1.48 4.84 

1974 02-94 01 10.(JJ 0.00 2.11 1.78 1.68 3.76 

1976 02-94 01 6.17 0.00 1.80 1.38 1.14 0.61 

RPfY 1976 02-94 01 4.67 -0.60 1.67 1.13 0.78 0.13 

+ Longer sample derived by splicing together data on RPI and RPIX. 
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TAB L E  3.2: Q UARTERLY PRICE INFLATION UNIT ROOT 
STATISTICS 

RPI 

RPIX 

RPIY 

+ 

-

(c) 

Sam'ple 
Statistic 

Dickey.Fuller 
Statistic 

Augmented Dickey.Fuller 
(4 lags) 

1947Q�94 Ql -8 .22- -3.07
-

1 974 Q2-94 Ql -4.97
-

-3.74
-

1 976 Q2-94 Ql -4.49 
-

-2.64 

1947 Q�94 Ql + -8.53- -2.95
-

1 974 Q2-94 Ql -5.35
- -

-3.86 

1976 Q2-94 Ql -5.10 - -2.66 

1 976 Q2-94 Ql -3.93
-

-2.76 

Longer sample derived by splicing together data on RPI and RPIX. 
Significant at 5% level; no trend case. 

Stylised facts on the level of inflation and its variability 

The relationship between the level and variability of inflation is often 

examined by looking at the relationship between average inflation and 

its variance or the relationship between average inflation and its rate of 

change.4 

Chart 3 . 2  plots the variance of quarterly RPI inflation against the 

average inflation rate for non-overlapping eight quarter periods since 

1950. The positive reladonship between the two appears to support the 

inflation-uncertainty hypothesis, although the strength of the positive 

correlation rests in large part on one observation (the 1974-75 period). 

4 For a review of the early empirical literature examining the relationship between the level 
and variabilit y of inflation, see Fischer (1981) and Taylor (1981). 
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Chart 3.2: The Variance and Level of 
RPI Innatlon (a) Variance oC inna�_ 6 
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(a) Calculated for OOI\-QvulaPPinll eight quU1er averallell usiOIl 
end-quarter data. 1950 - 93. 

Scatter plots of the relationship between inflation and its rate of change 

are sho w n  in Charts 3.3, 3.4 and 3.5 for RP I, RPIX and RPIY 

respectively, and again seem to confirm the existence of a positive 

relationship. But this relationship is much less apparent when the 

absolute value of the change in inflation is substituted on the vertical 

axis, when the positive correlation coefficient either falls significantly 

or, for RPIY, disappears (see Table 3.3). This certainly provides 

grounds for suspecting that there may be asymmetries in the inflation 

uncertainty relationship, but (unconditional) variability measures may 

be poor proxies for uncertainty. 
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Chart 3.3: Level and Change in Quarterly 
RPI In Dation, 1947 Q4. 94 01 
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Chart 3.4: Level and Change in Quarterly 
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Chart 3.5: Level and Change in Quarterly 
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TABLE 3.3: CORRELATIONS BETWEEN AVERAGE INFLATION 
AND ITS ACTUAL AND ABSOLUTE RATE OF CHANGE 

Corr( .. � .. ) Corr(",16 .. 1) 

RPI 1947 Q4-94 Ql 0.519 O.ms 
1974 Q3-94 Q1 0.457 0.250 

1976 Q3-94 Ql 0.470 0.130 

RPIX 1947 Q4-94 Ql 0.532 0.067 

1974 Q3-94 Ql 0.483 0.264 

1976 Q3-94 Ql 0.516 0.159 

RPIY 1976 Q3-94 Q1 0.409 -0.023 

4 Testing for ARCH Effects 

Before proceeding to estimate ARCH representations of inflation 

uncertainty, we need to estimate a model for the conditional mean, in 

order to test first for the presence of ARCH effects. In the absence of an 

accepted structural model, we modelled each of our three measures of 

quarterly inflation as autoregressive processes of the following form: 

n 

" = a + � a "  + seasonals + e 
t 0 1=1 1 t-1 t 

(4.1) 

where"t = lOO"'1n(Pt/pt_1)' Pt represents the relevant price index and et 
is an error term assumed initially to be white noise. 

In order to choose the appropriate AR process in each case, we tested 

down from an AR(8), using a variety of model selection criteria, 

including absence of serial correlation, goodness of fit and the Akaike 

and Schwarz information criteria. The resulting OLS estimates for both 

the full sample and the largest common sample period are shown in 

Tables 4.1, 4.2 and 4.3. 
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In the case of RPI and RPIX, we found that using the unadjusted data 

produced a number of large outliers associated with Budget changes in 

indirect taxes, notably the extension of V AT in 1975 and its doubling in 

1979 (see Chart 4.1). Rather than attempting to remove these outliers 

using dummy variables, which would imply there was no aggregate 

inflation uncertainty during these periods, we pre-adjusted the data to 

allow for the published impact effects on RPI inflation of the 1975 and 

1979 Budgets.s Thus we are assuming that agents were rational and 

fully discounted these pre-announced effects. This can be questioned 

on a number of grounds, but there would seem no obvious way of 

dealing with indirect tax effects satisfactorily other than by excluding 

them, which we effectively do by also modelling the RPIY measure. 

For completeness, however, we report the results for both unadjusted 

and adjusted data in what follows. 

Chart 4.1: Residuals from RPI AR(4) 
Model with Unadjusted Data - 5 

- 4 

- 3 

- 2 �------------���---------
- 1 

+ 
������Hm��� 0 

- 2 

111I1I11I''''!'"!!'''''!I'lI",,!,,!l,,!!II! 3 
1950 61 72 83 94 

Error bands signify +/- 2xSEE 

5 These adjustments were 2.5% in 1975 Q2 and 3.0% in 1979 Q3. These were the (rounded) 
Budget impact effects on RPI in May 1975 and July 1979. reported in the Department 
Employment Gazette (June 1975 and July 1979 issues). 
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For both the unadjusted and adjusted data, we found that a 4th-order 

AR process was sufficient to satisfy most conventional model selection 

criteria. Using adjusted data, the RPI and RPIX equations also satisfy 

tests for normality (column 3 in Tables 4.1 and 4.2), but the equations 

still show signs of heteroscedasticity over the full sample period. This 

in itself is not surprising if there are ARCH effects (neither is non­

normality), but it means that conventional t-ratios will be biased and 

we therefore report White (1980) heteroscedasticity corrected figures. 

Note that in both equations there are no signs of autocorrelation. This 

is important because if the errors of the mean equation are correlated, 

this is likely to result in the squared residuals also being correlated, 

confounding the usual tests for ARCH disturbances [see Cosimano and 

Jansen (1988»). 

In the case of RPIY, we found that an AR(3 ) representation was 

adequate to satisfy conventional model selection criteria. As might 

have been expected, this equation exhibited no signs of non-normality, 

although there is some weak evidence of heteroscedasticity. 
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TABLE 4.1: AUTOREGRESSIVE QUARTERLY RPI INFLATION 
EQUATIONS, OLS ESTIMATES 

Dependent Variable: 

1 2 3 4 5 
Unadjusted Unadjusted Adjusted Unadjuated Adju.ted 

Constant 0.265 0.329 0.153 0.690 0.483 
(1 .2) 0 .5) (0.7) (2.1) 0.6) 

11' t-l 0.460 0.458 0.529 0.497 0.704 
(3.8) (3.8) (6.3) (4.1) (5.8) 

lI't-2 0.173 0.174 0.065 0.259 -0.063 
0 .7) 0 .8) (0.7) 0 .9) (0.4) 

lI't-3 0.058 O.� 0.131 0.005 O.� 
(0.6) (0.6) 0 .3) (0.3) (0.6) 

lI't-4 0.121 0.119 0.110 -0.048 0.053 
( 1 .2) 0 .3) 0 .4) (0.4) (0.4) 

lI't-5 -0.046 
(0.6) 

lI't-6 0.007 
(0.1) 

lI't-7 0.065 
( 1 .0) 

11' t-8 -0.012 
(0.2) 

Q2 0.898 0.791 0.969 0.889 0.847 
(2.8) (2.8) (3.2) (2.1 ) (2.0) 

Q3 -1.119 -1.190 -1 . 1 56 -1.270 -1.437 
(3.7) (4.7) (4.8) (3.2) (4.1) 

Q4 0.263 0.258 0.601 -0.804 -0.085 

R2 
(0.7) (0.8) (2.1 ) (2.0) (0.2) 
0.588 0.585 0.636 0.631 0.713 

SEE 1 .02 1.01 0.889 0.876 0.720 
NORM(2) 71 .9 61.6 0.1 70.1 9.9 
HETO) 30.0 32.6 8.2 1 .2 0.2 
LM(1) 0.2 0.05 0.3 1.3 0.9 
LM(4) 3.3 0.9 1. 9  7.8 3.6 
LM(8) 9.2 4.8 6.5 11.0 8.0 

Sample SOQI-94 Q] 50Ql-94 Ql SOQl-94 Q1 77 Q1-94 Q1 77 Ql-94 Q1 

T statistics are in farentheses. 
For columns 1, and 3 t-statistics have been calculated using White (1980) heteroscedasticity 
consistent standard errors. 



TABLE 4.2: AUTOREGRESS IVE QUARTERLY RPIX INFLATION 
EQUATIONS, OLS ESTIMATES 

Dependent Variable: 

1 2 3 4 5 
Unadjusted Unadjusted Adjusted Unadjusted Adjusted 

Constant 0.141 0.254 0.067 0.61 9 0.553 
(0.6) 0.2) (0.3) (1.8) (1.8) 

I't-l 0.453 0.452 0.522 0.447 0.627 
(3.7) (3.7) (5.9) (3.6) (5.2) 

I't-2 0.142 0.137 0.006 0.262 0.049 
0.5) 0.5) (0.4) 0.9) (0.3) 

I't_3 0.�7 0.093 0.160 0.048 -0.002 
(0.8) (0.9) (1 .5) (0.4) (0.0) 

I't-4 0. 136 0.138 0.128 -0.005 0.132 
(1.3) (1 .4) (1 .5) (0.0) (1 .1) 

I't_5 -0.004 
(0. 1 )  

I't_6 -0.059 
(0.7) 

I't-7 0.051 
(0.8) 

I't-8 0.025 
(0.4) 

Q2 1.(178 0.960 1 . 147 1.152 0.844 
(2.9) (3.1 )  (3.5) (2.6) (1 .8) Q3 -1.060 -1 . 174 -1 . 143 -1 .330 -1 .685 
(3.5) (4.6) (4.8) (3. 1 )  (4.6) Q4 0.488 0.340 0.688 -0.828 -0.328 

R2 (1 .3) 0.1 ) (2.2) (1 .9) (0.7) 0.597 0.595 0.655 0.662 0.774 
SEE 1 .01 1 .00 0.864 0.834 0.632 NORM(2) 138.1 126.3 0. 1 353.6 1 .5 
HETO) 26.5 28.7 12.2 0.3 1 .3 LM(1 ) 0.0 0.0 0.3 2.2 1 .5 LM(4) 2.1 0.9 4.8 7.3 8. 1 LM(8) 7.8 5.1 8.5 9.2 9. 1 
Sample 50Ql-94 Ql 50Ql-94 Ql 50 Ql-94 Ql 77 QI-94 Ql 77QI -94 Ql 
T statistics are in farentheses. 
For columns 1 ,  and 3 t-statistics have been calculated using White (1 980) heteroscedasti city 
consistent standard errors. 



TABLE 4.3: AUTOREGRES SIVE QUARTERLY RPIY INFLATION 
EQUATIONS, OLS ESTIMATES 

Dependent Variable: 

1 2 3 
Constant 0.385 0.383 0.627 

0.6) (2.1) (2.7) 
1f t-l 0.480 0.470 0.523 

(3.5) (3.7) (4.4) 
1f t-2 0.222 0.214 0.169 

(1 . 1)  0.2) 0.2) 
1f t-3 0.205 0. 199 0.094 

(1 .7) (1 .7) (0.8) 
1f t-4 -0.047 

(0.4) 
1f t-5 -0.025 

(0.2) 
1f t-6 0.009 

(0.1) 
1f t-7 -0.074 

(0.7) 
1f t-8 0.127 

(1.3) 
Q2 0.347 0.462 0.290 

(1 .0) 0.6) 0.1) 
Q3 -0.994 -0.998 -1.239 

(2.8) (3.3) (4.6) 
Q4 -0.497 -0.464 -0.487 

R2 0 .1 )  0 .3) 0.7> 
0.708 0.701 0.710 

SEE 0.590 0.571 0.597 
NORM(2) 0.4 0.3 1 .6 
HET(1) 3.2 4.0 1 .2 
LMO) 0.8 0. 1 0.1 
LM(4) 3.2 1.0 2.9 
LM(8) 9.7 1.7 3.3 

Sample 78 Q2-94 Ql 78 Q2-94 Q1 77Ql-94 Q1 

T statistics are in parentheses. 
Fo r col u m n s  1 a n d  2 t-s ta t i s t i cs  h a v e  been cal cula ted u s i n g  Whi te ( 1 980)  
heteroscedasticity consistent standard errors. 
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LM Test Results 

In order to test for the presence of ARCH effects, the residuals from 

each model were squared and regressed on their lagged values. The 

associated LM tests for the presence of ARCH disturbances (calculated 

as the product of the number of observations and the R2) are reported 

for each inflation measure in Table 4.4, both for the full sample 

1950 Ql-1994 Q1 and a sub-sample from 1977 Q1 to 1 994 Q 1 .  

For the longer sample period, the results show that the RPI and RPIX 

equations (using both adjusted and unadjusted data) exhibit strong 

signs of ARCH disturbances. But when the sample is truncated at 1977, 

there is much less evidence of ARCH effects, although the equation 

u sing adjusted RPIX data still  shows strong signs of ARCH 

disturbances. It is difficult to know what to make of this result, because 

it is difficult to justify excluding the earlier period.6 The lack of 

evidence of ARCH over this period does mean, however, that we do 

not attempt to model the RPIY series - which is only available over the 

shorter sample period - as an ARCH process.7 All the model results 

reported in Sections 5 and 6 were estimated over the full sample period. 

6 We also tested for ARCH over the 1950 Q I - 1970 Q I period to see whether the presence 
of ARCH errors might be due to a structural break in the 1970s. However. we again found 
evidence of significant ARCH effects. suggesting thal ARCH effects over the full sample 
period cannot be explained by a discrete change in the variance of inflation. 

7 It is worth noting that in the case of RPIY. we did find evidence of very high order ARCH 
(at lags 10 and above). Such high levels of ARCH seem implausible and we treated these 

results as spurious. 
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TABLE 4.4: LM TESTS FOR ARCH 

RPI 
Uoadjulted 

AR(4) 

Sample: 1950 Ql-94 Q1 

ARCH(1) 

ARCH(2) 

ARCH(4) 

ARCH(8) 

16.0-· 

18.5·· 

Sample: 1977 Ql-94 Q1 

ARCH(1) 

ARCH(2) 

ARCH(4) 

ARCH(S) 

• •• 

0.2 

3.1 

3.5 

4.5 

Variable: 

RPI 
Adjusted 

AR(4) 

1 .0 

1 2.9 

2.2 

5.5 

5.6 

7.2 

significant at 5%; significant at 1 % 

5 ARCH Model Results 

(a) Symmetric Model Results 

RPIX 
Uoadjusted 

AR(4) 

1 2.S" 

1 3.0-

13.3 

0.1 

0.2 

0.4 

1.6 

RPIX 
Adjusted 

A1U4) 

23.7>" 

23.4"" 

1 .9 

16.8"" 

RPIY 
AR(3) 

o/a 

o/a 

o/a 

o/a 

0.4 

2.4 

5.3 

9.4 

To allow for time-varying heteroscedasticity, we first re-estimated the 

equations for RPI and RPIX (using both adjusted and unadjusted data), 

assuming that the error terms followed particular ARCH and GARCH 

processes. Thus the models were respecified in general terms as: 

24 



4 

1f • er + 1: er 1f + .ea.onal. + e (5.1 ) 
t 0 1-1 1 t -1 t 

r e 0 - N 10, b (5.:2 ) 
t t - 1  l t 

q P � 
b • 1 + 1: 1 e + 1: 6 b 

t 0 j-1 j t-j le-1 le t -le (5.3 ) 

where the error term in the mean equation <equation 5 . 1 )  is now 

specified as normal conditional on the information set available at t-l 
(Ot-I)' with time-varying variance ht a function of lagged squared 

forecast errors and lagged conditional variance terms. 

We experimented with various ARCH and GARCH processes, but 

found that in each case the GARCH(1,l) model was sufficient to 

eliminate ARCH effects. Maximum likelihood results for the latter are 

shown below in Table 5.1;8 since our interest is in inflation uncertainty, 

only the results for the parameters in the conditional variance model 

are reported. As can be seen from the Table, the terms in the GARCH 

process are at least weakly significant in all the equations. In each case, 

there is no sign of any residual ARCH effects in the scaled residuals, 

nor is there any sign of serial correlation. The sum of 1 1 and 61 
averages 0.82, suggesting there is considerable persistence in the 

conditional variance equation, so that the effect of inflation shocks takes 

time to die away. 

8 The maximum likelihood estimation results were derived from the Berndt. Hall. Hall and 

Hausman algorithm (1974) using RATS 4.10. Note that the initial starting values of e20 
and hO were set equal to the squared value of the OLS equation standard error in 
deriving these results. 
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TABLE 5.1: RESULTS FOR GARCH(l, 1) MODELS(1) 

Model: I' = a + J1 a .  I' 
t-i 

+ seasonals + f 
t 0 1 t 

f n - N ( 0, h 
t t -1 t 

h 
2 61 h = '0 + '

1 
f 

t-1 
+ 

t t-1 

RPI RPI RPIX 

Unadjusted Adjusted Unadjusted 

Parameter 

'0 0.243 0. 171 0.184 
(2.4) 0.2) (2.9) 

'I 0.478 0. 143 0.489 
(3.5) 0.4) (3.7) 

61 0.326 0.626 0.391 
(2.2) (2.4) (3.4) 

Log-likeli�� -70.001 -59.623 -65.044 
ARCH (X (4» 2) 2.6 2.5 2.2 
ARS! (X2�8»(2) 4.6 5.5 4.2 
Q (X (8»(2 4.8 1 .5 5.8 

T statistics in parentheses. 

0) 
(2) 

Parameters from the mean equation ary /2ot reported. 
Tests refer to scaled residuals, ie f t1h t . 
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RPIX 
Adjusted 

0.1 1 5  
0.7) 
0.189 

0.8) 
0.647 

(3.9) 

-50.962 
2.7 
4.9 
4. 1 



(b) Allowing for Asymmetries 

Although the GARCH(t,l) model seems adequate in terms of dealing 

with ARCH, in that neither the scaled residuals nor their squared 

values are autocorrelated, we have already argued that the implied 

symmetric restriction on the impact of inflation shocks seems 

implausible a priori. To investigate this further, we ran three additional 

asymmetric volatility models on the same RPI/RPIX inflation data: the 

AGARCH model, the EGARCH model and the GJR model (details of 

these models were given in Section 2 above). The estimation results are 

set out in Tables 5.2, 5.3 and 5.4. 

Each of  these asymmetric models also satisfies the tests for  

autocorrelation and ARCH effects, and in each case the value of  the log­

likelihood function is higher than the corresponding GARCH model. 

More interestingly, the parameter estimate of 12 in the AGARCH 

model, 11 in the EGARCH model and 12 in the GJR model are all 

positive and, at least weakly, statistically significant (see discussion in 

Section 2). In each case therefore the results suggest that bad news on 

inflation results in a bigger increase in inflation uncertainty than good 

news, suggesting that the symmetry restriction implicit in the GARCH 

model is not accepted by the data. Indeed, in the case of the GJR model 

the estimate of the 11 parameter, while statistically insignificant for the 

most part, is negative, suggesting that lower than expected inflation 

reduces inflation uncertainty. 
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TABLE 5.2: RESULTS FOR AGARCH MODEL(1) 

Parameter 

70 

71 

72 
61 

h t 

Log-likeli�� 
ARCH (X (4» 2) 
ARs-! (X2�8»(2) 

Q (X (8»(2 

RPI 
Unadjusted 

0.157 
0.8) 
0.275 

(2.1) 
0.775 

(2.3) 
0.364 

(2.2) 

-62.713 
2.6 
4.5 
2.8 

T statistics are in parentheses. 

RPI RPIX 
Adjusted Unadju.ted 

0.091 0.129 
(0.7) (2.2) 
0.110 0.372 

0.1) (3.3) 
1.183 0.492 

0.5) (3.1) 
0.554 0.415 

(2.6) (3.6) 

·55.076 -59.426 
4.8 3.4 
8.9 5.7 
1 .5 6.0 

0) Parameters from the mean equation arr /2ot reported. 
(2) Tests refer to scaled residuals, ie f tl h t 
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RPIX 
Adjusted 

0.097 
0.7) 
0.165 

(1.7) 
0.528 

0.9) 
0.624 

(4.2) 

-48.254 
4.4 
6.5 
4.3 



TABLE 5.3: RESULTS FOR EGARCH MODEL (1) 

4 
Model: W Q + t Q W + seasonals + , 

t 0 i=1 i t-i t 

r 1 , n - N 10. h I 
t t -1 I CJ 

, I, 
t -1 I t -1 

log h = l' + l' + l' t 0 1 
h112 

2 1/2 h 
t -1 t -1 

RP) RP) RPIX 
Unadjusted Adjusted Unadju.ted 

Parameter 

1'0 -0.138 -0.138 -0.109 
0.6) (1 .8) 0.6) 

1'1 0.467 0.31 2 0.383 
(3.5) (2.2) (3.7) 

1'2 0.426 0.200 0.453 
(2.0) 0.1 ) (2.9) 

61 0.594 0.656 0.685 
(4.3) (4.3) (6.6) 

Log-likeli�o� -60.809 -54.724 -58.052 
ARCH (X (4» 2) 3.5 5.4 5.2 
AR5tI (X\8»(2) 6.3 10.1  7.7 

Q (X (8»(2 3.1 2.1 5.1 

T statistics are in parentheses. 

0) Parameters from the mean equation arY!'l0t reported. 
(2) Tests refer to scaled residuals. ie 't1ht 
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1+6logh 
I 1 t-1 
I 
J 

RP)X 
Adjusted 

-0.099 
0.6) 
0. 1 93 

0.8) 
0.255 

0.8) 
0.802 

(8.2) 

-48.182 
6.4 
8.7 
4.2 



TABLE 5.4: RESULTS FOR GJR MODEL(1) 

h t 
2 2 

., 0 + ., 1 � t -1 + ., 2 D t -1 ' t -1 + 
6 1 h t -1

; 2 = 1 i [ � >0 
D = 0 i [ , � O  

RP) RP) 
Unadjusted Adjusted 

Parameter 

"0 0.353 0.273 
(3.4) (2.4) 

" 1  -0.068 -0.067 
0.6) 0.4) 

12 1.ffi7 0.537 
(2.9) (1 .8) 

61 0.214 0.447 
0.6) (2.4) 

Log-likeli2°� -59.798 -54.768 
A Rm (X (4» 2) 7.2 6.3 
ARS! (X2�8»(2) 9.6 1 0.7 

Q (X (8»(2 4.6 2.6 

T statistics are in parentheses. 

(1 ) Parameters from the mean equation arp Jll.ot reported. 
(2) Tests refer to scaled residuals, ie � tl h t . 
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t t 

RPIX RPIX 
Unadjusted Adjusted 

0.282 0.166 
(3.4) (2.4) 
-0.051 .0.004 
(1.2) (0.1) 
0.916 0.394 

(3.4) 0.6) 
0.308 0.559 

(2.4) (3.7) 

-57.51 5 -48.037 
6. 1 6.9 
7.4 8.3 
5.2 4.9 



Unfortunately, discriminating between these models is difficult, 

because (apart from the GARCH and AGARCH models) they are not 

nested. However, Engle and Ng (1993) have proposed some tests 

which aim to detect whether the asymmetries in the data are being 

adequately picked up. The tests are constructed from the t-ratios on the 

b coefficient in the following regressions: 

• .2 + 
v • a + b D + lS ' z ·  + e ( 5 . 4) 

t t -l O t  t 

• .2 
• a + b + lS ' z ·  v D e + e ( 5 . 5) 

t t-l t -l O t  t 

• .2 + 
v • a + b D e + lS ' z ·  + e ( 5 . 6) 

t t -l t -l Ot t 

+ 
and D • 1 j f  e > 0  and D • 1 jf e < 0  

t t t t 

where v It? are adjusted, scaled residuals (ie residuals from a regression 

of the squared scaled residuals - ie e?lht - on the variables included in 

the volatility mode)), a and b are constant parameters, IS is a constant 
It 

parameter vector, z is a vector of variables dependent on the volatility 

model being tested, and et is the residual .9 

The positive sign bias test statistic is defined as the t-ratio on the b 

coefficient in the regression equation (5 .4); the negative size bias test 

statistic is the t-ratio on the b coefficient in the regression equation (5 .5) 

and the positive size bias test statistic is the t-ratio on the b coefficient in 

the regression equation (5 .6) .  The intuition behind these tests is simply 

that if the squared normalised residuals can be explained by the Dt-1 
terms then the volatility model must be mis-specified . We also report a 

9 For further details. the interested reader is referred 10 Engle and Ng ( 1993). The details 
behind the results reported in Table 5.5 are sel oul in Annex 2. 
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joint test derived from the t R 2 statistic of the following regression, 

which is distributed as X2(3) under the null that the volatility model is 

correct. 

*2 + 
v - a + b D + b D f 

t 0 t -l 1 t-l t-l 

32 
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TABLE 5.5: SIGN AND SIZE BIAS TEST RESULTS 

Model Positive Negative Positive 
Sign Biu Size Bias Size Biu 

GARCH 

RPI unadjusted 2.09·· 2.33·· 1 .92·· 
RPI adjusted 0.94 1 .:W 1 .31· 
RPIX unadjusted 1 .24 1 .96·· 1 .44· 
RPIX adjusted 1 .44· 1 .29· 1 . 13 

AGARCH 

RPI unadjusted 1 .4?- 1 .56· 1.(17 
RPI adjusted 0.93 0.99 0.66 
RPIX unadjusted -0.41 1 . 17  0.35 
RPIX adjusted 0.21 0.94 0.05 

EGARCH 

RPI unadjusted 0.83 1 .51 · 0.27 
RPI adjusted 0.35 0.90 -0.30 
RPIX unadjusted -0.28 1 .32 0.61 
RPI adjusted -1 .06 0.72 -0.(17 

GJR 

RPI unadjusted -0.90 -0.01 -0.08 
RPI adjusted -0.22 0.34 -0.1 9  
RPIX unadjusted -0.27 0. 14 -0.01 
RPIX adjusted -0.75 0.57 -0.50 

-;-- indicates significance at the 20%/100/0 level. 

�oint 
elt 

5.72· 
1 .78 
4. 1 5  
2.35 

4.8?-
2,(17 
3.46 
1 .78 

3.70 
1 .95 
2.34 
2. 1 9  

1 . 59 
1 .39 
0.50 
2.87 

The test results reported in Table 5.5 provide some tentative evidence 

that the GARCH model of inflation volatility is mis-specified, with the 

positive sign bias and size bias results suggesting that it understates the 

uncertai nty resu l t i n g  from a pos i t ive shock to i n f l a t i o n  a n d  

correspondingly overstates the effects of a negative shock. But, apart 

from the results for the model using unadjusted RPI, the test results are 

only weakly statistically Significant, probably reflecting the low power 

of these tests in small samples. In the case of the asymmetric models, 

the tests do not indicate the presence of any significant sign or size bias. 

Thus it i s  d i ff icu l t  to determine from these tests which of the 

asymmetric models provides the best representation of asymmetries in 

the data, although we may note that the t-ratios for the EGARCH and 

GJR model tend to be smaller than those for the AGARCH model .  
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To cast some further light on this question, we estimated a version of 

the partially non-parametric model (PNP) advocated by Engle and Ng 

(1993).  This model of volatility contains a linear spline specification in 

the lagged foreca s t  errors.  I t  is  termed partially non-parametric 

because it includes a GARCH term (the lagged conditional variance) to 

pick up long memory. Experimentation with different specifications 

led us to adopt three equally spaced breakpoints corresponding to 0, t 
0.5 0, and t 0, where 0 is the OLS standard error from the appropriate 

conditional mean equation. Thus the precise model we estimated had 

the following form: 

2 
b -, + t , D 

t o 1 .. 0 1 1  

+ 
D • 1 1 �  e 

1 t  

D .. 1 1 �  e 
1 t  

+ 2 
(e - 1 0 /2) + t , D (e + 1 0 /2) +5 b 

1 t -1 t -1 

+ 
> 1 0 /2 and D 

t 1 t  

< 1 0 /2 and D 
t i t  

1 -0 21 1 t -1 t -1 

.. 0 1 �  e 

• 0 1 �  e 

t 

t 

s 1 0 /2 

� i o /2 

1 t -1 

The resul ts from this  model are reported in Ta ble 5.6 .  A symmetric 

news impact curve would imply that the (positi ve) '} i's were equal in 

a bsol u te size to the (nega ti ve) '2i ' s .  The results evidently do not 

support this, with the cond i tional variance much more sensiti ve to 

positive shocks across most of the speci fications. 

This is brought out more clearly in Table 5.7 which shows the implied 

rela tionship between cu rrent inflation volatil ity and the value of the 

previou s period's  i nfla tion shock, holding the lagged conditional  

variance fixed at 02, for each of the estimated models. In the case of the 

PNP model, the implied news impact curve is very asymmetric, with 

uncertainty an increasing function of the size of positive inflation shock 
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(bad news), but much less responsive or invariant to negative inflation 

shocks (good news). 
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TAB LE 5.6: R ESULTS FOR PARTIALLY NON-PARAMETRIC 
MODEL WITH 3 BREAK-POINTS(1 ) 

Model : I' t a 
o 

+ f a I' + seasona ls + , i = 1 i t - i t 

D .  1 =  1 i f  < i o /2 and D .  1 = 0 i f  � i o/2 I t - ' t  I t - ' t  

RPI RPI 
Unadjusted Adjusted 

Parameter 

'YO 0.344 -0.039 
(2.2) (0.3) 

'YI0 1 .m 1 .876 
(2. 1 )  (2.2) 

'Y 1 1  4.209 -2.052 
(2.6) 0 .2) 

'Y12  1 1 .771 0.967 
(2.7) (0.5) 

'Y20 0.044 -0.636 
(0. 1 )  0 .1 ) 

'Y21 -0.976 0.594 
( 1 . 1 ) (0.5) 

'Y22 1 .601 0.296 
(2.2) (0.4) 

61 0,(176 0.462 
0 .2) (2.7) 

Log-likelihood -51 .986 -51 .759 

ARCH ( X2(4»(2) 4.1 5.3 

ARCH ( X2(8»(2) 1 0.0 1 1 .5 

Q (X2(8»(2) 4.2 1 .5  

T statistics are in parentheses. 

( 1 )  
(2) 

Parameters from the mean t:<JUation arf fft reported. 
Tests refer to scaled residualS, ie I t1ht . 
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RPIX 
Unadjusted 

-0.034 
(0.3) 
1 .546 

(2.5) 
-0.970 
(0.7) 
2.313 

0 .0) 
- 1 .213 
(2.6) 
1 .755 

( 1 .9) 
-0.243 
(0.3) 
0.294 

(2.7) 

-53.961 

7.9 

9.4 

7.8 

RPIX 
Adjusted 

-0.050 
(0.4) 
1 .236 

(2.3) 
- 1 . 124 
(0.9) 
0.564 

(0.3) 
-0.518 
(1 .0) 
0.514 

(0.5) 
0.008 

(0.0) 
0.570 

(3.9) 

-46.7� 

4.0 

6.2 

5.5 



In contrast to the PNP results, the GARCH model tends to understate ht 
for positive values of e t  and to overstate them for negative values. The 

AGARCH allows for asymmetry and is therefore much closer to the 

PNP model, but it still tends to understate the impact of large positive 

shocks and to exaggerate the impact of negative ones. Of the models 

considered, the EGARCH and GJR models come closest to replicating 

the shape of the PNP news impact curve and, using the adjusted data 

(the results we wish to put most emphasis on), it is difficult to choose 

between them. While the GJR model comes closest to matching the 

PNP curve for negative shocks, it shows a slight tendency to 

overpredict the impact of positive shocks . On the other hand, the 

EGARCH model seems to give a more accurate representation for 

positive shocks, but shows a slight tendency to overstate the impact of 

negative shocks. 
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TABLE 5.7: INFLATION VOLATILITY NEWS IMPACT CURVES 

' t-t PNP GARCH AGARCH EGARCH GJR 

Un adjusted RP) results 

-2.0 0.21 2.49 0.94 0.58 0.30 
-1 .5 0.54 1 .65 0.67 0.59 0.42 
-1 .0 0.86 1 .05 0.54 0.61 O.SO 
-0.5 0.40 0.70 0.55 0.62 0.56 
0.0 0.42 0.58 0.70 0.63 0.57 

+0.5 1 .31 0.70 0.98 0.98 0.81 
+ 1 .0 0. 1 1  1 .05 1 .40 1.52 1 .54 
+1 .5  4.66 1 .65 1 .95 2.36 2.75 
+2.0 9.32 2.49 2.65 3.67 4.45 

Adjusted R P) results 

-2.0 0.34 1 .23 0.60 0.49 0.36 
- 1 .5 0.47 0.98 0.54 0.53 0.48 
- 1 .0 0.59 0.81 0.53 0.56 0.56 
-0.5 0.61 0.70 0.58 0.60 0.61 
0.0 0.32 0.66 0.68 0.64 0.63 

-0.5 1 . 14  0.70 0.84 0.85 0.74 
+1 .0 1 . 17  0.81 1 .05 1.13 1 . 10 
+1 .5  1 .56 0.98 1 .32 1 .51 1 .68 
+2.0 1 .96 1 .23 1 .65 2.01 2.51 

Unadjusted RPIX results 

-2.0 0.30 2.53 1 .40 0.72 0.39 
- 1 .5 0.45 1 .68 0.93 0.70 0.48 
- 1 .0 0.60 U 1 7  0.65 0.68 0.54 
-0.5 0.87 0.70 0.55 0.65 0.58 
0.0 0.26 0.58 0.64 0.63 0.59 

+0.5 1 .04 0.70 0.92 0.96 0.81 
+ 1 .0 1.33 1.(17 1 .38 1 .45 1 .46 
+1 .5  2.76 1 .68 2.03 2. 19 2.54 
+2.0 4.21 2.53 2.86 3.32 4.05 

Adjusted RP)X results 

-2.0 0.60 1 .35 0.92 0.67 0.60 
-1 .5 0.60 1 .02 0.72 0.65 0.59 
- 1 .0 0.60 0.79 0.60 0.63 0.59 
-0.5 0.60 0.64 0.57 0.61 0.59 
0.0 0.38 0.60 0.61 0.59 0.59 

+0.5 0.92 0.64 0.74 0.76 0.69 
+ 1 .0 1 .05 0.79 0.95 1 .00 0.98 
+ 1 .5  1 .39 1 .02 1 .24 1 .30 1 .48 
+2.0 1 .73 1.35 1 .62 1 .69 2. 18 



6 Inflation Uncertainty and the Level of Inflation 

The presence of A RCH effects in inflation does not in itself establish 

whether inflation uncertainty is associated with the level of inflation, 

since the conditional variance (our proxy for uncertainty) is being 

modelled as a function of past forecast errors rather than inflation itself 

[see Brunner and Hess (1993)]. 

In order to test for the link between the level of inflation and inflation 

uncertainty, we re-estimated each of the volatility models reported in 

Section 5 including additional lagged inflation terms to see if they were 

statis t i cally s ignificant. We experimented with a variety o f  

specifications, but we report only the results from including an 

additional four lags in quarterly inflation (Tables 6. 1 - 6.4). The results 

are slightly mixed: for virtually all the models, we found that the 

additional inflation terms were jointly statistically significant according 

to likelihood ratio tests, but for the asymmetric models often the most 

significant effects were negative rather than posi tive. 

The main problem with including additional inflation terms into the 

volatility model is that, the two kinds of effects - inflation shocks and 

inflation levels - appear to be closely correlated, as Brunner and Hess 

(1993) note. This point seems to be confirmed by plotting our preferred 

estimates of inflation uncertainty against inflation. Charts 6. 1 and 6.2 

show that the conditional standard deviations from the EGARCH and 

GJR models (estimated on adjusted data) track RPI inflation remarkably 

c losely throughout the postwar period (Chart 6.3 provi des a 

comparison with the GARCH model) . Thus inflation uncertainty was 

particularly high in the mid-1970s, at the same time as inflation peaked. 
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However, it is noteworthy that, inflation uncertainty reached similar 

levels in the early 1980s (a conditional standard deviation of around 

2%), at a time when a change in policy regime made inflation difficult 

to predict.lo 

1 0  The spikes in the conditional standard deviation series are l ikely t o  reflect the impact of 

tax changes associated with annual Budgets which are only partly dummied out in the 
mean equation. This highlights the sensitivity of the results to the specification of the 
mean equation. 
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TABLE 6.1: RESULTS FOR GARCH(t,t ) MODELS AUGMENTED 
BY LAGGED INFLATIONO) 

Model: If = a + f t 0 i = 1 ai If t _ i + seasonals + ' t  

' t�l + 6 1 h t _ 1 + .f 1 ). · 1f t . ] = ] -] 

RPI RPI RPIX 

Parameter 
Unadjusted Adjusted Unadjusted 

10 0.159 0. 189 0'<179 
0 .9) 0 .9) (0.7) 

11  0.262 0.148 0. 105 
(2.5) (1 .3) (1 .5) 

6 1 0.467 0.547 0.414 
(3.3) (2.8) 0 .4) 

). 1 0.276 0.204 0.260 
(3.7) (2.4) (5.6) 

).2 0.050 0.069 -0.068 
(0.6) (0.9) (0.6) 

).3 -0.214 -0.1 52 -0.237 
(2.8) (1 .5) (3.4) 

).4 -0.051 -0.088 0.271 
(0.7) (1 .2) (3.2) 

Log-like�o� -55.928 -50.920 -54.795 
ARCH (). (4» 2)  2.7 1 .8 5.9 
AR� ().2�8»(2) 8.9 4.9 8.6 

Q (). (8»(2 3.1 2.0 6.5 

T statistics are in parentheses. 

( 1 )  Parameters from the mean equation arf ?lot reported. 
(2) Tests refer to scaled residuals, ie , tl ht 
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RPIX 
Adjusted 

0.095 
(0.8) 
0.103 

0 .0) 
0.556 

0 .5) 
0. 173 

(2.5) 
-0.039 
(0.4) 
-0.1 71 
0 .9) 
0. 129 

(1 .6) 
-46.588 

8.3 
1 2. 1  
4.9 



TAB L E  6.2 :  R E S ULTS FOR AGARCH MOD EL AUGMENTED B Y  
LAGGED INFLATION(1 )  

Mode l :  t' a + A1 a ,  t' t - i  + seasona1s + f t 0 1 t 
f n - N ( 0, ht )  t t -1 

h 
2 6 1 h + j�1 7 0 + 7 1 ( f  t - 1 + 7 2 ) + t t -1 

RPI RPI RPIX 
Unadjusted Adjusted Unadjusted 

Parameter 

70 0. 185 0.203 0.017 
0.7) 0 .8) (0. 1 )  

7 1 0.222 0.145 o.� 
0 .8) 0.3) 0.4) 

72 0.<Yl5 1 . 146 -0.401 
(0.2) (0.2) (0.5) 

6 1  0.482 0.540 0.476 
(2.2) (2.6) 0 .9) 

>- 1  0.250 0. 176 0.275 
0 .7) 0.3) (3.5) 

>-2 0.029 0.<Yl4 -0.069 
(0.3) (0.9) (0.8) 

>-3 -0.246 -0. 143 -0.248 
(2.7) 0 .4) (3.6) 

>-4 0.01 5 -0.080 0.276 
(0.2) 0 .1 ) (3.4) 

Log-like��o� -56.246 -50.789 -54.1 22 
ARCH (X' (4» 2) 4.3 1 . 9 4.8 
ARS! (X2�B»(2) 9.B 5. 1 7.3 

Q (X (B»(2 3.7 2. 1 5.9 
T statistics are in parentheses. 

m Parameters from the mean �uation arr fPt reported. 
Tests refer to scaled residuals, ie f t1ht . 
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� ,  ) n , t -] 

RPIX 
Adjusted 

0. 102 
0.0) 
0. 1 1 2  

0 .1 )  
0.489 

(0.6) 
0.586 

0.7) 
0. 106 

0 .0) 
-0.050 
(0.5) 
-0. 1 46  
0 .6) 
0.138 

0 .6) 
-46.328 

7.2 
10.9 
4.B 



TABLE 6.3: RESULTS FOR EGARCH MODEL AUGMENTED BY 
LAGGED INFLATION(1 ) 

Mode l : - 01 + A1 OI i  - e - i + sea s ona l s  + , t 0 t 
, II - N 1 0, he ) t t - 1  
log h =7 +7 1 t 0 . 1 1 '  t - 1 t - 1 + 7 

hl12 2 h 112 t - 1  t - 1 
I - In) + 6 10ght _ 1 + j=lj"t -j 

2 1 12 1 £ 

RPI RPI RPIX 
Unadjusted Adjusted Unadjusted 

Parameter 

10 -0.083 0.049 
(0.8) (1.1) 

" 1  0.198 0.194 
0.4) 0.2) 

"2 0.41 7 -0.056 
(2.2) (0.6) 

61 0.682 0.932 
(8.2) (10.8) 

�1 0.200 0.006 
(1 .6) (0.1 ) 

�2 0.006 -0.002 
(0.1)  (0.0) 

�3 -0.234 -0.172 
(2.7) (2.1 ) 

�4 0.050 0. 125 
(0.6) (2.0) 

Log-likeIi2°� -54.395 -49.234 
ARm (X (4» 2) 5.1 2.9 
ARs-! (X\8»(2) 1 0.6 6.4 

Q (X (8)P 2.0 1 2,8 

T statistics are in parentheses. 

( 1 ) Parameters from the mean equation arr flot reported. 
(2) Tests refer to scaled residuals, ie t tl  ht 
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-0.114 
(0.5) 
0.301 

0.9) 
0.350 

0.6) 
0.700 

(6.3) 
0. 1 22 

0.0) 
-0.1 33 
0.5) 
-0.1 66  
0.9) 
0.200 

(2.4) 
-53.91 2 

7.0 
1 0.0 

8.3 

RPIX 
Adjusted 

0.027 
0.1) 
0.1 70 

0.6) 
0.014 

(0.3) 
0.91 2 

(1 3.9) 
0.046 

(0.5) 
-0.01 2 
(0.1 ) 
-0.182 
(4.3) 
0.1 1 4  

0.8) 
-40.538 

6.9 
1 2.4 

4,9 



T A B L E  6.4 :  R ES ULTS FOR GJR M O D EL A U G M ENTED B Y  
LAGGED INFLA TION(1 )  

Mode l : _ Q + £ Q .  + seasona l s  + r t 0 i = l i t - i  t 

r t D t _ 1 - N 1 0, h t l 
h = 1 + 1 t 2 + .., D t 2 + 6 h + ,£ " .n . ; D = 1 i f  f >0 t 0 1 t - l 2 t - 1 t - 1 t - 1 J = l  J t -] Dt= 0 i f  t t � o 

RP. RP. RPIX 
Unadjusted Adjusted Unadjusted(3) 

Parameter 

10 0.31 1 0. 122 0.059 
(3.5) (1 .6) (0.8) 

' 1  -0.013 -0.130 -0.048 
(0.2) (1 .9) (0.5) 

12 0.575 0.286 0.665 
(2.0) ( 1 .7) (3.0) 

6 1 0.423 0.666 0.473 
(3.0) (2.7) (4.3) 

"I 0. 131 0. 100 0. 100 
0 .4) ( 1 .3) (2.0) 

"2 -0.014 0'<�2 
(0.2) (0.9) 

"3 -0. 1 83 -0. 138 
(2.3) (1 .6) 

"4 0.M3 0.01 7 
(0.6) (0.3) 

Log-likeli�o� -55.501 -47.019 -56. 123 
ARCH (X (4» 2) 5.4 3.3 7.3 
AR8: (X2�B»(2) 9.4 8.0 10.0 

Q (X (B» (2 4.B 2.8 6.0 
T statistics are in parentheses. 

( 1 )  Parameters from the mean equation arp /2ot reported. 
(2) 

t t 

RPIX 
Adjusted 

0.054 
(0.6) 
0.248 

( 1 .4) 
-0.205 
( 1 .3) 
0.591 

(2.4) 
0.231 

(3.3) 
-0.1 1 1  
(1 .3) 
-0.1 98 
(2.B) 
0. 187 

(2.4) 
-43.916 

8.3 
1 3. 1  
7.9 

(3) 
Tests refer to scaled residuals, ie f t1ht . 
Results for the model with one lagged infla tion term are reported because the 
model failed to converge with four lagged inflation tenns. 
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Chart 6.1: RPl lnOatJon and Estimated InJlatlon 
Uncertainty rrom EGARCH Model 

Chart 6.2: RPI IoOatlOll and Estlm.ted Inn.tlOII 
Uncertainty rrom GJR Model 
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Chart 6.3: RPl lnOatJon and Estimated IoDation 
Uncertainty rrom GARCH (1,1) Model 
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The close correlation between inflation and estimated uncertainty is 

much less apparent using the conditional standard deviation from the 

symmetric, GARCH model, as  can be seen from the scatter plots in 

Charts 6.4 , 6 .5  and 6.6 .  This finding, whi ch exactly mirrors that of 

Brunner a nd Hess (t 993) for the United States,  emphasi ses the 

importance of allowing for asymmetric news effects. The correlations 
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summarised in Table 6.5 show that this pattern is also repeated for the 

models of RP IX inflation and for the models estimated on unadjusted 
data .  

Chart 6.4 : Estimated inflation uncertainty from 
EGARCH model and lagged RPI ioOation 
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Chart 6.6: Estimated inflation uncertainty from 
GARCH ( 1,1) model and lagged RPI inflation 
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Chart 6.5: Estimated ioOalion uncertainty frOll 
GJR model and I.� RPI inft.tion - tioao,:OIMdIrd ... vimo:_ 
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frOll 

TABLE 6.5: CORRELATION BETWEEN LAG G ED QUARTERLY 
INFLATION AND THE CONDITIONAL STANDARD DEVIATION 
FROM GARCH, AGARCH, EGARCH AND GJR MODELS 

\ 
Model RP. RPI RPIX RPIX 

Unadjusted Adjusted Unadjusted Adjusted 

GARCH 0.543 0.362 0.583 0.414 

AGARCH 0.773 0.797 0.719 0.670 

EGARCH 0.792 0.801 0.771 0.742 

GJR 0.810 0.806 0.792 0.753 

7 Conclusions 

In this paper, we used a variety of ARCH-related volatility models to 

estimate UK quarterly inflation uncertainty over the post-war period, 

conditional on a univariate, fixed parameter specification of mean 

inflation. 

Our results clearly reject the symmetry restriction imposed in standard 

ARCH and GARCH models, suggesting that measured inflation 

uncertainty is much more sensitive to 'bad news' than 'good news' . In 

fact, uncertainty appears almost unaffected when inflation outturns are 

lower than expected. A comparison of the implied 'news impact 

curves' of the volatility models investigated with a partially non­

parametric model ( as recently proposed by Engle and Ng (1993)] 

su ggested that the E GARCH and GJR models offer the best,  

parsimonious representations of the asyrnmetries in the data. 

We went on to show that our preferred estimates of inflation 

uncertainty are closely correlated with the level of UK inflation over the 

postwar period. This finding - which mirrors recent work in the United 

States by Brunner and Hess (1993) - does not of course establish a 
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causal l ink.  Indeed, the inclusion of lagged inflation terms in the 

conditional variance specification yielded slightly mixed results .  

Nevertheless, it is consistent with one of the most important stylised 

facts of the costs of inflation literature. 
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Annex 1: Data Sources 

RPI Retail price index (1987= 100), derived from splicing together 

series for 1 947=100, 1 956=100, 1 974=100 and 1987=100. 

Source: 'Retail Prices 1914 - 1990' ( 1991), Central Statistical 

Office, and CSO code CHA W for more recent data. 

RPIX - Retail price index excluding mortgage interest payments 

( 1987=100).  

Source: CSO code CHMK, sample Jan.1974 - Mar .1994 

RPIY - Retail price index excluding mortgage interest payments and 

indirect tax changes. 

Source: 'The Construction of RPIY' ( 1 995), R Beaton and 

P Fisher, Bank of England Working Paper No 28. 
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Annex 2: Sign and Size Bias Tests 

The test results reported in Table 5.5 were derived as follows [for 

further details see Engle and Ng (1993)] .  

For the GARCH model, the adjusted scaled residuals were derived 

from the following least squares regression 

2 2 2 
v = p + p h + p f + v *  

t 0 1 t - 1 2 t - 1 t 

The z'" 
vector in this case was equal to 

- 1  
{ h 

t 

2 - 1  
, f  h ,  

t - 1  t 

- 1  
h h } 

t - 1  t 

For the AGARCH model , the adjusted scaled residuals were derived 

from the following regression 

2 2 
v = p + p { (-y  + f ) ] + p h + p [ 21 (1  + e ) ] 

t 0 1 2 t - l 2 t - 1 3 1 2 t - l 

2 
+ v *  

t 

.. 
The z ' vector in this case was equal to 

- 1 
{ h 

t 
2 

, ( E  + 1 ) /h , 
t - 1  2 t 

- 1  
h h , 21 ( f  

t - 1 t 1 t - 1  

- 1  
+ 1 ) h } 

t t 

For the EGARCH model, the adjusted scaled residuals were derived 

from the following regression 
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2 
v = p + p h + P [ e  h 1 4h ] + p [h l og h ] 

t 0 1 t 2 t - 1 t t - l 3 t t - 1 

+ p [ h  ( I  e 1 1  4h ) 
2 

4 (2 10 ) ] + v * 
4 t t - 1  t - 1 

It 
The z ' vector in this case was equal to 

t 

{ e  1 4h l og h I ( I t I / 4 h - 4 ( 2 10 )  ) )  
t - 1 t - l t - l t - l t - l 

For the GJR, the adjusted scaled residuals were derived from the 

following regression 

2 2 + 2 2 
v = p + p h + p e + p D t + v * 

t 0 1 t - 1 2 t - l  3 t - l t - 1  t 

It 
The z ' vector in this case was equal to 

- 1  2 
{ h  , E  I h , 

t t - j t 

+ 2 
h /h , D E Ih } 

t - l t t - l t - j t 
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