Testing for convergence: evidence from nonparametric multimodality tests

Marco Bianchi

Bank of England, Threadneedle Street, London EC2R 8AH.

The views in this paper are those of the author and not necessarily those of the Bank of England. The author thanks Danny Quah for encouragement and advice and Robert Barro for useful comments. The usual disclaimer applies.

Issued by the Monetary Analysis Division, Bank of England, London, EC2R 8AH to which requests for individual copies should be addressed: envelopes should be marked for the attention of the Publications Group. (Telephone: 0171-601-4030).

> Bank of England 1995 ISSN 0142-6753

Contents

Abstract	3
1 Introduction	5
2 The Statistical Framework	6
2.1 Nonparametric Density Estimation	7
2.2 Bootstrap Multimodality Tests	9
3 Empirical Results	11
4 Conclusions	15
Appendix	16
References	20

Abstract

The convergence hypothesis in growth theory implies that the frequency of the density distribution of GDP in a cross-section of countries tends to approach unimodality as we move forward in time. In this paper, we test the convergence theory in a crosssection of 119 countries by means of bootstrap multimodality tests and nonparametric density estimation techniques. By looking at the density distribution of GDP across countries in 1970, 1980 and 1989, we find increasing evidence for *bimodality*. The finding stands in contrast with the convergence prediction.

1 Introduction

There is a debate in growth economics as to whether less developed economies are catching up with richer economies — what is commonly known as the "convergence hypothesis". At the heart of the debate stands a fundamental controversy among researchers about the 'correct' answers to a number of relevant questions like (Quah, 1995b):

- Are poor countries becoming poorer and rich countries richer, or is there a tendency for the poor to catch up with the rich?
- Are countries converging towards each other only within groups or "clubs"?
- Is most of the world becoming middle class, or is it that the middle class is vanishing?

Much empirical work has been devoted in the literature to support or question different views about the convergence hypothesis. However, no widely accepted conclusion has been reached so far.

Conventional empirical analyses employing cross-section, timeseries or panel data techniques have found evidence to support the convergence hypothesis (see, among the others, Sala-i-Martin, 1994, 1995, and references therein). However, as recently pointed out by Quah (1995a,b), the limitation of conventional approaches is the modelling of the behaviour of an *average* or representative economy, rather than the *entire* cross-section of countries. Empirical evidence from cross section convergence regressions rely only on a few coefficients estimated from a linear model, without being able to clarify the dynamics of the entire income distribution.

In this paper, we follow the recommendation of Quah (1995b) to study "growth and convergence in terms of the dynamically evolving cross-country distribution of income".¹ Consistent with

¹Quah (1995), page 2.

previous studies (Quah, 1995a,b), we find substantial evidence against the convergence hypothesis between less and most developed economies, in favour of the convergence hypothesis within groups of economies or "clubs". We also find some evidence of a vanishing of the middle class (again, as suggested in Quah 1995a,b).²

The remainder of the paper is organised as follows. In Section 2 we briefly consider nonparametric techniques for the estimation of the density distribution of incomes across countries. We also discuss nonparametric multimodality tests. We report the empirical results in Section 3. Section 4 briefly summarises and concludes.

2 The Statistical Framework

Consider a random variable x with realizations x_i , i = 1, ..., n. In our application, x_i denotes the GDP per capita in US dollars in country i, in a cross-section of n countries. Also denote by f(x)the density of per capita incomes across countries.

With two groups of countries, say a group of "rich" and a group of "poor" countries, the convergence hypothesis predicts a catching-up of poor countries. In the presence of m^* groups of countries, the density of the frequency distribution has the form

$$f(x) = \sum_{i=0}^{m^*} p_i \cdot g_i(x; \mu_i, \sigma_i^2),$$
(1)

where p_i 's are mixture proportions with $\sum_{i=0}^{m^*} p_i = 1$, and g_i are unimodal densities with first and second moments μ_i and σ_i^2 . Assuming that the differences in the centrality parameters μ_i 's (mean

 $^{^{2}}$ It must be stressed nevertheless that our analysis, representing a purely statistical investigation of stylised facts, does not provide theoretical justifications or economic rationales as of why convergence may or may not occur. With this respect, interested readers are referred to the monograph by Barro and Sala-i-Martin (1994).

incomes in different groups) are "large" relative to the dispersion parameters σ_i^2 's (income variances in different groups), equation (1) implies that f(x) is multimodal with m^* modes (the modes of the density are said to be "well-separated" in this case).

According to the convergence hypothesis, if we start with a bimodal density in a given point in time, indicating the presence of two groups in a population of countries, there will be a tendency in the distribution to progressively move towards unimodality over time. Such a prediction indicates the way the convergence hypothesis can be tested empirically: we can estimate the density of the frequency distribution of incomes across countries at two (or more) distant points in time and evaluate at what points in time unimodality is most strongly rejected. We accomplish the former task by means of nonparametric kernel density estimators; the latter, by the bootstrap methodology.

2.1 Nonparametric Density Estimation

The purpose of density estimation in statistics and data analysis is to evaluate where observations occur more frequently in a sample. In nonparametric density estimation, the "true" probability density function f(x) is estimated from a sample $\{x_i\}_1^n$ of independent and identically distributed observations. The estimated density is constructed by centring around each observation x_i a kernel function K(u), with $u = (x - x_i)/h$, and averaging the values of this function at any given x. The estimator in its general form is defined as (see Silverman, 1986; Härdle, 1990)

$$\hat{f}_h(x) = (nh)^{-1} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) = (nh)^{-1} \sum_{i=1}^n K(u), \quad (2)$$

where h > 0 is the bandwidth or window width and K(u) is the Gaussian kernel

$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right).$$
(3)

Bandwidth h governs the degree of smoothness of the density estimate. With small values of h, wiggly estimates showing spurious structure in the data can often be obtained; with big values of h, on the contrary, important features of the underlying density can be smoothed away.³ Figure 1 illustrates the construction of a kernel density estimator.

Figure 1: Construction of a nonparametric density estimate (solid line) by averaging the value of the kernel functions (Gaussian kernels represented by dotted lines), centred on the data points (x). Bandwidth: h = 0.5.

³Several data-driven bandwidth selectors have been proposed in the literature. As reviewed in Bianchi (1995), these aim to achieve an objective choice of the bandwidth by identifying a value of h which minimises some distance (or discrepancy) between the true and estimated density — such as for example the Mean Squared Error (MSE), its expected value, the Mean Integrated Squared Error (MISE), or the Taylor expansion of the MISE, the Asymptotic Mean Integrated Squared Error (AMISE). Other selectors, like those based on the bootstrap methodology, select a value of h consistent with the number of modes in the density, thus approaching the problem of bandwidth selection in the perspective of hypothesis testing.

2.2 Bootstrap Multimodality Tests

Well-known procedures for testing the number of modes in a density distribution include the parametric approach, based on maximum likelihood estimation, and the nonparametric approach, based on the bootstrap or resampling techniques (see Izenman and Sommer, 1988, for a comparison of the two approaches). We briefly consider in the following the nonparametric approach.

Bootstrap tests are built on the concept of *critical bandwidth* introduced by Silverman (1981, 1983, 1986). A critical bandwidth $h_{crit}(m)$ is defined as the smallest possible h producing a density with at most m modes, what means that for all $h < h_{crit}(m)$ the estimated density \hat{f}_h has at least m + 1 modes.

The idea of critical smoothing is naturally related with hypothesis testing. If the true underlying density has two modes, for example, then a large value of $h_{crit}(1)$ is expected, because a considerable amount of smoothing is required to obtain a unimodal density estimate. This suggests that $h_{crit}(m)$ can be used as a statistic to test

 H_0 : f(x) has m modes; H_1 : f(x) has more than m modes. A 'large' value of $h_{crit}(m)$ indicates more than m modes, thus rejecting the null.

How large is large in this context is assessed by the bootstrap, as discussed by the same Silverman in his works, and, among the others, by Efron and Tibshirani (1993), section 16.5. Given the vector of observations $\mathbf{x} = (x_1, \ldots, x_n)'$, a sample $\mathbf{y}^* = (y_1^*, \ldots, y_n^*)'$ is obtained by resampling with replacement from \mathbf{x} . To ensure that the realizations obtained from the bootstrap have the same first and second moment properties of the observations \mathbf{x} , the following transformation is considered

$$x_i^* = \bar{y}^* + \left(1 + \frac{h_{crit}^2(m)}{s^2}\right)^{-1/2} (y_i^* - \bar{y}^* + h_{crit}(m)e_i), \quad (4)$$

where i = 1, ..., n, $\bar{y}^* = \text{mean}(y^*)$, s^2 is the sample variance of x, and e_i standard normal variables generated by the computer. A *p*-value for $h_{crit}(m)$, called the 'achieved significance level' (ASL) of the test, is obtained by generating a large number of samples from $f_{crit}(m)$ and counting the proportion of samples for which $h_{crit}^*(m) > h_{crit}(m)$, where $h_{crit}^*(m)$ is the smallest value of *h* producing a density estimate with *m* modes from the bootstrap data \mathbf{x}^* . We have formally

$$ASL_m = \operatorname{Prob.}\{h_{crit}^*(m) > h_{crit}(m)\}$$
(5)

where $h_{crit}(m)$ is a fixed value obtained from the data x. Denoting by B the number of bootstrap replications, and defining the indicator variable⁴

 $I_{m,b} = \begin{cases} 1 & \text{if } f_{h_{crit}(m)}(x^*) \text{ has more than } m \text{ modes} \\ 0 & \text{otherwise,} \end{cases}$

an estimate for the p-value or achieved significance level of the test is given by

$$\widehat{ASL}_{m} = B^{-1} \sum_{b=1}^{B} I_{m,b}.$$
 (6)

We fail to reject the null hypothesis of m modes in the density whenever the p-value is larger than standard levels of significance.

⁴It has been proven by Silverman that the event $h_{crit}^*(m) > h_{crit}(m)$ is equivalent to the event that $\hat{f}_{h_{crit}}(m)(x^*)$ has more than m modes. This results implies that it is not necessary to compute $h_{crit}^*(m)$ for each bootstrap sample; one needs only to check the proportion of cases when $f_{h_{crit}}(m)(x^*)$ has more than m modes.

3 Empirical Results

In this section, we consider per capita GDP at constant US dollars for n = 119 countries, measured in 1970, 1980 and 1989. Prior to testing for multimodality using kernel density estimation and the bootstrap methodology, we standardise the data by dividing income differentials from the mean value by the sample standard deviation. For the standardised data, the critical bandwidths are shown in Table 1 and Figure 2.

The results of nonparametric multimodality tests are shown in Table 1. It appears that the most likely hypothesis is that the underlying density has $m^* = 2$ modes in 1980 and 1989, whereas the unimodality hypothesis is not rejected in 1970 at a 5% level of significance. This provides evidence against the convergence hypothesis.

In the three years, by selecting a value of the bandwidth consistent with bimodality, we obtain the density estimates reported in Figure 3. The densities are all skewed to the right, indicating the presence of a large mass of "poor" countries, with a small proportion of "rich" countries. In 1980 and in 1989, a pronounced mode appears in the long right-end tail of the distribution suggesting the formation of "clubs" or clusters in the data, in support of the so called "polarisation hypothesis".

Also, in the decade from 1970 to 1980, we notice the mode centred about -0.5 shifts to the left and the mode centred about 1.5-1.6 shifts to the right; this indicates a widening gap between less and more developed countries. In the decade from 1980 to 1989, there are no shifts in the modes, but a larger proportion of poor countries (larger than in 1980), together with a smaller proportion of middle-income countries, is now observed; this result appears consistent with the hypothesis of vanishing of the middle class.

	$h_{crit}(m)$			ÂSL,	a; B =	10000	
GDP in	m = 1	m = 2	m = 3		m = 1	m = 2	m = 3
1970	0.495	0.290	0.265		0.07	0.33	0.05
1980	0.565	0.220	0.150		0.00	0.36	0.63
1989	0.570	0.190	0.160		0.00	0.68	0.51

Table 1: Bootstrap tests for multimodality.

Figure 2: Critical bandwidths obtained by kernel density estimation in 1970 (top panel), 1980 (middle panel) and 1989 (bottom panel) are the values of h where jumps in the step function occur. Note that the number of modes in the estimated densities are a decreasing function of the window width.

Figure 3: Density estimates of standardised income distributions in 1970, 1980 and 1989. Selected bandwidths are the critical bandwidths consistent with bimodality: 0.29, 0.22 and 0.19 respectively.

4 Conclusions

Recent theoretical work in growth theory, such as for example Baumol (1986), Esteban and Ray (1994) and Quah (1994, 1995a,b), has rationalised phenomena like the formation of convergence clubs, polarisation and poverty traps. According to these models, convergence clubs endogenously form and the distribution of income across countries has a tendency to polarise towards a bimodal distribution.

In this paper, we have empirically examined the convergence hypothesis from the perspective of income distributions in a crosssection of countries. By means of purely statistical techniques such as nonparametric density estimation and bootstrap multimodality tests, we have tested for the number of modes and estimated, consistently with the detected number of modes, the income distribution of a cross-section of 119 countries in 1970, 1980 and 1989. We have found strong evidence for bimodality (ie polarisation and clubs formation) occurring in the seventies, associated with a process of vanishing of the middle class in the eighties.⁵

Overall, the empirical evidence suggested in our study supports the view of clustering and stratification of growth patterns over time, in contrast with the convergence hypothesis.

⁵It is worthwhile noticing here that our method, although pertinent to testing for convergence, does not provide detailed information about intradistribution dynamics. Quah (1995a,b), however, has already provided results for the latter.

Appendix

Income Data

The data set is taken from the database of the University of Pennsylvania, called Penn World Table (PWT), June 1993. The following countries were included in the cross section.

Country	Per cap	Per capita GDP		
	1970	1980	1989	
ALGERIA	1837	2778	2778	
ANGOLA	1100	627	657	
BENIN	1144	1111	953	
BOTSWANA	863	1871	3218	
BURKINA FASO	399	473	541	
BURUNDI	324	463	518	
CAMEROON	867	1275	1293	
CAPE VERDE IS.	686	988	1269	
CENTRAL AFR.R.	699	663	559	
CHAD	549	425	380	
CONGO	1579	1829	2216	
EGYPT	1105	1572	1829	
GABON	3692	4789	3618	
GAMBIA	599	878	645	
GHANA	1012	921	815	
GUINEA	351	424	360	
GUINEA-BISS	653	440	659	
IVORY COAST	1320	1563	1282	
KENYA	577	889	887	
LESOTHO	386	917	958	
MADAGASCAR	1123	959	672	
MALAWI	429	541	504	
MALI	389	498	544	
MAURITANIA	985	958	860	
MAURITIUS	2348	3892	5363	
MOROCCO	1296	1866	2043	
MOZAMBIQUE	1458	896	755	
NAMIBIA	2602	2417	2054	
NIGER	752	694	467	
NIGERIA	769	1196	742	

RWANDA	626	733	659
SENEGAL	1104	1087	1081
SEYCHELLES	1666	2825	3426
SIERRA LEONE	1050	1001	908
SOMALIA	845	836	865
SOUTH AFRICA	3146	3512	3316
SWAZILAND	2415	3015	2182
TOGO	626	726	628
TUNISIA	1398	2473	2743
UGANDA	764	513	901
ZAIRE	644	450	403
ZAMBIA	1091	930	722
ZIMBABWE	1063	1176	1292
BARBADOS	4758	6534	7727
CANADA	10175	14231	17690
COSTA RICA	2796	3694	3572
DOMINICAN REP.	1496	2305	2293
EL SALVADOR	1737	1923	1738
GUATEMALA	2003	2540	2099
HAITI	788	980	793
HONDURAS	1207	1491	1351
JAMAICA	2670	2274	2413
MEXICO	3950	5707	5165
PANAMA	2497	3291	2650
PUERTO RICO	5784	6768	9051
TRINIDAD&TOBAG	6725	11242	8355
U.S.A.	12725	15097	18354
ARGENTINA	4165	4745	3615
BOLIVIA	1614	1908	1597
BRAZIL	2401	4254	4133
CHILE	3687	3900	4024
COLOMBIA	2097	2892	3150
ECUADOR	1762	3181	2805
GUYANA	1706	1965	1184
PARAGUAY	1439	2516	2235
PERU	2648	2889	2177
SURINAME	3048	3969	2367
URUGUAY	3870	4955	4320
VENEZUELA	7624	7233	5692
BANGLADESH	919	1098	1254

٠

•

•

CHINA	825	1241	2290
HONG KONG	4456	8801	14035
INDIA	704	763	1042
INDONESIA	700	1252	1798
IRAN	4212	3148	3046
ISRAEL	5718	7494	8431
JAPAN	7500	10292	14045
JORDAN	1412	2600	2280
KOREA, REP.	1688	3123	6209
MALAYSIA	2117	3772	4470
MYANMAR	392	475	576
PAKISTAN	997	1076	1340
PHILIPPINES	1368	1869	1727
SINGAPORE	3155	6958	10240
SRI LANKA	1315	1851	2218
SYRIA	2201	4286	3705
TAIWAN	2387	4827	8209
THAILAND	1508	2146	3231
YEMEN	586	1031	1615
AUSTRIA	7565	10586	12378
BELGIUM	8453	11354	13097
CYPRUS	3757	5294	7827
CZECHOSLOVAKIA	3825	5583	6171
DENMARK	9675	11234	13579
FINLAND	8247	10985	14371
FRANCE	9621	11798	13664
GERMANY, WEST	9557	12013	13937
GREECE	4234	5895	6622
HUNGARY	3382	5051	5623
ICELAND	7086	11909	13092
IRELAND	4884	6785	8406
ITALY	7669	10445	12367
LUXEMBOURG	10000	12029	16079
MALTA	2367	4387	6482
NETHERLANDS	9228	11323	12434
NORWAY	8129	12249	14647
POLAND	2999	4465	4583
PORTUGAL	3323	5048	6281
SPAIN	6017	7495	9305
SWEDEN	10643	12290	14534

SWITZERLAND	13274	14653	16799
TURKEY	2179	2853	3370
U.K.	7695	10028	13050
U.S.S.R.	2873	4270	5457
YUGOSLAVIA	3337	5641	5090
AUSTRALIA	10917	12622	14904
FIJI	2501	3557	3541
NEW ZEALAND	9352	10260	11811
PAPUA N.GUINEA	1740	1658	1445

Programs

The following GAUSS programs were used to derive the results. The programs, which can be used to replicate the results in the paper, are available upon request from the author (but free of charge only to academic institutions and/or non-profit organisations).

File	Output of the program
hcrit1.prg:	Figure 2, and $h_{crit}(m)$, $m = 1, 2, 3$ reported in Table 1.
boot-h1.prg:	p-values in Table 1.
denest.prg:	densities plotted in Figure 3.

References

- [1] Barro, R J and Sala-i-Martin, X 1994, 'Economic growth', Mc Graw Hill.
- [2] Baumol, W J 1986, 'Productivity growth, convergence, and welfare', American Economic Review, 76(5), pages 1072-85.
- [3] Bianchi, M 1995, 'Bandwidth selection in density estimation', "The XploRe Book", W. Härdle, S. Klinke and B. Turlach editors, Springer Verlag, Berlin.
- [4] Efron, B and Tibshirani, R J 1993, 'An Introduction to the Bootstrap', Chapman and Hall, Monographs on Statistics and Applied Probability, 57, New York.
- [5] Esteban, J M and Ray, D 1994, 'On the measurement of polarization', *Econometrica*, 76(5), pages 1072-85.
- [6] Härdle, W 1990, 'Smoothing techniques. With implementation in S', Springer-Verlag, Berlin.
- [7] Sala-i-Martin, X 1994, 'Cross sectional regressions and the empirics of economic growth', *European Economic Review*, 38(3/4), pages 739-747.
- [8] Sala-i-Martin, X 1995 (forthcoming), 'Regional cohesion: Evidence and theories of regional growth and convergence', European Economic Review, 38(3/4), pages 739-747.
- [9] Izenman, A J and Sommer, C J 1988, 'Philatelic mixtures and multimodal densities', Journal of the American Statistical Association, 83(404), pages 941-953.
- [10] Quah, D T 1994, 'Ideas determining convergence clubs', LSE Working Paper.

- [11] Quah, D T 1995a, 'Empirics for economic growth and convergence', European Economic Review, forthcoming.
- [12] Quah, D T 1995b (forthcoming), 'Convergence empirics across economies with (some) capital mobility', Journal of Economic Growth.
- [13] Silverman, B W 1981, 'Using kernel density estimates to investigate multimodality', Journal of the Royal Statistical Society, Series B, 43, pages 97-99.
- [14] Silverman, B W 1983, 'Some properties of a test for multimodality based on kernel density estimates', In Probability, Statistics, and Analysis. Edited by J.F.C. Kingman and G.E.H. Reuter, Cambridge University Press, pages 248-260.
- [15] Silverman, B W 1986, 'Density estimation for statistics and data analysis', Chapman and Hall, Monographs on statistics and applied probability no. 26, London.

Bank of England Working Paper Series

Publication date in italics

- 1 Real interest parity, dynamic convergence and the European Monetary System (June 1992)
- 2 Testing real interest parity in the European Monetary System (July 1992)
- 3 Output, productivity and externalities—the case of banking (August 1992)
- 4 Testing for short-termism in the UK stock market (October 1992)
- 5 Financial deregulation and household saving (October 1992)
- 6 An investigation of the effect of funding on the slope of the yield curve (January 1993)
- 7 A simple model of money, credit and aggregate demand (April 1993)
- 8 Bank credit risk (April 1993)
- 9 Divisia indices for money: an appraisal of theory and practice (April 1993)
- 10 The effect of official interest rate changes on market rates since 1987 (April 1993)
- 11 Tax specific term structures of interest rates in the UK government bond market (April 1993)
- 12 Regional trading blocs, mobile capital and exchange rate co-ordination (*April 1993*)
- 13 Temporary cycles or volatile trends? Economic fluctuations in 21 OECD countries (*May 1993*)
- 14 House prices, arrears and possessions: A three equation model for the UK (June 1993)

Andrew G Haldane Mahmood Pradhan

Andrew G Haldane Mahmood Pradhan

R J Colwell E P Davis

David Miles

Tamim Bayoumi

D M Egginton S G Hall

Spencer Dale Andrew G Haldane

E P Davis

Paul Fisher Suzanne Hudson Mahmood Pradhan

Spencer Dale

Andrew J Derry Mahmood Pradhan

Tamim Bayoumi Gabriel Sterne

Gabriel Sterne Tamim Bayoumi

F J Breedon M A S Joyce

- 15 Tradable and non-tradable prices in the UK and EC: measurement and explanation (*June 1993*)
- 16 The statistical distribution of short-term libor rates under two monetary regimes (September 1993)
- 17 Interest rate control in a model of monetary policy (September 1993)
- 18 Interest rates and the channels of monetary transmission: some sectoral estimates (September 1993)
- 19 The effect of futures trading on cash market volatility: evidence from the London stock exchange (*December 1993*)
- 20 MO: causes and consequences (December 1993)
- 21 An empirical analysis of M4 in the United Kingdom (December 1993)
- 22 A model of building society interest rate setting (June 1994)
- 23 Deriving estimates of inflation expectations from the prices of UK government bonds (July 1994)
- 24 Estimating the term structure of interest rates (July 1994)
- 25 Potential credit exposure on interest rate swaps (August 1994)
- 26 New currencies in the Former Soviet Union: a recipe for hyperinflation or the path to price stability? (September 1994)
- 27 Inflation, inflation risks and asset returns (November 1994)

C L Melliss

Bahram Pesaran Gary Robinson

Spencer Dale Andrew G Haldane

Spencer Dale Andrew G Haldane

Gary Robinson

F J Breedon P G Fisher

P G Fisher J L Vega

Joanna Paisley

Mark Deacon Andrew Derry

Mark Deacon Andrew Derry

Ian Bond Gareth Murphy Gary Robinson

C L Melliss M Cornelius

Jo Corkish David Miles

28	The construction of RPIY (February 1995)	R Beaton P G Fisher
29	Pricing deposit insurance in the United Kingdom (March 1995)	David Maude William Perraudin
30	Modelling UK inflation uncertainty: the impact of news and the relationship with inflation (April 1995)	M A S Joyce
31	Measuring core inflation (April 1995)	Danny T Quah Shaun P Vahey
32	An assessment of the relative importance of real interest rates, inflation and term premia in determining the prices of real and nominal UK bonds (April 1995)	David G Barr Bahram Pesaran
33	Granger causality in the presence of structural changes (May 1995)	Marco Bianchi
34	How cyclical is the PSBR? (May 1995)	Joanna Paisley Chris Salmon
35	Money as an Indicator (May 1995)	Mark S Astley Andrew G Haldane
36	Testing for convergence: evidence from nonparametric multimodality tests (June 1995)	Marco Bianchi