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Abstract

The Bund (ten-year German government bond) futures contract is the most
actively traded bond contract in Europe;  it is traded in both London (LIFFE)
and Frankfurt (DTB) on open outcry and electronic trading platforms
respectively.  This paper evaluates the relative liquidity and price discovery
roles of these markets and seeks to reconcile the conflicting results of earlier
studies.  We find these conflicting results are largely a product of the price
data used.  Using both transactions prices and quotes data, we find that
variable transaction costs and the contribution to price formation of each
market is similar.  The main differences between the two markets are the
larger trade size on the open outcry market (compensating perhaps for the
higher running cost of an open outcry operation) and a tendency for trading to
move toward the open outcry market during volatile periods.
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1 Introduction

The German Bund futures contract (based on ten-year federal government
and Treuhand bonds) is the largest bond futures contract in Europe.  It is also
unusual in that there are in fact two separate contracts trading in different
markets (one on LIFFE in London and one on the DTB in Frankfurt)(1) which
have an almost identical specification.  This feature of the contract makes it
a useful vehicle for analysing various market microstructure hypotheses and
so it is unsurprising that there is a rapidly growing literature in this area.
What is surprising is the dramatically contradictory results found in all other
studies so far, such that no two papers agree on any aspect of the relative
performance of these two markets (see Table A). By using an extensive
database for the June 1995 contract, this paper re-visits the issues addressed
by these other papers in an attempt to discover the reasons for the
contradictions. By analysing both quoted prices and transactions prices we
find that many of the contradictions can be explained by the differences in
these two data sources. This not only resolves the puzzling contradictions in
the study of the Bund contract, it also serves as a cautionary tale for the
analysis of other markets.

Table A
Previous results on the Bund contract

Data and frequency Spreads: Which
market has wider
bid-ask spreads

Price formation: Do
price movements in
one market lead to
movements in the
other

Resilience:
Which market
operates most
successfully in
volatile
periods

Shyy and Lee
(1995)

Quotes
1 minute

DTB>LIFFE DTB⇒LIFFE n/a

Pirrong
(1996)

Transactions prices
15 minutes

LIFFE>DTB n/a DTB>LIFFE

Franke and
Hess (1995)

Transactions prices
Daily

n/a n/a LIFFE>DTB

Kofman and
Moser (1996)

Transactions prices
+ LIFFE quotes
trade-by-trade/

1 minute

LIFFE=DTB LIFFE⇔DTB n/a

Note: n/a= not applicable.

                                                                                                             
(1) Another example of dual trading of a major financial futures contract is the Nikkei contract
that trades in SIMEX and Osaka.  See Fremault Vila and Sandmann (1995) for an analysis of those
markets.
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Overall, we find that many of the differences found in these papers can be
explained by differences between transactions and quote data and that
neither in isolation is sufficient to give a true picture of the interaction of
these two markets.

2 The Bund contract

In both Frankfurt and London the Bund futures contract is specified as
delivery of DM250,000 of Bund with a 6% notional coupon within the
maturity range 8_ to 10 years on the tenth day (or first business day after) of
the delivery month (either March, June, September, or December).  In
practice this means that there is a basket of Bunds that can be delivered
(though the amount delivered is adjusted by a price factor to create
equivalence) which are in the right maturity range.  Within this basket there
is one Bund that is most likely to be delivered - the cheapest to deliver
(CTD) - since the short has the option of which Bund to deliver.  As noted
above, the basket of deliverables is the same in both contracts. Table B
outlines the main differences between the two markets.

Table B
A comparison of LIFFE and DTB Bund contracts

DTB LIFFE
Trading differences
Trading mechanism(a) Electronic Open outcry

Trading hours (b) 8.00 am - 5.30 pm 7.30 am - 4.15 pm

Turnover(c) 1,410,500 contracts
(28%)

3,637,500 contracts
(72%)

Contract differences(d)

Last trading day 4 trading days before
delivery

5 trading days before
delivery

Price factors different treatment of weekends

Penalty for late delivery Lombard rate + 1% per day Potentially unlimited

Notes:
(a) LIFFE does, however, offer an electronic trading facility out of normal hours.
(b) London time for LIFFE, Frankfurt time for DTB (Germany is usually one hour ahead but there
are a few weeks in spring and autumn when one country moves to or from daylight saving before
the other which means that there is no time difference).
(c) January 1996.
(d) All described in more detail in Breedon (1996).
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Data

Our dataset consists of a full transactions record (from the Exchanges) and
minute-by-minute quotes (collected from a Reuters screen) for both the
LIFFE and the DTB over the period 10 April and 2 June 1995 for the June
1995 contract. In our analysis we restrict the dataset to the period when both
markets were open (for our purposes, after-hours trading in LIFFE is
excluded) and exclude inter-day price changes.  The transactions record
gives a complete record of prices and times of trade for both markets but the
trades are not signed in either market (ie we cannot tell directly whether a
trade is a buy or a sell).  Also, reliable intra-day data on the size of each
transaction are not available for LIFFE and so we do not use this size
information in our analysis.  However, we do have reliable data on the
number and volume of trades at a daily frequency for both markets.

Table C
Summary statistics

LIFFE DTB
Average number of contracts traded per day 125,806 44,148

Average number of trades per day

(per minute)

2,338

(4.5)

2,203

(4.2)

Average trade size 53 contracts 20 contracts

Trading on both exchanges has almost doubled relative to the period in 1992
examined by Kofman and Moser (1996).  Interestingly, Kofman and Moser
(1996) found the average trade size to be roughly equal on both exchanges,
at about 23 contracts.  In the period we examine, while the average size of
trade on the DTB has remained approximately the same, the average size of
trade on LIFFE has more than doubled.  This suggests that LIFFE’s capacity
to execute large trades has increased and that large trades are more likely to
be executed on LIFFE, while there may be more splitting of trades on the
DTB.

3 Transactions prices versus quoted prices

Let us first examine how closely transactions prices are related to quoted
prices on the two exchanges.  Table D shows some summary statistics for the
transactions prices series and the mid-quote series.  Statistically the two
series are very similar. As we would expect, all series have a unit root
present.  We examine the data for any lead/lag relationship between the mid-
quote series and the transaction price series.  Over the whole sample period,
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there is strong evidence of bi-directional Granger causality between our mid-
quote series and our transaction price series, leading us to conclude that both
are determined simultaneously.

Table D
Comparison of quotes and transaction prices

LIFFE DTB
mid-quotes transaction

prices
mid-quotes transaction

prices
Average 93.66 93.66 93.63 93.63
Standard deviation 1.0706 1.0709 1.0651 1.0650
Skewness 0.3458 0.3462 0.3635 0.3638
Kurtosis 1.8984 1.9003 1.9321 1.9326
Correlation
between the two
series

0.9999 - 0.9999 -

Both series are distributed similarly on the two exchanges and are perfectly
correlated with each other.  Given that the transaction price series and the
mid quote are virtually identical, one might expect any results on liquidity
and information transmission to be independent of the data source.
Surprisingly, we will show that such results are in fact very sensitive to the
type of data used.

4 Measuring bid/ask spreads

Economic theory would predict that if market participants were free to move
between markets, then all order flow would eventually move to the ‘cheaper’
market;  ie the market with the lowest execution costs.  However, it is not
clear which of the DTB and LIFFE is the cheapest.  The total cost of
conducting business on both exchanges is made up of a number of factors.
First, the cost of running the business on each exchange is different.  A floor
operation requires a great deal of staff and infrastructure to maintain whilst
an electronic market is comparatively simple, once the initial investment
has been undertaken.  However, the initial technology costs of the latter may
be substantial.  Second, there is a greater range of interest rate futures
products traded on LIFFE than on the DTB, so there may be economies of
scale.  The scale of these will depend on the number of products you wish to
trade.  Third, both exchanges calculate initial and variation margin along
similar lines;  however, the London Clearing House remunerates any surplus
margin in members’ accounts thereby reducing the cost of transferring funds
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between institutions on a daily basis.(2)  The discussion that follows looks at
only one aspect of costs, the spread, which is a variable trading cost and
gives an indication of relative liquidity in the two markets.

The spread compensates the market-maker for a number of things:  (i) the
cost of processing the order, (ii) the cost of holding inventory and (iii) the
potential loss s/he would make if they dealt with an informed trader
(compensation for ‘adverse selection’).  George, Kaul and Nimalendran
(1991) estimate that the order-processing component is the largest part of the
spread, accounting for around 90% of the total, whilst the remainder is made
up of the adverse selection component.  They estimate that inventory holding
costs are insignificant.  In the case of interest rate futures, it is generally held
that the adverse selection component is small as there are unlikely to be any
investors with superior or private information.  Also, these markets are highly
liquid suggesting that inventory costs will be insignificant.  One important
aspect of the competition between electronic and open outcry markets is the
prediction that order-processing costs on electronic markets will be lower.
This prediction follows from the observation that an open outcry trading pit is
more costly to run relative to an electronic operation.  Clearly if this cost
differential is significant, this should be passed on to investors in the form of
a higher order-processing component of the spread.

Table A gives a somewhat depressing picture of the ability of empirical
research to estimate spreads.  Of the three studies that have estimated
relative spreads at DTB and LIFFE we have all three possible orderings of
these two markets.  However, closer analysis indicates that the real
distinction here may be due to the type of data used. Shyy and Lee (1995)
use quotes data only and Pirrong (1996) uses transactions data only.  Kofman
and Moser (1996) on the other hand use a combination of the two (though
they use only LIFFE quotes data).  It is also worth noting that Pirrong (1996)
finds that he can only reject equality of spreads in the two markets in four
out of twelve cases.  As a result, it seems that the differences in results may
be due to differences in quote and transactions-based estimates of spreads.
Using our dataset of both quoted prices and transactions prices, we can
assess (a) the extent to which our data replicates the difference between
quote and transaction-based spreads found in other papers and (b) which type
of data give the best estimates of true variable transactions costs.  Though
transactions data should in principle give a better measure of variable trading
costs, spread estimators based on such data are subject to a number of

                                                                                                             
(2) Members can hold a surplus balance on their LCH accounts to meet variation margin calls as
they arise, thereby requiring less frequent fund transfers between institutions.
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potential biases (see, for example, Smith and Whaley (1994)(3)).  Quote
data, on the other hand, gives a simple and accurate measure of the spread
as long as transactions are actually undertaken at the quoted prices.  Given
that quotes on both LIFFE and DTB are firm (ie must be honoured over the
period for which they hold(4)) one might expect quote data to give a better
estimate of variable trading costs in this case.

To assess these questions we estimated a variety of measures of spreads: (i)
The simple Roll (1984) measure based on transactions data, which exploits
the negative autocovariance induced in transactions prices by the bid-ask
‘bounce’, (ii) the Thompson-Waller (1988) estimator, also based purely on
transactions data, (iii) effective spreads estimated using a combination of
transactions data and quote data as proposed by Huang and Stoll (1996) and
simple quote-based spreads.(5)  Ideally we would like to adjust for differences
in order size but, given data constraints, we cannot do so.  We also
estimated explicit measures of the order-processing component of the spread:
the method proposed by George, et al (1991), henceforth GKN, and the
realised spread measure proposed by Huang and Stoll (1996).

The Roll estimator is defined as

SR Pt Pt= − −2 1(cov( , )∆ ∆ (1)

where ∆Pt = change in log prices (over a minute in our sample).

This measure relies on the covariance of price changes being due purely to
order-processing costs (ie pure bid-ask bounce), so inventory risk and adverse
selection risk are negligible.  However, as GKN demonstrate this measure
may be biased if expected returns are time-varying and positively
autocorrelated.

                                                                                                             
(3) Traditional measures assume transaction prices are negatively serially correlated but trade
splitting will violate this assumption. Also, they assume that the volatility of the ‘true’ price is
zero and that all observed volatility in prices is due to the bid/ask bounce, thus over-estimating
the spread.
(4) In the case of LIFFE, the quote is valid for as long as ‘the breath is warm’, whilst the DTB quotes
are firm for as long as they appear on the trading screen. Following on from that, the time required
to revise quotes on LIFFE is likely to be shorter than that on the DTB. For our sample period, the
average time between revisions in the quotes recorded was 17 seconds on LIFFE and 22 seconds on
the DTB. Note also that quotes on LIFFE are recorded by pit observers and may not cover the entire
sample of quotes available, so some revisions to quotes may not actually be recorded, leading to
an overstatement of the average time between revisions.
(5) For a fuller discussion of measures of spreads see the Appendix.
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The Thompson-Waller estimator is defined as

S
T

PTW t
t

T
=

=
∑2

1

∆ (2)

This measure relies on the assumption that both the expected underlying
price change(6) and the variance of the underlying price change are zero.  If
this assumption does not hold, it will tend to be an upwardly biased measure
of the true spread.

The effective spread combines quote and transactions data to give a cleaner
estimate of the spreads. It is defined as

( )S P A BE t t t= − +2 2* /  (3)

A t = Quoted ask price at time t.
Bt = Quoted bid price at time t.

It is similar to the Thompson-Waller measure except that it uses the quote
midpoint ((A t+Bt)/2) rather than Pt-1 as a reference point. As a result it is less
subject to bias since quoted prices are likely to incorporate changes in the
underlying price that occur over time.  However, there may be problems
associated with the fact that we cannot exactly match the time at which
transactions are undertaken with the time a quote was recorded, given that
our quotes are recorded once a minute whilst transactions can be recorded at
any time within that minute.  In practice, we use the most recently recorded
quote before any given transaction (ie the quote data is slightly lagged by an
average of about 30 seconds).  As this measure incorporates more
information than those measures based purely on transactions costs, we
believe it to give a better approximation of the ‘true’ spread.  This view is
supported by our simulation results reported in the appendix.

                                                                                                             
(6) By underlying price change we mean the true value excluding changes due to bid-ask bounce.
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The quoted spread is

( )S A BQ t t= − (4)

In this case bid and ask are recorded at precisely the same time.  Table E1
details our findings.

Table E1
Estimated spreads for DTB and LIFFE

Spread measure (percentage)
Roll Thompson-

Waller
Effective Quoted

LIFFE 0.00636 0.01722 0.01472 0.01044

DTB 0.00478 0.01492 0.01406 0.01322

Percentage
difference
(LIFFE/DTB)

+33% +20% +5% -21%

T-test for
difference

n/a n/a 5.7* -53.2*

Notes: A * indicates that the spreads were significantly different at the 5% significance level.
n/a = not applicable.

Comparing the transactions-based estimates with the effective spread in
Table E1 shows our predicted ordering.  The Roll estimates are the lowest,
whilst the Thompson-Waller estimate is the highest with the effective spread
lying between the two.  These results seem to show the distinction found in
earlier studies with the TW measure indicating wider spreads on LIFFE, the
effective spread showing almost equal spreads and the quote measure
showing narrower spreads on LIFFE.  Given that quotes on both the DTB and
LIFFE are firm, it is perhaps surprising that the effective spread for LIFFE is
significantly wider than the quoted spread at LIFFE;  this may however
simply reflect the fact that the quotes and transactions prices are non-
synchronous.

We now examine explicitly the order-processing component of the spread.
The GKN approach is related to the effective spread in that it uses data on
quotes as an estimate of price changes due to changes in the true value of
the security.  They create a returns series (RD) that is simply the returns (log
∆P) measured by transactions data minus the returns measured using bid
prices subsequent to the trades.  Since the bid prices are subsequent to
trades, they should reflect any
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information contained in those trade so that RD should contain only
order-processing effects.  Using GKN’s notation,

( )RD S Q Qq t t= − −π 1
(7) (5)

As a result, even without signed trade data, it is possible to derive a measure
of the pure order-processing cost spread using a covariance estimator of the
Roll (1984) type:

S RD RD SGKN t t q= − =−2 1* cov( , ) π (6)

Although the GKN measure has the advantage of not requiring signed trades,
its use of quote data means that differences in the relationship between
quotes and transactions in the two markets may lead to some mis-
measurement.  As an alternative measure we also calculate the realised
spread as proposed by Huang and Stoll (1996).

This is simply a measure of the post-trade revenue of the market-maker and
allows for price movements after a trade caused by adverse selection.  It is
defined simply as the subsequent price change conditional on the last trade
being a buy or a sell and attempts to capture the revenue of the market-
maker as he reverses his position.  It has the same interpretation as the GKN
spread;  a measure of the pure order-processing cost component of the spread.
The surplus of the effective spread over the realised spread will reflect the
adverse selection component.

( )S P P P BR B t t t= − =+2 1*

and (7)
( )S P P P AR A t t t= − =+2 1*

One complication with this realised spread measure is that trades must be
signed in order to calculate the conditional price change.  In order to sign
trades we use the approach of Lee and Ready (1991) so that a trade is
classified as a sell order if the transaction price is closer to the quoted bid
than the ask. In the few cases when the transaction price was equidistant
between bid and ask then we used the ‘tick rule’ that an increase in price
since the last trade was classified as a buy order.

                                                                                                             
(7) See the Appendix for full derivation.
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Table E2 details our findings on order-processing costs.

Table E2
Order-processing costs components of LIFFE and DTB spreads

Spread measure (percentage)
GKN spread Realised spread

(bid)
Realised spread

(ask)
LIFFE 0.01350 0.00806 0.00738

DTB 0.01198 0.00790 0.00702

Percentage
difference
(LIFFE/DTB)

+13% +2% +5%

T-test for
difference

n/a 0.3476 0.8445

Notes: The t-test indicates that the difference between the realised spreads on both exchanges is
insignificant.  n/a = not applicable.

So, on the GKN measure the order-processing component of LIFFE spreads is
higher, as predicted.  However, order-processing costs based on the realised
measures are the same on both exchanges.

If we take it that the effective spread is our best estimate of the true
spread,(8) then we can calculate the adverse selection component as the
difference between this and our estimates of the order-processing component.
Table E3 shows our results.

If we focus on the GKN measures we see that the order-processing
component accounts for 92% of the spread on LIFFE and 81% of the spread
on the DTB.  This is similar to the findings of GKN.  The adverse selection
component based on the GKN measure is almost twice as large on the DTB
as on LIFFE.  This might be expected given the greater anonymity
associated with the DTB’s electronic order book(9) and the longer length of
time needed to revise a quote (or any other aspect of an order) on the DTB.
However, the difference between the

                                                                                                             
(8) Based on the simulation results in the Appendix.
(9) Although your identity is masked, by posting an order you are exposing yourself, revealing
information about your position and increasing the possibility of a more informed trader
executing against you.
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Table E3
Adverse selection components of LIFFE and DTB spreads

Spread measure (%)
GKN Spread Realised Spread

(bid)
Realised Spread

(ask)
LIFFE 0.00122 0.00651 0.00766

DTB 0.00208 0.00610 0.00752

Percentage
difference
(LIFFE/DTB)

-41% +6.7% +1.9%

T-test for
difference

n/a 0.8049 0.7780

Notes: The t-test iindicates that the difference between the realised spreads on both exchanges is
insignificant.  n/a = not applicable.

measures based on the realised spreads is insignificant, suggesting that
neither the order-processing component nor the adverse selection component
is different on the two exchanges.

5 Price discovery

An important aspect of price formation in fragmented markets is the location
of price discovery and the speed with which one market reacts to price
discovery in the other.  As mentioned in Section 1, there has been some
analysis of this issue but, as with bid-ask spreads, results have been
contradictory with Shyy and Lee (1995) finding one-way causality from DTB
to LIFFE and Kofman and Moser (1996) finding bi-directional causality.
Once again the use of transactions data versus quote data is the most
important issue, with transactions data having the disadvantage that timing
of data is not synchronised leaving the higher turnover market, LIFFE, with
more up-to-date observations on average than the DTB.  This clearly biases
most test toward accepting causality from LIFFE to DTB.  There are also
some differences in methodology between the two studies - Kofman and
Moser (1996) allow for time-varying volatility - but in both cases a
cointegration approach is used.

The most common method for testing lead/lag relationships is the simple
Granger Causality test where non-stationary series are differenced to induce
stationarity.  For example, a Granger Causality test of whether variable X
caused variable Y in the bivariate case with I(1) variables(10) would consist of
running the following regression.
                                                                                                             
(10) I(1) variables must be differenced once to induce stationarity.
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∆ ∆ ∆Y Y Xt i t i
i

T

j t j
j

J
= + +−

=
−

=
∑ ∑α β γ

1 1

(8)

and testing to see if all γ ‘s are jointly insignificant.

As is well known, this test is problematic if X and Y are cointegrated(11) since
it does not exploit this common trend between the variables in testing.
Clearly, in the case of DTB and LIFFE Bund contracts, a cointegrating
relationship does exist since both set of observed prices are influenced by an
underlying common trend.(12)

As a result both Shyy and Lee (1995) and Kofman and Moser (1996)
estimate an error correction relationship between the two prices:

∆ ∆ ∆Y Y X Y Xt i t i
i

T

j t j
j

J

t t= + + + −−
=

−
=

− −∑ ∑α β γ χ
1 1

1 1( ) (9)

and test if all γ ‘s and λ are jointly insignificant. The error correction term
then exploits the levels relationship between the variables.

Hasbrouck (1995) goes one step further and argues that it is precisely this
cointegrating relationship that is of most importance in the issue of price
discovery.  He suggests that the common trend between market prices can be
thought of as the underlying efficient price and so the contribution of each
market to innovations in this common trend is a measure of their contribution
to price discovery.  Using this logic, Hasbrouck suggests a measure of price
discovery based on the contribution of prices in a given market to the total
variance of the common trend.

                                                                                                             
(11) An I(0) variable can be created from a linear combination of these I(1) variables.
(12) Breedon (1996) shows that the LIFFE contract has a tendency to trade slightly more expesive
than the DTB contract.  However, since the gap between the prices is stable over time this does not
influence the cointegrating relationship.  We test for the cointegrating relationship between the
two markets; as expected we find one cointegrating vector.
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Following Hasbrouck we can define the vector moving average
representation of prices

( )∆ ΨP L et t= (10)

where pt is a vector of prices, Ψ (L)  is a polynomial in the lag operator and et
are serially uncorrelated disturbances with a covariance matrix Ω .  Although
the prices are non-stationary, the differences between them are, implying
that they share a common trend.  Stock and Watson (1988) propose a
common trends representation of such a system as

P P e L et s
s

t

t= +






 +

=
∑0

1

ψ ι Ψ * ( ) (11)

where p0  is a constant vector and Ψ*(L)  is a polynomial in the lag operator.
The important component here is the common trend (the second term).  This
is the element that determines permanent changes in pt.  The share of each

market’s prices in underlying price determination is therefore its contribution
to this common trend.  Assuming that the variance-covariance matrix Ω  is
diagonal, this share is simply

S j

j jj=
′

ψ
ψΩψ

2Ω
(12)

which is the contribution of each market’s price to the total variance of the
underlying trend. In practice this statistic can be derived from the impulse
responses of an estimated VECM (vector error correction model).

Three further complication arise in these tests.

(i) Even with the high-frequency data used here, much price formation will
appear contemporaneous.  This means that the price of both contracts will
appear to move simultaneously giving them a strong contemporaneous
correlation.  In Granger causality tests this means we may fail to find
causality in the sense of one price moving before the other even though
prices are closely linked.  In the case of the Hasbrouck test, this
contemporaneous correlation means that we can only give an upper and
lower bound for contributions to the common trend but no unique value can
be found.  These bounds represent the contribution of one market to price
formation under the two extreme assumptions;  first, all contemporaneous
price movements are actually due to that market and secondly, none is (this
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effectively means changing the ordering of the VECM for the impulse
responses).  The width of the range reflects the degree of contemporaneous
correlation between the two markets;  a narrow range means that there is
little contemporaneous co-movement between the two markets.

(ii) As Kofman and Moser (1996) point out, there is clear evidence of
heteroskedasiticty in these data and so assuming constant variance, as Shyy
and Lee (1995) do, may reduce the efficiency of the price discovery tests.
To look at this issue we present results for both constant variance and
GARCH(1,1) representations of all the regressions.  For example, when we
estimated (8) we also estimated

∆ ∆ ∆Y Y X e

e

t i t i
i

T

j t j
j

J

t

t tt

= + + +

= + +

−
=

−
=

− −

∑ ∑α β γ

σ ϖ λσ ρ

1 1

2
1

2
1

2

(8a)

where σt2 is the variance of the dependent variable ∆Yt up to time t.

(iii) As was noted above, undertaking causality tests with transactions data
is problematic, given that the observations are not synchronised.  In order to
undertake testing we first follow the approach of Kofman and Moser who
create minute-by-minute data for each market by taking the last observed
transations price in each minute.  Whilst this approach creates a
conventional time series, it does have the implication that the data for
LIFFE will, on average, lead the data from DTB.  This occurs simply
because there are 4,469 more trades on LIFFE in our sample and so the last
transaction price in the minute on LIFFE will tend to be more up-to-date than
the equivalent DTB price.  This effect may bias us to accept causality from
LIFFE to DTB.  As a crude method of removing this bias, we also present
causality results for a reduced LIFFE series(13). Here we simply randomly
remove observations from the LIFFE series until there are as many
transactions prices for LIFFE as for DTB.  We then construct the
minute-by-minute series using the matched samples. Clearly this is a crude
technique, but it may give some insight into the extent of the bias induced
by more frequent sampling in the LIFFE series.(14)

For all representations, the lag length was determined by the Schwarz
information criterion.

                                                                                                             
(13) As a further robustness check, we also test for causality using data extracted with a
five-minute grid; the results were qualitatively similar.
(14) We also ran the tests using the mid quote; again there was strong bi-directional causality
between the two exchanges. Under the assumption of constant variance, LIFFE’s share in price
discovery ranged from 16%-72% while the DTB’s share ranged from 21%-77%, indicating a
slightly stronger role for LIFFE relative to full quotes.
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Table F
Tests of price discovery

Simple Granger
causality test ECM causality test Hasbrouck Share

Statistic
H0: LIFFE
does not
cause DTB

H0: DTB
does not
cause
LIFFE

H0: LIFFE
does not
cause DTB

H0: DTB
does not
cause
LIFFE

LIFFE
contribution
to price
formation

DTB
contribution
to price
formation

Quote data Constant
variance(a)

66.5** 87.3** 61.6** 82.0** 15%-61% 39%-85%

GARCH(1,1) (b

)

1214.8** 1505.0*
*

1224.6** 1533.3*
*

21%-66% 34%-79%

Transaction
data

Constant
variance(a)

125.9** 62.7** 118.3** 58.5** 36%-78% 22%-64%

GARCH(1,1) (b

)

2570.7** 1521.4*
*

2660.7** 1417.4*
*

32%-73% 27%-68%

Matched
transaction

Constant
variance(a)

114.9** 69.2** 108.1** 64.6** 35%-77% 23%-65%

data GARCH(1,1) (b

)

2366.7** 2022.8*
*

2453.4** 1879.5*
*

32%-73% 27%-68%

Notes: The first two columns show F-statistics for exclusion of one market's price from the
equation of the other. ** indicates rejection of the null hypothesis at the 1% significance level.
Final column shows Hasbrouck's information share variable ie the contribution to the common
trend.  The range allows for contemporaneous correlation and indicates, for example, that if we
assume all contemporaneous price movement are due to the DTB, the DTB's contribution to price
formation using quote data is 85%.
(a) The test statistic is F-distributed.
(b) The test statistic is χ2-distributed.

All the tests shown in Table F indicate a strong two-way causation between
LIFFE and DTB prices.(15) Lags of the other market’s prices are highly
significant in both the simple Granger causality and the VECM
specifications for quote and transactions data and the share statistic is well
above zero for both markets, even at the lower range.  It is also clear that the
bias induced by more frequent trading on LIFFE is minimal for our sample
(ie the results for the full transactions sample and the matched transactions
sample are almost identical).  The share statistics show some differences
between quote and transactions data based measures in that, for quote data,
DTB prices make a stronger contribution to price formation (in line with the
results of Shyy and Lee (1995) for quote data) whilst for transactions data
the contributions of the two markets are roughly equivalent (in line with the
results of Kofman and Moser (1996) for transactions data).  This seems to
                                                                                                             
(15) This is consistent with the findings of Fremault Vila and Sandmann (1995).
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indicate that the DTB has greater pre-trade transparency since its quotes are
more informative to prospective traders (in line with the results on effective
and quoted spreads above), though once again the non-synchronous nature of
the quotes and transactions data and the lack of data on contract size traded
intra-day on LIFFE makes it difficult to draw firm conclusions.

6 Market resilience

An important aspect of the debate concerning open outcry versus electronic
markets is their relative performance in periods of stress.  Here, once again
there appears to be some disagreement in the literature though in this case
the hypotheses tested are not exactly comparable. Pirrong (1996) tests the
hypothesis that predictable changes in volume influence prices.  He argues
that if volume - particularly very high volume - does influence prices, that
indicates that the market has limited depth since market-making capacity
cannot enter the market and so price volatility increases (presumably
because of wider spreads - though this is not made clear).  He then tests this
hypothesis in a two-stage model where he models expected volume as a
function of past volume and volatility and then looks at the relationship
between expected volume and current price variation (absolute change in
prices).  He finds that expected increases in volume have a smaller effect on
price variability on the DTB than on LIFFE, suggesting that the electronic
system is deeper.

Franke and Hess (1995) test a slightly different hypothesis.  They look at
how the share of turnover in each market changes with market volatility and
find that in volatile periods LIFFE’s share increases, indicating that the open
outcry market is more attractive in volatile periods.  Although this is a
somewhat different test to Pirrong’s, its results do not seem consistent with
the idea that market-making capacity is limited on LIFFE (volatile periods
are usually ones of high turnover as Pirrong’s own results show).  As an
additional test in this area we looked at the relationship between spreads and
volatility and turnover.(16)  If Pirrong’s hypothesis is correct we should find
that LIFFE spreads widen more during periods of market stress (though this
would then leave the puzzle of why traders move to LIFFE during these
periods).

Our data partly confirm Franke and Hess’ results.  On a daily basis, rank
correlation tests show that there is a significant positive relationship between
market volatility (as measured by the weighted average of the daily standard
deviation of transactions prices in the two markets) and the total number of
contracts traded, confirming that periods of market stress are associated with
high turnover.  However, although LIFFE’s share of this turnover is 40%
                                                                                                             
(16) In this analysis we use the number of trades as a proxy for turnover.



23

correlated with this measure of volatility, the rank correlation test shows that
the relationship is not statistically significant.

Table G1
Rank correlation coefficients
Hypothesis

High market volatility and
high turnover

Correlation coefficient
Rank correlation
coefficient
T-stat

0.69
0.60
4.29

High market volatility and
high market share

Correlation coefficient
Rank correlation
coefficient
T-stat

0.40
0.09
0.51

Note: Figures in bold indicate that the relationship was statistically significant at the 5%
significance level.

At the high frequency level we find that increased market volatility
(measured both using the conditional volatility from our GARCH estimates
above and average absolute changes in DTB bid prices over the previous 15
minutes) results in a significant increase in the share of the total number of
trades undertaken on LIFFE.(17)

However, as Table G2 below indicates the movement of trades onto LIFFE
does not appear to be because LIFFE spreads are less influenced by
volatility.  We find that although LIFFE quoted spreads do not increase as
much as those on the DTB during volatile periods, the effective spreads on
both markets increase similarly during volatile times.  Once again, however,
lack of information on LIFFE trade sizes means that we cannot draw strong
inferences from these results, though Pirrong’s conjecture that LIFFE has less
depth seems inconsistent with our (and that of Franke and Hess) finding on
market share.  It may be that in periods of market stress, orders flow to the
larger market, in this case LIFFE, regardless of the trading platform.  This
would be consistent with the findings of Fremault Vila and Sandmann (1995)
who find that in volatile periods, the market share of the larger market (in
this case the electronic market) increases.

                                                                                                             
(17) A 10% increase in the average absolute price change and conditional volatility result in 0.6%
and 0.2% decline in DTB’s market share respectively.  These results are derived from impulse
responses of a bi-variate VAR of market share and the volatility/trade intensity measure;  ie the
impulse responses from a VAR in the variables ∆share and ∆volatility.
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Table G2
Impact of a 10% increase in volatility/volume measure on the spread

Measures of spreads

Quoted spread
(percentage change)

Effective spread
(percentage change)

Measures of

market stress

LIFFE DTB LIFFE DTB

Absolute price change -0.000001 0.000005 0.000013 0.000013

Conditional volatility 0.000001 0.000003 0.000010 0.000010

Volume traded -0.000001 -0.000001 0.000006 0.000006

Notes: Absolute price change is the average absolute change in DTB bid prices over  the previous
15 minutes.  Conditional volatility is the estimate of h from the GARCH equation for DTB quoted
prices shown in Table F.  Volume traded is the total number of trades in the previous 15 minutes.  In
all cases, the results are derived from impulse responses of a bi-variate VAR of spreads and the
volatility/trade intensity measure;  ie the impulse responses from a VAR in the variables ∆spread

and ∆volatility.

7 Conclusion

Dually traded futures have become increasingly popular test beds for theories
of market microstructure.  They are highly liquid and informationally
efficient and are often, as is the case with the Bund contract, traded on very
different trading systems.  Overall, we have found that the two markets are
highly integrated and that despite being the smaller market, the DTB has as
much of a role in underlying price discovery as LIFFE.  In fact, DTB quotes
seem to be more informative than LIFFE ones both in the sense of
contributing to price discovery and in that the quoted spread is more closely
aligned to the effective spread.  Generally, variable trading costs on the two
markets are similar with the larger average trade size on LIFFE making
firmer comparison difficult.  There is also some evidence to support the
proposition that the open outcry market (LIFFE) performs better in periods of
volatility than the electronic market (DTB) since greater volatility seems to
be associated with an increase in the market share for LIFFE.

While transactions prices and quotes seem to be very similar on average, we
find that the conflicting results of past studies can be explained by the
choice of data set.  It is apparent that results are conditional on the data used
and may not hold over all specifications of the data.  Our preferred measure
of spread is the effective spread of Huang and Stoll (1996), which uses both
quotes and transactions prices;  ie a larger information set than more
traditional measures such as the Roll (1984) and the Thompson-Waller
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(1988) estimates, which provide a lower and upper bound for the effective
spread.

Ideally, we would also like to condition all our results on trade size.  This
would make our comparisons of spreads more meaningful and would allow
for a fuller analysis of market resilience.  However, until this data becomes
available, that avenue of research remains unexplored.
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Appendix
Measures of the bid-ask spread

Theoretical models view the bid-ask spread as compensation to market-
makers for three costs: (i) order-processing costs; (ii) inventory risk and (iii)
adverse selection risk.  As reliable quote data are often not available on an
ex post basis, financial economists have developed a number of methods to
estimate the bid-ask spread from the available times series of transactions
prices.  These measures have been widely applied and investigated in the
context of equity markets, but they also hold in futures markets.  Below we
present an overview of a variety of methods used to measure the bid-ask
spread.  The objective is to measure the actual cost incurred and not
necessarily the quoted spread.  We then attempt to rank each method by
using a Monte Carlo approach, applying each measure to a generated time
series of transactions prices with a known spread.

Measures of the spread

Let us assume an efficient market with an equal number of buyers and sellers
and a homogenous pool of market-makers.  Consider the representative
market-maker.  Let us assume that orders arrive randomly and the market-
maker is indifferent to the size and sign of the order, therefore his quoted
price will by symmetric about the ‘true’ price of the asset, pt*, prior to
receipt of an order.  Explicitly we are assuming that inventory costs for the
market-maker are zero.

Let the spread, s, be the difference between the bid, pb and the ask, pa.  So,
at time t, a transaction will either be done at pb or pa with equal probability.
Call this transaction price, pkt.  If we define Q as an indicator of sign of
trade, with Q = 1 if its a customer buy order and Q = -1 if its a customer sell
order, then k = a if Q = 1 and k = b if Q = -1.  So,

p p
s

p p
s

at t

bt t

= +

= −









*

*

2

2

.

Now we can decompose the spread into two components;  the order-
processing cost and compensation for adverse selection, in proportion π, and



27

 (1-π) respectively.  Let

p p
s

Qt t t= + −* ( )1
2

π , (A1)

ie the market-maker updates his valuation of the asset on receipt of the order.
This takes into account the adverse selection component and reflects all
available information up to that point.

Now pt evolves as follows:

p p E
s

Q ut t t tt
= + + − +

−1
1

2
( )π  (A2)

where Et is the expected return at time t-1 for the period t-1 to t and ut is the
unpredictable innovation in ‘true’ prices, with ut ~ N(0,σ).

Then, at time t, transactions will take place at pkt where

p p
s

Qkt t t= + π
2

; (A3)

π s
Qt2

 reflects the cost of processing the order.

So, the returns at time t based on transactions prices can be written as:

[ ]R p p
s

Q Qt t t t t= − + −− −1 12
π . (A4)

Substituting in for pt - pt-1, we get

[ ]R E
s

Q Q
s

Q ut t t t t t= + − + − +−π π
2

1
21 ( ) . (A5)

Now, cov( , ) cov( , )R R E E
s

t t t t− −= −1 1
2

2

4
π , so we can then calculate the

order-processing component of the spread from:

[ ]πs R R E Et t t t= − −− −2 1 1cov( , ) cov( , ) (A6)

• Consider first the case with π=1, ie there is no adverse selection risk.  Let
us assume also that expected returns are constant, so Et=E for all t.  Then
equation (A6) simplifies to the well-known Roll (1984) estimate,

s R Rt t= − −2 1cov( , ) .  (A7)
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It is clear that this measure will be biased if π<1 and/or if expected
returns are time-varying, ie cov(Et,Et-1) ≠ 0.(18 )

• More generally, if there is serial correlation present in transactions with
the probability of a bid (ask) following a bid (ask) equal to ρ, but no time
variation in returns, then the estimator becomes

{ } ( )s Cov R Rt t= − −−( , ) /1 1 ρ . (A8)

• If we now allow expected returns to be time-varying and relax the
constraint on π, ie π is not necessarily equal to 1, then both these
estimates will be biased.  Expected returns are unobservable, so we need
some way to measure them.  If we have data on quotes, we can use these
to obtain an alternative measure for the difference between realised and
expected returns.  If bpt is the bid price following receipt of an order at
time t, then

bp p
s

t t= − π
2

 and returns based on bid prices will be

RB E
s

Q ut t t t= + − +( )1
2

π .  (A9)

So define

RD R RB
s

Qt t t t= − = π
2

∆ .  (A10)

Then cov( , )RD RD
s

t t − = −1
2

2

4
π .  (A11)

So another estimate of the order-processing component of the spread is
given by

s RD RDt t= − −2 1cov( , ) .  (A12)

This measure is due to George, Kaul and Nimalendran (1991), the GKN
spread.

• Next, if we have quotes data and we assume market-makers are
indifferent to their inventory position, the mid-quote should proxy the
market-makers true valuation of the asset, p*t, prior to receipt of an order.

                                                                                                             
(18) Note that this assumes that the conditional probability of a bid at time t , given a bid at time t-
1, is equal to the conditional probability of an ask.  It is sometimes the case that, with time and
sales data, split transactions (ie sequential transactions executed at the same price) are not
recorded.  In these cases, the probability of a bid following a bid is zero and the Roll estimate
should be scaled down by a factor of 2 (see Followill and Helms (1990)).
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So, the difference between the transaction price and the mid-quote
should, on average, be one half of the spread and will cover all costs.
This allows for trades to take place within the publicly quoted spreads
(often these are just the starting point for negotiation) at the market-
makers’ implicit quote.  So

s
T

p mqkt t
t

T
= −

=
∑2

1

1

* .  (A13)

This is the effective spread due to Huang and Stoll (1996).  This should,
in theory, be better than the quoted spread as it is based on the prices at
which trades occur.

• Similarly, Huang and Stoll (1996) try to capture the revenue of the
market-maker from reversing a trade, taking into account that prices will
move against him if he deals with an informed trader;  ie it is net of the
adverse selection cost.  The realised return will only reflect order-
processing costs.

So, 
( )
( )s
p p p p

p p p p

k t k t k t b

k t k t k t a

=
− =

− =







+

+

2

2

1

1

*

*

, , ,

, , ,

.  (A14)

It allows for the fact that, on average, the dealer will not be able to
realise the effective spread when he trades with an informed trader.

• Finally, if we assume that if a bid (ask) follows a bid (ask), the return is
zero (no news arrival so no revision to the true valuation of the asset),
otherwise the absolute value of the return is the distance between the bid
and the ask price, ie the spread.  Then R st =  with probability _.

So, s
T

R t
t

T
= 








=
∑2

1

1

.  (A15)

This is the Thompson-Waller (1988) estimate of the spread.

Simulation results

In order to rank the various measures of the spread presented above, we
conduct the following experiment.  We generate a series of prices (pt) such
that the underlying returns (∆pt) are normally distributed with mean zero and
standard deviation of 0.025, and p0=100.  We then generate a series of
transactions prices
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(pkt) where :
pkt = pt + s/2 with probability _ and k=a
pkt  = pt - s/2 with probability _ and k=b

where s is the spread.  We also generate a series of quotes where the bid
(ask) quote is equal to the true price less (plus) half the spread.  This
assumes market-makers are indifferent to the order flow.  We use 10,000
observations and repeat the draw 1,000 times.  For each draw we calculate
the Roll, Thompson-Waller, GKN, effective and realised spreads.  Table 1
shows the results.  This is our base case.  We calculate the mean error and
the mean squared error in order to rank the measures.  Under these
assumptions the effective measure performs the best and the Thompson-
Waller the worst.  Table 2 and 3 show the results of a similar experiment
where we allow serial correlation in expected returns;
ie ∆pt = µ + ρ∆pt-1+v t, with v t~N(0,0.00525) (implicitly we are setting ρ=0
in the first experiment).  Again, the same ranking holds if we consider the
absolute mean error, although the mean squared error indicates that the
realised spreads perform best.

We then change the volatility of our generated ‘true’ returns.  Table 4
assumes that returns are normally distributed with mean zero and standard
deviation 0.05, while Table 5 assumes a standard deviation of 0.1.  In both
these experiments ρ=0.  Note how large the errors become in the Thompson-
Waller estimate as returns become increasingly more volatile.

Overall, the realised spread measures perform best.  However, these
measures are designed to only measure order-processing costs.  In this
experiment these are the only component of the spread;  however, if there is
inventory risk and a risk of adverse selection, then the effective spread
measure gives the best estimate of the total spread.  Note that the traditional
Roll measure performs quite well.
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Table 1
ρ=0, standard deviation of underlying returns 0.025

Roll
Thompson-

Waller Effective GKN
Realised
spread
(bid)

Realised
spread
(ask)

Average 0.100020 0.119949 0.099994 0.102011 0.099612 0.100044

Absolute
mean error
(percentage)

0.020266 19.948884 0.006078 2.010807 0.038768 0.043668

Mean
squared error
(percentage)

0.003659 0.398774 0.000036 0.007600 0.002562 0.002520

True spread 0.100000

Note: The errors are expressed as a percentage of the true spread.

Table 2
ρ=0.2, standard deviation of underlying returns 0.025

Roll
Thompson-

Waller Effective GKN
Realised
spread
(bid)

Realised
spread
(ask)

Average 0.099343 0.119913 0.099999 0.101977 0.099927 0.100050

Absolute
mean error
(percentage)

0.656700 19.912900 0.000226 1.976560 0.000735 0.000499

Mean
squared error
(percentage)

0.004014 0.397300 0.000039 0.007628 0.000028 0.000024

True spread 0.100000

Table 3
ρ=-0.2, standard deviation of underlying returns 0.025

Roll
Thompson-

Waller Effective GKN
Realised
spread
(bid)

Realised
spread
(ask)

Average 0.100579 0.119966 0.099989 0.101995 0.100096 0.100031

Absolute
mean error
(percentage)

0.579240 19.966090 0.011140 1.995230 0.000956 0.000309

Mean
squared
error
(percentage)

0.003765 0.399410 0.000043 0.007263 0.000027 0.000023

True spread 0.100000
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Table 4
ρ=0.0, standard deviation of underlying returns 0.05

Roll
Thompson-

Waller Effective GKN
Realised
spread
(bid)

Realised
spread
(ask)

Average 0.100124 0.140780 0.099981 0.102071 0.100034 0.100015

Absolute
mean error
(percentage)

0.123826 40.779756 0.018878 2.070577 0.000034 0.000015

Mean
squared
error
(percentage)

0.011186 1.664033 0.000039 0.014461 0.000004 0.000004

True spread 0.100000

Table 5
ρ=0.0, standard deviation of underlying returns 0.1

Roll
Thompson-

Waller Effective GKN
Realised
spread
(bid)

Realised
spread
(ask)

Average 0.100654 0.196496 0.099992 0.102526 0.100212 0.100136

Absolute
mean error
(percentage)

0.653710 96.495891 0.008009 2.525730 0.010212 0.000136

Mean
squared
error
(percentage)

0.046319 9.313582 0.000043 0.045349 0.000009 0.000011

True spread 0.100000
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