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Abstract

Lucas has recently suggested that the Ôshoe-leatherÕ costs of inflation may
amount to as much as 1% of GNP in the United States when moving to the
Friedman optimum.  We assess his thesis using empirical evidence for the
United Kingdom for the period 1870-1994.  We find support for the Lucas
proposition that interest rates should be specified in logs as a description of
money demand dynamics, but not as a steady-state characterisation.
Although LucasÕs estimates can be corroborated, a semi-log interest rate
specification implies smaller, though still tangible, welfare gain estimates:
for example, 0.22% of GNP in perpetuity when moving from 6% to 2%
nominal interest rates.
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1 Introduction

Estimating the welfare costs of inflation has, on the whole, proved an elusive
task for economists.  But perhaps the area of least uncertainty surrounds the
so-called Ôshoe-leatherÕ costs of inflation − the increased time and cost of
making trips to the bank to replenish money balances whenever inflation
increases.  Since Bailey (1956), it has been customary to measure these
Ôshoe-leatherÕ costs as the trapezoid of unsatisfied demand beneath a money
demand schedule, which is foregone at any non-zero nominal interest rate.
There is also a common perception that, measured in this way, shoe-leather
costs are relatively trivial in macroeconomic terms.

Certainly, such a conclusion seems robust at the levels of inflation currently
prevailing within developed economies.  For example, Fischer (1981) and
McCallum (1989) both estimate that the shoe-leather benefit from a
10 percentage point reduction in inflation is around 0.3% of GNP.  But in
todayÕs low-inflation environment, a reduction in inflation of around
2 percentage points seems more apposite.  Using the above calculus, such a
reduction would deliver a welfare gain of only around 0.06% of GNP − a
small number by most peopleÕs reckoning.  Indeed, a recent study by
Feldstein (1995) concludes that the shoe-leather savings from a move from
2% to zero inflation could well be negative once the indirect effect on
seigniorage revenues is taken into account − a point first raised by Phelps
(1973).(1)

That academic view chimes with anecdotal evidence.  A recent survey by
Shiller (1996) posed the question ÔWhy do people dislike inflation?Õ
Among the general public, there was no mention of the extra time and cost
expended by agents replenishing their money balances at high rates of
inflation.  There was, as you might expect, a greater recognition of these
costs among economists.  But that may well reflect reverse causality.  Central
banks, meanwhile, who are never shy to advertise the benefits of price
stability, have rarely if ever ventured to suggest that the shoe-leather savings
of low inflation amount to much in the aggregate and have concentrated on

_____________________________________________________________
(1) Feldstein (op cit) finds much larger distortions from inflation arising from the imperfect
indexation of the US tax system − amounting perhaps to as much as 1% of GNP in perpetuity.
That leads him to argue strongly for a zero inflation target.
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the costs of unanticipated inflation.(2)  Surely, then, the evidence − academic
and anecdotal − is incontrovertible?

This received wisdom has recently been questioned by, among others, Lucas
(1995) and Gillman (1995).(3)  For example, Lucas estimates that the
shoe-leather benefits of moving to a zero nominal rate of interest − of deflating
at a rate equal to the real rate of interest, in line with FriedmanÕs (1969)
optimal rule − could amount to as much as 1% of US GNP in perpetuity.
Gillman (1995) concludes that a Ôconservative estimate rangeÕ of shoe-leather
costs is 0.85%-3% of GNP.  If we were to assume a discount rate of 5% and
trend GNP growth of 2.5%, the net present value of a 1% GNP welfare gain
would then amount to 40% of initial GNP.  On 1995 US numbers, that is
$2,900 billion.  In LucasÕs words, Ôthis is real moneyÕ.(4)

LucasÕs argument has two strands.  First, that mis-specification of existing
simple money demand equations may lead to an underestimation of the
welfare benefits which zero nominal interest rates confer.  Second, that
seigniorage losses are most unlikely to offset these benefits, so that
second-best arguments cannot be used to justify positive nominal rates of
interest.(5)  This paper presents some empirical evidence for the United
Kingdom on these issues.  In particular, we seek to juxtapose the log and
semi-logarithmic interest rate functional forms of a primitive money demand
function.  The former specification increases welfare costs markedly at low
rates of inflation because each percentage point reduction in nominal interest
rates has a proportionally greater impact upon real money holdings.  In
diagrammatic terms, the money demand function looks hyperbolic, so that
the value of monetary services − the area under the demand function −
increases as we move down the curve.  By contrast, a semi-log money
demand specification − the mainstay of much of the empirical literature since

_____________________________________________________________
(2) See, for example, the Governor of the Bank of EnglandÕs first LSE lecture on ÔThe Case
for Price StabilityÕ (Leigh-Pemberton, 1992).
(3) For example, Dotsey and Ireland (1996), among others, offer general equilibrium analyses
reaching a broadly similar conclusion.
(4) Such a calculation is necessarily illustrative, rather than definitive, because it is difficult to
agree on whether and how to discount the utility of future generations.
(5) For example, optimal tax arguments would suggest a non-zero nominal interest rate, so as
to equalise the marginal distortionary effects of various forms of taxation − inflation among
them.  But if money is not a final good but rather an intermediate good, then logic of the
Diamond and Mirrlees (1971) type would suggest that a zero inflation tax could be optimal.
We discuss tax effects in Section 5.
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at least Cagan (1956) − implies the same response of money holdings to each
percentage point reduction in nominal interest rates.  This then delivers lower
welfare cost estimates at low rates of inflation.  The essence of LucasÕs
argument is that the log specification is to be favoured on theoretical and
empirical grounds − hence larger welfare costs from not adhering to the
Friedman rule.

To date, the extent of the empirical evidence on these specification issues is
contained in some charts in Lucas (op cit).  Here we consider that empirical
evidence in a little more detail, and then use our empirical estimates to
evaluate some welfare costs.  By way of motivation, Charts 1 and 2 replicate
those from Lucas (op cit) using UK data.(6)  Both figures plot the ratio of the
monetary base to money GNP (V, the inverse of velocity) against deposit
interest rates (R) in the United Kingdom for the period 1870-1994.  Chart 1
then plots the curve V = αR-λ − a logarithmic specification for money
demand, with the long-run income elasticity restricted to unity.  As in Lucas,
α is set such that the curves pass through the geometric mean of the data
points, using three values of the long-run interest elasticity (λ = 0.3, 0.5 and
0.7).(7)  Chart 2 does the same for the semi-logarithmic specification
V = βe-γR, for γ = 0.05, 0.07 and 0.09.  All of these elasticities are taken from
Lucas.

_____________________________________________________________
(6) In fact, the charts are not a precise replication of those in Lucas in three important
respects.  First, we use a measure of the monetary base (M0), rather than M1.  Second, we use
here a longer sample − 1870-1994, rather than 1900-85 − which covers the whole of the
Classical Gold Standard period.  Including the data points at the beginning (1870-1900) and end
(1985-94) of the sample considerably worsens the visual ÔfitÕ of the data under either interest
rate specification.  And third, the interest rate we plot is a deposit rate, rather than a consol
yield as in Lucas.  We prefer the former because deposits are likely to be a closer substitute
for cash than perpetual bonds.  Section 3 discusses the data in greater detail.
(7) The geometric mean is sensible for very long-run data series as it minimises the effect of
outliers on the mean.
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M0/GNP 1870-1994, log specification
Chart 1
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M0/GNP 1870-1994, semi-log specification
Chart 2
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What is clear from Charts 1 and 2 is that the logarithmic formulation appears,
on the face of it, to have much to recommend it empirically, at least by
comparison with the semi-log function.  This is in keeping with LucasÕs
findings for the United States.  These stylised observations are enough to
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motivate us to re-consider the quantitative importance of the shoe-leather
costs of inflation in the United Kingdom.  Perhaps that holy grail for central
bankers − a tangible welfare cost of inflation − has after all been hiding under
their noses.

The paper is planned as follows.  The next section outlines a textbook
general equilibrium model of money demand, to shed some light on the
theoretical case for and against the logarithmic money demand functional
form.  Section 3 discusses our methodology and data and Section 4 our
results.  Section 5 translates these estimates into some welfare costs of
inflation;  while Section 6 briefly concludes.

2 The McCallum-Goodfriend model

This section outlines a simple stylised general equilibrium model of money
demand determination.  The model is illustrative and is solved in order to
examine plausible functional forms for interest rates in terms of satisfying
consumersÕ utility-maximising demands for real money balances.
Specifically, we examine whether a log or semi-log specification for interest
rates seems plausible.  The model is stylised in several respects − for
example, it affords no role for credit.  We use the model set out in McCallum
and Goodfriend (1987).  This introduces money into the utility function by
assuming that money balances are leisure-enhancing because they save on
shopping time.  So we have a leisure function, lt, of the form

lt = φ (Ct, Mt /Pt) (1)

where φ1 < 0 − higher consumption (Ct) implies more shopping time and
hence less leisure time (ceteris paribus);  and φ2 > 0 − higher real money
balances (Mt /Pt) help to reduce shopping time and thereby free up more time
for leisure.  The function φ(.) defines transactions technology − saved
shopping time − in the model.  This notion of shopping-time technology is
proving popular as a means of rationalising agentsÕ money holdings among
general equilibrium theorists, as an alternative to a cash-in-advance constraint
or placing money directly in the utility function.
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Otherwise the consumerÕs choice problem is entirely standard.  Agents
maximise an intertemporal utility function defined over leisure and
consumption goods, which is separable across time:

( )Σ
i

iU Ct i lt i=

×
+ +

0
β , (2)

where U1, U2 > 0 and β is a discount rate satisfying β ≡ 1/(1 + ρ) where ρ is
the consumerÕs subjective rate of time preference.  For simplicity, McCallum
and Goodfriend (ibid) assume that labour is supplied inelastically so that
agents allocate their time between only leisure and shopping each period.
Agents receive real income, y

t, each period, which they allocate in turn

across consumption goods, nominal money balances (Mt) and one-period
nominal bonds (Bt).  So the household budget constraint is:

( )P y M R B P C M Bt t t t t t t t t+ + + = + +− − −1 1 11 (3)

where the LHS defines incomings and the RHS outgoings;  Pt is the price of
the consumption bundle and Rt defines the yield on the one-period bond.

The consumerÕs problem is then to maximise (2) subject to (1) and (3) by
choice of Mt, Ct, and Bt.(8)  The first-order conditions are:

( )[ ] ( )[ ] ( )0 1 2 1= + −U C C M P U C C M P C M P Pt t t t t t t t t t t t t, , / , , / , /φ φ φ λ

(4)

( )[ ]0 2 1= − + +U C C M Pt t t t t t, , /φ λ βλ (5)

[ ]0 11= + −+βλ λt t tR (6)

( ) ( ) ( )0 1 1 1 1= + − − − − −− − −R B P C y M M Bt t t t t t t t (7)

_____________________________________________________________
(8) Pt, 

y
t and Rt  are given exogenously.
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where λ t is the Lagrangian multiplier pertaining to (3).  Using (4) - (7) gives
us the following Euler equation, as in McCallum (ibid).

( )[ ] ( )

( )[ ] ( )[ ] ( )[ ] ( )

U C C M P C M P

U C C M P U C C M P C M P R

t t t t t t t

t t t t t t t t t t t t

2 2

1 2 1
11 1

, , / , /

, , / , , / , /

φ φ

φ ϕ φ

=

+ − + −

(8)

This has the general form:

 ( )g M P C Rt t t tγ , , , , = 0 (9)

and, provided it is soluble, is hence interpretable as a structural
money-demand function.  For example, McCallum (op cit) shows that with
utility taking a Cobb-Douglas form U(Ct, lt) = Ct

α lt
(1-α) and transactions

technology φ(Ct,Mt/Pt) = Ct
-a Mt /Pt

a, where 0 < (a, α) < 1, we can then
write:

)1ln(lnln)/ln( 1−+++= tttt RCPM γ (10)

where γ ≡ a(1-α)/(α-a(1-α)).  Note that the interest rate term in (10) can be
rewritten as ln (1+R-1) = -log (R) + R, using the approximation
ln (1+R) = R.  That is, the interest rate term comprises both a log and a
(wrongly signed) semi-log component.  Note also that for small R − the cases
we consider here − the second of these terms is small and can be ignored,
giving a log-log money demand model.  So in a system with sensible
functional forms − those with standard diminishing marginal properties, U11,
U22 < 0, φ11 > 0, φ22 < 0 − a logarithmic money demand function obtains.  A
logarithmic form, similar to (10), also obtains for a variety of other well-
known utility and transaction-technology functions, such as the CES and
translog functions, which also exhibit standard diminishing marginal
properties.
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We might ask, then, what primitive preference and technology functions
would deliver a semi-logarithmic specification.  Two functions able to deliver
such a functional form are:

( )U Ct lt Ct Ct Ct lt, ( ln ) ( )= − + −α α1 (11)

( )φ Ct Mt Pt aCt a Mt Pt Mt Pt Mt Pt, / [( / ) ln( / ) ( / )]= − + − (12)

which, using (8), gives the money demand function:

( ) [ ] [ ]ln / * ln *lnMt Pt Ct Rt Ct Rt= − + + + − − + −1 1 1 1 1γ γ (13)

where γ* = α/(1-α)a.  Ignoring the multiplicative last term gives an interest
rate semi-elasticity:

[ ]
−

+
<1

1
2

0
Rt

(14)

which is negative as we would expect.  The striking thing, however, is that
neither the primitive preference (U(.)) nor technology (φ(.)) functions, (11)
and (12), which deliver the semi-log reduced-form (13), have the nice
diminishing marginal properties that we would want:  from (11) and (12),
U11, φ22 > 0 and U22 and φ11 are zero.  This seems to suggest that any
sensible preference and technology functions are likely to deliver a
logarithmic money demand specification;  and, conversely, that a semi-log
functional form may involve placing restrictions on deep parameters which are
at odds with standard marginal analysis.(9)  That said, when the model is
expressed in levels − the long-run equation, (10) − the differences between the
log and semi-log specifications is unlikely to be that great.  It is only when
(10) is made dynamic that differences between the log and semi-log

_____________________________________________________________
(9) A log interest rate specification leads to non-satiable real balances as rates tend to zero,
whereas the semi-log functional form does not lead to such indeterminacy.  It is, of course,
possible that some other functional form for interest rates can be found which satiates the
demand for real money balances, but the behavioural implications of such functional forms
may not be entirely clear (see Wolman, 1996).
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specifications are likely to show up as acute under low rates of inflation.
This is important when we come to account for our empirical results below.

3 Method and data

3.1 Method

Above we derived a money demand function, (9), of the generic form:

g(γ, Mt, Pt, Ct,  Rt) = 0 (15)

Let us assume that this function can then be straightforwardly rewritten as a
log-linear representation across all variables with the exception of Rt and that
it is soluble in Mt, thus:

mt - pt = α 0 + α 1 ct + α 2 h(Rt) (16)

where lower case letters now denote natural logs and α0 ≡ ln γ.  (16) is just
an unrestricted version of (15), where the consumption and interest rate
elasticities are no longer equal to (1,-1) respectively.  h(.) is some general
functional form which we need to specify to make (16) estimable.  A
particularly convenient functional form is the power transformation of Box
and Cox (1964):(10)

α 2 h (Rt) =  α 2  (Rt
θ - 1) / θ (17)

This particular transformation nests the log and semi-log specifications as
special cases:

α 2 h (Rt)   =  α 2 Rt - α 2 for θ = 1
                 =  α 2 ln Rt for θ = 0

The primitive form of the money demand function is thus:

mt-pt = α 0 + α 1 ct +  α 2 (Rt
θ - 1) / θ (18)

_____________________________________________________________
(10) For an application of this transformation in a similar context, see Mills and Wood (1977).
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Equation (18) defines equilibrium real money balances, but to give it a
convincing empirical form most researchers have posited some
partial-adjustment mechanism for equilibrium real money balances:

∆ (mt-pt)  =  - β (mt-1-pt-1 - (mt
*-pt

*)) (19)

where β is an adjustment, or error-correction, loading coefficient and *
denotes an equilibrium value.  Substituting (18) into (19) gives a
conventional dynamic error-correction model:

∆ (mt-pt)  = γ - β (mt-1-pt-1 - α0 - α1 ct - α2 (Rt
θ-1)/θ)

                   + δδδδ(L) {∆(m-p)t, ∆ct, ∆(Rt
θ-1)/θ} + εt (20)

We have augmented (20) with some short-run dynamic terms in (mt-pt), ct

and Rt to pick up adjustment of money balances along the path to
equilibrium.  These short-run effects are captured here in δδδδ(L) which is a
vector polynomial in the lag operator (L).

Equation (20) is clearly non-linear.  We approach its estimation in two −
complementary − ways.  The first is to impose values of θ on the model and
then to conduct a grid search across the θs.  Doing this linearises (20) and
thus allows conventional linear estimation and inference to be conducted.
The mechanics of this linear estimation procedure are as follows.  First, the
stationarity of the variables is assessed using standard unit-root tests.  Then
cointegration among the variables is assessed using JohansenÕs (1988)
maximum likelihood technique;  this gives estimates of the αÔs, as well as
allowing us to test β = 0 (or, equivalently, whether or not cointegration
exists).  Finally, the dynamics, δδδδ(L), constant and error-correction loading
coefficient are all estimated having substituted the Johansen-estimated
error-correction mechanism into (20).  All of this procedure is then repeated
by searching over a grid of θs between -1 and +1.  A grid-search comparison
then allows us to compare the different functional representations − and in
particular to test the restrictions θ = 1 and θ = 0 implied by the semi-log and
logarithmic special cases.

Our second approach is to estimate (20) in one step using non-linear least
squares, while allowing for cointegration between real money balances, real
GNP and interest rates (specified as a general power transformation).  That
amounts, in practice, to minimising (εεεε′′′′εεεε), where ε is the vector of residuals
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from (20), by choice of the parameter vector (αααα , ββββ, θθθθ, δδδδ).  This is achieved
using Gauss-Newton iterative methods.(11)  Reassuringly, both methods yield
similar results which are reported below and allow us to conclude that the
non-linear estimates are not biased by incorrect choice of starting value,
specifically that the non-linear results correspond to the maximised
log-likelihood of the linear method.

As well as corroboration, the (linear) grid-search method provides some
information that cannot be derived from the non-linear estimation results.  In
particular, because the non-linear method does not distinguish between the
short and long-run intercepts of the money demand function we would not be
able to estimate the steady-state welfare costs of inflation if we focused
exclusively on the non-linear estimates.

3.2 Data

We use annual average data for the United Kingdom for the period
1870-1994.  Monetary and interest rate data are from Capie and Webber
(1985).  For money we use the monetary base, the demand for which is where
we could expect the welfare costs of inflation to be largest at non-zero
nominal rates of interest.(12)  The monetary base series consists of cash in the
hands of the public, banksÕ till money and bankersÕ balances at the Bank of
England.  In contrast with the series reported by the Bank of England since
March 1981, this series includes as part of till money reserves of notes and
coin held in the Banking Department.  The Capie and Webber series only
runs to 1982, so growth rates of M0 (as published by the Bank) are used
post-1982 to break-adjust the level of the monetary base.

As the best proxy for the opportunity cost of holding non-interest bearing
money balances, we use the rate of interest paid on bank deposit accounts.
From 1870 to 1944, the data were obtained from The Economist and from
1945 from the Bank of EnglandÕs Statistical Abstract.  From a theoretical
perspective, we would like to have used consumption as a scale variable but

_____________________________________________________________
(11) For this method to give sensible answers we require that Cov(εt,εt-i) ≈ 0 ∀  i, which further
justifies the inclusion of the dynamic terms in (15) to mop up any serial correlation.
(12) Authors have sometimes used M1, but this is not available as a time series over our full
sample.  Moreover, an increasingly large proportion of M1 is these days interest-bearing.  An
earlier vintage of this paper also presented estimates using an M3 measure of money and
consol yields as interest rates.  But these changes do not alter markedly the analysis.
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we take GNP(13) because of its likely robustness for the whole sample.  This
should not greatly affect the estimates.  Table A presents some summary
statistics on these data.

Table A
Summary statistics, 1870-1994

M0 (%) Deposit rate (%) ∆ Deposit rate Deflator (%) Real GNP (%)

   µ 4.28 3.31 0.01 3.56 1.96

   σ 5.61 36.96 1.32 6.44 3.33

The levels of these series were found, using ADF tests with two lags, to be
I(1).(14)  We therefore present the summary statistics in Table A as
log-differences, except interest rates which are also shown in levels and in
simple first-differences.  As we would expect, the time-series behaviour of
money and prices is very similar.  That explains why we focus on real money
balances in the remainder of this paper.  The average growth of real GNP is
just below 2%.  The average change in the deposit rate (in first differences) is
very small.  A few large changes in the deposit rate explain its high standard
deviation.

4 Results

Following the theory outlined in Section 2, we begin with some base money
demand estimates of equation (20).(15)  As the variables are I(1), cointegration
among the variables in the equilibrium money demand equation, (18), was
first assessed using JohansenÕs (1988) methodology.  The implied income
elasticity could be restricted to unity (α1 = 1) in each case, as in Charts 1 and
2.  Cointegration was then tested separately for a range of θs lying in the grid

_____________________________________________________________
(13) Since we use aggregate money data consumption would perhaps not be the best indicator
of domestic transactions;  GDP would be the ÔidealÕ scale variable, but reliable data are not
available over the full sample period.
(14) Unit root test statistics are available from the authors on request.  An ERM impulse
dummy variable was also found to be necessary for 1992, without which the estimated interest
elasticity was distorted.
(15) It is not the purpose of this paper to estimate a forecasting equation for narrow money
demand, rather to examine the costs of inflation implied by money demand estimates.  See
Janssen (1998) for an overview of narrow money demand studies in the United Kingdom.
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(-1,1), searched in intervals of 0.05.  This grid encompasses the
semi-log (θ = 1) and logarithmic (θ = 0) special cases.

Chart 3 plots the trace test statistic for cointegration against values of θ,
together with the 5% critical value.(16)  Two points emerge.  First, in neither
case is the evidence of cointegration overwhelming.  Second, as we can reject
cointegration of the log-linear representation at 5% and not the semi-log form,
there is stronger evidence of a well-defined long-run relation using the
semi-log form (θ = 1) than using the log representation (θ = 0).  Although
we should not take this result too literally for, from Ermini and Granger
(1993), we know that cointegration in levels must imply cointegration in
logs, this empirical evidence, albeit partial, lends some weight to the
conventional semi-logarithmic long-run money demand specification of (18).
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_____________________________________________________________
(16) The eigenvalue cointegration test statistic gives a very similar picture.
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Maximised log-likelihood of M0 equation
Chart 4
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With the long-run equilibrium of the model estimated using Johansen for
various θ, the short-run dynamics (δδδδ(.)) were then estimated with the
respective θ now imposed upon the dynamics in (20).(17)  The maximised
log-likelihoods of (20) which resulted from this grid search are plotted in
Chart 4.  They peak at θ ≈ 0.15.  Because this is much closer to 0 than to 1,
the figure is clearly supportive of the log over the semi-log specification.  We
can test this formally by conducting likelihood ratio tests of the restrictions
θ = 0 and θ = 1, against an alternative of θ = 0.15.(18)  These test statistics
are distributed as a χ2(1):

H0 : θ = 0 χ2(1) = 0.08
H0 : θ = 1 χ2(1) = 4.26*

where * denotes rejection of the null at 5%.  There is therefore strong
evidence from the full dynamic model against the semi-logarithmic

_____________________________________________________________
(17) In each case we included the estimated Johansen long-run estimates even where
evidence of cointegration was borderline.  The significance of the ECM terms in the full
dynamic model is evidence that this approach is justified and that cointegration does indeed
exist for each θ.

(18) If we use the freely-estimated maximised log-likelihood − the ÔtrueÕ maximised

log-likelihood − from the non-linear model for these tests, it gives almost identical results.
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specification − which can be rejected at 5% − and in favour of the logarithmic
form.

This means that the peak maximum likelihood estimate of θ is not
significantly different from the level of θ implied by the logarithmic
specification, but is significantly different from that implied by the
semi-logarithmic specification.  The same conclusion obtains if we free up θ
and conduct non-linear estimation of (20) in one step.

Table B
Base money demand 1872-1994 (t-ratios − where available − in
parentheses):

Restricted linear estimates Unrestricted non-linear estimates

θθθθ = 0 θθθθ = 1

γγγγ  -0.10

 (2.16)*

 -0.08

 (3.22)*

  -0.12

  (1.21)

ββββ  -0.019

 (2.12)*

 -0.048

 (3.19)*

  -0.014

 (-0.80)

αααα0  -5.48  -1.66

αααα1   1    1    1

αααα2  -0.82 -18.58   -2.28

δδδδ0  (∆∆∆∆(m-p)t-1)   0.19

 (2.31)*

   0.20

  (2.38)*

   0.18

  (2.05)*

δδδδ1  (∆∆∆∆yt)   0.38

 (2.91)*

   0.34

  (2.53)*

   0.38

  (2.88)*

δδδδ2  (∆∆∆∆[Rt
θθθθ-1]/θθθθ)  -0.05

 (4.43)*

  -1.05

  (3.17)*

  -0.09

  (0.82)

θθθθ    0     1    0.16

  (0.48)

Log-likelihood 209.59 207.49 210.02

Autocorrelation

χχχχ2(1)

    0.94     2.76     1.23

* denotes significance at the 5% level

The non-linear least squares freely-estimated results are reported in Table B,
alongside restricted linearised estimates for θ = 0 and 1.  The non-linear
estimates clearly have dynamic coefficients which are closer to the log
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specification.  We do not, however, present detailed estimates of the welfare
gains of reducing interest rates when θ = 0.16, because it is unclear how to
interpret such a specification of the interest rate term in a money demand
equation economically.

What these results suggest is a clear distinction between the short and
long-run functional form.  In the long run, money demand seems to be better
captured by a semi-logarithmic specification − though we might question
both long-run specifications as a full description of equilibrium money
holdings.  This is evident from Chart 3 and from the (implausibly) low
loading coefficient under the log specification.  At first blush, such a result
appears inconsistent with Charts 1 and 2, but if we trace out the locus V =
βe-γR using our freely-estimated value for γ (γ = 0.019),(19) then the visual fit
appears much better (see Chart 5).  So part of the reason for the apparently
poor visual fit in Chart 2 was the imposition of semi-elasticities which were
too low.  Turning to the short-run behaviour of money demand, the reverse
appears to be true:  the dynamic effects of interest rates are better captured by a
logarithmic formulation − as is evident from Table B and Chart 4.

Taking these results together, we arrive at a model of money holdings which
is not intuitively unreasonable.  In equilibrium, the allocation of wealth
between monetary and non-monetary assets depends linearly upon the level of
the interest rate, since this measures the absolute interest income foregone on
money holdings.  We suggest though that the speed with which money
balances are adjusted following a change in interest rates depends on where
interest rates are starting from.  At low rates of interest, the dynamic effect of a
percentage point interest rate change on an individualÕs income flow is that
much greater;  the proportional income loss from an interest rate fall is that
much larger.  The incentive to switch between monetary and non-monetary
assets − for a given percentage point interest rate change − is therefore also
greater, with the opposite being true if interest rates are initially high.

_____________________________________________________________
(19) This value of γ corresponds to the value for -α2 obtained with the semi-log specification

(see Table B).  α2 has been rescaled to accommodate the different scale of the M0/GNP ratio
in Chart 5.
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M0/GNP 1870-1994, semi-log specification
Chart 5

using estimated semi-elasticity
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       0.0 

γ = 0.019

5 The welfare costs of inflation

Finally, we can attempt to translate these empirical money demand estimates
into some welfare costs of inflation, as Chart 6 illustrates.  It plots real
money demand (M/P) as a function of nominal interest rates (R).  So a fall in
nominal interest rates, A-C, reduces unsatisfied demand by the trapezoid
BGHE.  When moving to the Friedman optimum of zero interest rates (F),
we need to add in the extra welfare triangle, I.  As both sets of empirical
results in Section 4 led to us prefer either the logarithmic (in the dynamic)
specification or semi-logarithmic (in the long-run) specification, rather than
one of the intermediate cases, we calibrate the welfare costs for each of these
cases.  For a logarithmic money demand function, this welfare triangle is
likely to be significant as money demand asymptotes on the horizontal axis:
that is the essence of LucasÕs argument.  So we begin by looking at the
welfare estimates implied by a logarithmic long-run money demand function
− despite the fact that we have found some empirical evidence to reject it −
before turning to consider a semi-log money demand specification.
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Chart 6
Measuring welfare costs
R

A

C D E

B

F G H M/P

I

We take as a base case a nominal rate of interest of 10%, corresponding to,
say, a 3% real rate and 7% annual inflation − numbers which are close to
their averages in the United Kingdom since the 1970s.(20)  We then compare
this base case with:  (a) nominal interest rates of 5% − corresponding to an
inflation objective of around 2%, which is similar to that currently prevailing
in many industrialised countries;  and (b) nominal interest rates of zero,
corresponding to FriedmanÕs (1969) rule of deflating at a rate equal to the real
rate of interest.  LucasÕs estimates imply that the costs of inflation really
show up when moving from (a) to (b), but even more when moving from zero
inflation to (b).

_____________________________________________________________
(20) We assume that real rates have been 3% over the full sample because nominal deposit
rates and inflation are found to be cointegrated with a unit coefficient and an intercept not
significantly different from 0.03.  But this is not critical in any way to our results, and different
real rate assumptions could be plugged in to generate different inflation-reduction experiments.
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The long-run solution for the demand for narrow money implied by our
logarithmic estimates is:(21)

Mt / Pt = e-5.48 Yt Rt 
-0.82 (20)

The gain in consumer surplus which results from moving from nominal
interest rate R1 to R2 is:

))(/
)(/

/()/(),( 2

1
21 = RPM

RPM
PMdPMRRw ψ (22)

where ψ (M/P) is the inverse of the money demand function (21).  (22) just
measures the area under this inverse demand curve between R1 and R2.(22)

ψ(.) is from (21):

Rt  =  (e-5.48 Pt Yt /Mt)
1.22 (23)

By normalising Pt Yt = 1, we can calibrate money holdings and welfare costs
as a percentage of nominal GNP using (22) and (23).(23)  Using (23), we can
then map out the relationship between R and M/P.  This is shown in the first
two columns of Table C.  At R = 10% base money holdings are around 3%
of GNP and at R = 5% they are 5% of GNP.  Over the period since 1970,
average interest rates have typically been in the 5%-10% range, while average
base money holdings have been around 5%-6% of GNP, suggesting that our
calibrations are about right.

_____________________________________________________________
(21) For our calibration of the welfare costs of inflation, we focus on the long-run narrow
money demand estimates, because the welfare implications of changes in inflation ultimately
occur when inflation reaches a new steady state.  It should be kept in mind, however, that
adjustment to a new steady state is likely to be lengthy, as the low loading coefficients on the
ECM terms (β) in Table B show.
(22) It thus comprises the box of unsatisfied demand under the money demand function
stressed by Tower (1971) as well as the conventional Harberger triangle of Bailey (1956) −
hence the trapezoid BEHG.
(23) Of course, we are implicitly assuming that all M0 balances are held for transaction
purposes and it is possible that any welfare gains may then be overstated if this is not the case.
But in the long run we would expect cash to be held for transaction purposes and our finding of
a unit coefficient on GNP in the long-run money demand equation supports this.
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Table C
Welfare gains −−−− base money, log specification
Nominal
interest rate
(%)

Base
money/GNP

Interest rate
range (R1 - R2)
(%)

Gross welfare
gains
w(R1, R2)
(% of GNP)

Seigniorage
losses
s(R1, R2)
(% of GNP)

Net welfare
gains
w(.)-ξξξξs(.)
(% of GNP)

1 0

 5

 4

 3

 2

 1

 0.01

 0

0.03

0.05

0.06

0.07

0.10

0.18

8.22

∞

10-5

  5-4

  4-3

  3-2

  2-1

  1-0

  5-0

10-0

0.15

0.04

0.055

0.07

0.11

0.87

1.15

1.3

0.032

0.009

0.012

0.015

0.024

0.185

0.245

0.278

0.138

0.041

0.051

0.067

0.10

0.80

1.06

1.20

Table C assesses the series of gross and net welfare gains arising from a
reduction in steady-state nominal interest rates from 10% to 0%.(24)  Column
4 shows the gross gains of making the reduction in nominal interest rates
indicated in column 3, while columns 5 and 6, respectively, show the
associated seigniorage losses and net welfare gains.  These gains are
calculated using the long-run estimates (α0, α1 and α2) in Table B and then
evaluating the definite integral (22) using (21).  Looking first at a shift from
10% to 5% nominal interest rates, this leads to a gross welfare gain of 0.15%
of GNP.  This number is very much in line with estimates from the United
States (McCallum (op cit), Fischer (op cit)).  But as LucasÕ paper intimates,
and as we would expect from a log specification, the welfare gains of moving
from 5% to 0% nominal interest rates are an order of magnitude larger at
1.15% of GNP.  This is in line with LucasÕs (1995) welfare cost estimate of
1% of GNP in the US and GillmanÕs conservative range of 0.85%-3% of
GNP.  On the basis of this result alone, LucasÕs thesis seems to have some
empirical support.

There may, however, be grounds for scepticism.  One reason why we may
distrust these results is that they ignore countervailing costs − costs which
could prove prohibitive if the economy were to undergo a steady-state
deflation.  Some such costs are real − for example, arising out of Phillips

_____________________________________________________________
(24) We present the analysis in terms of interest rate reductions rather than inflation rate
reductions, but the two clearly have a one-for-one mapping having made some assumption
about the steady-state level of real interest rates.
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curve convexities − but are difficult to quantify.  Others − of a monetary
nature − are quantifiable.  One such cost is the loss of seigniorage revenue
resulting from lower nominal interest rates.(25)  These revenue losses mean
that distortionary taxes have to be raised elsewhere, with attendant welfare
costs (Phelps (1973)).  In his recent work, Feldstein (1995) finds that (the
welfare effects of) these seigniorage losses may more than offset direct welfare
gains at low rates of inflation.  Note that because seigniorage income (St) is
equal to rt Mt per period, the welfare loss from reduced seigniorage as we
change nominal interest rates is:

dSt /drt = ξ  {drt Mt + dMt r t} (24)

where the first term in brackets on the RHS of (24) captures the tax rate effects
of a change in interest rates, and the second term the offsetting effects of a
change in the tax base.  The term ξ scales seigniorage losses, reflecting the
fact that they need to be made good by raising distortionary taxes elsewhere
in the economy;  lump-sum taxes are not a practical option.  These
distortionary taxes in turn impose a deadweight welfare burden of ξ per
pound.  In order to calibrate ξ we ideally need to simulate the welfare effects
of an across-the-board tax increase in a fully general equilibrium model − as
in, for example, Ballard, Shoven and Whalley (1985) for the United States.
To simplify matters, we know that if the tax system were to comprise a
single linear tax levied at a rate τ, then ξ = 1/(1-τ)-1.  Setting τ = 0.25 gives
ξ = 0.33 which is used here as our estimate.(26)

Making these assumptions, and using (21), we can then calculate the
marginal seigniorage loss from disinflating.  Setting this marginal cost
against the gross marginal welfare gains outlined earlier allows us to estimate
the ÔoptimalÕ nominal rate of interest in this partial equilibrium setting.
Seigniorage losses, and the resulting net benefits from disinflating, are given
in the final two columns of Table C.  From these, it is clear that the optimal
level of nominal interest rates is zero − the Friedman optimum.  Nowhere are
marginal seigniorage losses sufficient to counterbalance marginal shoe-leather
gains, as nominal interest rates are reduced.  Indeed, net welfare benefits rise
as nominal interest rates fall and these net benefits still amount to a sizable

_____________________________________________________________
(25) In Chart 6, for example, this is the area ABCD-DEGH when moving interest rates from A
to C.
(26) This is in line with the mid-point of Ballard, Shoven and WhalleyÕs (op cit) calibrated
estimates for the United States.
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1% of GNP when moving from 5% to 0% nominal interest rates − still
extremely large by comparison with previous estimates.(27)

These estimates still leave some questions unanswered.  For example, around
three-quarters of the welfare gain comes when moving from 1% to 0%
nominal interest rates.  Technically, of course, this is not that surprising
since this is, in effect, a 100% proportional change under the log
specification.  Intuitively, though, it is difficult to understand how such a
minor numerical shift could have such far-reaching welfare implications,
amounting to 0.8% of GNP, even after seigniorage losses are subtracted.(28)

The welfare gains from a near-logarithmic specification of θ = 0.16 would, for
instance, only lead to a gain of 0.35% of GNP.

The money/GNP ratios in Table C add to this uneasiness at rates of interest
below 1%.  Even though implied base money holdings are high as interest
rates approach 1%, they are not entirely implausible (though, in truth, they
still seem unlikely).  The average deposit rate between 1870-1913 was
around 2% and average holdings of base money were around 12%-13% of
GNP at that time − as in Table C.  At 1% nominal interest rates base money
holdings would need to rise to 18% of GNP to deliver the implied welfare
benefits.  This means that average money balances in the United Kingdom
would have to grow at least four-fold from their current level.  Or, put
differently, currency holdings per head would have to rise from around £460
currently to around £1,830!  Against a backdrop of rapid ongoing innovation
in transactions technology, and given the inconvenience and risk involved,
such a rise in cash holdings sounds highly implausible in our view.
Moreover, at rates of interest below 1% the money/GNP ratios become less
plausible still;  they are required to head-off to infinity.

Part of the problem may simply be a Lucas critique:  we have little or no
evidence on money-interest relationships at near-zero interest rates.  Mulligan
and Sala-i-Martin (1996) question LucasÕ estimates on just these grounds.
They then draw on micro-level evidence on individualsÕ asset holdings,
which in principle ought to have a direct mapping with interest rate

_____________________________________________________________
(27) Wolman (op cit) obtains similar welfare benefits for the United States (between 0.47%
and 0.88% of output) when reducing inflation from 5% to 0%.
(28) We analyse the robustness of our welfare gain estimates in the Appendix, using a
different sample for our base money demand equation, and a broad money (M3) demand
equation estimated over the full sample period.
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elasticities.  From this evidence, they conclude that money holdings are
actually likely to be rather interest-insensitive at low rates of interest.  This
follows from the reduced incentive to substitute into interest-bearing financial
assets when aggregate interest rates are low.

A further consideration is that maintaining average nominal interest rates of
zero would require interest rates to be as often negative as positive.  But
nominal interest rates are truncated at zero.(29)   So the appropriate
comparative static comparison may not be between positive and zero average
interest rates, since the latter outcome is unattainable.  If this is so, then a
good chunk of LucasÕ welfare benefits are lost.  All of these factors − taken
together with the absence of a well-defined long-run log-linear money demand
model − cast doubt on the robustness of the logarithmic shoe-leather
estimates.

Table D
Welfare gains −−−− base money, semi-log specification
Nominal
interest rate
(%)

Base
money/GNP

Interest rate
range
(R1 - R2)
(%)

Gross welfare
gains
w(R1, R2)
(% of GNP)

Seigniorage
losses
s(R1, R2)
(% of GNP)

Net welfare
gains
w(.)-ξξξξs(.)
(% of GNP)

1 0

 5

 4

 3

 2

 1

 0.01

 0

0.03

0.08

0.09

0.11

0.13

0.16

0.19

0.19

10-5

  5-4

  4-3

  3-2

  2-1

  1-0

  5-0

10-0

0.32

0.07

0.06

0.05

0.04

0.02

0.25

0.57

-0.079

 0.014

 0.035

 0.065

 0.105

 0.159

 0.378

 0.299

 0.35

 0.064

 0.053

 0.003

 0.0

-0.037

 0.083

 0.433

Table D presents the same welfare cost calculus using the semi-logarithmic
money demand model.  As we would expect, it suggests lower gross welfare
benefits when moving from 5% to 0% nominal interest rates.  These gains are
now around 0.25% of GNP and this comes without a corresponding
take-off in money holdings as a percentage of GNP, or in gross welfare
benefits, as we approach zero nominal interest rates.  In fact, the welfare gains

_____________________________________________________________
(29) It is theoretically possible that under deflation agents would be prepared to accept
negative interest rates in return for the security provided by bank accounts.  But we ignore that
possibility here.
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of reducing nominal interest rates to 3% are actually higher than was found for
the logarithmic case.  It is only at rates of interest below this that gross
welfare gains fall, as the interest elasticity of money demand heads toward
zero.  As a result, the optimal level of nominal interest rates is no longer
zero;  it is around 2%, equating marginal seigniorage costs and marginal
shoe-leather benefits.  Below 2% nominal interest rates, seigniorage losses
more than counterbalance shoe-leather gains.  That in turn equates to an
optimal rate of inflation of close to zero, given our earlier assumption about
real rates.(30)

All in all, the semi-log formulation appears to yield much the more plausible
welfare cost estimates.  Shoe-leather gains are more evenly spread;  they are
not clumped around zero nominal interest rates.  Money/GNP ratios are not
required to head-off to infinity.  Cash balances per head seem more
reasonable.  And the implied optimal rate of inflation is close to zero.  These
comparative static conclusions from the welfare analysis corroborate those
drawn from the earlier econometric analysis.

6 Concluding remarks

Theoretical evidence seems to favour a logarithmic primitive money demand
function.  Using this implied functional form, we arrive at welfare estimates
in line with those found by Lucas − around 1% of initial GNP.  But these
estimates are questionable, at least at the limits of the functional form.
Around three-quarters of the welfare gain comes when moving from 1% to 0%
nominal interest rates; and at the same time the money-GNP ratio is required
to head-off to infinity.  Taken alongside the weaker econometric evidence on
the existence of a long-run log-linear money demand relationship, this would
lead us to be cautious in reading LucasÕ welfare results too literally.

However, we have found greater empirical support for a log-linear description
of money demand dynamics following an interest rate change.  The short-run
adjustment in money balances following an interest rate change does seem to
depend crucially on the level from which interest rates are starting out.  This

_____________________________________________________________
(30) We assessed the sensitivity of these estimates by looking at some sub-samples estimates, in
particular looking at the period from 1970 onwards.  This slightly lowered the implied welfare
benefits.
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sounds like an intuitively plausible description of agentsÕ portfolio allocation
decisions.  In the long run, it is the absolute amount of interest income
foregone which dictates agentsÕ money holdings.  But in the shorter run,
proportional changes in interest income are important in determining the
speed with which equilibrium money balances are restored.  This
short-run/long-run distinction is important when understanding the dynamic
response we would expect from narrow money in response to an interest rate
change − currently a key issue as the rate of inflation has fallen among
developed economies.

As for welfare costs, the present value of the welfare gains implied by even
our semi-log specification are still non-trivial.  Nominal interest rates in the
United Kingdom are currently around 6%.  Our partial equilibrium analysis
suggests an optimal nominal interest rate of around 2%.  The net welfare gain
when moving from 6% to 2% nominal interest rates is around 0.22% of
GNP.(31)  With a discount rate of 5% and real growth of 2.5%, this gives a
net welfare gain equal to around 9% of initial GNP.  In 1995, that would
have amounted to around £60 billion.  And that is more than twice the
current size of the Bank of EnglandÕs balance sheet.

_____________________________________________________________
(31) This result is derived from the integral of the net welfare gain from 6% to 2%.  To the
results in Table D the reader should add 0.07%, as the net gain of moving from 6% to 5%
interest rates.
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Appendix

To test the sensitivity of the welfare gain estimates obtained from reducing
nominal interest rates in the steady state we present alternative estimates
based on a base money demand equation over the period 1970-94.(32)

Overall, Table E shows that with the log and semi-log interest rate
specification for the base money demand function the estimated welfare gains
of reducing nominal interest rates are well below those obtained over the full
sample.  And the welfare gains remain larger with the log than with the
semi-log specification.  The optimal interest rate appears to be 3% for the
semi-log formulation and 0% for the log model.  Lowering nominal rates
from 5% to 0% in the semi-log model now leads to welfare losses due to the
decline in seigniorage benefits.

Table E
Welfare gains −−−− base money, log (semi-log) specification
(1970-1994)
Nominal
interest rate
(%)

Base
money/GNP

Interest rate
range (R1 -
R2) (%)

Gross welfare
gains
w(R1, R2)
(% of GNP)

Seigniorage
losses
s(R1, R2)
(% of GNP)

Net welfare
gains
w(.)-ξξξξs(.)
(% of GNP)

1 0

 5

 4

 3

 2

 1

 0.01

 0

0.02 (0.02)

0.03 (0.03)

0.04 (0.03)

0.04 (0.04)

0.06 (0.04)

0.09 (0.04)

1.52 (0.05)

∞     (0.05)

10-5

  5-4

  4-3

  3-2

  2-1

  1-0

  5-0

10-0

0.08   (0.07)

0.02   (0.01)

0.025 (0.009)

0.03   (0.007)

0.04   (0.005)

0.14   (0.002)

0.26   (0.03)

0.34   (0.10)

0.05   (0.06)

0.013 (0.02)

0.015 (0.03)

0.019 (0.03)

0.026 (0.04)

0.086 (0.04)

0.16   (0.16)

0.21   (0.22)

0.06    (0.05)

0.017  (0.004)

0.02    (0.001)

0.024 (-0.003)

0.034 (-0.007)

0.11   (-0.01)

0.21   (-0.02)

0.27    (0.03)

Welfare gain estimates derived from an M3 demand function (over the full
sample) are given in Table F.

_____________________________________________________________
(32) Welfare gains can also be derived from an M3 demand equation, but since part of M3 is
interest-bearing we consider these estimates to be less reliable.
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Table F
Welfare gains −−−− broad money M3, log (semi-log)
specification (1872-1994)
Nominal
interest
rate (%)

Base
money/GNP

Interest
rate range
(R1 - R2)
(%)

Gross welfare
gains
w(R1, R2)
(% of GNP)

Seigniorage
losses
s(R1, R2)
(% of GNP)

Net welfare
gains
w(.)-ξξξξs(.)
(% of GNP)

1 0

 5

 4

 3

 2

 1

 0.01

 0

0.42 (0.40)

0.51 (0.52)

0.54 (0.55)

0.58 (0.58)

0.65 (0.61)

0.78 (0.64)

2.61 (0.68)

∞     (0.68)

10-5

  5-4

  4-3

  3-2

  2-1

  1-0

  5-0

10-0

0.60 (0.90)

0.14 (0.13)

0.15 (0.10)

0.16 (0.08)

0.18 (0.05)

0.28 (0.02)

0.91 (0.38)

1.51 (1.28)

1.69 (-0.079)

0.39  (0.014)

0.41  (0.035)

0.45  (0.065)

0.52  (0.11)

0.78  (0.16)

2.54  (0.38)

4.23  (0.30)

0.05    (0.92)

0.011  (0.12)

0.011  (0.09)

0.013  (0.06)

0.014  (0.015)

0.022 (-0.035)

0.07    (0.25)

0.12    (1.17)
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