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Abstract

This paper explores the theoretical implications of parameter uncertainty for
the optimal monetary policy reaction function.  The policy-maker sets the
nominal interest rate to meet an inflation target in a simple dynamic model of
the economy.  The paper looks at how parameter uncertainty in the
transmission mechanism affects the optimal nominal and real interest rate
relative to the case when the parameters are known.  Its chief contribution is
to show that three consequences are identified:  conservatism (smaller
deviations of real and nominal interest rates from some neutral level in
response to inflationary shocks), gradualism (increased autocorrelation in
real and nominal interest rates) and caution (a smaller cumulative policy
response).  The paper examines the sensitivity of these effects to different
specifications of the transmission mechanism;  in particular the introduction
of an exchange rate channel.  The paper also considers situations in which a
more aggressive response may be called for.
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1.  Introduction

The certainty equivalence principle states that an optimising policy-maker
can ignore uncertainties about disturbances to the economy when setting
policy and proceed as if in a certain world.  This principle has played an
important role in policy discussions since its introduction by Simon (1956)
and Theil (1958).  But Brainard (1967) showed that when optimising policy-
makers are uncertain, not only about disturbances but also about various
elasticities in the transmission mechanism, there were circumstances under
which they should decide what should be done according to certainty
equivalence, and then do less.  This is what Blinder (1997) calls the Brainard
conservatism principle, and it has been of considerable interest to policy-
makers recently (see for example the minutes of the Bank of England’s MPC
meetings (1998), Goodhart (1998), Vickers (1998), and Cecchetti (1998)).

This paper reviews Brainard’s contribution in the context of a simple
open-economy dynamic model, which encompasses the closed-economy
model used by Svensson (1997a) to discuss inflation targeting.  The model is
a linear IS-LM economy (both open and closed variants are considered) with
a quadratic objective function for the policy-maker.(1)   The framework is
simple but nevertheless useful for discussing several policy-relevant issues.

In a certainty equivalent model with only additive uncertainty and no
parameter uncertainty, the optimising policy-maker responds fully to offset
shocks immediately after they have been observed.  The additive
disturbances result in a deadweight loss to the policy-maker, but do not alter
the authority’s incentives from those faced in a model without uncertainty.

Introducing Brainard uncertainty (ie uncertainty about the parameters in the
transmission mechanism) can result in inflation deviating from target for
longer than in the certainty equivalent model.  This consequence is optimal:
aggressively setting interest rates to achieve expected inflation equal to
target can increase the likelihood of missing the target by a large amount
when there are uncertain elasticities.  This is because the variance of future
inflation outturns is positively related to the aggressiveness of policy.  In
__________________________________________________________
__
(1) Chow (1977) and Svensson (1997b) discuss optimal policy rules for dynamic models
with random coefficients.  Svensson (1998) considers inflation targeting in an open-
economy framework.
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this way, parameter uncertainty, unlike additive uncertainty, changes the
incentives facing the policy-maker, and so policy is necessarily set
differently from a world of purely additive shocks.

The extension of the basic Tinbergen (1952) and Theil (1958) approach to
one which accounts for estimated second moments as well as first moments
could be argued to be a narrow (if important) interpretation of the
uncertainty facing economic policy-makers.  The econometric model’s
structure is taken as given and for a stable regime, a large data set and
efficient estimation techniques, the uncertainty about parameters can be
reduced to some level.  According to Knight (1937), this is a model of ‘risks’
that can be assessed probabilistically, and Brainard’s analysis provides
optimal policy in the face of such risks.  It could be argued that there is much
uncertainty about the form of the true model, eg relevant variables and
correct lag specifications as well as unknown coefficients.  This has been
labelled ‘Knightian uncertainty’, or model uncertainty.  Techniques to deal
with model uncertainty were developed in other disciplines but have only
recently been applied to problems of monetary policy, by Onatski and Stock
(1999), and Sargent (1999).  The tendency for approaches based on model
uncertainty to advocate an activist solution is discussed in Batini, Martin
and Salmon (1999).

In the model presented below, there are three separate effects of parameter
uncertainty on policy.  The first effect is conservatism which, following
Blinder, we define as a smaller policy response to a given deviation of
inflation from target at a point in time than under additive uncertainty.  The
second effect is gradualism.  Here we adopt Goodhart’s (1996) definition:
gradualism is the smoothing of the response of interest rates to an
inflationary disturbance such that ‘instead of adjusting interest rates by a
large enough jump, whenever inflation begins to deviate from its desired
path, the authorities prefer to make relatively small changes’ (page 1).  A
similar definition is given by Sack (1998) who writes that ‘gradual monetary
policy would smooth the response of the funds rate to a change in the state
of the economy, resulting in higher serial correlation of funds rate changes
than expected from the dynamic behaviour of the economy’ (page 4).  Given
a disturbance to inflation, gradualism (based around these definitions) is
interpreted as smoothing the policy response required to return inflation to
target over a longer horizon than in a certainty equivalent world.  Finally we
define a third effect:  caution.  A policy-maker is said to be cautious if the
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cumulative policy response to a disturbance to inflation is less than under
purely additive uncertainty.  The three concepts are obviously related, as is
made clear below.

In this simple model the nominal interest rate is the policy-maker’s
instrument.  However output and inflation are influenced by the real interest
rate, linked to the nominal interest rate by the Fisher equation.  The
policy-maker needs to decide the desired stance of monetary policy (ie the
level of the short-maturity real interest rate relative to some ‘equilibrium’
level consistent with the inflation target), which in conjunction with
observable expectations of future inflation, enables the policy-maker to
decide the optimal level of the nominal interest rate.  The aim of this paper is
to characterise the implications of parameter uncertainty on conservatism,
gradualism and caution for both the nominal interest rate (the instrument)
and the real interest rate (the monetary stance), for both the closed and open
variants of the model described below.

The main findings are:

• For a wide range of parameters in our simple model, Brainard uncertainty
results in conservatism, gradualism and caution in desired real interest
rate and in the nominal interest rate instrument.

 
• The conservatism results are almost identical to those in Brainard’s static

model.  However a more conservative real interest rate response will lead
to a larger deviation of inflation expectations from target.  This will be
reflected in the nominal instrument, but for a wide range of plausible
parameter values this effect will not outweigh real interest rate
conservatism, resulting in conservatism in the nominal interest rate.

• Gradualism in the desired monetary stance (ie the real interest rate) is
accompanied by gradualism in the instrument.  This is because as long
as the authority wishes to keep monetary conditions tight (or loose), it
must use the nominal interest rate to do so.

 
• If shocks to inflation have a permanent effect on the level of inflation, the

desired real interest rate in the closed-economy variant may not display
caution.  Rather, the cumulative response can be the same as in the
benchmark additive-uncertainty model.  But even when inflationary
shocks have a permanent effect in the open-economy model, the real
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interest rate again displays caution.  This is because the open-economy
variant’s transmission mechanism operates through both the domestic
real interest rate and the real exchange rate, and the optimal monetary
policy leads to the real exchange rate having a stabilising effect on
inflation.

 
• But it is possible that, under parameter uncertainty, caution in the

desired real interest rate can be accompanied by a larger total nominal
interest rate response than under purely additive uncertainty.  This is
because inflation expectations rise in response to an inflationary
disturbance, and could drive a sufficiently large wedge between the
cumulative real interest rate response and the cumulative nominal
interest rate response.

The rest of the paper is organised as follows.  Section 2 describes the
open-economy model and how it nests the closed-economy variant, as well
as the policy-maker’s preferences.  Section 3 considers the closed-economy
variant under additive uncertainty, then introduces parameter uncertainty
and examines the implications for conservatism, caution and gradualism.
Section 4 reverts to a particular case of the open-economy model (for which
an analytical solution is obtainable), to provide a comparison of the effects
of parameter uncertainty when there is an exchange rate channel of monetary
policy, as well as the direct real interest rate channel.  Section 5 discusses
‘optimal’ policy prescriptions where an aggressive response is called for.
Section 6 concludes.

2.  The model

The issue of parameter uncertainty is considered in an amalgam of the
Svensson (1997a,b) model of inflation targeting in a closed economy and the
Dornbusch (1976) model of a small open economy.
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All variables (except interest rates) are in logs, so inflation is the difference
between the current and previous period’s price level.(2)  Inflation π t  is

described by a backwards-looking Phillips curve:

11 ++ ++= tttt ya εδππ (1)

Output, ty , is decreasing in the real interest rate, tr , and increasing in the

real exchange rate, tq , as in a simple IS specification:(3)

ttt qry γθ +−= (2)

Eliminating output gives:

11 ++ ++−= ttttt cqbra εππ (3)

where δθ=b  and δγ=c .  This gives the basic reduced-form process for

inflation that we shall use.

To rule out arbitrage opportunities, the exchange rate is driven by UIP.  We
focus on the real exchange rate, which is driven by real interest
differentials :(4)(5)

__________________________________________________________
__
(2) The price level, real output etc are to be taken as end-period values, and inflation
rates and interest rates are to be taken as ruling over a period.  So, for example, 1−tp  is

the price level at the end of period t-1, and tp  the price level at the end of period t.

The inflation rate tπ rules over period t.  The nominal interest rate ti  is set at the end

of period t to rule over the next period.
(3) Note that equations (2) and (4) do not include dynamics or an error term.  This would
considerably complicate the model presented here at the expense of clarity.  Martin and
Salmon (1999) present an empirical model which places less restrictions on the
dynamics and number of shocks.
(4) 1E +tt x  refers to the expectation of variable x at t+1 conditional on time t

information.
(5) It is assumed that real UIP is an arbitrage condition, and therefore (4) is an identity
with no uncertainty about the coefficients in this equation.
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*E 1 ttttt rrqq −=−+ (4)

The real interest rate set at the end of period t to rule over t+1 is equal to the
nominal interest rate in the same period minus expected inflation over period
t+1, where expectations are formed at the end of period t.

1E +−= tttt ir π (5)

To tie down the exchange rate, the foreign real interest rate is normalised to
zero.(6)

This model is very simple.  One limitation is that it does not account for
direct exchange rate effects on the price level (ie the nominal exchange rate
does not enter the domestic price index directly) so, for example,  there is
relatively little import penetration.  The results on parameter uncertainty are
unlikely to be seriously affected by this.  Another limitation is that the model
does not have a forward-looking component to the Phillips curve.  To extend
the model to incorporate this would seriously complicate the analysis and so
we do not consider it here.

We shall assume that additive and parameter uncertainty is characterised by:
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The inflation target, tπ , is normalised to zero.  The policy-maker’s objective

is to set the domestic nominal interest rate to minimise the present
discounted value of expected deviations of inflation from target subject to
the reduced-form processes for inflation and the real exchange rate, (3) and
(4).  The problem can be solved using dynamic programming, but Svensson
(1997a,b) notes that the solution often coincides with solving a sequence of

__________________________________________________________
__
(6) A more satisfactory model would allow for foreign shocks (which might be correlated
with domestic shocks), by letting the foreign real interest rate follow a random process.
This is not pursued here because it complicates the analysis.



13

one-period problems where the policy-maker’s objective function to be
minimised each period is :(7)

2
1+ttE π (7)

Choosing the optimal level of the nominal interest rate requires the
policy-maker to know two things:  the optimal degree of monetary tightness
ie the level of the real interest rate that is required to meet the policy
objective (7), and the rational expectation of the next period’s inflation as a
result of past shocks and policy settings.  Once these are computed, the
optimal nominal rate is the sum of these two quantities.

This paper exploits the simple structure of this variant of the Svensson
model to derive some intuitive conclusions about the effect of parameter
uncertainty on optimal policy.  The closed-economy variant is an example of
the general linear-quadratic model (so called because the objective function
is quadratic and the constraint is linear).  Chow (1977) generalised Brainard’s
analysis to this general linear-quadratic framework and showed that the
presence of conservatism in the optimal rule would depend on a range of
model parameters.  Aggressively moving the instrument still injects variance
into future inflation, but there is the possibility of offsetting factors, and so
one avenue is to test empirically whether this effect dominates in more
general models.  This approach was adopted by Sack (1998), Shuetrim and
Thompson (1998) and Martin and Salmon (1999).  It is less clear how
parameter uncertainty would affect a purely
forward-looking model like Woodford (1999).

3.  The closed economy

3.1  The benchmark:  additive uncertainty

This section analyses the baseline closed economy (based on Svensson
(1997a)) with additive uncertainty, with which we can contrast the effects of
parameter uncertainty.  The policy-maker knows the structure of the
transmission mechanism between real interest rates and inflation, embodied
__________________________________________________________
__
(7) See Appendix 1 for details.
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in (3).  But since the economy is closed, the coefficient on the real exchange
rate c equals zero.  It is also assumed that the authority can quantify with
certainty the size of the multipliers a and b.  But inflation is subject to
random, serially uncorrelated disturbances:

11 ++ +−= tttt bra εππ (8)

Recall that, in order to set the optimal nominal interest rate, the authority
needs to compute the desired monetary stance (deviation of the real interest
rate from equilibrium) and the associated inflation expectation.  The desired
path for the real interest rate minimises expected squared deviations of
inflation from target:

( )2
1

2
1 EE ++ +−= tttttt bra εππ (9)

Differentiating with respect to tr  and setting the result equal to zero gives:

tt b
a

r π= (10)

To see the dynamic path of real interest rates in this model as a function of
additive shocks to the economy, we need to find the equilibrium inflation
process, ie the process accounting for the authority’s desired path for the
real interest rate.  This is obtained by substituting (10) in the process for
inflation (8):

11 ++ = tt επ (11)

Given this equilibrium process for inflation, the desired path for the real
interest rate in terms of the additive shocks is:

tt b
a

r ε= (12)

To achieve the desired path for the real interest rate given that inflation
expectations are zero, the nominal interest rate is set equal to the desired real
rate plus expected inflation:
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ttttt b
a

ri επ =+= +1E (13)

Once a disturbance has been observed, the optimal response is completely
to offset it so that, in the absence of any new disturbance, inflation would be
back at target.  With this policy, inflation is driven only by the new shock
each period, and nominal interest rates it move solely in response to this
period’s shock tε , impacting on inflation next period.  The

policy-maker moves the nominal interest rate aggressively to return the
expectation of next period’s inflation to target;  otherwise the policy-maker
would be ignoring systematic deviations of inflation from target.

3.2  Parameter uncertainty

One possible situation is that the policy-maker knows the structure of the
equations describing the economy, but does not know the size of the
multipliers and has to estimate them.  This will give point estimates and
variances of the multipliers a and b, and covariances between random
variables in our example (as set out in (6)).  First assume that the covariances
are zero (the case where they are not is discussed later in Section 5).

The policy-maker’s goal is again to minimise the squared deviation of
inflation from the target expected at time t.  At this point it is useful to note
that the expectation of a random variable equals its squared bias plus the
variance:(8)

{ } [ ]11
22

1 varbiasE +++ += tttttt πππ (14)

Substituting in (8), this expression can be expanded to:

__________________________________________________________
__
(8) In this case, the bias of a random variable πt is defined as ( )21 *)(EE ππ −+ttt and

measures how far expected inflation is from target.  Equation  (14) follows from the
fact that:

( ) ( ) ( )211
2

1
2

1 )(EE*)(EE*E ++++ −+−=− ttttttttt ππππππ

where the second term is the variance.
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{ } [ ]222222222 2 εσσπσππ +++−+ tbtatttt rrbarba (15)

Note that both the bias and the variance terms depend on the real interest
rate, hence both terms will depend on the authority’s actions.  But there is
only one instrument available so there must be some trade-off between bias
and variance.  This is in contrast to the additive uncertainty case, where the
variance term depends only on the exogenous variance of the additive error
and so is independent of the policy-maker’s actions.  In this case there is no
trade-off and the policy-maker can eliminate the bias in inflation.

3.3  Conservatism:  scaling down the certainty equivalent response

To compute the desired process for real interest rates, the loss function (15)
is minimised with respect to the real rate.  This gives:

t
b

t b
bar π
σ 22 +

= (16)

To facilitate comparison with the certainty equivalent case, let v denote the

coefficient of variation, 
b

bσ
, and define the parameter, g, such that

21
1
v

g
+

= .  Then (16) can be re-written so that:

tt b
agr π= (17)

The coefficient g indicates the ‘gap’ identified by Brainard (1967, page 415),
and allows the response under parameter uncertainty to be written as a
fraction of the certainty equivalent response (since g has to lie between zero
and one).  This fraction is determined purely by the coefficient of variation,
v, ie the relative size of the uncertainty (measured by the standard deviation)
and mean of the policy multiplier.  When uncertainty is large relative to the
mean then g will be small.  As uncertainty decreases relative to the mean of
the policy multiplier, g tends to one and the optimal response approaches
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that under certainty equivalence.  Equation (17) shows that the authority
desires smaller deviations of the real interest rate from the ‘neutral level’
than when there is only additive uncertainty.  Unlike the additive uncertainty
case, where it is costless to move the real interest rate, any deviation of the
real interest rate from neutral injects variance into future inflation.  So in the
absence of covariances, it is never optimal to completely offset a shock in
any period.  The result is a path for the real interest rate that does not
completely offset inflationary shocks as soon as they are observed.  The
proportion of the shock that is offset each period is determined by the real
interest rate that equates the marginal benefit of a further reduction in the
bias with the marginal cost of the variance induced in future inflation.(9)  This
is the standard case of what Blinder (1997) has called ‘Brainard
conservatism’.

Substituting the interest rate rule back into the equation for inflation and
taking expectations gives:

( ) ttt ga ππ −=+ 1E 1 (18)

The optimal nominal rate is the sum of the real rate (17) and expected
inflation (18):

( ) tttt vb
b
ag

ga
b
ag

i πππ 21)1( +=−+= (19)

Equation (19) shows that the implications for the nominal interest rate of real
interest rate conservatism could be ambiguous.  Because the nominal
interest rate is the sum of the real interest rate and inflation expectations,
there are two opposing effects on the nominal rate.  The first is from real rate
conservatism.  The second, opposing effect comes from the fact that rational
inflation expectations rise when the policy-maker follows a conservative real
rate policy.  The net effect will still be nominal interest rate conservatism
unless the elasticity b is sufficiently large, and a plausible parameter estimate
based on Rudebusch and Svensson (1999) suggests that  that this is
unlikely to be the case.

__________________________________________________________
__
(9) The relative cost and benefit of moving the real interest rate is captured by the
coefficient of variation ν.
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3.4  Gradualism:  smoothing the dynamic response to shocks

Continuing to assume that the covariances are zero, we shall compare the
autocorrelation of nominal and real interest rates, and inflation, for the rules
derived under parameter uncertainty and the benchmark model.  To do this,
we shall assume that the elasticities in the economy take on their mean
values.(10)  Then under rule (17) inflation follows a first-order autoregressive
process (as can be seen from (18)), and both nominal and real interest rates
are proportional to inflation.  Clearly then nominal and real rates follow an
AR(1) process, and in fact these processes can be shown to be:

11 )1( ++ +−= ttt b
agrgar ε (20)

( ) 1
2

1 1)1( ++ ++−= ttt bv
b
agigai ε (21)

Parameter uncertainty (with zero covariances) leads to gradualism in nominal
and real interest rates because only a constant fraction of the shock is offset
each period.  This result depends on:  i) the presence of autocorrelation in
either the economy or the shock process;  ii) the fact that the cost of moving
the real interest rate is strictly positive because of the uncertainty injected
into future inflation, so that in any period it is too costly completely to offset
the remaining bias in inflation;  and iii) the fact that the loss function is
convex so penalises for example a 2 percentage point deviation of the real
rate from neutral more than twice as heavily as a 1 percentage point
deviation.  If there is no autocorrelation, the remaining part of the shock has
no impact on inflation next period even if it is too costly completely to offset
a shock in any given period.  If it is costless to move the interest rate then
there is no reason not completely to offset the shock straightaway as in
the case of no parameter uncertainty presented in Section 3.1.  But costs can
arise for reasons other than parameter uncertainty, for example if the
quadratic loss function contained an output-smoothing objective or
imposed that deviations of interest rates from neutral entered the loss

__________________________________________________________
__
(10) This is a reasonable assumption, first because we want to compare the effect of rules
derived under additive uncertainty and under parameter uncertainty, and second because
we do not want to have to keep track of previous outturns for coefficients.
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function directly.  Finally the quadratic loss function penalises extreme
deviations making small movements more desirable (and because of
persistence, it becomes a sequence of small movements).  This is not such a
restrictive assumption, as taking a second-order Taylor expansion to many
loss functions will lead to this property.

As the variance of the policy multiplier goes to zero, the degree of
autocorrelation goes to zero and gradualism disappears.  Recall that it is
possible for the Brainard conservatism principle to hold for the real interest
rate but, in extreme cases, not for the nominal rate.  But for either nominal or
real interest rates, the degree of gradualism (ie the autocorrelation
coefficients in (20) and (21)) are equal.  This is because as long as some
component of a disturbance remains to be offset, both the nominal and real
interest rate need to be away from their neutral level.
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Notes:   Charts 1 and 2 show the impulse responses of the key variables in the model to a
one-period positive inflation shock (of magnitude +100 units, measured on the vertical
axis).  Time is measured from back to front of the charts.  From the left, the first profile
is the shock.  The next profile shows the response of inflation, which returns to target
more quickly under additive uncertainty (Chart 1) than under parameter uncertainty
(Chart 2).  The next profile shows the real interest rate, with a sharper, more aggressive
response under additive uncertainty.  The final profile is the nominal interest rate which
again shows a smoother response.
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Expressions (20) and (21) allow us to compare the impulse response of
policy to a unit additive shock ( 10 =ε  and 0=tε  for t>0).  We shall

consider the case where the interest rate multiplier b is random, and all
covariances are zero.(11)  A graphical example is shown above to give a
flavour of the results (for a 100 arbitrary unit shock).

3.5  Caution:  the magnitude of the total response

The benchmark cumulative (real and nominal) interest rate response is simple
to calculate, as the response lasts for only one period and equals a

b .  The

cumulative real interest rate response to a unit shock under parameter
uncertainty can also be calculated because, since real rates follow an AR(1)
process, the impulse response follows a geometric progression with
parameter  )1( ga − .  The cumulative real interest rate response (ie the sum

of this geometric progression) equals 2)1(1
1

vab
a

−+
, so that the cumulative real

response is lower with parameter uncertainty than under additive
uncertainty if a <1.  If the coefficient on lagged inflation in the Phillips curve
( a ) is less than 1 (in expectation if there is model uncertainty), then the part
of a shock to inflation that is not offset straightaway decays naturally with
time.  So by waiting to offset part of a shock, the cumulative response is
reduced.  If 1=a , then any part of a shock to inflation that is not
immediately offset will persist, neither decaying nor growing, until it is offset
by policy settings in subsequent periods.  So the cumulative response will
be the same with or without parameter uncertainty.  Finally, if 1>a  (but not
so large that the system cannot be made stable by the use of policy), then
the part of a shock that is not offset immediately will be magnified and
therefore the cumulative response will have to be greater.

__________________________________________________________
__
(11) This may seem at odds with the statement that b is held at its mean value, so it is
important to spell out exactly what is happening here.  The experiment is to consider
the effect of a unit additive shock to the economy, holding the coefficients a and b at
their expected values, but under a policy rule designed assuming that the coefficients are
random.  Furthermore, given that the covariances are zero, the policy rule is unaffected
by the variance of the coefficient a since this variance is just deadweight loss to the
policy-maker.
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The degree of persistence in inflation depends on various factors in the
economy.  For example, overlapping nominal contracts mean that shocks to
inflation have an effect for some considerable time.  In the limit, shocks to
inflation might be permanent.  If the process for inflation means that additive
disturbances affect the level of inflation permanently, then the cumulative
real interest rate response to a single shock will be the same whether it is
done in one period (as it would in the benchmark model) or over many
periods (as with parameter uncertainty).  Once a shock is in the system it has
a permanent effect on the level of inflation, and the only way to get it out of
the system is by using monetary policy.  Carrying out the tightening over
many periods when 1=a  is a case of gradualism without caution.  But if
shocks to inflation die out gradually over time then, by smoothing the
desired path for the real interest rate in the face of parameter uncertainty, the
cumulative real rate response will be less than in the benchmark model where
the shock is offset before it begins to die out.  In this case, parameter
uncertainty results in caution as well as gradualism in the real interest rate.
In this model, whether or not caution is optimal depends on the persistence
of the underlying process for inflation.(12)

The cumulative nominal rate response equals:

2

2

)1(1
1

va
vb

b
a

−+
+

(22)

This will be smaller than the cumulative nominal interest rate response under
purely additive uncertainty if:

ba −< 1 (23)

This is a tighter condition than that required for real interest rate caution,
which only requires 1<a .  Because not all of the shock is offset in the first
period, inflation will deviate from target in a systematic manner, hence
expected inflation will rise in the second period and thereafter.  The

__________________________________________________________
__
(12) It probably also relies on the fact that there is only one channel of monetary policy
in the closed economy model (via the real interest rate).  The introduction of other,
indirect channels (eg an exchange rate channel) could affect this result, as will be seen in
the open-economy model of Section 4.
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requirement for caution in the nominal interest rate is that this cumulative,
systematic, deviation of inflation from target is not so large that it offsets the
caution effect in real rates.  The systematic deviation of inflation from target
will be smaller, the smaller the coefficient ( a ) on lagged inflation.

It is difficult to form a view about the relative sizes of a  and b , because
from the data we observe inflation conditional on actual monetary policy.  It
may well be that the model is too stylised to attempt to parameterise the
monetary transmission mechanism in terms of two parameters.  The empirical
study by Martin and Salmon (1999) found no evidence for nominal interest
rate caution in the United Kingdom, but this does not rule out the possibility
of real interest rate caution.(13)

4.  Open-economy model

4.1  Introducing another channel to the transmission mechanism

Opening the economy up to trade and capital flows with a much larger
foreign economy means that there are now two routes for the transmission
mechanism of monetary policy:  directly through the domestic real interest
rate effect on output, and via the real exchange rate effect on net trade hence
output.  When real activity depends on the real exchange rate as well as the
real interest rate, the policy-maker moves the real interest rate less in an open
economy than in a closed economy when faced with any given shock to the
domestic economy.  This is because a disturbance which leads to an
increase in the domestic real interest rate leads to an expected depreciation
of the real exchange rate following the uncovered interest parity condition
(UIP).  This induces an instant jump appreciation which reduces the external
demand for domestic goods.  The real appreciation is not a substitute for
moving the real interest rate from neutral, as after all it is the real interest
differential that drives the real exchange rate movement.  But because a non-
neutral real interest rate affects output and hence inflation both directly and

__________________________________________________________
__
(13) The Martin and Salmon (1999) study was unable to recover ex ante real interest rates
to examine real interest rate caution.
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indirectly through the real exchange rate, the deviation of the real interest
rate from neutral can be smaller.

In the open economy, holding other things equal, when disturbances to
inflation have permanent effects ( 1=a ), parameter uncertainty will lead to
cautious policy whereas caution in a closed economy arose only with lower
inflation persistence.  Recall that in the closed-economy case, if shocks to
inflation did not die away naturally then even if the response to shocks was
smoothed, the same cumulative response would be required.  With an
exchange rate channel and an inflation target, the exchange rate acts to help
stabilise inflation as agents anticipate monetary policy.  Any component of a
shock that is not offset immediately by the interest rate response, even if
this component does not decay naturally, will be offset by a stronger real
exchange rate effect on real output and hence inflation.  Therefore, under
parameter uncertainty, the policy-maker’s decision to smooth the interest
rate response over several periods allows him to take advantage of the real
exchange rate effect and so rely less on the direct effect of real interest rates.
An alternative way to look at it is that rather than assuming inflation dies
away naturally over time, the exchange rate provides a plausible story as to
why this might be the case.

This section derives the optimal rule for a policy-maker who seeks to
minimise the present discounted value of inflation, using the nominal
interest rate, in a variant of the small, open economy model due to
Dornbusch (1976).(14)

We saw earlier that the open economy can be described in reduced form by:

11 ++ ++−= ttttt cqbra εππ (24)

*E 1 rrqq tttt −=−+ (25)

where the foreign interest rate is normalised to zero.  We again wish to
calculate the path for the real interest rate, tr , that minimises the expected

squared deviation of inflation from target, and we also want to derive the
associated real exchange rate and inflation expectation and hence the
__________________________________________________________
__
(14) Svensson (1998) considers an open-economy inflation-targeting model.
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optimal level of the nominal interest rate.  Even for this simple model, the
closed-form solutions for the real interest rate and real exchange rate are
unobtainable.  However, an approximation to the solution can be obtained
for the case 1=a , and that is a case of particular interest when discussing
caution in open and closed economies.  In both the certainty equivalent case
and under parameter uncertainty (with zero covariances), the real exchange
rate follows the process (26):(15)

tt bq π1−−= (26)

4.2  Optimal policy under additive uncertainty

In this case, the process for the real interest rate can be shown to be:

tt b
c

b
r π






 −= 1

1
(27)

Even though the response to a unit shock to domestic inflation is smaller
than in the closed economy when 1=a , this path for the real interest rate is
sufficient to result in inflation expectations being at target:

0E 1 =+ttπ  (28)

Again, with a pure inflation target and no parameter uncertainty, it is optimal
to offset any disturbances completely.  This can be done with a smaller
deviation of the real interest rate from the neutral level because of the
tightening effect via the real appreciation.  Since inflation expectations are at
target, the real and nominal interest rates again coincide so the optimal
deviation of the nominal interest rate from neutral equals the desired
deviation of the real interest rate from neutral.

__________________________________________________________
__
(15) Appendix 2 solves the open-economy model under parameter uncertainty for the
case when 1=a .  To recover the certainty equivalent case, set any variance terms to
zero.
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Because domestic shocks are offset completely as soon as they are
observed, real and nominal interest rates and inflation are not autocorrelated
in the face of domestic shocks as in the closed economy.

4.3   Open economy with parameter uncertainty

In this case, it can be shown that the desired path for the real interest rate is:

tt b
c

b
g

r π





 −= 1 (29)

This expression (29) disentangles several components affecting desired real
rates:  the coefficient g was defined earlier, and approaches zero as
uncertainty about b increases.  This scales down the real interest rate
response.  The term in brackets premultiplying domestic inflation is another
scaling effect due to the real exchange rate channel ( )

b
c−1 .

Substituting (29) into the inflation process gives:

( ) ttt b
c

g ππ 





 −−=+ 11E 1 (30)

Comparing this expression with (18) for the closed economy again shows
that parameter uncertainty scales up expected future inflation.  But the real
exchange rate channel reduces expected inflation.  From the Fisher equation,
the optimal nominal interest rate is:

( ) tt b
c

vb
b
g

i π





 −+= 11 2 (31)

This is again very similar to the closed-economy case, with the exchange
rate channel scaling down the response.
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4.4  Conservatism

In response to a domestic shock, again we get Brainard conservatism in the
real interest rate, and in the nominal interest rate for sensible parameter
values.  For the real interest rate, the scale of the reduction is again
measured by the coefficient g, and for the nominal interest rate it is again

)1( 2vbg + .  But at the same time the real exchange rate effect ( )b
c−1  also

scales down the response to shocks relative to the closed-economy case.

4.5  Gradualism

Again inflation follows an AR(1) process and nominal and real interest rates
are proportional to inflation, so they themselves follow an AR(1) process.(16)

The expressions for real and nominal rates expressed as autoregressive
processes of domestic shocks are therefore:

( ) 11 111 ++ 





 −+






 −−= ttt b

c
b
g

r
b
c

gr ε (32)

( ) ( ) 1
2

1 1111 ++ 





 −++






 −−= ttt b

c
bv

b
g

i
b
c

gi ε (33)

Clearly the real interest rate and nominal interest rate autocorrelations are
equal in the open-economy case, but smaller than their counterparts in the

closed-economy model - by a factor of 





 −

b
c

1 for 1=a (equations (20) and

(21)).  The policy-maker is less gradualist relative to the
closed-economy case because of the continual stabilising effect of the real
exchange rate while domestic policy is responding to inflationary
disturbances, which allows policy to return to neutral sooner than in the
absence of an exchange rate channel.

__________________________________________________________
__
(16) Note we are carrying out the experiment assuming that the model parameters take
on their mean values, as described in footnote 11.
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Chart 4:  Open economy,
 parameter uncertainty
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Notes:   Charts 3 and 4 contrast additive and parameter uncertainty in the open-
economy model.  The effect of parameter uncertainty is again to smooth the response of
the real interest rate to inflation shocks, and since this allows inflation expectations to
deviate from target for a while, a wedge is driven between the real and nominal interest
rate response.  The dampening effect of the real exchange rate on the desired real
interest rate scales down the optimal response of the real and nominal interest rate
relative to the closed-economy case (Charts 1 and 2).

Charts 3 and 4 above show the open-economy responses of inflation, and
real and nominal interest rates, under additive uncertainty and parameter
uncertainty.

4.5  Caution

From expressions (32) and (33), we saw that the autocorrelation in the real
and nominal interest rate is reduced in the open economy.  This is because
any inflationary disturbance not offset directly by the action of the real
interest rate is eroded by the induced movements in the real exchange rate
(this is seen in the scaling factor ( )

b
c−1 ).  Clearly the effect of this is to

reduce the necessary cumulative response for both nominal and real rates.
In the closed economy and when 1=a  (ie when inflationary disturbances
have permanent effects on inflation), we found that the cumulative real
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response was the same under parameter uncertainty and additive
uncertainty, and caution was only evident for 1<a .  But because of the
dampening effect of the real exchange rate each period in the open economy
there will be real rate caution even when 1=a , because over time the real
exchange rate will have helped to offset the shock.  To see this, note that in
response to a unit inflation shock, the path for the real interest rate is a
geometric progression in ( )( )

b
cg −− 11 .  The cumulative real interest rate

response under parameter uncertainty is:















+






 −

b
cvb

c
b 2

1

1
1

1
(34)

compared with the following under purely additive uncertainty:







 −

b
c

b
1

1
(35)

So in the open economy with 1=a , parameter uncertainty induces caution
since (34) is always strictly less than (35).

Because of this real interest rate caution and the dampening effect of the real
exchange rate on inflation expectations, the model will exhibit nominal
interest rate caution for a wider range of parameter values than in a closed
economy.  (This can be seen by summing the cumulative nominal response.)

4.6  Over and undershooting

In the Dornbusch (1976) model, the sluggish adjustment of prices following
a change in the money stock led the nominal exchange to overshoot its new
long-run equilibrium.  The model presented here is similar but with an
interest rate instrument and inflation target.  In this model the degree of
overshooting depends on parameter uncertainty.(17)

__________________________________________________________
__
(17) To simplify things in this section, assume that the equilibrium domestic and foreign
price levels and the equilibrium nominal exchange rate are constants, and the domestic
and foreign inflation targets equal zero.
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To understand the nominal exchange rate we need to understand the
behaviour of the price level and of the real exchange rate.  The path for the
price level is determined by the size of an inflationary shock and the rate at
which it is offset (ie the policy rule).  Under additive uncertainty, a unit
shock raises inflation from zero to one in the first period, and inflation is
returned to zero in the second period.  So the price level adjusts from a
starting level of zero before the first period to one at the end of the first
period.  But under parameter uncertainty, the inflationary shock is offset
gradually, so the price level rises by one in the first period, then by slightly
less than one in the second period, and so on.  The adjustment of the price
level is therefore more drawn out under parameter uncertainty.

Real interest rate differentials drive the real exchange rate.  In the certainty
equivalent case, given a one-off disturbance to inflation, the policy-maker
influences real rates for one period only (tightening policy) before returning
policy to neutral.  Because this leads to an expected depreciation (via real
UIP), the real exchange rate jump-appreciates immediately, then depreciates
to equilibrium as the real interest rate is returned to neutral.  Under parameter
uncertainty, the real interest differential persists for some time as the shock
is offset gradually so the real exchange rate
jump-appreciates on the news and depreciates back to its equilibrium rate
over several periods.

For a constant foreign price level, the nominal exchange rate is the sum of
the domestic price level and the real exchange rate (all in logs).  In the
certainty equivalent case, for a one-off disturbance to inflation the price
level adjusts upwards immediately, and the real exchange rate immediately
falls (appreciates).  So the nominal exchange rate might jump-appreciate or
depreciate depending on which effect is the larger.  But in the long run the
nominal exchange rate must depreciate to its new long-run level because of
nominal UIP.  The possibility arises that the nominal rate might jump in the
‘wrong’ direction (see Charts 5 and 6 below).  Parameter uncertainty will
certainly smooth movements in the exchange rate, because of gradualism in
the real interest rate (avoiding something akin to what Goodfriend (1991) has
described as ‘whipsawing the financial markets’), but a similar ‘wrong-way’
jump could occur.  In all cases, the exchange rate does not jump straight to
its new equilibrium level, which is in the spirit of Dornbusch’s model.
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Notes:   In Charts 5 and 6, we again measure the magnitude of the response on the
vertical axis (again the response is to a 100 unit shock), but to focus on the detail of the
initial exchange rate response, time is now measured from left to right on the horizontal
axis.  In both charts, the profile on the left is the price level, which adjusts immediately
to its new level under additive uncertainty.  The middle profile on both charts is the
nominal exchange rate and the rightmost profile is the real exchange rate.

5.  When a more aggressive policy might be optimal

This section focuses on the question:  when does theory suggest that the
policy-maker should follow an aggressive interest rate policy?

5.1  Covariances:  when Brainard conservatism breaks down

So far the covariances between parameters and the additive error have been
assumed to be zero.  But as Brainard noted, the size and sign of covariances
has implications for optimal policy.  This section asks if we can draw any
conclusions about such covariances, back in the closed-economy variant of
the model.

Following Chow (1977), the optimal policy when covariances are non-zero
can be shown to be of the form (see Appendix 1):
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(36)

The term tm  is a function of, among other things, the covariance between b

and the additive error.  A non-zero covariance between the disturbance and
the policy multiplier ( ερb ) could lead to real rates being kept away from

neutral in the steady state via the term tm , although as is explained in

Appendix 1, the sign of this coefficient will be difficult to determine.  A large
positive covariance between the policy multiplier and the coefficient on
lagged inflation ( abρ ) could overturn the conservatism result leading to a

larger response to a given deviation of inflation from target than in the
certainty equivalent case.(18)

Such covariances will also influence the behaviour of expected inflation, as
can be seen by substituting the policy rule (36) in the process for expected
inflation:
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+
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=+ π

σ

ρσ
π

22

2

1E (37)

We have shown that the effects of pure variance terms can have opposing
effects on the optimal nominal interest rate, on the one hand because of
Brainard conservatism in the real interest rate, and on the other because of a
systematic increase in inflation expectations.  With both variance and
covariance effects operating on the desired real interest rate and
corresponding inflation expectations, the sum effect on the optimal nominal
rate is complicated, and may lead to a more aggressive nominal interest rate
response.  It is therefore important to understand when non-zero
covariances may arise, and what economic interpretation the resulting
optimal policies can be given.

Consider the interpretation offered earlier that elasticities are random
because they are econometric estimators, with associated distributions.  In

__________________________________________________________
__
(18) Brainard noted this point in his original 1967 article.
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the simplest case of ordinary least squares (OLS) regression, the model can
be written as:

εβ += XY (38)

The standard OLS assumptions are that the mean of the residual vector is
zero (so ( ) 0=εE ), and the residuals are uncorrelated with constant

variance, hence the variance-covariance matrix of disturbances is diagonal
(so ( ) 2σεε IE =′ ).  The matrix of regressors X is also assumed to be of full

rank.  Then the vector of OLS parameter estimates β̂  has

variance-covariance matrix ( ) 21σ−′XX .  This has the variance of parameter

estimates on the diagonal and covariances of parameter estimates in the
off-diagonal entries.  There is nothing in the standard regression
assumptions mentioned above to guarantee that this covariance matrix has
zero off-diagonal entries:  this would require unrealistic restrictions on the
matrix of regressors X.  Furthermore, Turnovsky (1977, page 342) shows that
even if such an equation, estimated in levels, did have a diagonal
variance-covariance matrix this need not be the case for the same equation
rewritten in deviations from equilibrium.

So econometric interpretations do not rule out the possibility of non-zero
covariances.  And the algebra of the previous section recommends that the
policy-maker exploits such covariances.  The reason for this exploitation is
examined below for the case when only 0≠abρ , as the intuition is far

simpler than the case of 0≠tm .

Consider again the one-period closed-economy problem that we have been
discussing so far, where the policy-maker seeks to minimise:

2
1E +ttπ (39)

subject to:

11 ++ +−= tttt bra εππ (40)
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Recall the formula relating expectation to variance,

11
22

1 varEE +++ += tttttt πππ , so the per-period loss equals the sum of the

square of the bias plus the variance of inflation.  With parameter
uncertainty, the optimal rule will usually reduce bias only at the expense of
increased variance.

The per period loss can be expressed as the sum of (41) and (42):

ttttt rbarba ππ 2bias 22222 −+= (41)

ttabtbtatt rr πρσσπσπ ε 2var 222222
1 −++=+ (42)

When variances and covariances are zero, (42) does not depend on the real
interest rate so does not alter the policy-maker’s incentives and we are back
in a certainty equivalent world.  The variation in the bias term as the real rate
changes is:

( )tt
t

t rbab
r

−−= π
∂

∂
2

bias2

(43)

Therefore if inflation is above target by some amount, there is a marginal
benefit to increasing interest rates away from their neutral level (so
square-bias is reduced).  In a model where the coefficients a and b are
non-random, this marginal benefit should be driven to zero and we end up
with the path for real interest rates that was derived earlier tb

a
tr π= .

The marginal change in variance with respect to the real interest rate is:

( )tabtb
t

tt r
r

πρσ
∂

π∂
−=+ 21 2

var
(44)

If the covariances are zero but the variances are not, then any deviation of
the real interest rate from neutral increases the variance of future inflation.
And the further the real interest rate is from neutral, the greater is the impact
of a marginal increase in the deviation of the real interest rate from neutral.
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Because the coefficient on the real interest rate is random, the further the real
rate is from neutral, the higher the variance of future inflation.

But when the covariance abρ  is sufficiently large and positive, Brainard

conservatism breaks down and the interest rate response to inflation
deviations is larger than without parameter uncertainty.  This occurs
because the covariances between coefficients mean that deviations of the
real interest rate from neutral result in a reduced variance of future inflation
as well as reducing the bias in future inflation.

One possible interpretation of this case (noted by Brainard (1967), page 419)
is that the parameter uncertainty is costly to the policy-maker, but if the
coefficients are correlated then various uncertainties can be played off
against each other to reduce this cost.  This is analogous to the role played
by variances and covariances when managing risk ie hedging.  For example,
suppose that the policy multiplier and the inflation persistence parameter
estimates have been found to be positively correlated with a sufficiently
large covariance for it to be optimal for the real interest rate to be more,
rather than less, responsive to shocks.  Because of the positive correlation
between the multipliers, then in the outcome where inflation persists in the
system (ie the true a turns out to lie above the point estimate) that impact of
the real interest rate on inflation will be strongest (true b also lies above the
point estimate), ie when it is needed most.  Conversely, this covariance
means that in the outcome where inflation does not persist, a given level of
the real interest rate will have less effect on inflation.  It is as if the policy-
maker is insured by running an aggressive policy, because the correlation of
the random coefficients effectively ensures inflation is hit hard precisely
when it matters most.

Whether this is likely to occur is an empirical issue (although it would seem
to be an optimistic way of controlling the economy).  Applications that
calculate optimal rules assuming parameter uncertainty can be measured by
OLS standard errors can provide further clues:  the study by Sack (1998) for
the United States found no evidence of a more activist optimal rule under
parameter uncertainty.  A similar study at the Bank (Martin and Salmon,
1999) also found little evidence that, when parameter uncertainty was
accounted for, an activist policy was optimal.  In contrast, Shuetrim and
Thomson’s 1998 study of the Australian economy found a more activist rule
when parameter uncertainty was accounted for.
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6. Conclusion

The consequences of parameter uncertainty are often expressed in terms of
reduced (or increased) responses of the policy variable to deviations of the
target variable from equilibrium, embodied in Blinder’s Brainard
conservatism principle.  Central banks also need to consider the dynamic
sequence of the level of interest rates.  In the model presented here,
parameter uncertainty can result in both caution (less cumulative real and
nominal interest rate response) and gradualism (autocorrelation in real and
nominal interest rates) for a range of parameter values.  Conditions where the
Brainard conservatism principle may break down were noted by Brainard
himself, although the empirical evidence seems to be against these
conditions prevailing.

Gradualism arises because it is no longer costless to influence the real
interest rate with the nominal rate.  Parameter uncertainty increases the
variance of the distribution of future inflation when monetary policy is used
to return expected inflation to target.  The optimal response each period is to
equate the marginal cost of the extra variance injected by policy with the
marginal cost of only partially returning inflation to target that period.  As a
consequence a new shock is not completely offset in the first period after it
is observed and, because of persistence, inflation will still be away from
target next period (even in the absence of other shocks).  So the optimal
response to shocks is smoothed over more periods than in the model under
purely additive uncertainty, leading to the gradualism result in both real and
nominal interest rates.

In the closed economy, caution arises if the effect of a shock dies away
naturally with time, so the gradualism required in the face of parameter
uncertainty leads to a smaller cumulative real interest rate response.  The
cumulative real interest rate response will be the same with or without
multiplier uncertainty if shocks have a permanent effect on the level of
inflation rather than dying away naturally.  However, because the real rate
remains closer to neutral in the face of shocks, inflation expectations must
rise.  A sufficiently large increase in inflation expectations could mean that
the cumulative nominal interest rate response required to achieve the desired
cumulative real rate response is larger than that in the same model with just
additive uncertainty.
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Finally, in the open-economy variant of the model considered here, the real
exchange rate plays a part in the monetary transmission mechanism, and can
appreciate when policy is tight and depreciate when policy is loose.  The real
interest rate needs to deviate less from neutral, and may return to neutral
more quickly, but the Brainard conservatism principle is not affected.
Because of the real exchange rate channel, caution is likely to arise for a
larger range of parameter values than in the closed economy.  The
dampening effect of the real exchange rate channel allows the real interest
rate to return to neutral more quickly and so leads to a less gradualist
response than in the closed economy.
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Appendix 1:  Comparison of the dynamic programming
approach to the one-period solution

1.  Chow’s general solution of the linear-quadratic problem

This section follows chapter 10 of Chow’s ‘Analysis and control of dynamic
systems’ (1977), giving a brief summary of some of the results presented
there and their applicability to the problem set out in this paper.

Let ty  denote the vector of target variables (inflation, output etc) and tx
the vector of control variables.  tA  and tC  are the random matrices of

elasticities linking these variables and the vector tb  is a vector of additive

errors.  The equation describing the economy is:

tttttt bxCyAy ++= −1 (A1.1)

The loss function is :(19)

( ) ( )∑
=

−′−=
T

t
ttttt

t ayKayW
0

0E β (A1.2)

where 0E  is the conditional expectations operator given information at time

zero, ta  is a vector of targets, tK  is a diagonal matrix of preference weights

and β  is a discount factor less than one and greater than zero.

Chow solves the finite-period problem by backwards induction starting at
period T.  This generates the optimal feedback control equation:

tttt myMx += −1ˆ (A1.3)

__________________________________________________________
__
(19) Chow’s loss function is undiscounted, but here we allow for discounting as we want to
extend the analysis from a finite horizon model to an infinite horizon model.
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where the parameters tM  and tm  are defined as:

( ) ttttttttt AHCCHCM ′′−= −
−

− 1
1

1 EE (A1.4)
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1
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and the parameters tH  and th  are defined recursively as:

( )( ) ( )tttttttttttttttttt AHCCHCCHAAHAKH ′′′−′+= −−−−− 11111 EEEE ββ
(A1.6)

( ) ( ) ( )ttttttttttttttttt bHCMbHAhMCAaKh ′′−′−′++= −−−−−− 111111 EEE βββ
(A1.7)

With starting values TT KH =  and TTT aKh = .

The ‘solution’ in  (A1.3) - (A1.7) is difficult to interpret.  As Chow notes, the
optimal feedback rule (A1.3) is a function of conditional expectations and as
such depends on all observations of variables up to that point.  The
conditional expectations enter into the recursive equations (A1.6) and
(A1.7), equations that in general will have no analytical solution.  The
control rule is also not time-invariant.

2.  Mapping the simple ‘Brainard-Svensson’ model into
Chow’s general solution

For the simple model set out in the main text, Chow’s solution can be greatly
simplified.  The vector, ty , simplifies to the scalar, tπ , the vector, tx ,

simplifies to the scalar, 1−tr , and the vector tb  to the error term, tε .  The

random matrices tA  and tC  correspond with the random scalars a and b,

and these are assumed to be independently and identically distributed with
means a  and b  and variances 2

aσ  and 2
bσ  respectively, and covariances

abρ .  A consequence of this is that the conditional expectation at time t-1 is

the same as the unconditional expectation (the means noted above),
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providing that population variances are known (as assumed in the text).  The
matrix of preference weights, tK , becomes the scalar 1, and the vector of

targets, ta , becomes the scalar zero.

2.1 The case where the additive error does not co-vary with a or b

Given the above assumptions, 0=Th  and therefore from the recursive

relation (A1.7) 0=th  for all t.  Therefore 0=tm  for all t.  This dispenses

with the time-varying shifter in the optimal rule (A1.3).  It remains to simplify
the coefficient tM .

Note that the matrix TH  simplifies to a scalar in the model presented in the

main text, since it is equal to the preference matrix tK  which we noted

equals the scalar 1.  Hence tH  is a scalar for all t.  In fact all the matrices in

the definition of tM  are scalars.  Since, from (A1.6), the tH  are

non-random scalars, they cancel out of the expression for tM :  so basically

for the model set out in the main text the optimal rule is independent of tH .

Evaluating the conditional expectations in (A1.4) leads us to the
time-invariant optimal rule:

t
b

ab
t b

bar π
σ
ρ

22 +
+= (A1.8)

This rule is independent of the time horizon T, and so the infinite horizon
model, where T tends to infinity, has the same optimal rule, which coincides
with the one derived by the simple Svensson quick fix in the paper.

2.2  The case where the covariance of the additive error and the
parameters a and b is non-zero.

The coefficient M is unchanged.  But now 1−Th  does not equal zero and in

turn depends on the coefficient TH .  As T becomes large the fixed points of

(A1.6) and (A1.7) will in general be non-zero and depend on the variance
and covariance of a and b, as well as the covariance of the additive error and
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b.  This does not affect the coefficient tM , but does affect the additive

shifter in the optimal rule tm  which will in general be non-zero.  An

analytical solution to (A1.7) is possible, and hence an expression for tg  can

be obtained.

For the open economy case where 1=a  and the world real interest rate is
held constant at zero, the dynamic programming solution can again be
shown to coincide with the quick-fix solution.  This is essentially because
the only state variable is inflation so the above arguments relating to the
closed economy case still go through.

Finally, when allowing the horizon to go to infinity we need to check that the
objective function still converges:

+∞<∑
=

∞→

T

t
t

t

T
E

0

2
0lim πβ (A1.9)

It can be shown  that, for a range of rules including those considered in this
paper, and for uncertainty about coefficients that is white noise and serially
uncorrelated such that the resulting process for inflation is ‘not too
unstable’, this objective function converges to a finite value.  Since the
optimal rule is one of these rules, the requirement (A1.9) is satisfied.
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Appendix 2:  Solving the open-economy model for a = 1

The model in reduced form is:

11 ++ ++−= ttttt cqbr εππ (A2.1)

ttttt rrqq *E 1 −=−+ (A2.2)

with the foreign real interest rate held constant at zero.  The optimal paths
for the real exchange rate and the real interest rate are assumed to be linear
processes for tq and tr of the form: (20)

tt fr π= (A2.3)

tt kq π= (A2.4)

Substituting these expressions into (A2.1) and (A2.2) and taking
expectations gives:

( ) ttt kcfb ππ +−=+ 1E 1 (A2.5)

( )
ttt k

kf
ππ

+
=+1E (A2.6)

Equating coefficients on inflation gives:

02 =−− ffkbkc (A2.7)

Using the quadratic formula we obtain:













+±=




 +±=

fb

c
c
fb

fcfbfb
c

k
2

22 4
11

2
4

2
1

(A2.8)

__________________________________________________________
__
(20) This assumption is validated later on.
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Recalling that for small x, the binomial expansion of xx 2
111 +≅+ ,

(assuming that fbc 24 << )we obtain that:(21)

11 −− +≅ bbfck                   or                    1−−≅ bk (A2.9)

The second root corresponds to the minimum of the solution, so the process
for the real exchange rate is:

tt bq π1−−= (A2.10)

To find the optimal real interest rate policy rule, substitute (A2.10) into
(A2.5) and minimise the expected squared deviation of inflation from target
with respect to f to obtain:

22
bb

cbf
σ+

−= (A2.11)

Therefore the optimal path of the real interest rate under parameter
uncertainty, with 1=a and in the open economy is:

t
b

t b
cbr π
σ 22 +

−= (A2.12)

These processes for the real exchange rate and the real interest rate enable
the policy-maker to determine inflation expectations and hence to set the
optimal nominal interest rate (see main text).

__________________________________________________________
__
(21) Anticipating the result for f, this assumption will be valid providing that the effect of
interest rates on inflation is sufficiently large relative to the effect of the real exchange
rate on inflation, and uncertainty about the policy multiplier is not too large.
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