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Abstract

Following Blinder’s (1997) suggestion, we examine the
implications for the optimal interest rate rule which follow from
relaxing the assumption that the policy-maker’s loss function is
quadratic.  We investigate deviations from quadratics for both
symmetric and asymmetric preferences for a single target and find
that (i) other characterisations of risk aversion than implied by the
quadratic only affect dead-weight losses, unless there is
multiplicative uncertainty; (ii) asymmetries affect the optimal rule
under both additive and multiplicative uncertainty but result in
interest rate paths observationally similar, and in some cases
equivalent, to those implied by a shifted quadratic;  (iii) the use of
asymmetric loss functions leads to important insights on the issue
of goal independence and monetary policy delegation;  (iv) non-
quadratic preferences, per se, are neither sufficient nor necessary to
generate the ‘Brainard conservatism principle’ and thus do not
offer much added value when analysing policy issues of caution and
gradualism.  Our results suggest that in the context of monetary
policy-making the convenient assumption of quadratic losses may
not be that drastic after all.

Keywords:  Loss functions, uncertainty, optimal monetary policy
rules

JEL Classification:  E42, E52, E61
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1 Introduction

‘The assumption of a quadratic is, of course, subject to the
objection that it treats positive and negative deviations from target
as equally important.  The use of a fancier utility function would
provide additional reasons for departing from certainty
equivalence’.

William Brainard (1967, page 413)

Since the inception of the Tinbergen-Theil framework for analysing
monetary policy in the 1950s, there has been an uneasy acceptance
of the quadratic loss function.(1)  Brainard’s ‘realistic’(2) extensions
to the basic framework recognised this potential limitation, which
makes the lack of attention paid in the subsequent literature
surprising.  One of the most respected of academics cum
policy-maker, Alan Blinder (1997), asks for similar consideration,
and it is our intention to provide a response.(3)

This paper re-examines ‘the Brainard conservatism principle’
(Blinder, 1997, page 11) with respect to the optimal policy rule
with one instrument and one policy objective under non-quadratic
preferences.  Recall that the standard result, assuming a linear
Phillips curve and quadratic losses in the presence of additive
                                                                                                         

(1)  Both Tinbergen (1954, pages 49-51) and Theil (1966) themselves were clearly aware
of the potential limitations of quadratic losses both in terms of describing risk and
possible prejudice to the robustness of results.  For example, Theil writes
(page 19) ‘...[T]here is no particular reason to assume that the loss function should
always be quadratic...th[e] asssumption [is a] convenient first approximation.  When we
try to generalise...it appears that the results become much more complicated...it turns out
frequently that the results become completely unmanageable.  This is undoubtedly why
the quadratic loss function has such a prominent place in several fields...’.
(2)  See Tobin’s (1990) appreciation, inter alia, of the 1967 Brainard paper.
(3)  Blinder (1997, page 6) writes ‘[A]cademic macroeconomists tend to use quadratic
loss functions for reasons of mathematical convention, without thinking much about
their substantive implications.  The assumption is not innocuous...I believe that practical
central bankers and academics would benefit from more serious thinking about the
functional form of the loss function’.
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uncertainty, means that the policy instrument is set to offset any
shock completely and immediately.(4)  It is only when uncertainty is
represented in a multiplicative form —  where imperfect control
over the economy is represented by uncertainty over the impact of
policy changes on the target variable —  that the policy instrument
is moved cautiously and gradually to offset a shock.(5)  The adoption
of quadratic losses would seem to be an important part of this story
as these suggest a particular, and possibly perverse, attitude to risk.
One where, for example, the policy-maker is indifferent between a
one-period undershoot of the inflation target by 4% and a
four-period overshoot by 2% (assuming, of course, that there is no
discounting).  Also, the use of the quadratic involves the implicit
assumption of symmetry and it is worth examining how possible
asymmetries would interact with the presence of additive and
multiplicative uncertainty.

It seems quite plausible that if the characterisation of the
policy-maker’s behaviour were made in a more appealing manner
than quadratic utility, then the specific generation of the
‘conservatism principle’, in response to multiplicative uncertainty
alone, may be overturned.  In fact, much recent work in both
consumption theory and applied finance has involved  examining
the integration of newer concepts of utility to older pricing
puzzles.(6) Again, given the influence of this healthy literature, it is
surprising how little impact this has made on the analysis of
optimal policy.  And it is the examination of the robustness of the
                                                                                                         

(4)  This is because, with additive uncertainty, certainty equivalence applies and none of
the moments higher than the mean of the data-generating process for the target variable
is affected by policy action.  In our set-up, for example, only the average inflation rate
changes.
(5)  The presence of multiplicative uncertainty means that policy action affects the higher
moments of the data-generating process for the target variable (for example, the variance
of the inflation rate).  There is, therefore, a trade-off between the mean and the variance
of the target variable, which leads to some smoothing in the instrument.
(6)  See Deaton (1992) for recent developments in consumption and Shiller (1998) for a
signpost to the next generation of applied finance work in the non-expected utility
paradigm.
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‘conservatism principle’ to the deviations (sic) from quadratic
losses that will be the focus of this paper.

The rest of the paper is structured as follows.  Section 2 examines
the impact on the optimal interest rule when the loss function
reflects constant absolute risk aversion (CARA) in the face of
additive uncertainty and by analogy, other classes of risk aversion
(such as CRRA).  Section 3 examines the impact on the optimal
interest rate rule of both additive and multiplicative uncertainty
when preferences are asymmetric.(7)   Section 4 analyses
simulations of the resulting optimal rules in four different cases and
provides a graphical general solution to the time path of interest
and inflation rates following an inflation shock.  Section 5 offers
concluding remarks, discusses some implications for the optimal
delegation of monetary policy and suggests some possible further
work.

2  Deviations from quadratics:   other attitudes
to risk

The Brainard conservatism principle (leading to a cautious and
gradualist setting(8) of the instrument) results from the interaction
of multiplicative uncertainty with quadratic preferences.
Alternatively, one could take the view that such smoothing is
simply caused by a form of risk aversion (with respect to inflation
volatility) other than the one implied by quadratics.  For example,
in terms of risk, two well-known properties of the quadratic are that
the coefficient of relative risk aversion is one and that its third
derivative is zero:  the former implies that the elasticity of the
                                                                                                         

(7)  The asymmetry could, deus ex machina, be interpreted as a form of asymmetric risk
aversion.
(8)  Caution has a particular meaning in this paper:  it refers to a long-run policy stance
which is closer to its neutral level than if there were no multiplicative instrument
uncertainty.  Gradualism refers to the smoothing of an instantaneous policy adjustment
into smaller adjustments over time such that the loss occurred through induced policy
variability (owing to the presence of multiplicative instrument uncertainty) is optimally
reduced.



10

policy-maker’s marginal loss with respect to inflation is always one
and the latter implies that the variability of inflation does not affect
marginal loss.  The use of
non-quadratics might be analogous to agents smoothing
consumption in response to temporary income shocks.  One might
expect that the introduction of loss functions which deliver such
smoothing in a consumption setting will also produce interest rate
gradualism in a setting of monetary policy-making.  This is,
however, not necessarily true.  It is shown below that caution and
gradualism may not follow from non-quadratic preferences as long
as losses are symmetric and uncertainty is additive.

2.1 Introducing the framework

Consider the following simple control problem:

( )
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( ) ( ) 11 ++ +−−−=− tttt eiiba ππππ , ( )2
1 ,0~ et Ne σ+ ,  i.i.d.

(2)

where tπ ,π  and *π  refer to the inflation rate at time t, the
unconditional mean of inflation and the socially optimal rate of
inflation; δ is the discount factor; a  measures the persistence of
the inflation process; b is the policy multiplier; iit −  is the

deviation of the policy instrument from its neutral level;  and 1+te is
an additive shock at time t+1.

Equations (1) and (2) assume that the policy-maker sets a path of
interest rates such that future deviations of inflation from its target
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are minimised subject to an inflation relationship and a particular
specification of preferences.  The reduced-form process for inflation
in (2) is kept deliberately simple as the emphasis of this framework
is on the specification of the preferences of the policy-maker.(9)  The
minimal features we require are persistence in inflation (ensuring a
role for policy) and uncertainty (of the additive and later the
multiplicative form).  Inflation is described as an autoregressive
process with a long-run mean equal to π .  Inflationary persistence
is captured by parameter a  ( 10 <≤ a ).  As well as the additive
shock, 1+te , inflation can be influenced by deviations of the policy

instrument it  from its neutral level i  —  which will be set to zero
for the rest of the paper.  The policy multiplier, b  ( 0>b ),
translates policy actions into inflation outcomes and is assumed to
be
non-stochastic in this section.  The only source of uncertainty is the
additive shock, 1+te , which is normal and i.i.d. with mean 0  and

variance 2
eσ .  Note that the instrument is set at the beginning of

each period, whereas the shock occurs at the end of each period.
As a result, a shock has one-for-one first-round effects on inflation
during the current period, but stabilisation policy can offset its
second-round effects in subsequent periods.  Finally, the
intertemporal loss function in (1) consists of the infinitely
discounted sum of per-period losses ( )*

1;ππ +tL .  Discount factor
δ  takes some value between 0  and 1 .

Let us now turn to the specification of the per-period loss function.
Natural candidates for a richer description of the policy-maker’s
behaviour towards risk would be the exponential (or CARA) and the
isoelastic (or CRRA) loss functions

                                                                                                         

(9)  In a model which does incorporate a private sector with forward-looking
expectations, the sluggishness in equation (2) could be derived from the existence of
nominal rigidities such as menu costs or overlapping nominal contracts.
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( ) ( ) 1]*exp[; 1
*

1 −−= ++ ππβππ tt
caraL  with 0>β (3)

and

( ) ( ) 11;
1*

11
1*

1 −−+=
−

+−+
ρ

ρ
ππππ tt

crraL  for 1≠ρ (4)

and 0>ρ

( ) ( ) 11ln; *
1

*
1 −−+= ++ ππππ tt

crraL  for 1=ρ (4’)

As the name suggests, the CARA loss function is characterised by
constant absolute risk aversion (equal to β ), whereas CRRA

implies constant relative risk aversion (equal to ρ ).

Recall that quadratic losses,

( ) ( )2*
12

1*
1; ππππ −= ++ tt

qL

imply increasing absolute risk aversion.(10)

In order to substantiate our claim that non-quadratic preferences
(and thus other descriptions of risk aversion than implied by the
simple quadratic) do not deliver policy-caution or
policy-gradualism, we will focus subsequently on the CARA loss
function.(11)

There is, however, one important caveat before proceeding.  In the
consumption literature, smoothing occurs because of  the
                                                                                                         

(10)  Intuitively, this implies that the amount of utility one is willing to sacrifice (to avoid
the utility loss of inflation variability around its target) increases with the inflation rate.
(11)  The CRRA case is entirely analogous.
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interaction between risk aversion and an inter-temporal budget
constraint ensuring an intertemporal trade-off between
consumption today and consumption in the future.  In the
Tinbergen-Theil setting, however, there is no natural constraint on
the inter-temporal behaviour of inflation —  higher inflation does
not necessarily imply lower inflation tomorrow.  Owing to the
absence of a properly defined resource constraint, optimisation
under CARA preferences will yield unrealistic solutions for the
setting of interest rates.  If the inflation target were for example
equal to zero, optimality would require the interest rate to be set at
plus infinity because the resulting negative rates of inflation imply
policy gains.  Though the introduction of an output term in the loss
function could certainly offset some of this also allow for a more
natural and direct comparison with the quadratic paradigm perverse
tendency, we have opted for a modification of the CARA function
such that it incorporates the concept of a target.  This will also
allow for a more natural and direct comparison with the quadratic
paradigm
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2.2 Risk aversion only affects dead-weight losses

Consider the following symmetric two-part CARA loss function,(12)

( ) ( )[ ]
( )[ ]
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with βββ == 21  for symmetry.  This two-part function is
displayed in Chart 1.   Using the indicator function, the loss
function can be re-written as follows
                                                                                                         

(12)A similar framework is adopted by Horowitz (1987).

Chart 1

A symmetric two-part CARA loss function
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zero for draws above.  Equation (1) can therefore be re-written as
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As a result of the one-period control problem suggested by equation
(2), the control problem in (7) can be reduced to
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For notational convenience, set X  equal to
( ) tt bia +−−− ππππ * .  In order to evaluate the probability of the

additive shock being on one side of the split-distribution or the
other, we need to examine the probability of next period’s inflation
rate being larger or smaller than the target.  The expectations over
the indicator functions are given by:
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where ( )⋅Φ  is the cumulative density of the standard normal.  The
argument in (8) then becomes:
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where expectations are taken over the intervals [ ]X,− ∞  and

[ ]∞,X  respectively.  Equation (10) can be evaluated to give the
following expression

( ) ( ) ( )
( )( ) ( )( ) ( ) 
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and we can see that this function will be minimised when X equals
zero, ie when interest rates are set to close the gap between current
inflation and target completely and immediately.(13)

( ) ( )*10 ππππ −+−=⇔=
bb

aiX tt (12)

This expression is exactly the same as the one obtained under
quadratic losses.  It says that the deviation of the optimal interest
rate from its neutral level (recall that the neutral level has been set
to zero) is a function of two components.  The first component is
essentially a simple feedback rule, implying that the interest rate
response depends on how far last period’s inflation was away from
its long-run mean.  The second component derives from the
possibility that the inflation target does not necessarily correspond
with the long-run mean of the autoregressive inflation process.  If
the inflation target is such that inflation will have to be sustained
above (below) its long-run level, then interest rates need to be
permanently lower (higher).(14)

From (12) an important conclusion can be derived:  deviations from
quadratics (in the form of Equation (5)) do not affect the optimal
rule, as long as the Tinbergen-Theil loss function is symmetric and
                                                                                                         

(13)   Global convexity of (5) ensures that this is the global minimum.
(14)  When the inflation target coincides with the long-run mean of the inflation process,
then the optimal rule is . *).)(/( ππ −= tbati
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uncertainty is additive.  Interest rates will still be set so as to offset
completely any shock to inflation last period.

These results also imply that richer descriptions of risk aversion (to
that implied by quadratic losses) are irrelevant if the maintained
hypothesis of additive uncertainty and symmetric preferences is not
violated.  To put it differently, risk aversion merely affects
dead-weight losses.

Recall that nothing can be done about the first-round effects of an
additive shock to inflation.  Only the second-round effects to the
next, and subsequent, period’s inflation rate can be stabilised.  We
have shown that stabilisation will be complete and immediate:
there is no element of policy caution or policy gradualism.  This is
what is meant with risk aversion, per se, being irrelevant for the
optimal rule.

Of course, the extent of risk aversion is not irrelevant for the value
of the loss, which equals:

( )
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1 22 e

e
Ne

β σ

β σ
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if the optimal policy is implemented.  Note that the equilibrium
value of the loss in (13) increases with both the level of additive
variability and the extent of the policy-maker’s aversion to risk.
Intuitively, an increase in risk aversion, for example, means that a
particular level of additive variability becomes more costly as the
first-round inflationary effects cannot be undone.  As a result, at the
time that the policy-maker can act upon the shock (ie the next
period), the loss has occurred and is dead-weight.(15)

                                                                                                         

(15)  In finance theory terms, choosing a risk-aversion parameter may alter the price of
risk but as additive uncertainty is uncorrelated with policy risk;   there is no impact on
the insurable quantity of risk;  this means that the optimal plan does not alter.
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2.3 Multiplicative uncertainty is required  for caution and
gradualism

Introducing multiplicative uncertainty should affect the optimal
rule.  Multiplicative uncertainty is taken to mean that parameter b
is uncertain with some strictly positive and finite variance.  The
reason is simply that the actions of the policy-maker bring about an
additional source of variability into the loss function.  Thus the
dead-weight loss argument no longer applies.  As in the quadratic
case, this will make optimal policy cautious and gradualist.

In a framework with symmetric preferences and both additive and
multiplicative uncertainty there are now two interactions going on.
First of all, there is the earlier result that, for a given level of
additive variability, risk aversion increases the dead-weight losses
due to first-round effects on inflation.  But this does not affect the
optimal rule.  Second, risk aversion will amplify the costs of a
given degree of multiplicative uncertainty when the policy-maker
tries to stabilise the second-round effects on inflation.  The more
risk averse the policy-maker is, the more cautious and gradualist
policy will be.  In contrast to the interaction between risk aversion
and additive variability, risk aversion will not affect the dead-
weight losses through the multiplicative uncertainty channel
because this channel operates when interest rates are moved.  Since
in this model interest rate actions tomorrow cannot offset the first-
round effects on inflation today, risk aversion does not amplify the
dead-weight losses through this mechanism.

Unfortunately, the current split-CARA framework becomes
analytically intractable when multiplicative uncertainty is
introduced, so that the above claims still require verification.  In
any case, the framework has served our purpose, in that we show
formally that risk aversion is irrelevant in a setting of additive
variability and symmetric preferences.  If one wishes to examine
issues of policy caution and policy gradualism, non-quadratic
preferences (and their implications for risk aversion), per se, are
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not sufficient.  Moreover, they are not necessary as one can easily
examine these issues in a quadratic framework.

3 Deviations from quadratics:  asymmetry

The quadratic paradigm is sometimes criticised because positive
and negative deviations from the target are treated symmetrically.
In this section, we explore the implications arising from the
assumption of asymmetric losses in a setting of monetary policy-
making.  The analysis will show that a non-quadratic loss function
around a particular target is observationally similar to a quadratic
loss function around a different target, even if we allow for a rich
description of the stochastic nature of the economy.

Asymmetric losses may be an interesting way of characterising the
policy-maker’s attitude to policy outcomes, if such attitudes reflect
either (i) a view about the social welfare function,(16) or (ii) an
exogenous view of the policy-maker about the embarrassment costs
of positive as compared to negative deviations from target or both.

It must be pointed out that the inflation remit to the Bank of
England is symmetric, invalidating the application of the second
political economy line of thought.  Nevertheless, the possibility
remains that the government, when determining the level of the
inflation target, has taken into account possible asymmetries to the
social cost of inflation.  As a consequence, the level of a symmetric
inflation target may internalise possible asymmetries in the social
cost of deviations of inflation from that target.

Varian (1975), in his discussion on the losses faced by property
valuers,  suggests an asymmetric loss function which rises linearly
                                                                                                         

(16)  The social welfare function with respect to inflation may be asymmetric because of
shoe-leather-type arguments on the costs of inflation or views on the probability of debt
deflation.
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on one side of zero and exponentially on the other side.(17)  It is this
loss function, the so-called LINEX (Linear Exponential), that we
employ to examine the impact of both additive and multiplicative
uncertainty on the optimal path of interest rates.

3.1 Introducing the LINEX function

Varian (1975) introduced the following convex loss function:

( ) ( ) αβ ξγξαξ −−= expL , with 0,0, >≠ αβγ (14)

where ξ  is the deviation of the policy objective from target.(18)  We

can see that ( ) 00 =L  and that for a minimum to exist at 0=ξ  we
                                                                                                         

(17)  The argument used by Varian was that under-assessment of property values led to
approximately linear revenue losses whereas over-assessment may result in appeals,
litigation and other costs.  Zellner (1986) suggests an even clearer example by pointing
out that in the construction of dams, under-estimate of peak flows is much more serious
than an over-estimate.
(18)  In a related vein, Christoffersen and Diebold (1997) study the optimal prediction
problem under general asymmetric loss structures.
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must have .βγα = (19)    So (14) can be rewritten as:

( ) ( ) ]1exp[ −−= γξγξαξL          with 0,0 >≠ αγ (15)

Note that γ determines the extent of the asymmetry in the LINEX

function and α  scales the losses.  Chart 2 shows the LINEX

function for 1=α  and for  γ = 0.5, 1.0, 1.5.  For comparison the
quadratic losses are also plotted;  the x-axis plots the deviation, ξ .
Note that for small losses the difference between the LINEX and
quadratic appear small and, in fact, if we expand

( ) 22
2
11exp γξγξγξ ++=  we find that ( ) 22

2
1 γξξ =L .  But, of

course, for larger values of ξ  the differences in losses tend to
become substantial.  Appendix A discusses some related points on
the LINEX function.

                                                                                                         

(19)  This is simply found by differentiating  (14) with respect to ξ  and solving

for β .
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3.2 The optimal interest rule under asymmetric losses

The intertemporal maximisation problem with policy being subject
to asymmetric preferences and multiplicative instrument
uncertainty can be summarised as:
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The preferences of the policy-maker are described by a LINEX loss
function.  If, for some reason, overshooting the inflation target
( *π ) is more costly than undershooting it, we can restrict γ to be
strictly positive.  This will imply that undershooting is penalised in
an approximately linear fashion, whereas the marginal losses from
overshooting are increasing in next period’s inflation rate.  Of
course, the following analysis could also be completed for the case
where negative deviations imply exponential losses and positive
deviations imply linear losses.  But for the remainder of this paper,
we arbitrarily require γ to be strictly positive, without loss of
generality.

The aim of the exercise is to find the optimal interest rate path
which will minimise the intertemporal loss function subject to the
relationships in the above equations.  Note that control is imperfect
owing to both additive and multiplicative uncertainty.(20)  Both
sources of uncertainty are assumed to follow a normal distribution
and to be independent of each other (ie beσ = 0).  The parameter of
inflation persistence is assumed to be a known constant.

The solution can be found by solving
                                                                                                         

(20)  As to the precise nature of the uncertainty, the authorities may believe that the
parameters of the model are random variables with a particular positive variance.
Alternatively, they may regard the true (population) parameters values as being non-
random quantities in the underlying model but put some margin of error on their
estimated (sample) values.  In what follows, we assume that the underlying additive
shocks are genuine random variables (which will ensure a role for stabilisation policy)
and that the multiplicative uncertainty mainly derives from imperfect inference (which
will deliver a cautious setting of policy).  For a discussion, see Brainard (1967, pages
413-4).
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The first-order condition of this optimisation problem implicitly
defines the optimal interest rate setting (for mathematical details
see Appendix B):
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It is analytically intractable to get a reduced-form solution for the
optimal rule in the general case.  However, there are some
interesting simple special cases.

The default case:   no asymmetry and only additive uncertainty

If there is no multiplicative instrument uncertainty and the
preferences of the policy-maker tend to symmetry, then the optimal
rule collapses to

( ) ( )*1 ππππ −+−=
bb

ai tt (20)
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In order to interpret this expression, assume that a one-off additive
shock has occurred at time t, producing an overshooting of the
inflation target by x  percentage points.  Nothing can be done about
the initial boost to inflation, but as long as there is some persistence
in inflation (ie 0>a ), the second-round effects of the shock to
inflation at time t+1 (another deviation from the inflation target by
a x percentage points) will be fully neutralised.

The asymmetry case:  asymmetry and only additive uncertainty

If multiplicative uncertainty is absent and preferences are
asymmetric, the optimal rule becomes

( ) ( )
bbb

ai e
tt 2

1 2
* γσππππ +−+−= (21)

The assumption of asymmetric risk aversion produces an upward
bias in the optimal rule if overshooting is considered to be more
costly than undershooting.  It is clear that the interest rate
‘premium’ owing to risk aversion increases with the extent of
additive variability as well as with the degree of asymmetry in the
preferences of the policy-maker.

The uncertainty case:    no asymmetry and both types of
uncertainty

Allowing preferences to approach symmetry, L’Hopital’s rule
delivers the optimal rule under multiplicative instrument
uncertainty (see Appendix C):
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which is exactly the Brainard result (1967, page 414) that one
would obtain under quadratic losses.  If the coefficient of variation
( bbσ ) exceeds zero, the optimal interest rate response will be
such that the gap with the inflation target is not entirely closed.

Note that we can also solve for the long-run steady-state values of
inflation and interest rates.  This will be illustrated for the default
and the uncertainty cases.  Analytically, equations (20) and (22)
need to be matched with the steady-state condition

( )ππ −−=
b

a
i

1
(23)

which follows from Equation (2).

For the default case, the steady-state values for inflation and the
interest rate are respectively

*ππ =ss (24)

( )ππ −−= *1
b

a
i ss (24’)

This tells us that in the long run inflation will settle down at the
inflation target.  Unless the long-run mean is equal to the inflation
target, this requires continual policy intervention ( 0≠ssi ).

For the uncertainty case, the steady state can be characterised by

( )πλλ ππ −+= 1*ss where )/1/(1 22 bbσλ += (25)

( )ππλλ −−= *1
b

a
i ss (25’)
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Equation (25) shows that the long-run steady state in the
uncertainty case can be represented as a weighted average of the
long-run mean of the inflation process and the inflation target.  If
there is no multiplicative uncertainty, then λ  equals 1 (as 02 =bσ )
and long-run inflation will hit the inflation target.  The other
extreme is the case of infinite multiplicative uncertainty which
delivers λ  equal to 0 (as ∞→2

bσ ) and a long-run inflation rate
which reverts to the long-run mean of the process.  Similarly,
equation (25’) shows that the degree of activism is inversely related
to the degree of multiplicative uncertainty.  This is what we mean
by policy caution in this particular setting:  because of
multiplicative uncertainty, the long-run response of the interest rate
is biased towards its neutral level;  as a result, inflation will settle
down closer to its mean.  Note also that if the long-run mean and
the inflation target coincide, then the issue of caution entirely
evaporates:  inflation settles down at its target and interest rates at
their neutral level.

Returning to the most general case (ie multiplicative instrument
uncertainty and asymmetric preferences), note that the last two
terms in (19) result from the introduction of multiplicative
uncertainty into the asymmetry case.  An interesting issue is the
extent to which these terms lead to qualitatively different results
compared with the introduction of such uncertainty in the default
case.  In order to answer this question let us turn to some
simulation results.

4 Results

Section 3 derived expressions for the general form of the optimal
rule, equation (19) and for three relevant special cases:  that of
asymmetry (A), uncertainty (U) and the default case.  Via
simulation techniques, this section explores the implication of the
optimal rule for the setting of interest rates both as a static first-
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period choice and as a dynamic path.(21)  We are also able to derive
graphically the solution to the choice of optimal interest rates for all
four cases.  The final result allows us to answer the question of
whether asymmetric preferences are sufficient to deliver gradualist
interest rate responses and whether cautious interest rate responses
are delivered.

For expositional purposes, we have made one modification to the
general expression in Equation (19):  the long-run mean of the
inflation process has been set to zero (ie 0=π ).  This will give
further insights on the interaction between a long-run mean and an
inflation target, which are not necessarily equal.

4.1 The initial interest rate response

Chart 3 examines the initial interest rate response to inflation
shocks under the four different cases.  The size of inflation shocks
(on the
x-axis) are allowed to vary from -10% to +10% and the choice of
optimal interest rates in the first period is shown on the y-axis.  We
chose the following parameter values for the simulations γ = 1.5,
a = 0.5, b = 1, π * = 2.5, σ e

2 = 0.05 and σ b
2 = 0.5.  The parameter

choice is explained as follows.  As γ is the extent of asymmetry in
the loss function, which tends to symmetry as γ→ 0, 1.5 from
Chart 2 would seem a fair degree of asymmetry.  Parameter  a is the
extent of non policy related inflation persistence in the economy
and is set to be something below the observed persistence —  which
includes policy reaction —  typically found for modern
industrialised

                                                                                                         

(21)   The optimal rule in the general case is solved using Gauss-Newton iterative
procedures.
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economies.(22)  Parameter b is the impact on inflation of an interest
movement and set to allow for full pass-through.  Further, π * is the
inflation target and σ e

2 is the variance of additive shocks, which is
set to a small number with a value less than σ b

2 (the variance of
multiplicative uncertainty). This will ensure that the
state-independent bias in interest rates, the third term on the right
hand side of equation (19), does not swamp the interaction terms
between asymmetry and multiplicative uncertainty, the last two
terms in equation (19).

Chart 3 shows that, for this range of single inflation draws, the
optimal initial interest rate response rises linearly in the value of
the inflation draw.  In both the default case and in the A case the
initial interest rate response rises at the rate a / b, at the rate

)/1)(/( 2 bba bσ+  in the U case, and approximately the same in the
general case.  We find that in both the default and U case the
                                                                                                         

(22)   The estimated sample persistence post-Bretton Woods has been in the order of 0.5-
1.0 for OECD countries.  Of course, the non policy related persistence parameter will, in
the real world, include some expectation of likely policy accommodation.
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optimal initial interest rate response from a 5% inflation draw is
zero but that in both the A and the general case, reflecting the
asymmetry bias, an optimal initial interest rate response of zero
occurs when the inflation draw is −a/*π . ?σ e

2 /(2a).  This means
that in comparison with the symmetric cases the optimal initial
interest rate response with an inflation draw equal to target is
biased up by an intercept amount of ?σ e

2 )2/( b  in the A case but by
less in the general case, because of the interaction between risk
aversion and uncertainty, ie the last two terms in equation (19). (23)

What happens to the initial interest rate choice under increasing
parameter uncertainty?  Chart 4 examines the initial response of
interest rates to a given 10% inflation shock when the variance of b
—  the extent of multiplicative uncertainty —  is allowed to increase
from 0 to the implausible level of 2.(24)  The chart shows that the
initial interest response is state-independent of the level of
multiplicative uncertainty in both the default case and A.  But that
the introduction of multiplicative uncertainty makes the initial
response of the optimal interest rule in the general case similar to
the default case when the variance of b is set at around 1.5.  One
way of thinking about this result (if there is agreement on the other

                                                                                                         

(23) Note that, for convenience, we assume that the inflation target exceeds the
long-run mean of inflation.  Of course, the opposite case may apply as well.
(24)  For a value of b equal to 1, a variance of 2 may be considered to be implausible
because there would be an approximately 20% chance of an increase in interest rates
leading to a perverse response in inflation.
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parameters) is to argue that if the authorities think that the optimal
initial step in interest rates following a 10% inflation shock is
2.5%, they either live in a default world or a general world with
relatively large multiplicative uncertainty.  Also note that if
multiplicative uncertainty rises to implausibly large levels (ie
greater than 2) then the initial interest rate response looks similar
for the U and for the general case.  Or if the policy-maker considers
that the economic structure is chronically uncertain then, with other
factors tending to be outweighed, the initial interest rate response
will tend to zero.(25).

                                                                                                         

(25)  This result is analogous to the Friedman (1951) argument for what might be termed
‘policy passivism’.

Chart 4
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The dynamic interest rate path

We are now able to show the dynamic path of interest rates (and
simultaneously for inflation) following the calculation of the initial
response.  We assume that the inflation rate is the
beginning-of-period rate and the interest rate is the end-of-period
rate.  Following the initial inflation draw ( tπ ) and optimal interest
rate response ( it ), the economy’s inflation relationship, equation

(2) with 0== iπ , delivers a new inflation level ( 1+tπ ), and this

leads to second optimal interest rate response ( 1+ti ) and so on until
the steady-state values are reached.

Chart 5a plots the response of interest rates over time to an
inflation shock of 10% under the four cases.  The first point to note
is that the level of steady state interest rates is different in the four
cases and so then is the steady-state inflation rate, or implied
target.(26)  Second, note that in the default and A cases interest rates
return to their steady-state path at the end of the second period —
there is no gradualism.  In the two cases involving uncertainty the
return to the steady state occurs by the end of the fourth period —
ie it is gradualist.  Finally, as long as the long-run mean of the
inflation process is not equal to the inflation target, the gradualist
response also delivers one which is cautious, in the sense that the
long-run steady-state value of the interest rate will be closer to its
neutral level.

                                                                                                         

(26)  Note from the discussion in Section 3 that the implicit inflation target is identical in
the default and U case when the explicit inflation target, π * , is the same as the long-run
mean, π .
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Chart 5b plots the dynamic response of interest rates and inflation
to a 10% inflation shock in the default and general cases where the
explicit inflation target has been set to 2.5%.  For the former case,
in the absence of gradualism, interest rates and inflation arrive at
their steady-state values after one period.(27)  In the general case,
the economy is close to its steady state at the end of the fourth
period.  In the general case, because of uncertainty and risk
aversion, the LINEX loss function forces the optimal policy-maker
to drive the economy towards a lower inflation target than explicitly
stated.  It is this implicit modification to the explicit target, down to
some -1% in this case, and to the long-run mean projected by the
economy’s inflation relationship (equation (2)) which leads to the
negative bias in the long-run inflation rate and the analogous
positive bias to interest rates.

                                                                                                         

(27)  Interest rates are a negative deviation from base in this example because the inflation
target is set above the long run mean  (ie zero).
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4.3 The graphical solution

Chart 6 plots a graphical solution to the simulations presented in
Charts 3-5, namely the steady-state locus and the initial interest
rate response.  From the steady-state solution to equation (2), we
find that the steady-state locus passes through the origin with slope
(a-1)/b and cuts the initial interest rate responses at the steady-state
locus of inflation and interest rates.  This means for the four cases
shown that the default, uncertainty, general and asymmetry cases
imply successively lower inflation targets and higher steady-state
interest rates.  Just as the dynamic paths in Chart 4 showed
different steady-state interest rates, Chart 6 shows the same steady-
state in inflation/interest rate space.  The rankings of the implied
inflation targets in terms of their deviations from the default case
are parameter-dependent but from Chart 6 we are able to say that,
for positive asymmetry:  (i) the non-default cases have implied
inflation targets lower than for the default case and (ii) the implied
inflation target for the general case will always be lower than that
for the U case.
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Chart 7 plots the dynamic response of interest rates in the
inflation/interest rate space.  To find the dynamic response to an
initial inflation draw, a vertical line is displayed from the inflation
draw to the initial interest rate response for each of the four cases.
This vertical line shows the jump variable property of interest rates
in the first period.  In the cases without multiplicative uncertainty
the next step (indicated by the little arrow) is the final one and
represents the move back to the steady-state locus.  In the cases
involving uncertainty, the next steps involve exponentially decaying
movements along the initial response line back to the steady-state
locus (this is visualised by the periodic intersection of the arrow
with the relevant response path).  From the graph we can see that
the gradualist response is also cautious:  the intersection of the
response path and the steady-state locus is closer to the origin when
there is multiplicative uncertainty.

Chart 6
The Steady State Values of Inflation and Interest Rates
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So why is the inflation target lower in the non-default case?  There
are three separate reasons.  The easiest way is to first examine the
move from the default case, with no multiplicative uncertainty or
from the asymmetry case to U, we can see that arithmetically the
bias follows from the (square) of coefficient of variation in the
denominator.  Intuitively, this means that the lack of perfect control
over the economy makes the optimal policy-maker choose to base
interest rate decisions around an implicit inflation target somewhat
lower than the explicit inflation target.  Because the long-run mean
of inflation embedded in the Phillips curve relationship is  not
identical  to  that  of  the  explicit inflation target, then the
achievement of the inflation target actually requires some policy
initiative towards which, in the presence of control uncertainty, the
policy-maker minimises expected losses by aiming too low.

Secondly, if we introduce risk aversion alone to the default case,
this introduces a bias to the explicit inflation target because losses

Chart 7
Response Paths in the interest rate space
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owing to positive deviations are simply magnified with asymmetric
preferences and the rational policy-maker is able to mitigate them
by aiming for a point to the left of the minimum of the LINEX
function.

Finally, when we combine the risk aversion and multiplicative
uncertainty in the general case, for the parameters chosen, the
interaction between uncertainty and risk aversion acts to increase
the inflation target.  This is because of two separate effects:  (i) the
dichotomy between the explicit inflation target and the economy’s
long-run inflation mean mitigating the policy action we noted in
the A case and (ii) that the policy-maker will, in any case, tend
towards choosing a zero interest rate draw in the presence of
uncertain control over the economy.  For the cases involving
uncertainty the lower inflation target results in smoothing of
interest rates which, with cautious responses, delivers lower
inflation.  This is so because the interest rate response is in two
periods given the persistence of inflation.  In the A case the lower
inflation target simply implies activist first-period interest rate
setting.

The main impact of asymmetric preferences is not to overturn the
‘Brainard conservatism principle’.  It is still parameter (or what we
might to think of as control) uncertainty that leads to gradual
responses.  With either symmetric or asymmetric preferences, risk
aversion in itself does not deliver smoothing when shocks are
additive.  We can find biases in interest rate setting for additive, as
well as multiplicative uncertainty, in the case of asymmetric
preferences.  But these seem to occur in a very Brainard way  —  the
implicit quadratic is simply shifted to the left.

5 Conclusion

The paper examines the implications of non-quadratic loss
functions for policy gradualism and policy caution within the
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context of monetary policy-making. We deviate from the quadratic
framework in two respects:  first, while retaining the assumption of
symmetry, we allow the curvature of the loss function to change;
secondly, we introduce an asymmetry into the loss function.

Changing the curvature of a symmetric loss function —  for
example, by introducing constant absolute (or relative) risk
aversion —  is shown not to matter for the optimal rule as long as
uncertainty is additive.  As a result, certainty equivalence also
applies to non-quadratic loss functions provided that these are
symmetric.  So if the source of the uncertainty is about the type of
the shock, deviating from quadratics does not buy us anything new:
the optimal rule remains the same, and only the policy-maker’s
dead-weight losses are different.

As with the quadratic case under additive uncertainty, welfare
losses will be minimised at an inflation rate set equal to target.
And so it continues to make sense to hit this target as soon and as
closely as possible:  there will thus be no case for gradualism or
caution.  In order to generate gradualism and caution, non-
quadratic preferences, per se, are not sufficient as one needs to
introduce multiplicative uncertainty.  Moreover, non-quadratic
preferences are not necessary as one can easily examine these issues
in a quadratic framework.  This brings us to the conclusion that the
analytically convenient assumption of quadratic losses may not be
that unreasonable after all.

When we introduce an asymmetry in the loss function (with a
LINEX function) we find that the optimal interest rate rule is biased
in a state-independent way, if uncertainty is merely additive.
Asymmetric preferences then result in an interest rate path which is
equivalent to that implied by a shifted quadratic loss function.  If
upward risks are considered more (less) costly than downward
risks, then the minimum of the quadratic loss function is smaller
(larger) than that of the non-quadratic.  In our framework, this
means that the implied inflation target (which internalises the
asymmetry) is smaller (larger) than the stated target.
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With multiplicative uncertainty, the asymmetry does not yield
qualitatively different conclusions from changing the curvature of a
symmetric loss function: gradualism and caution only obtain when
uncertainty is multiplicative.  Moreover, simulations of the optimal
rule under asymmetry and multiplicative uncertainty show that the
interest rate paths are very similar to those implied by a shifted
quadratic.

As for caution, we have also established that multiplicative
uncertainty is not sufficient.  An additional requirement is that
long-run policy interventions are necessary.  This latter feature is
illustrated in our rather simple model by letting the inflation target
and the long-run mean of the inflation process differ.(28)

With reference to the delegation of monetary policy, the use of
asymmetric loss functions leads to a number of important insights.
First of all, if the government requires the central bank to be
goal-dependent, then the central bank should also be required to
pursue the delegated goal in a symmetric way.  This result is
consistent with the inflation remits of many central banks operating
in inflation targeting regimes, including the Bank of England.
Secondly, if there is an asymmetry in the loss function of the
government for some social welfare or political economy reason,
this need not require the loss function of the central bank to be
asymmetric as well.  The asymmetry in the government’s loss
function would simply shift the increase or decrease the level of the
mandated target (depending on the nature of the asymmetry)
without necessarily altering the symmetry of the central bank’s
objectives.

                                                                                                         

(28)   Some permanent bias to policy intervention might, however, result from a variety
of  factors, for example optimal taxation, which have not been modelled in this set-up.  It
may therefore be possible to derive such a bias without maintaining that the long-run
mean of inflation and its target are unequal.
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Perhaps Alan Blinder (1998) had himself come to a conclusion
similar to the one suggested by this paper because in the year
following his plea quoted in the Introduction he wrote ‘Sceptics
often object to certainty equivalence on the grounds that...there is
no particular reason to think that the objective function is
quadratic...[but] policy-makers almost always will be contemplating
changes in policy instruments that can be expected to lead to small
changes in macroeconomic variables.  For such changes...any
convex objective function is approximately quadratic’.

As to future research, there may be considerable interest in
exploring the implications of the results when the long-run mean
and the inflation target are allowed to coincide gradually under
some process of learning.  To do so, the next step is to incorporate
our results in a more realistic setting with agents whose
expectations about inflation influence actual inflation outcomes.  In
addition, we might suggest at least three other possible uses of
asymmetric loss functions:  in the field of examining non-quadratic
adjustment costs, for example, in models of investment;
applications in explaining the excess returns in financial markets
(ie that prices of assets may be biased);  and finally, with respect to
the maintenance of fixed exchange rate zones, where there is large
asymmetry in the policy-maker’s preferences at either limit of the
exchange rate band.
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Appendix A

Some points on the LINEX

The Arrow-Pratt coefficient of absolute risk aversion for this LINEX
loss function is(29)

( )
( ) 1exp

exp
−

−
γξ

γξγ
(A.1)

This coefficient has the property that there is risk neutrality at
0=ξ  and that rA’ > 0 and rA’’ < 0 for 0≠ξ .

The expectation of the LINEX function is given by the following
expression:

( ) ( ) ( ) 1)(expexp −−−= πππγγππγπξπ EELE impimp ,

which is minimised by differentiating (A.1) and solving the first
order conditions for impπ , the implicit inflation target.  This gives:

( )( )γππγ
π −−= expln1 Eimp ,

which can be evaluated analytically when π  has a normal
probability density function with mean µ and variance σ e

2   In this
case the moment generating function gives:

( ) 


 +−=− 22
2
1expexp eE σγµγγππ

                                                                                                         

(29)  We take the positive value of the second over the first derivative for 0<ζ  and the
negative value for 0>ζ .
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which in turn gives:

2/2
e

imp σγµπ −= (A.2)

Equation (A.2) tells us that the expectation of the loss function
tends to move away from the quadratic as γ  and v move away from
0.
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Appendix B

Deriviation of the non-linear Expection
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Derivation of the optimal rule in the general case

Consider the following optimisation problem
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The first-order condition to this problem is

( )( )[ ]{ } bibabE tttttt γπεπππγγ =−+−−+ +++
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111 exp

and, since 1+tb  and 1+tε  are independent,
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Using the earlier result for the first expectation and a similar line of
reasoning for the second one, we have
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which after taking logarithms yields
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Appendix C

Derivation of the optimal rule in the pure uncertainty case

( ) ( )

( ) ( )

( ) ( )

( ) ( ) .1

1

lim
1

1ln1lim001

1ln1
22

1lim

2

2
*

2
2

2

0
*

2

0
*

2
2

22
*

0

t
b

t

t
b

tb
t

t
b

t

t
b

t
be

tt

i
bbb

a

bi
b

i

bb
a

i
bbbb

a

i
bb

i
bbbb

ai

σ
ππππ

γσ

σ
ππππ

γσ
γ

ππππ

γσ
γ

γσγσππππ

γ

γ

γ

−−+−=



































−

−−+−=
























−+++−+−=
























−+++−+−=

→

→

→

Consequently, the optimal rule in the pure uncertainty case is
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