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Abstract

This paper extends the Svensson (1997a) inflation forecast targeting
framework with a convex Phillips curve.  An asymmetric target rule is
derived, which implies a higher level of nominal interest rates than the
Svensson (1997a) forward-looking version of the reaction function
popularised by Taylor (1993).  Extending the analysis with uncertainty
about the output gap, it is found that uncertainty induces a further upward
bias in nominal interest rates.

Keywords:  inflation targets, non-linearities, asymmetries, stochastic
control
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1  Introduction(1)

The 1990s saw the introduction of explicit inflation targets for monetary
policy in a number of countries:  New Zealand, Canada, the United
Kingdom, Sweden, Finland and Spain.  Inflation targeting has been
introduced as a way of further reducing inflation and to influence market
expectations, after disappointment with monetary targeting (New Zealand
and Canada) or fixed exchange rates (United Kingdom, Sweden and
Finland).

The relation between inflation targets and central bank preferences has
been thoroughly investigated.  On the one hand there is a theoretical
literature (Walsh (1995), Svensson (1997)) that concludes that inflation
targets can be used as a way of overcoming credibility problems because
they can mimic optimal performance incentive contracts.(2)  On the other
hand there is an empirical literature that tests whether inflation targets
have been instrumental in reducing the policy-implied short-term trend
rate of inflation (Leiderman and Svensson (1995)).  Broadly speaking, the
evidence is that inflation targets have indeed brought about a change in
policymakers’ inflation preferences.

Unlike the relation between inflation targets and central bank
preferences, a relatively underexplored issue is how to translate inflation
targets into short-term interest rates.  This is the issue of how to map
explicit targets for monetary policy into monetary policy instruments, or
how to implement an inflation targeting framework.  An exception is a
recent and important contribution by Svensson (1997a).  He shows that
—  because of lags in the transmission process of short-term interest rates
to inflation —  inflation targeting implies inflation forecast targeting.  In
his analysis the central bank’s forecast becomes an explicit intermediate

_________________________________________________
(1) This paper was written while Schaling was an Economist in the Monetary Assessment and
Strategy Division of the Bank of England.  The author is grateful for helpful comments by
Marco Hoeberichts, Alison Stuart, Tony Yates, Andy Haldane, Mike Joyce, Douglas Laxton,
Lavan Mahadeva, Peter Westaway, Jagjit Chadha, Paul Tucker, Alistair Milne, Peter Pauly and
seminar participants at the Bank of England, the South African Reserve Bank, CentER, RAU,
the University of the Witwatersrand and attendants at the third Econometrics Conference at the
University of Pretoria.  Bruce Devile and Martin Cleaves helped to prepare the paper.
(2) This literature is surveyed in Schaling (1995).  Also, by increasing the accountability of
monetary policy, inflation targeting may reduce the inflation bias of discretionary policy.  See
Svensson (1997), and Nolan and Schaling (1996).
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target and its optimal reaction function has the same form as the Taylor
rule (1993).(3)  Recently, Clarida, Gali and Gertler (1997b) have shown
that this type of reaction function does quite a good job of characterising
monetary policy for the G3.  The kind of rule that emerges is what they
call ‘soft-hearted’ inflation targeting.  In response to a rise in expected
inflation relative to target, each central bank raises nominal interest rates
sufficiently to push up real rates, but there is also a modest pure
stabilisation component to each rule.

The 1990s have also seen the development of the literature on the so-
called non-linear Phillips curve.  (Chadha, Masson and Meredith (1992),
Laxton, Meredith and Rose (1995), Clark, Laxton and Rose (1995,1996),
and Bean (1996).)  This recent literature puts the time-honoured inflation
output trade-off debate in a fresh perspective by allowing for convexities
in the transmission mechanism between the output gap and inflation.
More specifically, according to this literature, positive deviations of
aggregate demand from potential (the case of an upswing or ‘boom’) are
more inflationary than negative deviations (downswings) are
disinflationary.(4)

This paper marries both strands of the literature.  The Svensson (1997a)
inflation forecast targeting framework is extended with a convex Phillips
curve.  Using optimal control techniques, an asymmetric policy rule is
derived that implies higher nominal interest rates than the Svensson (1997a)
forward-looking version of the reaction function popularised by Taylor (1993).
This means that, if the economy is characterised by asymmetries, the
Svensson (1997a) linear target rule may underestimate the correct level of
interest rates.

The rest of the paper is organised into five sections followed by an Appendix.
The model is set out in Section 2.  The asymmetric policy rule in the
deterministic case is presented in Section 3.  In Section 4 we extend the
analysis with uncertainty about the output gap.  Section 5 compares the
implications of multiplicative parameter uncertainty for policy with those of

_________________________________________________
(3) For an interesting recent study of the Taylor rule in a UK context, see Stuart (1996).
(4) There is also the view that the Phillips curve is concave (Stiglitz (1997)).  It can be modelled
by changing the sign of ϕ in equation (2.1).  Obviously, all policy conclusions are reversed.
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the classic Brainard (1967) analysis.  Section 6 concludes, and the Appendix
provides proofs behind key results.

2  A non-linear Phillips curve

As stated by Laxton et al (1995, pages 345-46) the broad acceptance of
the expectations-augmented Phillips curve —  and the associated ‘natural
rate’ hypothesis —  led to the important conclusion that a long-run trade-
off between activity and inflation did not exist.  Subsequent research on
output-inflation linkages has focused on how expectations are formed and
the reasons for price ‘stickiness’ that cause real variables to respond to
nominal shocks.  Almost all of this work, however, has been predicated
on the assumption that the trade-off between activity and inflation is
linear, that is the response of inflation to a positive gap between actual
and potential output is identical to a negative gap of the same size.
Though analytically convenient, the linear model ignores much of the
historical context underlying the original split between classical and
Keynesian economics:  under conditions of full employment, inflation
appeared to respond strongly to demand conditions, whereas in deep
recessions, it was relatively insensitive to changes in activity.(5)

Many of the tests for non-linearity that have been performed have been
uninformative because the filters that people have chosen have been
fundamentally inconsistent with the existence of convexity.  However,
when properly tested, there is some evidence for asymmetries.  Laxton et
al (1995) find that by pooling data from the major seven OECD countries
the Phillips curve is non-linear.  Clark et al (1996) —  using quarterly
data from 1964–90 —  find that the US inflation-output trade-off is non-
linear.  Debelle and Laxton (1997) find that the unemployment-inflation
trade-off is non-linear in the United Kingdom, the United States and
Canada.  Finally, recent research at the Bank of England (Fisher et al
(1997)) also finds that a Phillips curve that embodies a mild asymmetry is
consistent with UK data.

_________________________________________________
(5) Indeed, as pointed out by Laxton et al (1995), the original article by Phillips emphasised
such an asymmetry, with excess demand having had a much stronger effect in raising inflation
than excess supply had in lowering it.
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2.1  Non-linear output inflation dynamics

The main purpose of this section is to combine a convex Phillips curve
along the lines of Laxton, Meredith, and Rose (1995) with the Svensson
(1997a) model of inflation targeting, to allow for lags in the transmission
process of short-term interest rates.  We use this model to analyse the
effects of delaying monetary policy measures on the future levels of
inflation and nominal interest rates.

The functional form we employ to represent the non-linearity in the
inflation-output relationship is

∆π α
α ϕt

t

t
f

y
y+ = •=

−1
1

11
( )  (2.1)

where π is p pt t− − 1 , ie the inflation (rate) in year t, pt  is the (log) price
level, y is an endogenous variable output, α 1 0>  and 0 1≤ <ϕ  are
parameters, and ∆ is the backward difference operator.  We normalise the
natural rate of output in the absence of uncertainty to zero.(6)  This means that
y is the (log) of output relative to potential, ie the output gap.  Equation (2.1)

is graphed in Figure 2.1.  Its relevant properties can be derived by looking at
the first derivative of f ( )• —  ie the slope of the output-inflation trade-off:

_________________________________________________
(6) With uncertainty, the natural rate of output in the non-linear model will always be below that
of the linear model.  See, for instance, Clark et al (1995).  The reason is that if output were
maintained, on average, equal to the natural rate of the linear model, then the asymmetry in the
response of inflation to demand shocks would make it impossible to maintain inflation at a
constant inflation target.  To see this formally, lead the Phillips curve one period and take
expectations at time t, which yields Et t Et yt yt∆π α α ϕ+ = + − +2 1 1 1 1 1[ / ] .  In a sustainable
equilibrium with a constant rate of inflation equal to the inflation target, Et t∆π + =2 0 .

Taking account of Jensen’s inequality we get 0 1 2 1
2= + + +f Et yt f Et yt( ) / ' ' ( )ϕ σε .  This

equality then (implicitly) defines Et yt + 1 , the average level of output in the presence of shocks.
With the convexity parameter value used in this paper ( ϕ = 05. ) this level lies about 0.1 percent
below the corresponding level of output in the absence of shocks.  Since several empirical papers
—  see for instance Debelle and Laxton (1997) —  suggest a larger gap between the stochastic
and deterministic equilibrium.
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Following Laxton, Meredith and Rose (1995, pages 349-50), it is useful to
consider the limiting values of f ( )•and its derivative for some specific values
of ϕ and y , ie:

lim ( )
ϕ

α
→

′•=
0

1f                                                                              (2.3a)

lim ( ) , ( )
y

f f
→

′•= ∞ •= ∞
1

1α ϕ

                                                      (2.3b)

Figure 2.1  The Phillips Curve
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lim ( ) , ( )
y

f f
→ − ∞

′•= •= −
0

1
ϕ

                                                      (2.3c)

′ = =f f( ) , ( )0 0 01α                                                                 (2.3d)

Equation (2.3a) shows that, as the parameter ϕ becomes very small, the
Phillips curve approaches a linear relationship, hence (as in Bean (1996)) the
parameter ϕ indexes the curvature.

Equation (2.3b) indicates that the effect on next year’s inflation rises without
bound as output approaches 1 1/ α ϕ .  Hence, as in Chadha, Masson and
Meredith (1992) —  henceforth CMM —  1 1/ α ϕ  represents an upper bound
(henceforth ymax ) beyond which output cannot increase in the short run.
Having described the Phillips curve it remains to specify the evolution of
output.  Following Svensson (1997a, page 1,115), we assume that output is
serially correlated, decreasing in the short-term interest rate and increasing in
an exogenous demand shock x :

y y i xt t t t t+ += − − +1 1 1β π( )                                                          (2.4)

where 0 11< <β .  As can be seen from equations (2.1) and (2.4), the real
base rate affects output with a one-year lag, and hence inflation with a
two-year lag, the control lag in the model.(7)  The exogenous variable is also
serially correlated and assumed to be subject to a random disturbance, εt + 1 ,
not known at time t.

_________________________________________________
(7) With rational expectations of inflation in equation (2.4), the following happens:  through the
Phillips curve (2.1) it can be seen that inflation at time t + 1 depends on the ( )f •function.  This
means that —  with model-consistent expectations —  expected inflation responds in a non-linear
fashion to the output gap as well.  More specifically, a positive output gap will increase
expected inflation by more than a negative gap will reduce it.  Of course, this implies that ex
ante real rates now also respond asymmetrically.  This add-on effect will thus reinforce the
transmission effects of the asymmetry of the Phillips curve.
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x xt t t+ += +1 2 1β ε (8) (2.5)

2.2  Optimal monetary policy

As in Svensson (1997a), monetary policy is conducted by a central bank with
an inflation target π* (say 2.5% per year).  We interpret inflation targeting as
implying that the central bank’s objective in period t is to choose a sequence of
current and future interest rates { }i tτ τ=  such that

{ }
[

( * )
]

i

t

tt

tMinE δτ πτ π

τ
− −

=

∞
∑

2

2
   (2.6)

where the discount factor δ fulfills 0 1< <δ and the expectation is
conditional on the central bank’s information set, Ω t , which contains current
(predetermined) output and inflation, its forecast of the demand shock and its
perception of the asymmetry in the economy ϕ .(9) Thus the central bank
wishes to minimise the expected sum of discounted squared future deviations
from the inflation target.  This is consistent with the United Kingdom’s new
monetary framework, where the operational target for monetary policy is an
underlying inflation rate (measured by the twelve-month increase in the RPI
excluding mortgage interest payments) of 2.5%.  For simplicity we focus on

_________________________________________________
(8) It is not really necessary to specify a distribution as long as it is assumed that this has finite
support.  This is necessary because by inverting the Phillips curve it can be seen that output will
hit the constraint if inflation goes to infinity.  With inflation targeting (that serves as a natural
brake on the expansion of output) and (appropriately specified) finite support of shocks, inflation
will always be close enough to the target to prevent output hitting the capacity constraint.
(9) Note that here the central bank is conducting monetary policy from a clear forward-looking
perspective.  This means that —  as elegantly stated by Greenspan in his Congressional testimony
on 22 February 1995 —  ‘monetary policy will have a better chance of contributing to meeting
the nation’s macroeconomic objectives if we look forward as we act, however indistinct our
view of the road ahead.  Thus, over the past year [1994], we have firmed policy to head off
inflation pressures not yet evident in the data.’  An interesting parallel can be drawn.  If policy
takes account of the curvature, (as an information variable say) inflation will be closer to the
target and similarly output will be closer to trend.  This means that under optimal policy the
observed (reduced-form) Phillips curve will almost certainly be either linear or non-existent.
Thus, the more the central bank takes account of possible asymmetric (ex ante) inflation risks
because of perceived nonlinearities in the inflation output relation, the less visible they will be in
the data as a result.  This problem has been studied formally by Laxton, Rose and Tambakis
(1997).
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the inflation objective and abstract from output stabilisation(10) and
monitoring issues.(11)

Following Bean (1996), it is convenient to formulate this optimisation
problem using dynamic programming.  Let V t( )π be the minimised expected
present value in (2.6) (the value function).  Then:

V t
i

Et
t Et V t

t
Min( )
{ }

{ [
( * )

[ ( )]}π π π δ π= − + +
2

2 1                  (2.7)

Using (2.1) this can be written as

V
t

E E V ft
i

t
t

t tMin( ) { [
( )

[ ( ( ))]}
{ }

*
π π π δ π= − + + •

2

2
     (2.8)

subject to (2.4) and (2.5).  Note that if ϕ = 0 we obtain the Svensson (1997a)
model exactly.

Since the interest rate affects inflation with a two-year lag, it is possible to
express π t + 2  in terms of year t and t+1 variables.
Leading the Phillips curve one period and substituting for output from (2.1)
yields:

π π α
α ϕ

α
α ϕt t

t

t

t

t

y
y

y
y+
+

+
= +

−
+

−2
1

1

1 1

1 11 1
                                 (2.9)

_________________________________________________
(10) Svensson (1997a, pages 1,130-34) shows that the weight on output stabilisation determines
how quickly the inflation forecast is adjusted towards the inflation target.  This is the most
realistic case and is also relevant for the UK situation.  The reason is that it is recognised by the
Chancellor that sticking to the inflation target — in the case of external events or temporary
difficulties —  may cause undesirable volatility in output.  However, in the more complicated
case of multiplier uncertainty, Svensson (1997b) also focuses on strict inflation targeting.  In
order to keep our (already fairly complicated) analysis tractable, we focus on strict inflation
targeting.  Moreover, this facilitates comparison with the Svensson (1997b) results.
(11) Svensson (1997a, page 1,123) states that:  ‘Central banks have a strong tradition of secrecy
mostly for no good reasons I believe’.  For an alternative view where central bank secrecy may
be beneficial because of a positive effect on output stabilisation see Eijffinger, Hoeberichts and
Schaling (1997).
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As in Svensson (1997a), the interest rate in year t does not affect the inflation
rate in year t and t+1, only in year t+2, t+3 etc;  similarly the interest rate in
year t+1 will only affect the inflation rate in year t+3, t+4 etc.  Therefore we
can solve the dynamic programming problem by assigning the interest rate in
year t to the inflation target for year t+2, the interest rate in year t+1 to the
inflation target for year t+3 etc.  Thus, we can find the optimal interest rate in
year t as the solution to the simple period-by-period problem:(12)

i
t

t

t
EMin δ π π2 2

2

2
[
( )

]
*

+ −                                                       (2.10)

The first-order condition for minimising (2.10) with respect to it  is:

∂ δ π
∂

δ π π ∂ π
∂

δ α
α ϕ β π β

π π

E L
i

E
E

i

y i x
E

t t

t
t t

t t

t

t t t t
t t

2
2

2

2
2

2
1

1 1 2
2 2

2
2

1
0

( )
[ ( ) ]

( [ ( ) ])
( )

*

*

+
+

+

+

= − = −

− − − +
− =

(2.11)(13)

using (from (2.9)) that the effect of interest rate increments on expected
inflation two years ahead is

−== +
+
++

i
yE

yE
E

i
E tt

tt

tt

t

tt
∂

∂
∂

π∂
∂
π∂ 1

1

22 .

)('
]))([1(

12
211

1
+−=

+−−− tt
tttt

yEf
xiy βπβϕα

α        (2.11a)

It follows that the first-order condition can be written as

Et tπ π+ =2
*                                                                                  (2.12)

_________________________________________________
(12) For a proof see Appendix A of Svensson (1997a).
(13) For analytical tractability in this section we do not analyse the implications of uncertainty about
the output gap.  This makes the analysis fairly complicated, as it implies solving a non-linear
stochastic control problem that excludes closed form solutions for interest rates.  We analyse this
issue in Section 4.
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Hence, as in Svensson (1997a, page 1,118), the interest rate in year t should be
set so that the inflation forecast for π t + 2 , the mean of inflation conditional
upon information available in year t, equals the inflation target.

The one to two year inflation forecast is given by

12 )()( ++ •+•+= ttttt fEfE ππ                                              (2.13)

The last term is the forecast of the inflationary pressure implied by next year’s
output gap.  Using (2.1) and (2.4) this forecast is

)(
][1

][

][1
][

)(

1
211

211

111

111
1

+

+
+

+

=
+−−

+−
=







+−−
+−=•

tt
ttt

ttt

ttt

ttt
ttt

yEf
xry

xry

xry
xry

EfE

ββϕα
ββα

βϕα
βα

    (2.14)(14)

where r i= − π  is the real base rate.

Substituting (2.1) and (2.14) into (2.13) and setting the one to two year
inflation forecast equal to the inflation target leads to the central bank’s
optimal policy rule:

r
y r x

b y x r

y
y x

t t
t

t t t

t
t t

=
− − +

−

+
− − −

−
+

( [ ])
( )

( [ ])

[ ]

*1

2

1

1 1 2

1

1 1 1 1 2

1
2

α ϕ β β
α

π π

α ϕβ α ϕ β
α ϕ

β
 (2.15)

where b1 = +( )1 1β

_________________________________________________
(14) Because we abstract from the implications of uncertainty about the output gap there is no
Jensen’s inequality effect in (2.14).  This extension is addressed in Section 4.
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According to this equation, the optimal short-term interest rate is a non-linear
function of the deviation from the inflation target ( )*π π− on the one hand,
and the output gap ( y ), on the other.  This is in contrast to Bean (1996),
who gets a linear policy rule.  This is owing to the fact that he employs a
specific functional form for the non-linear Phillips curve.(15)

An important limiting case of (2.15) is when ϕ becomes very small.  In the
latter case the Phillips curve approaches the standard linear functional form
and the policy rule collapses to:

r r a b yt t− = − +* *( )1 1π π                                                    (2.16)(16)

where a1
1

1=
α

, r xt
* = β2

which —  as in Svensson (1997, page 1,119) —  is essentially a
forward-looking version of the simple backward-looking reaction function
popularised by Taylor (1993).  In what follows, for brevity’s sake (2.16) is
referred to as the Taylor rule.(17)  The non-linear rule (2.15) will be
analysed in detail in the next section.

3  A non-linear policy rule

In this section the focus is on the properties of the non-linear rule.  It is shown
that nominal interest rates according to this rule are higher than under the
Svensson (1997a) forward-looking version of the Taylor rule.  This means that

_________________________________________________
(15) In fact his specification is probably the only specification that (together with standard
quadratic preferences over inflation and output) implies a linear policy rule as the solution to the
associated dynamic programming problem.
(16) Note that this solution does take account of uncertainty about the output gap.  The reason is
that, because of certainty equivalence, the optimal control trajectory for the stochastic problem
is identical with the solution to the deterministic problem when the error terms take their (zero)
expected values.
(17) Also, it should be emphasised that the original Taylor rule is an instrument rule:  it directly
specifies the reaction function for the instrument in terms of current information.  In contrast a
target rule results in an endogenous optimal reaction function expressing the instrument as a
function of the available relevant information.  For this distinction, see Svensson (1997a, page
1,136).  We call (2.16) forward-looking because —  although interest rates feed off current-dated
variables only —  the latter are leading indicators of future inflation.  For more details, see
Svensson (1997a).
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—  if the economy is characterised by asymmetries —  the Svensson rule may
underestimate the correct level of interest rates.

To recap we focus on our initial result, ie equation (2.15).

Rearranging and using that β2 x rt = * we get:

ty
f

f

f
rr 1*

1*
*
1*

)]}()[(1{

)(/1
)(

)]}()[(1{

/1 β
ππϕ

αππ
ππϕ
α +

•+−−
•+−

•+−−
=−  

Equation (3.1) is the central result of this section and shows that the real
interest rate penalty r r− * is a non-linear function of the deviation of the
inflation rate from its target π π− * and the output gap y .

In order to make progress, it is useful to focus on the inflation argument
in the rule.  So for the moment we set y = 0 in (3.1).  This yields

r r− =
− −

−*
*

*/
{ ( )}

( )
1

1
1α

ϕ π π
π π                                       (3.1a)

The most interesting feature of (3.1a) is that the elasticity of the interest
rate penalty with respect to deviations from the inflation target is
state-contingent, meaning that this elasticity depends on the level of
inflation.

To give a numerical example, consider the effects of a +0.5% and a
-0.51% deviation of inflation from target.  We analyse the implications of
these inflation gaps for short-term interest rates under the following
parameter values: α ϕ1 05 05= =. , .  and r* .= 380 .  Then the appropriate
interest rate penalties are +1.33% and -0.80% respectively.  In the linear
case (Taylor rule) we get +1.00% and -1.00%. Hence the interest rate
response is asymmetric;  positive deviations from the inflation target
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imply higher (absolute values of) real interest rate penalties than negative
deviations.(18)

The intuition behind this result is the following.  If inflation is above
target, short-term real interest rates will be below their equilibrium level.
The result of this is that there are inflationary pressures in the economy
that —  if left to their own devices —  will increase tomorrow’s output
gap.  Since the Phillips curve is non-linear, this positive output gap at
time t + 1will increase the inflation rate at time t + 2 by more than if the
world was linear.  To offset this, the central bank needs to increase
nominal interest rates at time t further than in the Svensson model.  Of
course, in case of a negative deviation from the inflation target, ie when
real interest rates are above their equilibrium level, the reverse is true.
The associated disinflationary pressures will depress tomorrow’s output
gap.  However, this will cause less disinflation than in the linear case.
Hence the central bank does not need to cut rates by as much.

Next we focus on the output gap argument;  hence we look at the opposite
case to the one analysed above.  Setting π π= * in (3.1) yields:

r r
f

f
yt− = •

− •
+* / ( )

{ ( )}
1
1

1
1

α
ϕ

β                                                     (3.1b)

It can be shown that (3.1b) has characteristics similar to (3.1a).  In
particular, the elasticity of the interest rate with respect to output depends
on the level of the output gap.  To give a numerical example, consider the
effects of a +0.50% and -0.50% output gap on the real interest rate
penalty.  Using the same parameters as in the inflation example and
setting β1 0 7= . , we get +1.02% and -0.75% respectively.  In the linear
case (Taylor rule) we get +0.85% and -0.85% respectively.

_________________________________________________
(18)   Note that applying Svensson’s distinction between ‘official’ versus implicit inflation
targets —  and for ease of exposition setting y = 0 —  it is possible to reformulate the non-linear
policy rule (3.1a) as a linear response to a non-linear (state-contingent) implicit inflation target

π t
b .  After some algebra it can be shown that (2.16) can then be reformulated as

r r a t t
b− = −* ( )1 π π  where π

π ϕπ π π

ϕ π π
t
b ≡

− −

− −

* ( * )

( * )1
.
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Thus, the interest rate response is also asymmetric with respect to the
output gap.  Positive output gaps imply higher (absolute values of) real
interest rate penalties than negative output gaps.(19)   The intuition is as
follows.  If output is above trend at time t , then because of serial
correlation in output, tomorrow’s output gap will be higher as well.
Then, because of the asymmetry, the inflation rate at time t + 2 will
increase by more than if there were no asymmetries.  In order to prevent
this from happening, the central bank needs to put up nominal interest
rates by more than suggested by the forward-looking version of the Taylor
rule.  Similarly, in the case of a negative output gap, the danger of
disinflation is less severe, calling for a less substantial cut than according
to the linear rule.

The above analysis sheds some light on the mechanics of our policy rule
(3.1).  However, this was done by focusing on the inflation ‘gap’, given a
zero output gap and vice versa.  In the real world it is not very likely that
those are the only relevant cases.  So we now drop this restriction and
allow both gaps to vary simultaneously.  To get a feel for what happens in
this case, an illustration is provided in Table 3.1.

_________________________________________________
(19) Clarida and Gertler (1997a) have found that it is possible to represent Bundesbank policy
actions in terms of an interest rate reaction function that maps back into a Taylor-type rule.
Their specification allows a modified Taylor rule with linear responses to expected inflation and
asymmetric responses to the output gap.
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Table 3.1  Implications of policy rules for short-term interest rates(20)

Inflation
minus
target

Output
gap

Real
rate
penalty

Idem
‘Taylor’
rule

Nom
interest
rate
‘Taylor’
rule
(2.16) (21)

Idem
non-
linear
rule
(3.1)

Idem
with
unc
about
output
gap
(4.4)

Interest
rate bias
in basis
points(22)

‘Brainard’
effect in
basis
points

-0.50 -0.50 -1.41 -1.85 3.95  4.39  4.80 44 (41)  + 30
-0.50   0.00 -0.80 -1.00 4.80  5.00  5.34 20 (34)  + 23
  0.00 -0.50 -0.75 -0.85 5.45  5.55  5.80 10 (25)  + 15
  0.00   0.00 0.00  0.00 6.30  6.30  6.50   0 (20)  + 10
-0.50   0.50 -0.04 -0.15 5.65  5.76  6.02 11 (25)  + 15
  0.50 -0.50  0.30  0.15 6.95  7.10  7.24 15 (14)  +  5
  0.00   0.50  1.02  0.85 7.15  7.32  7.46 17 (14)  +  5
  0.50   0.00  1.33  1.00 7.80  8.13  8.24 33 (11)  +  3
  0.50   0.50  2.94  1.85 8.65  9.74  9.82 109 (8)  +  1

This table maps output and inflation gaps into real interest rate penalties
(columns 3 and 4), and into nominal interest rates (the shaded columns 5,
6 and 7).  Please note that the table is not computed by stochastic
simulations.  All that is necessary to obtain the numbers in the table is to
start with certain output and inflation gaps, and plug these into the policy
rule (3.1) (and (4.4) for column 7), given the parameter values used
earlier.  Also note that our previous numerical examples are reported in
rows 8 and 2, (for the inflation example) and rows 7 and 3 (for the output
gap example).

Consider first the shaded row.  This row corresponds with the case of
neutral monetary conditions, meaning that the economy is operating at
full potential (zero output gap) and inflation on course (equal to the
inflation target).  Thus both gaps are zero and real interest rates are at
their equilibrium level.  Note that, in this case, the linear and non-linear
policy rules imply the same level of short-term interest rates.

_________________________________________________
(20) Note that, whereas Taylor prescribes coefficients of one half on both the inflation and
output gaps under plausible parameter values, the ‘Svensson’ rule responds to inflation and
output gaps with elasticities of 2 and 1.7 respectively.  In this respect see Broadbent (1996), who
finds numbers of 5 and 3.5.  Also, as pointed out by Svensson (1997a, page 1,133), with a
positive weight on output stabilisation, the coefficients in the optimal reaction function —  and
consequently the numbers in the table —  will be smaller.

(21) Nominal interest rate = r r r r+ = − + +π π( *) * , where π π π π= − +( *) *.
(22) First number = (3.1) -/- (2.16).  Bias due to uncertainty = (4.4) -/- ( 3.1) in brackets.  The
effects of uncertainty will be explained in Section 4.
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However, by looking at the other rows in this table it becomes
immediately clear that in all other cases, short-term interest rates are
always higher under the non-linear rule.  To see this, consider the first set
of numbers in column 8.  The difference in nominal rates is zero for
neutral monetary conditions but ranges from about 40 to 100 basis points
otherwise.  Hence, the numbers suggest that interest rates are higher in a
non-linear than in a linear world.

In order to investigate this conjecture formally consider the following
equation:

r r
f

f
yNL L t− = − + •

− − + •
− − −1

1
11

1
/ [( ) ( )]

[( ) ( )]
/ ( )

*

*
*α π π

ϕ π π
α π π                 (3.2)

This is the algebraic equivalent of the first set of numbers in column 8 of
Table 3.1.  It is obtained by subtracting the level of interest rates
according to the Taylor rule rL  (given by equation (2.16)) from that
under the non-linear rule rNL (equation (3.1)).

From equation (3.2) we conclude that the level of short-term interest rates
as implied by the non-linear policy rules is higher than under the Taylor
rule.  For a proof see the appendix, where we show that (3.2) has a local
minimum at ( , ) ( , )*π π− =y 0 0 .  Hence, under non-neutral monetary
conditions, interest rates according to the non-linear rule are higher than
under the Taylor rule.

The intuition is as follows.  If the Phillips curve is non-linear, then
positive shocks to demand —  in the form of positive output and/or
inflation gaps —  are more dangerous for inflation then if the world is
symmetric.  This means that the central bank will need to raise rates by
more than in the Svensson model.  Similarly, negative gaps will be less
disinflationary, urging the central bank to cut by less.  Of course the net
result is that nominal interest rates are higher on average.
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Note that there is one interesting intermediate case that we did not
investigate.(23)  This is the scenario where the model is non-linear, but the
policy rule remains linear (ie of the form given by (2.16)).  Using
stochastic simulations, it can then be shown that interest rates will be
higher than under a linear Phillips curve with a linear policy rule.
Moreover, it is then possible to analyse how much further interest rates
need to rise under the optimal (asymmetric) policy rule compared with
the linear rule.  The level of interest rates in the non-linear model under
the non-linear policy rule can then be decomposed into two parts:  (i) the
jump in rates caused by the change from a linear to a non-linear model
(where the policy rule remains linear), and (ii) the further change in rates
(in the non-linear model) caused by the switch from a linear to a non-
linear policy rule.  The stochastic simulations show that both the effects
under (i) and (ii) are positive;  the effect under (i) is quantitatively the
most important.(24)

4  Uncertainty about the output gap

We analyse the effects of uncertainty about the output gap on the setting
of short-term interest rates.  This uncertainty takes the form of random
shocks to the output gap.  This effect is captured in the model by the term
εt + 1  in equation (2.5).  Thus, from the perspective of the central bank,
the inflation rate becomes a random variable that can only be imperfectly
controlled.(25)  More specifically, because of the non-linearity of the
economy, uncertainty about the true value of next year’s output gap
implies that the slope of the Phillips curve —  and hence the effect of
interest rate increments on inflation two years ahead —  also becomes a
random variable.  Hence, the combination of additive uncertainty about
the economy combined with a non-linear structure gives rise to issues of
multiplier or model uncertainty.  However, the implications for optimal
policy are quite different here from either the standard Brainard (1967)
analysis, or from Svensson’s (1997b) extension of his inflation forecast
targeting framework with model uncertainty.

_________________________________________________
(23) I owe this suggestion to Peter Westaway.
(24) The results are available from the author upon request.
(25) This is also true in the linear stochastic model but there the forecast error does not depend
on the interest rate.
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We now extend the analysis of Section 3.  As stated in Section 2, we can find
the optimal interest rate in year t as the solution to the problem:

i
t

t

i
t t
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t
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subject to (2.1), (2.4) and (2.5).

The expected value of the discounted loss can be written as:(26)
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and we can define:

E E E dt t t t t t t t tπ π π π π+ + + + + +≡ + − = +2 2 2 2 2 2( ) , ie the one to two year
inflation forecast equals the deterministic (or certainty equivalent)
inflation forecast )()( 12 ++ +•+= tttt yEffππ

where:  
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plus the expected deviation E dt t + 2  of the one to two year inflation
forecast from the certainty equivalent forecast:
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yEffE
yEfffEfEdE ππππ

(4.1c)

This split is important because it will enable us to identify one of the two
channels through which the uncertainty affects inflation forecast
targeting.

_________________________________________________
(26) Using π π π πt t t t t tE E+ + + += + −2 2 2 2( ) .
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Substituting the decomposition of the one to two year inflation forecast
into (4.1a) gives:

E L Var E d

E d

t t t t t t t

t t t

δ π δ π π

π π π

2
2

2

2 2 2
2

2
2 2

2
2

( ) [ ( )

( ) ( )]* *

+ + + +

+ +

= + +

+ − +

                           (4.2)

The advantage of (4.2) over (2.10) is that the stochastic elements of the
solution have been isolated in the terms E dt t + 2 and Vart tπ + 2 .  It is
precisely through these two terms that the uncertainty about the output
gap affects inflation forecast targeting.

We will now derive the policy rule in the presence both of asymmetries
and uncertainty.  Because the rule is highly non-linear, unlike the
previous section it is not possible to derive an explicit function that maps
output and inflation gaps into the appropriate level of interest rates.
Instead we resort to numerical methods.  However, we are able to derive
robust qualitative analytical results.  The punchline is that, no matter
which parameter values are chosen, nominal interest rates will be higher
the greater the uncertainty about the output gap.

The first-order condition is:
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where the first term is the difference between the certainty equivalent
inflation forecast (4.1b) and the inflation target;  the second term is the
expected deviation of the one to two year inflation forecast from its
certainty equivalent value (4.1c);  and the last term captures the effect of

_________________________________________________
(27) Note that in the deterministic case Etdt Vart t it+ = + =2 2 0∂ π ∂/   and we get

π πt + =2
* , which is the first-order condition in the certainty equivalence case as in Svensson

(1997a, page 1,118).
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nominal interest rates on the conditional variance of inflation, ie on the
variability or ‘risks’ surrounding the central forecast.

Substituting (4.1b) and (4.1c) into (4.3) and rearranging leads to the
central bank’s optimal policy rule:
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where
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According to equation (4.4), the optimal short-term interest rate is
determined by the deviation from the inflation target )( *ππ −  on the one
hand, and the output gap y (through the terms ty1β and )(•f ) on the
other.

An important limiting case of (4.4) is where 2
εσ becomes very small.  In

this case the stochastic elements of the rule, Edt t+ 2, ttt idE ∂∂ + /2  and
∂ π ∂Var it t t+ 2 /  become very small as well, and the policy rule
collapses to:
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which is the asymmetric policy rule for the case where 0>ϕ , ie the
certainty equivalent rule in the non-linear model.  Of course, if we set

0=ϕ  in (3.1), the asymmetric certainty equivalent rule collapses to the
symmetric certainty equivalent rule (2.16).  This means that it in turn
collapses to the Svensson result.  Table 4.1 summarises the cases
discussed above.

Table 4.1  Classification of policy rules

Phillips
curve

Uncertainty about the output gap

No uncertainty
02 =εσ

Uncertainty
02 >εσ

Linear
0=ϕ

Svensson result
(2.16)

Svensson
result
(2.16)

Non-
linear

0>ϕ

Non-linear
certainty
equivalent rule
(3.1)

Non-linear
rule
(4.4)

Turning to the case where both ϕ and 2
εσ are positive, from equations

(4.4) and (4.5) it can be seen that the stochastic elements of the rule
E dt t + 2 , ∂ π ∂E it t t+ 2 /  and ∂ π ∂Var it t t+ 2 /  depend on the level of the
interest rate.  Thus, both the left-hand side and the right-hand side of
equation (4.4) depend on the interest rate.  Therefore, it is not possible to
derive an explicit function that maps output and inflation gaps into the
appropriate level of interest rates.  Instead, we have to resort to numerical
methods to find the level of the real interest rate that is implicitly
determined by equation (4.4).
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Setting 2
εσ  at 0.925(28) and keeping the real interest rate at the certainty

equivalent  level according to rule (3.1), we can compute the effect of the
uncertainty on the inflation forecast and on the risks surrounding the
forecast.

We find that the inflation forecast is adjusted upwards.  This forecast now
overshoots the 2.5% target level that would be attained in two years time
with interest rates according to (3.1) and no uncertainty.  Moreover, the
same is true for the conditional variance of inflation.  At the level of
interest rates implied by the certainty equivalent rule (3.1), we get a
variance of up to 86% of the variance of the shock to the output gap.
This means that only a very small amount of the demand shock is
dampened before it passes through and causes significant inflation risks.
Clearly, in the presence of uncertainty, interest rates according to (3.1)
are at a sub-optimal level.

To find the appropriate level we numerically compute the real interest
rate that solves the first-order condition.  The results can be found in
column 7 of Table 3.1.  It immediately becomes clear that short-term
interest rates according to rule (4.4) are higher than under the certainty
equivalent non-linear rule (3.1).  To see this, consider the numbers in
brackets in column 9.  The difference owing to the uncertainty is about 25
basis points for neutral monetary conditions and ranges from about 10 to
40 basis points otherwise.(29)  This means that uncertainty induces a
_________________________________________________
(28) This is the MSE of ONS revisions to real GDP in the late 1980s.  For more details see
Dicks (1997).  Obviously this is a crude way of parameterising the model, but in the linear case
there is a one-to-one correspondence between the conditional variance of the output gap at time t

and the variance of shocks σε2 .  Also, this highlights another attractive feature of the model.  We
have a natural mapping of noisy data (which is very much a real-life problem) into issues of
multiplier uncertainty.
(29) Note that, strictly speaking, the definition of neutral monetary conditions needs to be
changed in the non-linear model.  The reason is that the natural rate of output now lies below the
natural rate of output in the linear model.  With the parameter values in the paper this difference
amounts to about -0.1% of GDP.  Therefore neutral monetary conditions now mean inflation at
target and output at the adjusted natural rate.  Indeed it can be shown that with inflation on
target and output at -0.13 the interest rate bias disappears and the appropriate level of the real

interest rate (as defined by the policy rule (4.4)) is equal to r* = 3.8.
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further upward bias in nominal interest rates on top of the effect of the
non-linearity per se as analysed in Section 3.

In order to investigate these results more formally consider (4.4).  In this
equation the stochastic elements of the solution have been isolated in the
terms E dt t + 2 , ∂ ∂E d it t t+ 2 /  and ∂ π ∂Var it t t+ 2 / .  The sign of
E dt t + 2 in (4.1c) will always be positive, implying that the one to two year
inflation forecast will be higher than the certainty equivalent inflation
forecast as derived in Section 3.  The reason is that positive shocks to the
output gap are more inflationary then negative shocks are disinflationary,
hence with equal probabilities of positive and negative shocks, the
inflation forecast will be adjusted upwards, and the more so the higher
the variance of shocks hitting the output gap σ ε

2 .

This can be restated in a more technical way by noting that the forecast of
tomorrow’s inflationary pressure, E ft t( )• + 1 , involves the expectation of
a convex function which will always be higher then the value of the
f function at the expected value, f E yt t( )+ 1 .  Hence, the first channel

through which the uncertainty affects inflation forecast targeting is the
Jensen’s inequality effect.  Note that from (4.5) this effect becomes
smaller the higher the interest rate, ie  ∂ π ∂E it t t+ <2 0/ .

The second channel through which the uncertainty affects inflation
forecast targeting is its effects on the conditional variance of the one to
two year inflation forecast Vart tπ + 2 .  This is important because it
implies that in the case of imperfect control of the inflation rate the
policymaker should also take account of the risks surrounding the central
inflation projection.  It can be shown that this variance is:

Var f E yt t t tπ σε+ +=2 1
2 2[ ' ( )]                                               (4.6)

From (4.5) it can be seen that by increasing interest rates this variance
can be reduced.  The reason is that by putting up rates, today’s forecast of
tomorrow’s output gap goes down.  This means that next year’s Phillips
curve will be flatter, which in turn implies that the effects of demand
shocks at time t+1 on inflation in two year’s time will be smaller.  Hence,
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the variability of inflation around the central projection can be reduced by
increasing short-term interest rates.  For instance, returning to our earlier
numerical example, by putting up rates to their appropriate level, the
conditional variance of inflation is reduced from 86% to about 51% of the
initial variance of demand shocks.

The implication for policy is that with uncertainty about the output gap
(and asymmetries in the output inflation trade-off), cautious policymaking
implies a more activist (more aggressive) rather than a less activist (more
passive) interest rate policy.

To recap, the intuition is that a higher variance of shocks hitting the
output gap implies a higher inflation forecast (through Jensen’s
inequality effect) and a higher conditional variance of inflation.  Both can
be reduced by increasing nominal interest rates above their certainty
equivalent level.

To see the benefits of this policy from a different perspective, consider the
implications of stabilisation for the level of output.  With a convex
Phillips curve, the mean level of output is inversely related to the
variability of inflation around the central projection.  Therefore, a
monetary strategy that reduce this variability (by responding correctly to
the multiplier uncertainty issue) does not only keep the inflation rate
closer to the target, but also has the important added bonus of pushing up
the level of output.(30)

5  Brainard uncertainty and non-linearities

Note that the results with respect to the conditional variance of inflation
are the opposite of those assumed in Brainard’s (1967) multiplier

_________________________________________________
(30) I owe this insight to Clark et al (1995, page 8).  They in turn quote Mankiw (1988, page
483).  The result can be verified by inverting the Phillips curve (2.1).  This yields

yt
t

t
= +

+ +

∆

∆

π

α ϕ π
1

1 1 1( )
.  Leading this equation one period and taking expectations at time t of

the resulting concave function yields the result that expected output, Et yt + 1 , is inversely

related to the conditional variance of inflation Vart tπ + 2 .
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uncertainty analysis.(31)  The reason is that in Brainard’s analysis the
variance of the target variable is a linear function of the variance of the
policy multiplier.  As a result, uncertainty about the effects of policy calls
for a less activist policy.  Moreover, the policy multiplier is positively
related to the level of the instrument.  It follows that policies that are ‘too
activist’ increase the variance of the target variable, thereby reducing the
success of stabilisation policy.  In this section we show that, in the
non-linear stochastic model, uncertainty about the effects of policy does
not make the monetary authorities less activist in the Brainard sense.
This is because the model has the property that the variance of the target
is inversely related to the instrument, and it thus provides a counter-
example to the Brainard case.

In his (1967) paper, Brainard identified two types of uncertainty that a
policymaker may face.  First, at the time he must make a policy decision
he is uncertain about the impact of the exogenous variables that affect the
target variable.  This may reflect the policymaker’s inability to forecast
perfectly either the value of exogenous variables or the response of the
target variable to them.  Second, the policymaker is uncertain about the
response of the target variable to any given policy action.  He may have a
central estimate of the expected value of the response coefficient, but he is
aware that the actual response of the target variable to policy action may
differ substantially from the expected value.

Let us now rephrase the above in the context of inflation forecast
targeting.  To make things comparable with Brainard, for the moment we
focus on the linear version ( 0=ϕ ) of the stochastic model presented
earlier.  Type 1 uncertainty means that when the central bank sets its
instrument variable, the nominal interest rate at time t , it is uncertain
about the realisation of the exogenous shock to the output gap at time

1+t .  Here the central bank’s inability to forecast next year’s output gap
perfectly implies that it is also unable to forecast inflation perfectly.  As a
consequence, inflation in two years time will differ from its forecast at
time t (which is the basis for its interest rate policy).  More specifically, if

_________________________________________________
(31) Throughout the paper if we refer to the Brainard result, we mean Brainard's result for the
one instrument and one target case where the random response coefficient is uncorrelated with
the exogenous disturbances.   
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the output gap is higher than expected, inflation overshoots its target and
vice versa.

The second type of uncertainty means that the central bank may have a
central estimate of the expected value of the response coefficient of
inflation in two years time with respect to the nominal interest rate at
time t , but that it is aware that this central estimate is subject to error.
More specifically, assume that the central estimate is 1α−  —  being the
product of the interest elasticity of output (which is -1) and the slope of
the Phillips curve (which is 1α ) in the linear stochastic model —  and

that the variance of this central estimate is 2
τσ .

Brainard shows that both types of uncertainty imply that the policymaker
cannot guarantee that the target variable will assume its target value.  But
they have quite different implications for policy action.  The first type of
uncertainty, if present by itself, has nothing to do with the actions of the
policymaker;  it is, as Brainard (1967, page 413) describes it, ‘in the
system’ independent of any action he takes.  He then states that if all of
the uncertainties are of this type, optimal policy behaviour is certainty
equivalence behaviour.  That is, the policymaker should act on the basis
of expected values as if he were certain that they would actually occur.
Moreover, since in this case the variance and higher moments of the
distribution of the target variable do not depend on the policy action
taken, the policymaker’s actions only shift the location of the target
variable’s distribution.  In the presence of the second type of uncertainty,
however, the shape as well as the location of the distribution of the target
variable depends on the policy action.  In this case, the policymaker
should take into account his influence on the variability of the target
variable.  In his analysis(32) Brainard assumes that the variance of the
target variable is a linear and increasing function of the level of the policy
instrument.  It follows that policies that are ‘too activist’ increase the
variance of the target variable, thereby worsening the performance of
economic policy.  Brainard thus shows that uncertainty about the

_________________________________________________
(32) Here we focus on Brainard's most simple case;  ie the one instrument and one target case
where the random response coefficient is uncorrelated with the exogenous disturbances.  The
reason for doing this is that this case has the closest correspondence to inflation forecast
targeting.  There we also have one target, inflation, and one instrument, the nominal interest rate.
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response coefficient, ie  about the policy multiplier, leads to an optimal
policy that is less active.  As the variance of the multiplier rises, the
policy of trying to minimise the variance of the target variable tends
towards lowering the optimal amount of policy.

Let us now rephrase the above in the context of inflation forecast
targeting.  An example of certainty equivalence behaviour is the
Svensson (2.16) forward-looking policy rule.  This rule is optimal in the
linear stochastic model.  Because shocks to the output gap have a zero
expected value at time t , it is optimal for the central bank to act as if
these zero values would actually occur.

An example of uncertainty about response coefficients is Svensson’s
(1997b) extension of his inflation forecast targeting framework with
multiplier uncertainty.  Indeed, he finds that multiplier uncertainty calls
for a more gradual adjustment of the conditional inflation forecast toward
the inflation target.  This means that —  similar to Brainard —  optimal
monetary policy will be less activist in the sense that the response
coefficients in the optimal policy rule for short-term interest rates decline
with the uncertainty.(33)

Let us now focus on inflation forecast targeting in the non-linear model
and relate the effects of uncertainty about the output gap to the Brainard
paper.  Here —  following Brainard’s terminology —  it appears that we

_________________________________________________
(33) The above can be derived by resorting to the linear model (setting ϕ equal to zero) and

modifying equation (2.4) as y y i xt t t t t t+ += − − +1 1 1β τ π( )  with  Et ( )τ1 1=
Et ( )τ στ1

2 2=  and ( )Et τ ε1 0= (2.4')

This means that the effects of interest rate changes on tomorrow’s output gap are now uncertain
because the interest elasticity of output is a random variable.   If στ

2 0→  the central estimate is

not subject to error and the equation reduces to (2.4).  It can be shown that

Var rt tπ α σ στ ε+ = +2 1
2 2 2 2( ) so that ∂ π ∂Var it t t+ >2 0/  and we obtain the standard

Brainard (1967) result.  It can be shown that the optimal (linear) policy rule then becomes:
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2σ σ
π π

στ τ τ

(2.16')

So, as in Svensson (1997b), the response coefficients decline with uncertainty, calling for more

cautious policymaking.  If στ
2 0→  this rule reduces to (2.16).
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only have type 1 uncertainty.  That is, because of an additive (white
noise) shock to tomorrow’s output gap, the central bank is unable to
forecast inflation perfectly.  If the model were linear, certainty
equivalence would hold and that would be the end of the story.  However
in a non-linear model this uncertainty has very different implications.

Similar to the linear model the uncertainty enters the story through
additive shocks to the output gap at time 1+t .  Suppose now that the
output gap is higher than expected.  In the non-linear model the slope of
the Phillips curve, tt y∂∆∂ + /1π , depends on the level of the output gap.
Because the Phillips curve is convex, its slope is increasing in the level of
the output gap (see equation (2.1) and Figure 2.1).  Thus, if the output
gap turns out to be higher than expected (because of a positive shock), the
slope of the Phillips curve is also higher than expected.  Similarly, if we
have a negative shock the slope of the Phillips curve will be lower than
expected.

Interestingly, the above implies that the central bank becomes uncertain
about the response of inflation to any given policy action.  This response
coefficient is equal to the product of the interest elasticity of output
(which is -1) and the slope of the Phillips curve (which now depends on
the realisation of the additive shock to output).(34)  Thus if the slope of the
Phillips curve is higher than expected (because of a positive realisation of
the demand shock), the response coefficient of inflation in two years’ time
with respect to the nominal interest rate at time t is lower than expected.
Because the response coefficient is negative (increasing the nominal
interest rate reduces inflation), in this case monetary policy turns out to
be more effective than expected.  Similarly, if the slope of the Phillips
curve is lower than expected the response coefficient is higher (less
negative) than expected.  In this case monetary policy is less effective
than expected.  To conclude, in the non-linear model additive shocks to
the output gap generate uncertainty about the policy multiplier;  ie type 1
uncertainty has type 2 implications.

_________________________________________________
(34) This can be seen by adapting (2.11a).  The algebraic expression for the response coefficient
of inflation in two year's time with respect to the nominal interest rate at time t  is:
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From the previous paragraph we learnt that the slope of the Phillips curve
depends on the realisation of the shock to the output gap.  With a positive
realisation monetary policy was shown to be more effective than expected
at time t and vice versa.  Meaning that the dampening effect of a given
nominal interest rate at time t  on inflation in two years time is
proportional to the realisation of the shock.  However, in this paper we
are concerned with optimal policy and it is, therefore, of some interest to
relax the assumption of a given nominal interest rate.

Suppose the central bank decides to increase the nominal interest rate.
From equation (2.4) it follows that a higher nominal interest rate —
ceteris paribus —  lowers the level of tomorrow’s output gap.  Moreover,
in the non-linear model the slope of the Phillips curve is increasing in the
level of the output gap.  Thus, a higher nominal interest rate lowers the
slope of the Phillips curve.  This in turn implies that any positive output
shock that may hit the economy at time 1+t will be less inflationary.
Similarly, by lowering the slope of the Phillips curve, a higher interest
rate will also dampen the disinflationary effects of negative shocks.
Thus, in the non-linear model a higher nominal interest rate causes
positive demand shocks to induce less inflation and negative shocks to
cause less disinflation.  Of course, if the central bank decides to cut the
nominal interest rate, the reverse applies.  By increasing the slope of the
Phillips curve, a lower interest rate amplifies the inflationary effects of
positive output shocks and enhances the disinflationary effects of negative
shocks.  Thus, nominal interest rates can dampen or amplify the second-
round effects of output shocks on inflation.

To be more precise, it can be shown that the conditional variance of the
one to two year inflation forecast, Vart tπ + 2 , is a decreasing function of
the nominal interest rate.  This can be seen from equations (4.5) and
(4.6).  As explained above, the reason is that by putting up rates, today’s
forecast of tomorrow’s output gap goes down.  This means that next
year’s Phillips curve will be flatter, which in turn implies that the effects
of demand shocks at time t+1 on inflation in two year’s time will be
smaller.  Hence the variability of inflation around the central projection
can be reduced by increasing short-term interest rates.
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At this stage it is useful to summarise the results so far.  First, we have
shown that in the non-linear model additive shocks to the output gap
imply uncertainty about policy;  ie type 1 uncertainty has type 2
implications.  Second, in the non-linear model the variance of the target
variable (inflation) is a decreasing function of the level of the policy
instrument (the nominal interest rate).  Note that the second result is the
opposite of the assumption in Brainard’s (1967) analysis that the variance
of the target variable is a linear and increasing function of the level of the
policy instrument.  It follows that policies that are ‘too activist’ increase
the variance of the target variable, thereby worsening the performance of
economic policy.

In contrast here the variance of the target variable is a non-linear and
decreasing function of the level of the policy instrument (this can be seen
from equations (4.5) and (4.6)).  It follows that policies that are ‘too
activist’ from a Brainard perspective may actually decrease the variance
of the target variable, thereby improving the performance of policy.
Thus, in the non-linear model uncertainty about the policy multiplier
leads to an optimal policy that is more active.  To be more precise, as the
variance of the multiplier rises, the policy of trying to minimise the
variance of the target variable tends towards increasing the optimal
amount of policy, which here means a higher level of interest rates.

To see this, we focus on the central bank’s optimal policy rule (4.4).  As
stated above, the stochastic elements of this rule are isolated in the terms

2+tt dE , ∂ π ∂E it t t+ 2 /  and ∂ π ∂Var it t t+ 2 / .  Here the first two terms
relate to the effects of the uncertainty on the inflation forecast, and hence
capture the Jensen's inequality effect.  The second channel through which
the uncertainty affects inflation forecast targeting is through its effects on
the conditional variance of the one to two year inflation forecast

2+ttVar π .

We can isolate the implications of the second channel for the amount of
optimal policy by abstracting from the Jensen’s inequality effect.  This
can be done by setting E dt t + 2 and ttt iE ∂∂ + /2π equal to zero in the
central bank’s optimal rule (4.4).  This yields
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     (5.1)

Equation (5.1) implicitly defines the optimal level of the nominal interest
rate in the non-linear stochastic model, where the uncertainty is only
allowed to affect the variance of the target variable.  This is as close as we
can get to the linear-quadratic Brainard framework.  Since both the
left-hand side and the right-hand side depend on the nominal interest
rate, again we have to resort to numerical methods to find the optimal
level of the central bank's policy instrument.  The results can be found in
column 9 of Table 3.1.  This column gives the difference between the
level of nominal rates implied by the rule (5.1) and the non-linear
certainty equivalent rule (3.1).  As can be seen from the numbers in the
table the difference is positive, implying that in the non-linear model,
uncertainty about policy calls for a higher rather than a lower optimal
amount of policy.

6  Summary and concluding remarks

In this paper we extended the Svensson (1997a) inflation forecast
targeting framework with a convex Phillips curve.  Using optimal control
techniques we derived an asymmetric policy rule.  We found that nominal
interest rates according to this rule were higher than under the Svensson
forward-looking version of the Taylor rule.

Extending the analysis with uncertainty about the output gap we found
that our earlier results became even stronger.  We found that the
uncertainty induced a further upward bias in nominal interest rates on top
of the effect of the non-linearity per se.  Also we found that the
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implications of uncertainty for optimal policy are quite different from
either the standard Brainard (1967) analysis, or Svensson’s (1997b)
extension of his inflation forecast targeting framework with model
uncertainty.  More specifically, we find that the variability of inflation
around the central projection can be reduced by increasing short-term
interest rates.  The implication for policy is that with uncertainty about
the output gap (and asymmetries in the output inflation trade-off),
cautious policymaking implies a higher interest rate on average.

The analysis can be extended in a number of ways.  One is to investigate
robustness of results with respect to alternative assumptions about
inflation expectations.  It would be interesting to see whether the same
results are obtained with purely model consistent expectations, or a
backward and forward-looking components model, or a multiple-regime
model with credibility and learning.(35)

Another is to extend the objective function of the authorities to include an
intrinsic weight on output stabilisation.  Results can then be contrasted
with pure inflation targeting.  We leave those issues for further research.

_________________________________________________
(35) For an interesting analysis that builds on a trade-off between caution and learning (by
experimentation) in policy, see Wieland (1998).
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Appendix:  the minimum of equation (3.2)

In this appendix we prove that the interest rate differential (3.2) has a
local minimum at ( π π− * , y ) = (0,0).
The partial derivatives are given by
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Hence, it can easily be seen that if π π= * and y = 0, f ( )•= =Γ 0 and

f , ( )•=α 1 so that (A.1a) = (A.1b) = 0, and ( π π− * , y ) = (0,0) is a
stationary point.

The second derivatives and the cross partials are
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Now because (A.2a) is positive, and the determinant



40

∂
∂ π π

∂
∂π π ∂

∂
∂π π ∂

∂
∂ π π

2

2

2

2 2

2
0

0

( )

( )

( )

( )
( )

( )

( )

( ) *

* *

*

r r r r

y
r r

y

r r

y

NL L NL L

NL L NL L

y

−
−

−
−

−
−

−
− =

=

= 2 2
2 2 1

41

1

2

1

ϕ α ϕ
ϕ ϕ α

ϕ
α

/
( )+

=       (A.3)

evaluated at the stationary point is positive, the surface near (0,0) is in the
shape of a ‘bowl’ and we have a local minimum.
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