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Abstract

Although the target of monetary policy is clear, there have been
suggestions that the conduct of monetary policy is improved by monitoring
‘trimmed mean’ inflation rates, the mean of some central portion of the
distribution of price changes.  This paper assesses critically the theoretical
and empirical arguments for trimming, and applies Bryan et al’s (1997)
concept of the ‘optimal trim’ to the United Kingdom.
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To trim or not to trim?

An application of a trimmed mean inflation estimator to the United
Kingdom

1 Introduction

Monetary policy aims to control inflation.  A key problem in the design of
monetary policy is what measure of inflation to use.  The Government’s
inflation target stipulates that monetary policy should aim to achieve an
annual rate of increase in retail prices (excluding mortgage interest
payments) —  RPIX —  of 2 1/2%.  Although the target of monetary policy
is clear, there have been suggestions that the conduct of policy might be
improved by monitoring other measures of inflation as a means to
achieving the RPIX target.

In this paper we comment on one such proposal by Bryan and Cecchetti
(and most recently with co-author Wiggins) that policy-makers might gain
from calculating what is called a ‘trimmed mean’, the mean of some
central portion of the distribution of price changes.(1)

Trimmed means are motivated by two sets of arguments:  economic and
statistical.  The economic argument is that in some models of sticky prices,
relative price shocks temporarily affect the aggregate price level, even
though the long-run effect, when all prices have adjusted, is zero.
Trimmed means help alleviate this problem.  We argue that the case is not
so clear-cut, as there are other models that suggest that trimming may
make things worse, not better.  The statistical argument runs as follows:
the measured inflation rate is the mean of a sample of price changes drawn

__________________________________________________
(1) Bryan, M and Cecchetti, S (1994), ‘Measuring core inflation’, in Mankiw, N G (ed) Monetary
Policy, Bryan, M et al  (1997), ‘Efficient inflation estimation’, mimeo.  The methodology has
been applied to the New Zealand inflation rate by Roger  (1997).
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from an unknown population.  If this population is normally distributed,
then the sample mean is the most efficient estimator of the population
mean.  But if the population has fatter tails, then means calculated over
sample distributions with trimmed tails will be more efficient estimators of
the population mean than the mean of the untrimmed distribution.  We
point out that the weights implied by the trimmed mean (‘one’ on the
centre and ‘zero’ on the tails) are only an approximation to the weights
implied by the theory of small samples.

Bryan et al evaluate different trimmed means according to their ability to
proxy for long moving averages of the inflation rate in the United States.
We conduct a comparable exercise for the United Kingdom.  We conclude
that the ‘optimal trim’ —  the trim that best approximates the benchmark
inflation rate —  is not as robust an estimator of core inflation as appears to
be the case for the United States.  The optimal trim appears to be sensitive
to the statistical criterion used to assess efficiency and to the precise way in
which the underlying inflation rates are calculated.  We also comment on
some problems in choosing the appropriate benchmark inflation rate.

We conclude that the case for trimming inflation rates on statistical
grounds is convincing.  What is less clear is just how much trimming is
optimal.

2 The theory of the trimmed mean

(i) The case in favour

The theoretical motivation for using trimmed means, articulated in Bryan
and Cecchetti (1994), stems from the menu cost model of Ball and Mankiw
(1995).  The intuition is as follows.  Suppose firms can review prices
costlessly at regular intervals.  Suppose too that they may change prices
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within this interval but in doing so incur a fixed cost.(2)  The price-setting
rule therefore has elements of ‘time-dependence’ and ‘state-dependence’.
Now assume that the economy is hit, for example, by a supply shock that
causes some relative prices, but not the aggregate price level, to rise.  The
desired prices of a few firms rise by a considerable amount, and those of
the rest of the firms in the economy fall by a small amount (leaving the
aggregate of desired prices unchanged).  Only the few firms with large
positive changes in desired price will find it worthwhile to pay the menu
cost and change actual prices.  In this case, a measure of the aggregate
price level which averages all price changes across firms will show an
increase, even though the aggregate price level implied by desired prices
has not changed.  In the long run, once all firms reach their regular
price-review dates, actual prices will converge on desired prices, and the
mean of those desired prices will also equal the mean of actual prices.

In such an economy, a more accurate measure of the aggregate price level
implied by desired prices (and therefore of the price level to which actual
prices will converge in the long run) will be obtained by ignoring the few
price changes that are large enough to warrant firms paying the menu cost
associated with a change in their prices.  Provided that sufficiently few
firms find it worthwhile to pay the menu cost, then the median and the
mode price change will be the best estimators of the long-run change in the
price level (which is zero).

__________________________________________________
(2) This cost could come from a variety of sources.  It could represent the risk of antagonising
customers if prices change at unexpected junctures;  or the cost of bringing forward pricing
reviews and disrupting other management activities;  or even the cost of being sufficiently aware of
the optimal prices at all times, as against collecting the information to calculate optimal prices at
discrete intervals.
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(ii) The case against

The first problem with the case ‘for’ is that —  taken literally —  it assumes
that only supply shocks(3) can cause skewed changes to desired prices.  Our
first comment is to point out that aggregate demand shocks can also
generate skewed distributions of actual price changes.

Consider first an economy where price-setting is purely time-dependent (or
where shocks are such that the state-dependence in prices never manifests
itself).  Suppose too that there is constant money supply growth (a series of
positive aggregate demand shocks) but that there are no supply shocks, and
so desired relative prices are not changing.  This growth is never large
enough to warrant firms paying the menu cost associated with
discretionary price changes (if indeed there is any state-dependence at all),
and firms simply update nominal prices at their review dates in line with
this constant growth rate.  If the price-review dates are staggered across
firms, then although desired relative prices will not change, actual relative
prices will change each time a firm reaches its review date.  But the
trimmed mean will discard the price changes of those firms who have
reached their review dates.  If, for example, at any one time there is only
one firm changing prices, then the whole distribution of price changes will
be concentrated at zero, with one firm forming the tail of the distribution at
a value equal to the rate of increase in the money supply.  A trimmed mean
would discard the outlying firm.  In this extreme case, the trimmed mean
would never record any increase in prices at all, even though the aggregate
price level over a long run would increase by the rate of growth of money!

In this economy, one should put more, not less, weight on observations at
the tail of the distribution, since these contain more, not less, information
about the underlying path of the aggregate price level.  In sum, if there is
staggered, time-dependent price-setting, and there are demand shocks but

__________________________________________________
(3) Strictly speaking, this should be relative price shocks, as distinct from aggregate demand
shocks;  a relative demand shock would do just as well in this model.
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no supply shocks, we would adjust the distribution of prices in the opposite
way to that suggested in Bryan and Cecchetti.

We can think of a similar result when price-setting is purely state-
dependent, ie there are no regular price-review dates.  In this economy
nominal prices are left unchanged until the desired price moves more than
some predetermined distance from the actual price.  (In the literature this
distance is defined by what is known as the Ss bound, where S denotes the
upper value of the desired price and s denotes the lower value of this price).
If either (i) the distance between S and s is not common amongst firms, or
(ii) firms are at different points in the Ss interval immediately before the
impact of the demand shock (perhaps because firms have different histories
of shocks to relative prices), then a demand shock of a given size will mean
that for some firms desired prices breach the Ss bound, while for others
they do not.(4)  Let us consider an extreme example:

Suppose an aggregate demand shock hits the economy and firms’ Ss
bounds are such that only one firm finds it optimal to change prices in
response.  A trimmed mean estimator would discard this one change and
take the average of all other prices, leading us to conclude that the
aggregate of all desired prices was unchanged.  But this is clearly not so:
all desired prices have increased.  And the simple average of actual prices
(which in this example would record an increase) would be a better
estimate than the trimmed mean.  Better still would be to ‘trim’ all other
prices from the measure except those at the tail.(5)

In sum, aggregate demand shocks can cause skewness in relative price
changes.  We cannot dismiss this as a mere theoretical possibility:  it may
not be too far-fetched to imagine that the systematic positive skewness we
observe in the distribution of UK prices —  as Chart 11 later in the paper

__________________________________________________
(4) An example of a model where this might occur is presented in Caballero and Engel (1993).
(5) Note that these examples are consistent with rational expectations.
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shows —  is the result of the repeated positive nominal aggregate demand
shocks experienced during a regime of positive inflation.

These examples of situations where demand shocks cause skewness in the
price distribution give us insights into how to improve the estimation of
inflation in desired or long-run prices.  In these particular examples, price
changes at the extremes of the distribution should get more weight in the
estimator than those in the centre of the distribution, the reverse of the
Bryan and Cecchetti trimmed mean.  In general, in a world of menu-cost
price-setting, the weight that is attached to each percentile of the
distribution will depend on the exact balance of demand and supply shocks.
Since this will vary over time, then so will the weights we attach to
percentiles of the price distribution.  But of course, if we knew the exact
magnitude of demand and supply shocks at the time the shocks hit the
economy then we would not need to calculate the trimmed mean, which is
designed to adjust for the temporary influence of supply shocks on the
aggregate price level!

In addition, the examples we have cited are ones where demand shocks are
large enough to push only some firms into making state-dependent price
changes.  If they are sufficiently large that, when their effects on desired
prices are added to those of any subsequent supply shock, all firms find it
optimal to pay menu costs and make a price change, then that supply shock
will have no distorting influence on the measured inflation rate in any case.

One final remark on the theoretical motivation for using the trimmed
mean:  it rests on menu costs being a significant economic phenomenon in
the first place, and one that gives rise to the mixed time and state-
dependent rules that we have talked about (of course this is also true of our
counter-examples).  But direct evidence on menu costs is not too
supportive.  For example, Kashyap (1995) reported that there were quite a
few examples of small price changes in retail catalogues in the United
States (recall that if there are menu costs, then firms are likely to ‘save up’



13

price increases and make big changes).  Also in the United States, Blinder
(1994) asked companies whether they think menu costs are a significant
factor in deterring them from changing prices.  It ranked sixth out of
twelve different price stickiness theories.

In the United Kingdom, Hall et al (1997) asked around 650 companies the
same question;  only 7% of their sample thought menu costs were
significant.  Moreover, this same UK survey found that the mixed time and
state-dependent pricing rule that underlies the Bryan et al trimmed mean is
not that common:  only 10% of firms operated this kind of pricing rule.
79% said they used a purely time-dependent rule.   Now it must be the case
that even these 79% of firms would change prices if the state shifted by a
large enough amount, but if, over the sample period we are looking at, no
such event took place, then it is reasonable to think of the United Kingdom
as a predominantly time-dependent price-setting economy.  And recall that,
with continual positive demand shocks and time-dependent pricing, the
trimmed mean may not be the best measure of core inflation.

3 Statistical theory

Bryan et al (1997) present the statistical arguments for using the trimmed
mean measure.  The intuition of the case they present is as follows.
Recorded price changes are samples from a population of price changes
whose distribution is unknown.  If the population is normally distributed
the best (most efficient) unbiased estimator of the population mean is the
sample mean.  But if the population distribution is leptokurtic (ie  has
fatter tails than the normal distribution), this result no longer holds.
Sampling errors in the draws from the tails will cause the sample
distribution to be skewed even if the underlying population is symmetric.
The trimmed mean estimator —  the average of some central portion of the
distribution —  is a more efficient estimator of the population mean in this
case, since it is less affected by idiosyncratic draws of extreme price
changes at either end of the distribution.  Bryan et al conduct Monte Carlo
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tests to demonstrate this result:  the more leptokurtic a population
distribution, the less efficient an estimator of the population mean is the
sample mean.  Importantly, they also show that the more leptokurtic a
population distribution the more of the tails of the sample distribution it is
optimal to trim before averaging.

We can think of another motivation for using the trimmed mean that Bryan
et al do not mention.  The fact that the Office for National Statistics (ONS)
in the United Kingdom uses expenditure weights in measuring prices that
are only updated annually also bears on the question of trimming.  Suppose
the price of a particular good rises.  Leaving the expenditure weights
unchanged will mean that the expenditure component of the largest
positive price changes will be overstated:  unless goods are completely
non-substitutable, consumers will substitute away from goods whose prices
rise.  In a symmetric distribution of sampled prices that accurately reflects
the population, this would not be a problem.  The expenditure on goods
whose price change is at the top of the distribution would be overstated
(large price rise times unchanged quantity), but the expenditure on goods
whose price change is at the bottom would be understated (large price fall
times unchanged quantity).

But, as Bryan et al point out, these distributional conditions are not in
general met.  Specifically, we might face a representative sample from an
asymmetric population distribution, or an unrepresentative (ie asymmetric)
sample from a symmetric population.  So taking trimmed means could be
motivated by infrequent adjustment of expenditure weights by the
statisticians.  The case might even in principle be stronger than that of
Bryan and Cecchetti’s based on infrequent adjustment of prices by firms.
First, infrequent expenditure weight adjustment is a fact, not a theoretical
proposition.  Second, weight adjustment is simultaneous for all goods, and
is purely time-dependent, so there is no danger of discarding ‘leading
indicator’ price series, as there is when thinking about price adjustment.
Against this, in the United Kingdom at least, the published price
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sub-components are still aggregated across some goods:  it is likely that
substitution between such goods at this level would be less than between
individual goods.

The statistical case for trimming appears to be convincing.  The question is
how much of the distribution should be trimmed.  Bryan et al show that
trimmed mean estimators are better approximations of measures of ‘core’
inflation in the United States than simple mean inflation rates, where core
inflation is defined as a centred moving average of inflation (of varying
lengths).  They calculate an ‘optimal trim’ by searching for that which best
proxies these long-run averages of inflation.  In Section 4 we conduct a
similar exercise for the United Kingdom, and then reflect on what we can
learn from the results.

4 Application to the United Kingdom

The remainder of this paper does two things.  First, we replicate the Bryan
et al analysis on UK data.  Second, we discuss the methodology they use
and the problems in moving from the statistical motivation for the trimmed
mean to its application in practice.

(i)  The optimal trim for the United Kingdom

We look for the optimal trimmed mean estimator of Bryan et al’s measure
of core inflation using the entire 1974 to 1997 sample for which we have a
sufficiently disaggregated distribution of price changes across goods.
Specifically, following Bryan et al, we look to see which portion of the
distribution of price changes, when averaged, is the closest approximation
to a centred moving average of the mean of all price changes.  In the
baseline case, a 37-month centred moving average is used.  We measure
how close the approximation is by calculating the root mean square error
(RMSE) and mean absolute deviation (MAD) for each trimmed mean
estimator.  The trimmed mean is calculated in each case by first computing
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annualised one-month changes in the non seasonally adjusted price of 81
individual RPIX components and second, averaging the central x% of the
distribution of those price changes.  We look at short-horizon inflation
rates simply because the problems induced by menu-cost price-setting or
sampling errors are likely to be more acute at the shortest horizons.  The
implication of the Bryan et al analysis is that, in time, all prices will
change to reflect shocks to desired prices, and, in time, sampling errors
will balance out through repeated draws from the underlying population of
price changes.

In the baseline case we annualise the one-month change in prices by
raising them to the power of 12.  We then trim the resulting annualised
series.  An alternative would be first to trim the monthly inflation rates and
then compound the resulting series to calculate annualised trimmed mean
inflation rates.  The latter is what Bryan et al appear to do in their baseline
case.  We also do this, in our robustness section.  One reason for
annualising first is that raising monthly price changes to the power of 12
accentuates the skewness of the distribution.  This stacks the cards in
favour of trimming:  something we want to do given that our aim is to
provide critical comment on some of Bryan et al’s arguments for
trimming.  A second reason is that the alternative of compounding
trimmed monthly inflation rates means that the resulting annualised series
conflates different goods in different months.  The resulting annualised
inflation rate for any given month cannot then be interpreted as a change
in the value of a fixed basket of goods in the preceding twelve months.

We work with seasonally unadjusted data, unlike Bryan et al.  The main
reason for this is that the ONS in the United Kingdom does not publish
seasonally adjusted price indices in the United Kingdom.  In the United
States, by contrast, the published data used by Bryan et al is seasonally
adjusted by the Bureau of Labour Statistics.  Given the many different
methods of seasonal adjustment that exist in the literature we did not want
to induce further degrees of uncertainty into our analysis.
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The results for our baseline case are shown in Charts 1 and 2:
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Chart 1
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These charts show how the RMSE and MAD vary when we trim different
portions of the distribution.  We can find the ‘optimal trim’ —  the trimmed
mean estimator that best approximates the 37-month centred moving
average of RPIX inflation —  by picking out the trough of these charts.  If
we take the RMSE as the metric, the optimal trim is 0.47 (or 47% from each
tail of the distribution).  On the other hand using the MAD measure the
optimal trim is only 0.17.  It is not obvious which measure of efficiency is
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superior:  note that the RMSE measure attaches a greater weight to large
forecast errors (since in the RMSE the errors are squared first and summed
before taking the square root).(6)

Table 1  The optimal trim for the United Kingdom

RPIX 1974:02 - 1997:07
RMSE MAD

Mean(a) 17.66 6.98
Median 5.51 3.88
Optimal trim 5.45 3.71
Trim at optimum 47% 17%

(a) We have used here a non chain-weighted RPIX to make it comparable with the trimmed mean.

Table 1 summarises the properties of different estimators of ‘core’
consumer inflation.  The first point to note is that —  just as Bryan et al
found —  trimming appears to help:  trimming 47% of the cross-sectional
distribution of consumer prices reduces the RMSE by just under 70%.
Second, the RMSE and MAD give very different values for the optimal trim.
Third, the RMSE and MAD associated with the untrimmed mean measure
of inflation are both large (and larger than in Bryan et al).  This should not
be surprising:  we trim annualised monthly changes in the price of non-
seasonally adjusted RPIX components.  So we would expect larger forecast
errors around the core rate.  (Using annualised monthly rates also
exaggerates the difference —  as measured by the RMSE and the MAD —
between the mean and the trimmed mean estimators.  As explained in
footnote 5, the RMSE penalises large errors more heavily, so annualising
increases the difference between the RMSE and the MAD measures.)

__________________________________________________
(6) This is easy to see with a simple example.  Consider first a set of three forecast errors taking

the values 2,2 and 2.  The MAD here equals 6/3 and the RMSE also equals 
12
3

=2.  Now

consider a distribution of three forecast errors where there is an outlier: 1,4 and 1.  The MAD is

again 6/3 but the RMSE has increased to 
18
3

.
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Fourth, on both the RMSE and MAD measures, the median is almost
efficient as the optimal trim.  But this is not surprising from Charts 1 and
2:  it is clear that the changes in the RMSE and MAD as we move the trim
about its optimum are not large (the two curves are very flat).  This is not a
feature of Bryan et al’s results, but we argue later that this result is
explained by the different annualising methods used in our baseline cases.

Bryan et al (1997) argue that the optimal trim for the US CPI (0.09) is
robust to changes in the definition of the core inflation rate and to changes
in the sample period over which the whole experiment is carried out.  They
show that the optimal trim is not robust to the level of disaggregation of the
price components, nor to the horizon over which inflation is measured.
Specifically, they find that the optimal trim is higher the more
disaggregated the price components (they argue that this is because the
population distribution is more leptokurtic the more disaggregated the
price components).  And they find that measuring component price
inflation at lower frequencies (eg  annual rather than monthly) —  what
they call
‘pre-trim averaging’ —  decreases the size of the optimal trim.  Intuitively,
lengthening the observation interval reduces transitory noise.

(ii)  Robustness of the trimmed mean calculation

We turn now to investigate how robust this optimal trim is to a variety of
changes in our baseline experiment.

The first change we examine is to the method of annualising monthly price
changes.  The baseline case calculates the trimmed mean by first
annualising monthly changes in RPIX components, and then trimming.
Here, as in Bryan et al, we trim monthly inflation rates, without
annualising them first, and subsequently derive an annual inflation rate for
each month by compounding the monthly inflation rates over the previous
twelve months (we refer here to these as ‘monthly inflation rates’).
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Charts 3 and 4 show that the optimal trim on both the RMSE and MAD
measure is now much lower, at only 0.04.  It is clear that annualising
monthly inflation rates by raising them to the power of 12 —  as in Charts 1
and 2 —  magnifies the transitory volatility around ‘core’ inflation induced
by the price changes observed at the tails of the distribution.  Importantly,
it is no longer the case that the efficiency losses from trimming beyond the
optimum are flat.  And neither do Bryan et al’s results for the United
States that also use this alternative annualising procedure display this
pattern.
The earlier result that the payoff from trimming is flat around the optimum
depends very much on which method of annualising is used.
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Chart 4
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The second change to the baseline case we consider is to the level of
aggregation of retail price components.  The baseline case calculates
trimmed means using the most disaggregated data that the ONS publishes.
We also compute the optimal trim using data published at a higher level of
aggregation, namely 29 components.  The results are shown in Charts 5
and 6:
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Chart 6

Annualised monthly inflation rates 
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As Bryan et al report for the United States, the optimal trim falls on the
RMSE criterion, from 47% to 36%.  But it rises on the MAD criterion, from
17% to 33%.

In the baseline case, we annualised monthly changes in the rate of inflation
of RPIX components before trimming.  We get a handle on robustness
across the horizon over which inflation is measured by trimming 12-month
changes in RPIX components and then computing the optimal trimmed
mean.  The optimal trim is now 30 on the RMSE basis and 28 using the
MAD (see Charts 7 and 8).
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Chart 7
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Chart 8
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So, on the RMSE measure, the optimal trim is indeed lower for annual
inflation rates compared with our baseline annualised monthly rates.  But
on the MAD measure it is again larger.  It is also worth noting that the
MAD and RMSE measures of the optimal trim are very similar for annual
inflation rates.
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We now take our baseline case and calculate the optimal trim for
sub-samples of the period over which RPIX data has been published in the
United Kingdom, namely 1974:01 - 1997:07.  Bryan et al (1997) argue
that the optimal trim for both the US CPI and PPI are robust to changes in
the sample period.  Our preliminary findings suggest that this may not be
the case for the United Kingdom.

We calculate the optimal trim for ten-year rolling samples across the whole
period 1974:01 - 1997:07.

Chart 9
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Chart 10

Optimal trim over ten year rolling sample 
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Charts 9 and 10 show that the optimal trim does not appear to be robust
across sample periods.  And the exact time profile of the optimal trim
depends on which measure of efficiency is being used.

The baseline case defines the core inflation rate as the 37-month centred
moving average of RPIX inflation.  But how robust is the optimal trim to
the way this core is measured?  Table 2 reports optimal trims as a function
of the length of the moving average specified for the benchmark, core
inflation rate.
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Table 2  Optimal trims monthly inflation rates (annualised)
1974:02 - 1997:07

Core inflation Optimal trim using
RMSE

Optimal trim using
MAD

25 47 24
37 47 17
49 47 18
61 47 20

Table 2 shows that the optimal trim is quite robust to the definition of the
benchmark inflation rate (we find that this is also the case for annual
inflation rates, and for both annualised monthly and annual rates over the
1987:01 - 1997:07 sample period).  This is displayed more generally in the
contour chart below (see Chart 11).  This plots RMSEs for different
combinations of the core inflation rate (as measured by the moving average
window) and the trim.   This shows that, at least for annualised monthly
inflation rates, the optimal trim on the RMSE criterion, at 47, never
changes as the core varies from a 3-month to 71-month centred moving
average!
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Chart 11
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Nevertheless, if we look across the range of our experiments, we conclude
that the optimal trim is not as robust an estimator of core inflation for the
RPIX as appears to be the case in the United States.  The optimal trim
appears to be sensitive to the statistical criterion used to assess efficiency
—  whether we measure efficiency using the root mean squared error
(RMSE) or mean absolute deviation (MAD);  to the precise way in which
the trimmed mean inflation rates are calculated —  whether or not monthly
rates are annualised by raising to the power of 12 or whether component
inflation rates are calculated at horizons longer than one-month inflation;
as well as to the sample period.  Though Table 1 and Charts 1-3 and 6-8
appear to show that beyond a certain cut-off point, roughly around 10%,
there is little to be gained or lost by trimming any more of the distribution,
this result seems to be related to the particular annualising method we have
adopted in the baseline case.  Charts 4 and 5, showing the RMSE and MAD
for trimmed mean inflation rates using the alternative annualising method,
do not share this feature.  And neither do Bryan et al’s results for the
United States that also use this alternative annualising procedure display
this pattern.  In sum, without a clear steer from statistical or economic
theory, we are left without a way of deciding how much of the distribution
to trim.

(iii) Problems with Bryan et al’s methodology

Here we raise a number of questions about the empirical exercise
conducted in Bryan et al.

First, recall the statistical motivation for trimming.  The argument was that
the population of price changes was leptokurtic (had fat tails relative to the
normal distribution), and that sampling errors in the tails meant that the
observed large price increases (decreases) might not always be balanced out
by observed large price decreases (increases) —  a sample distribution could
be skewed —  even when the underlying population might be symmetric.
Large price changes are ‘trimmed’ because they have a large moment
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about —  or are a large distance from —  the population mean.  But
‘trimming’ as Bryan et al have used it gives a zero weight to these
observations, when the intuition of the statistical argument for trimming is
that the weight attached to a percentile in the distribution should be
inversely proportional to its distance from the population mean.  Of course
we do not have the population mean to hand —  this is the point of
searching for an efficient inflation estimator —  but it still should be
possible to improve upon the zero-one weighting scheme adopted by Bryan
et al, using the sample mean or the median as the benchmark inflation rate
for calculating the weights attached to each percentile.

Second, Bryan et al’s Monte Carlo analysis showed that the optimal trim
depends on the amount of kurtosis in the underlying distribution.  Ideally,
therefore, it is the kurtosis of actual price changes that should dictate the
optimal trim in reality and not the ability of the resulting trimmed index to
approximate some proxy for ‘core inflation’ (about which we will say
something below).

Unfortunately, just as the exercise of trimming is designed to find an
estimate of the population mean, we do not have precise information about
the kurtosis of the population distribution.  Bryan et al could have
approximated this by the sample kurtosis, however, and in practice we
think this would align the trimming exercise more closely to the statistical
problem that motivated it.  But presumably just as the population mean
changes over time, so might the other moments.  Even in the absence of
menu costs, for example, a large supply shock may bring about large
relative price changes in the distribution, and increase population kurtosis.
During these periods, sampling errors at the tails would have a larger
impact on the error in estimating the population mean, and so the optimal
trim would be higher.  In short, the optimal trim should depend on the
population kurtosis, and will, in general, vary over time.  Chart 12 suggests
that a time-varying kurtosis is not implausible:  the average ‘excess’
kurtosis over the sample period —  ie  kurtosis over and above that of the
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normal distribution —  is 28.4 while the standard deviation around this
mean is 67.4.  However, we cannot rule out the possibility that we are
simply observing variable samples drawn from a constant population.

Chart 12(7)
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Third, applying an equal trim to the top and the bottom of the distribution
—  as Bryan et al discuss —  is only valid when the underlying population
distribution is symmetric.  In a distribution that is positively skewed, the
largest 5% of price changes will have a greater moment about the mean
(will lie farther away from it in inflation units) than will the smallest 5% of
price changes;  in turn, sampling errors in the highest part of the
distribution will also play a more important role in incorrectly estimating
the mean than those in the lowest part.  So in a positively skewed
distribution, a larger proportion of the top of the distribution should be
‘trimmed’ in order that, over repeated draws, the expected impact of

__________________________________________________
(7) Charts 10 and 11 are in fact based on only those components for which inflation rates are
available for the full sample period (64 out of 81).
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sampling errors on the mean is zero.  (Roger (1997) makes use of this
wisdom in applying the trimmed mean to New Zealand, where the price
distribution has a systematic, positive skewness.)

In other words, whether the ‘trim’ is symmetric —  whether the amount of
the distribution trimmed at the top is the same as that trimmed at the
bottom —  should depend on whether or not the underlying population is
symmetric.  The first problem is that we don’t have precise information
about the population skewness:  we only have the sample skewness.  But a
second possibility is that this population skewness could well vary over
time:  relative price shocks, even in the absence of menu costs, that result
from supply shocks, could generate any distribution of desired price
changes, and one that we would have no reason to expect would be
symmetric, or time-invariant.  Chart 13 shows that skewness is on average
positive over the whole sample period, at 3.1, but that there is significant
variation around this mean:  the standard deviation around the mean is 3.8
over the sample period.  This chart suggests that a time-varying population
skewness may indeed be plausible.

Chart 13
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Skewness of inflation rates 1974:02 - 1997:07 
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To sum up these points:  the optimal amount of these sample price-change
distributions that we should trim depends on a possibly varying, and
certainly unknown, population kurtosis.  The ratio of the proportion to trim
at the top to the proportion we should trim at the bottom depends on an
equally variable and equally unknown population skewness.  Finally,
‘trimming’ itself should ideally take the form of applying a distribution of
weights to percentiles of price changes, where the weight is inversely
proportional to the distance from the population mean.  The zero-one
weighting scheme implied by Bryan et al’s scheme can be improved upon,
though this is not to say that zero-one trimming is not better than no
trimming at all.

In the empirical part of Bryan et al’s analysis they let the optimal trim
depend entirely on how well the trimmed estimator approximates a
measure of core inflation, defined as a long centred moving-average
inflation rate.  The implication of the discussion above is that this may not
be appropriate.  Bryan et al’s idea here is that by taking long-window
moving averages, the problems associated with estimating the population
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mean price change by the sample mean disappear.  There are two possible
reasons why this procedure might be justified.

First, recalling the theoretical motivation for the trimmed mean, if the
moving average is calculated over a window that is longer than the typical
length of time between price reviews then this measure will not be
contaminated by supply shocks.  But this requires that all supply shocks
hitting the economy have worked themselves through by the end of the
moving-average window.  In a dynamic economy with supply shocks
hitting each month, a core inflation rate calculated in this way may not
suffice.  The only situation in which it will be appropriate is one where all
supply shocks that contaminate the inflation rate both appear and
disappear within the centred moving-average window.

The second possible justification recalls the statistical motivation for using
trimmed means.  For a moving-average window of sample mean inflation
rates to suffice as a measure of core inflation requires that sampling errors
balance over time.  Intuitively, if the population moments are stable, then
calculating a moving average over a long enough window will mean that
there have been enough draws from the tails of the distribution to ensure
that extreme upward changes are balanced by enough changes in the
opposite direction.  The trouble is that the population moments —
particularly the skewness and kurtosis —  could well vary.

There may be a further problem with using the centred moving average as
a core or benchmark rate against which to judge trimmed means.  This is
that the moving-average window may be long enough to contain aggregate
demand shocks that are fully offset by the monetary policy authorities in
the period.  Yet these are genuine fluctuations in the inflation rate that
would have persisted had the authorities not responded:  it is not obvious
why these shocks should be excluded from the benchmark rate.
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It is not an easy task to find a benchmark against which to judge a new
measure of inflation like the trimmed mean.  For every such benchmark
inflation rate, there is always the question:  why not use that inflation rate,
instead of the trimmed mean?  For the centred moving average, the answer
is straightforward.  At each point in time we do not have the future
inflation rates needed to calculate the centred moving average!  But as we
have discussed above, there are problems with using this measure:  its
usefulness rests on the time horizon being long enough to overcome
problems relating to menu costs or sampling.  If population moments
change, or there are demand shocks, then (there will at least be periods
when) the usefulness of the moving average is limited.

5 Conclusions

Some recent papers have argued that monetary policy-makers should use
trimmed mean inflation rates in gauging inflationary pressure.  At least
two motivations have been given:  the first is that supply shocks may
induce temporary skewness of actual price changes if there are menu costs
of adjusting prices, even though the desired (or long-run) price change is
in fact zero.  This induces transitory volatility into the conventionally
measured inflation rate, the mean of all price changes.  The second
motivation is that in leptokurtic distributions of price changes
(distributions with fat tails) sampling errors at the tails can induce a
significant amount of volatility in the sample mean, even when the true
population mean is unchanging.  In both cases, it has been suggested by
Bryan et al that these problems can be mitigated by taking the mean of
some central portion of the distribution of observed price changes.

Rather than propose a new measure of inflation, we set ourselves the (far
less noble!) task of commenting on one proposed by others.  Our argument
is not that trimming inflation rates is wrong.  It is that while policy-makers
can obviously gain useful information by looking at the cross-section
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distribution of price changes, the question of what information to discard is
not at all straightforward.  We have two broad points to make:

First, aggregate demand shocks can also bring about skewed changes in
actual prices.  This may occur if firms operate staggered, time-dependent
pricing, or if there are heterogeneous state-dependent rules for setting
prices.  In all these cases, the implication is that in response to a demand
shock, we may obtain a better estimate of inflation consistent with desired
prices by putting more, not less weight on the extreme price changes in the
distribution, since these contain the most, not the least, information about
the future general price level.  This compares with Bryan and Cecchetti’s
model of menu costs that predicts that the policy-maker should put zero
weight on the extreme price changes of the distribution.  So there is no a
priori case for trimming on theoretical grounds.

Second, there are difficulties in moving from the statistical theory that
motivated the trimmed mean, to a practical measure.  The statistical logic
behind trimming implies that the optimal trim —  the amount of the tails
we should chop off —  depends on the amount of kurtosis in the population
distribution.  This kurtosis is unknown and possibly changing over time.
In addition, whether we should trim the same amount from the top as from
the bottom of the distribution depends on the population skewness.  This is
also unknown and possibly changing.  Moreover, trimming assigns a zero-
one weighting scheme to the price change observations.  But intuitively,
the percentiles should be weighted in inverse proportion to their distance
from the population mean.  Finally, we raise some objections to the use of a
long centred moving average as a benchmark against which to judge how
well trimmed means perform, not least that it assumes that all supply
shocks that contaminate the inflation rate both appear and disappear within
the centred moving-average window.

We conclude that the theoretical grounds for trimming are weak, but that
the statistical arguments are more convincing.  That said, there are many
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difficulties in applying the statistical logic when trying to calculate the
optimal trim in practice.  Given these difficulties it is perhaps unsurprising
that we find a marked degree of non-robustness in our estimates of the
optimal trim.
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