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Abstract

In this paper we investigate the problem of selecting an optimal horizon
for inflation targeting in the United Kingdom.  There are two key ways of
thinking about an optimal horizon, so we look at optimal horizons for both
of these interpretations.  In addition, to see whether our results are robust
in the face of model uncertainty, we compute optimal horizons for two
different models with divergent structural and dynamic characteristics.
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1 Introduction

Many central banks, including the European Central Bank, and those of
Australia, Canada, Israel, New Zealand, Sweden and the United Kingdom,
pursue an explicit inflation target.  In practice, this usually involves
‘targeting’ the conditional forecast of inflation=— the inflation rate
expected to prevail in the future given presently available information —
rather than current inflation.

A crucial issue is how to choose the horizon — the appropriate value of k
when the operational target is expected inflation k periods ahead.

There are two key ways of thinking about an optimal horizon for inflation
targeting, depending on the way that inflation targeting is modelled.  If
policy is represented, for instance, by a simple feedback rule on expected
future inflation, one way is to think of it as the best horizon for which the
authorities should form a forecast for inflation to use in the rule.  If,
instead, policy is represented by an optimal rule for the instrument, the
optimal horizon can be thought of as the time at which inflation should be
on target in the future when the authorities aim at minimising their loss
function, and a shock occurs today.  In what follows, we refer to the first
kind of horizon as the ‘optimal feedback horizon’ and to the second kind
as the ‘optimal policy horizon’.

This paper calculates optimal horizons for inflation targeting, using both
definitions described above.  Since the results may well hinge on the
features of the model used for the calculations, the paper derives parallel
results for two models: a vector autoregression (VAR) estimated on
quarterly UK data; and a small-scale structural open-economy model
based on Ball (1999), Batini and Haldane (1999), and McCallum and
Nelson (1999a).  A key difference between the two models is the
importance that the second model assigns to forward-looking behaviour in
spending and pricing decisions.

The paper is organised as follows.  In Section 2 we discuss alternative
definitions of horizons for inflation targeting.  In Section 3 we describe the
policy-makers’ objective function and the macroeconomic models that we
employ.  In Section 4 we compute optimal policy horizons for each model,
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and discuss the results.  In Section 5 we consider optimal feedback
horizons, and Section 6 provides a brief exploration of sensitivity of the
results to parameter uncertainty.  Concluding remarks follow in Section 7.

2 Optimal horizons for inflation targeting:
      two definitions

In countries that pursue inflation targets, the formal wording of the
mandate for the central bank usually provides that the inflation target be
achieved each year.(1) For instance, the mandate for the European Central
Bank, the most recently established central bank, states that: ‘[P]rice
stability shall be defined as a year-on-year increase in the Harmonised
Index of Consumer Prices for the euro area of below 2%...’ (ECB (1999),
page 46).  But central banks that have an inflation target need an operating
strategy for achieving it.  In practice, many do so by focusing on expected
future inflation.  The main reason for this is the existence of lags in the
transmission of monetary policy to inflation.

The recognition of the existence of lags from monetary policy changes to
inflation — and attempts to quantify these lags — have a long history.
Jevons (1863), using UK data, concluded that: ‘An expansion of the
currency occurs one or two years previous to a rise in prices...’.
Milton Friedman (1972) similarly found, using postwar US M2 data, ‘a lag
varying between eleven and thirty one months’ from monetary growth to
inflation. These authors also recognised that prices reacted more slowly
than output.

More recent empirical work, primarily using VAR analysis, has employed
interest rate based monetary policy measures.  Using US data, Christiano,
Eichenbaum, and Evans (1996), for example, estimate that a monetary
policy shock affects real GDP with a two-quarter lag, and the GDP
deflator with a four-quarter lag.

It is possible that in more open economies, such as those currently
pursuing an inflation target, the transmission lag is shorter because policy

_________________________________________________
(1) Bernanke et al (1999) provide a recent overview of several countries’ inflation targeting
arrangements.
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operates not only via the conventional ‘output gap channel’, but also via a
potentially swift ‘exchange rate channel’.  But even in economies that are
open, the exchange rate channel may not be as effective, or as
quantitatively important, as the output gap channel.  Neither the
pass-through of exchange rate changes to import prices, nor the
propagation of import price changes into aggregate price level changes,
can be taken for granted.(2)  In the United Kingdom, for example, the
substantial exchange rate depreciations in 1982 and 1992 failed to produce
appreciable increases in the inflation rate (measured by the RPIX index).
In other words, even in economies that are more open than the United
States, the time it takes for monetary policy to have its main impact on
nominal demand may still be lengthy.

In the presence of transmission lags, returning inflation to target
immediately after a shock may involve considerable costs.  This is because
immediately offsetting the inflationary consequences of a shock may
require large movements in the policy instrument, resulting in unduly large
output losses.  One obvious way to avoid this is to try to anticipate
inflationary events and react to them pre-emptively in a more gradual
fashion.  Acting before it is too late permits central banks to minimise
these losses by reducing the extent to which the instrument has to be
moved in the short run in order to control inflation.

In the literature on inflation targets, this forward-looking approach to
policy has been represented in two ways.

Rudebusch and Svensson (1999) argue that real-world inflation targeting
can be approximated by viewing the central bank as carrying out an
optimisation exercise, where the welfare function penalises inflation
departures from a target, and policy is thus set according to the ensuing
optimal rule.(3) In their words (1999, page 204): ‘In examining policy rules
that are consistent with inflation targeting, we consider two broad class of
rules: instrument rules and targeting rules… A targeting rule may be closer
to the actual decision framework under inflation targeting.  It is

_________________________________________________
(2) The estimates of our VAR for the United Kingdom (see Section 3 below) support caution
about the empirical importance of the exchange rate channel for output and inflation.
(3) See also Svensson (1997, 1999).
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represented by the assignment of a loss function over deviations of a goal
variable from a target level…’.

Rudebusch and Svensson’s definition has strengths and weaknesses.  One
strength is that it reflects a comprehensive approach to policy   a
‘look-at-everything’ approach.  It also implies that information is
processed in the most efficient way —=which is the way central banks
often visualise their policy.  However, this definition implies that policy is
set in a complex manner that the public may find difficult to understand,
particularly when there is no consensus on either the model or the
objective function.

A second definition of inflation targeting is used in work by Batini and
Haldane (1999), McCallum and Nelson (1999b), and others.  This views
targeting expected future inflation simply as setting the policy instrument
in response to deviations of future inflation from target.  In other words, it
defines targeting as the use of a policy rule such as:

Rt = constant + ψp [Etπt+k − π*] (1)

where Rt is the short-term nominal interest rate, Etπt+k  is the period t
forecast of inflation in t +k,=π* is the inflation target, and ψp > 1.

Strengths of this approach are that it does not necessarily require
agreement on every aspect of model specification other than in the
construction of the forecast (for which there is no need for a full model).
This is because (1) has the property that it will rein in deviations of
inflation from target in a variety of models, subject to weak conditions
which will be met by most standard model specifications.(4)  Consequently,
(1) is a rule that policy-makers could agree would control inflation, even if
they had no consensus on the appropriate objective function or model of
the economy.  Furthermore, (1) is consistent, for
k > 0, with the inflation forecast at some specific horizon being a key input
into policy-makers’ decisions.  By contrast, in most cases a standard
optimisation exercise would not give special weight to the inflation

_________________________________________________
(4) The condition is that the long-run response of the inflation rate to monetary policy
tightenings is negative.
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forecast at a particular horizon, especially as that forecast may not even
appear in the first-order conditions for optimality.

The principal weakness of this approach is that it is based on a simple rule
that uses information less efficiently than an optimal rule.

The above considerations suggest that, in either case, inflation-targeting
central banks need to decide how forward-looking they should be in order
to bypass the transmission lags. That is, when setting policy, they must
choose an ‘optimal horizon’ over which to pursue the goal of price
stability.  Since the concept of horizon means different things under the
above two interpretations of inflation targeting, we provide two
operational definitions of ‘optimal horizon’ to investigate this issue: the
‘optimal policy horizon’ and the ‘optimal feedback horizon’.

We define the optimal policy horizon (‘OPH’ hereafter) as the number of
periods it takes for inflation to settle on target after a shock, under the
optimal rule for the instrument.  This is in line with Rudebusch and
Svensson’s interpretation of inflation targeting — an optimisation exercise
that penalises deviations of inflation from target and of output from
potential.  (More specifically, this corresponds to what Svensson (1997,
1999) calls ‘flexible inflation targeting’.)  We call this horizon the optimal
policy horizon because of its intimate connection with the optimal policy
rule; but an equally valid, and perhaps more descriptive, label would be
the optimal stabilisation horizon.

There are two things to note about this definition.  First, we treat the
underlying optimisation exercise undertaken by the central bank as one
subject to commitment.  Svensson (eg 1999) instead generally views it as
optimisation subject to discretion, but Woodford (1999) demonstrates that
discretion has drawbacks when (as in one of our models below) the
model’s structural equations contain forward-looking components.(5)  More
recently, Svensson and Woodford (1999) have proposed several candidate
modifications to standard discretionary optimisation, which — by
connecting current and past policy actions — reduce the problems
associated with discretionary behaviour.  Future work could compare our
_________________________________________________
(5) These problems arise from the fact that discretionary optimisation generally leads to
predictable future deviations by policy-makers from their currently announced plans.
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results using commitment with results based on Svensson and Woodford’s
modified discretionary framework.(6)  Second, the optimal policy horizon
in our definition is an output of the optimisation exercise, rather than a
literal constraint on the optimisation problem.  See Smets (1999) for an
alternative approach, in which the requirement that Etπt+k = 0 (for a
specified k ≥ 0) is a constraint on the policy-makers’ optimisation problem
(ie an input in the optimisation process).

Turning to our second concept of horizon, we define the optimal feedback
horizon (OFH hereafter) as the best period in the future for which the
authorities should form the inflation forecast that enters their policy rule.
The OFH is an optimal response horizon — the best horizon to focus on
when designing a simple, inflation forecast based rule.  The OFH is
therefore the k associated with the minimisation of the policy-makers’ loss
function, when policy follows a simple rule such as (1).

In the next section, we define the policy-makers’ preferences and describe
the models that we use to derive optimal horizons under each of the above
definitions.

_________________________________________________
(6) As discussed further in the technical appendix, the specific commitment policy that we
assume is one in which the central bank optimises, once and for all, subject to the structural
model of the economy.  Solutions for the endogenous variables are then implied by the
structural equations plus the policy-makers’ time-invariant first-order conditions for
optimality.  This procedure follows King and Wolman (1999) and corresponds closely to
what Woodford (1999) calls a commitment policy with a ‘timeless perspective’.
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3 Objective function and models

Objective function

We assume that policy-makers wish to minimise deviations of inflation
from target and departures of output from potential.  We also assume that
policy-makers dislike instrument volatility.  For computational
convenience, these preferences are represented by a quadratic loss
function.  In the optimisation exercises used to derive optimal policy
horizons, this is the function that is being minimised.  And when we derive
optimal feedback horizons by comparing the performance of rules like (1)
for various ks, this loss function is used to compute welfare losses in all
experiments.  Formally, the loss function is given by:

            ∞
Lt = Et ΣΣΣΣ β j [λπ (4*πt+j − 4*πt+j

T)2 + λy(yt+j − yt+j
T)2

           j= 0  + λ∆R (4*∆Rt+j)2]
(2)

where β is the discount factor, 4*πt is annualised quarterly inflation, πt
T is

the inflation target, yt is log output, yt
T is log capacity output, and where λπ

, λy and λ∆R denote the weights assigned to inflation deviations from
target, output deviations from potential, and volatility in the first
difference of the nominal interest rate, respectively.

We set β = 0.99, λπ = 1, λy = 1 and λ∆R = 0.5, so that inflation and gap
variability are penalised equally.  The interest rate volatility term, which
rules out extremely large movements of the instrument in response to
shocks, receives a penalty half that of the other terms. These weights are
similar to those used in Rudebusch and Svensson (1999).

Models

To explore the optimal horizon issue, we look at two models: a vector
autoregression (VAR) estimated on quarterly UK data; and a calibrated,
forward-looking small structural model.  These models are described
below.
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A VAR model

Our first model is a one-lag VAR with a linear trend, estimated over the
period 1981 Q1−1998 Q1.(7)  There are four endogenous variables in the
VAR: log output (yt); the deviation of annual RPIX inflation from the
inflation target (πt

DEV); the log-change in the nominal effective exchange
rate (∆et); and the nominal interest rate (interbank lending rate), measured
as an annualised fraction (4*Rt).(8)

As Rudebusch (1998) observes, the interest rate equation in a VAR has a
structural interpretation as a monetary policy reaction function.  As he also
notes, however, there is a danger that policy regime shifts may produce
non-constant parameter estimates.  In our sample period, there have been
two major breaks in the United Kingdom’s monetary policy regime: the
membership of the Exchange Rate Mechanism (ERM) from 1990 to 1992;
and, following its exit from the ERM, the United Kingdom’s adoption of
an inflation targeting regime from 1992 Q4.  If we allow both the slopes
and the intercepts of the interest rate equation in our VAR to vary across
these regimes, the restriction of no structural change is rejected (F(12,51)
= 2.51 [p value = 0.01]).  However, the convenient restriction that the
parameter non-constancy is isolated to the equation’s intercepts is not
rejected (F(10,51) = 1.69 [p value = 0.11]).  Hence we proceed under that
assumption, augmenting each equation of the VAR with two regime-shift
intercept dummies, DERMt and D924t.(9)

_________________________________________________
(7) The linear trend is included to detrend the output variable.
(8) The data appendix provides a detailed description of these series and their time series
properties.  In our work in Sections 4 and 5 with this VAR, the estimated yt equation will
serve as the output gap equation, and the πt

DEV equation, converted to quarterly units, will be
used as the inflation equation.
(9) These variables take the value 1.0 for 1990 Q4–1992 Q3 and 1992 Q4 onwards,
respectively.
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Estimates of this system are reported in Table A. The lag length of one
quarter is not rejected by a χ2 test against the alternative of a two-lag VAR
(p value = 0.10).(10)

Several features of the dynamic properties of the system emerge.  First,
consider the output equation.  Although the estimated coefficient on 4*Rt−1

in the yt regression is quite small (−0.0908), suggesting a minor initial
impact of monetary policy on real demand, the estimated coefficient on
lagged yt in the equation is large, implying that the long-run response to
4*Rt is much greater (−1.3373%).  The exchange rate term in the yt
equation, on the other hand, is small and insignificant.

Second, in line with economic intuition, output has a significant positive
coefficient in the inflation equation; and so interest rates have a negative
effect on inflation, apparently via a conventional output gap channel.

Finally, the estimated equation for 4*Rt looks like a Taylor (1993)-type
policy rule, with the interest rate responding positively both to lagged
output (long-run coefficient = 0.10) and to inflation (long-run
coefficient = 0.91, not significantly below unity).(11)  In addition, the
coefficient on the lagged dependent variable (0.58) suggests a strong
tendency by policy-makers to smooth interest rates; and the coefficient on
the exchange rate change (equal to −0.042) suggests that the interest rate
responds positively to exchange rate depreciations, as one would
expect.(12)

_________________________________________________
(10) Due to the large lagged dependent variable coefficients, the one-lag specification is
consistent with a long lag between monetary policy changes and their peak effect on output
or inflation.
(11) Estimating UK policy rules over sub-samples of the 1972-1997 period, Nelson (2000)
finds point estimates of the long-run response to inflation below unity, with the exception of
the post-1992 period.  Nelson also finds output gap responses of the same magnitude as that
estimated in Table A.
(12) Note that no variables enter the exchange rate equation itself significantly, indicating that
a random walk model for et is not rejected.
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Table A: VAR estimates
Sample period:  1981 Q1 −=1998 Q1

Yt πt
DEV ∆et 4*Rt

yt−1 0.9321
      (0.0464)

 0.1250
(0.0575)

−0.1583
  (0.3273)

 0.0444
(0.0782)

πt−1
DEV −0.0926

  (0.0731)
 0.8559
(0.0905)

 0.3544
(0.5150)

 0.3867
 (0.1231)

∆et−1 −0.0029
  (0.0175)

−0.0023
  (0.0217)

 0.1526
(0.1234)

−0.0416
   (0.0295)

4*Rt−1 −0.0908
  (0.0529)

 0.0336
(0.0655)

−0.0438
  (0.3731)

 0.5759
(0.0892)

Constant
 0.7821
(0.5177)

−1.4072
  (0.6409)

 1.7167
(3.6487)

−0.4786
  (0.8722)

Time trend
 0.00046
(0.00040)

−0.00091
  (0.00049)

   0.002477
(0.00280)

 0.000287
(0.00067)

DERMt −0.00891
  (0.00563)

0.0091
(0.0070)

−0.0509
  (0.0397)

−0.0300
  (0.0095)

D924t −0.0091
  (0.0073)

 0.0108
(0.0090)

−0.0573
  (0.0515)

−0.0422
  (0.0123)

R2  0.9984 0.8880 0.1017 0.9259

S.E.E. 0.0052  0.0064 0.0364  0.0087

S.D. dep.
var.

 0.1212  0.0181 0.0364 0.0303

Note: Standard errors in parentheses.

In this paper, we subject the VAR to hypothetical policy rules=different
from the estimated one.  This requires us to=identify the VAR model’s
responses to shocks.  We do this by means of a Cholesky decomposition,
where the equation disturbances are assumed to follow the causal ordering
(output innovation→ inflation innovation→ exchange rate innovation→
interest rate innovation).  Under this identification scheme, no variable
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other than the interest rate responds contemporaneously to the monetary
policy shock.

A forward-looking structural model

The second model that we consider is a small-scale, forward-looking open-
economy model that incorporates elements of Ball (1999), Batini and
Haldane (1999), and McCallum and Nelson (1999a).  The structural
equations of the model are:

yt = Etyt+1 – σ(Rt – Etπt+1) + δq� t−1 + eyt (3)

πt = απt−1 + (1 – α)Etπt+1 + φyyt−1 + φq∆ q� t−1 + eπ=t (4)

Etqt+1 = qt + Rt – Etπt+1 + κt (5)

where yt is log output, Rt is the nominal interest rate (again, a quarterly
fraction), πt is quarterly inflation, qt is the log real exchange rate
(measured so that a rise is a depreciation), and q� t = ¼ΣΣΣΣj=0

3qt−j is a
four-quarter moving average of qt.  These variables are all expressed
relative to steady-state values.  eyt, eπt, and κt are exogenous IS, Phillips
curve, and uncovered interest parity (UIP) shocks, respectively.

Equation (3) is the model’s IS relationship, giving yt as a function of its
expected future value, the real interest rate, and lags of the real exchange
rate.  Apart from the term in q� t, this equation corresponds to the
optimisation-based IS function in McCallum and Nelson (1999a), and we
choose parameter values based on their estimates: σ = 0.2 and an AR(1)
process for eyt with coefficient 0.3 and 1% innovation standard deviation.
Our choice of δ = 0.05 then produces the same ratio of interest rate to
exchange rate coefficients in the IS curve as used in Batini and Haldane
(1999).

Equation (4) is a quarterly version of Ball’s (1999) open-economy Phillips
curve, modified to allow for some forward-looking behaviour.  While Ball
has lagged inflation appearing on the right-hand side of (4) with
coefficient 1.0, we replace this with the mixed backward-forward looking
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term απt−1 + (1 – α)Etπt+1, and calibrate α to 0.8, close to estimates in
Fuhrer (1997) and Rudebusch (1999).  We calibrate the coefficient φy to
0.1, the quarterly counterpart of Ball’s choice.  We choose φq = 0.025;
this is considerably lower than Ball’s 0.10, but a relatively conservative
value of φq seems prudent in light of the failure of the VAR to pick up any
effect of depreciation on inflation.  We assume that eπ=t is white noise with
standard deviation 1%.

The exchange rate enters both the IS and Phillips curve relationships in a
backward-looking manner, as a lagged four-period average.  A more
forward-looking specification of the model’s open-economy elements
would put ∆qt and Et∆qt+1 in (4).(13)  We found, however, that this scheme
produced an implausibly tight and mechanical relationship between
exchange rate changes and inflation.(14) Thus we have followed Ball
(1999) by allowing qt to enter only with lags;  this might be rationalised by
‘gradual pass-through’ of exchange rate changes to export and import
prices, which might be realistic for the United Kingdom (Bank of England
(1999)).(15)  While qt enters (3) and (4) only in a backward-looking
manner, this is compensated by the fact that the exchange rate itself is a
highly forward-looking variable, as equation (5) indicates.  The shock term
κt that produces deviations from strict UIP in (5) is assumed to be AR(1)
with coefficient 0.753 and innovation standard deviation 0.92%; these
choices are based on our estimates of this process using quarterly UK data.
The shocks in (3)-(5) are assumed to be mutually uncorrelated.

Note that in this model — hereafter referred to as the FLSM
(forward-looking structural model) — monetary policy has some effect on
contemporaneous inflation due to the fact that πt responds to Et πt+1 in
(4).  This effect may be small in relation to the long-run effect of policy on
inflation, but the presence of at least some effect means that the model

_________________________________________________
(13) It might also put qt and Etqt+1 into equation (3).
(14) In Bank of England (1999), it is shown that the inclusion of ∆qt and Et∆qt+1 in Batini and
Haldane’s (1999) Phillips curve makes exchange rate movements the dominant determinant
of inflation, and virtually removes any inflation persistence from the model.
(15) In his annual model, Ball specifies ∆qt as entering the inflation equation with a one-
period lag; in our quarterly model, we approximate this by having the prior year’s average of
∆qt entering equation (4).
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does not have the same property as that in Svensson (1997), where there is
no scope for current policy changes to affect inflation today.

4 Optimal policy horizons (OPHs)

In line with our discussion in Section 2, we define the optimal policy
horizon (OPH) as the time at which it is least costly, for a given loss
function, to bring inflation back to target after a shock.  More intuitively,
the OPH is the horizon-analogue of the optimal speed of disinflation —
the optimal time required for the dissipation of a shock.  Operationally, the
OPH is given by the number of periods after a shock when inflation is
back on target under an optimal rule.

Below, we derive OPHs for both models.  In this respect, an important
question is how to interpret the idea of being ‘on target’.  Since, in these
models, inflation tends to fluctuate around target before settling definitely
on a particular number in the wake of a shock, a point target (eg 2½%) is
not very meaningful.  Instead, we consider OPHs as referring to target
ranges — so the OPH is the time when inflation returns to a specified
band around the target.  This is not an argument for target ranges rather
than point targets, but a device to make model experiments useful.

We use two operational definitions of an OPH: an absolute and a relative
horizon concept. The first definition interprets an OPH as the number of
periods ahead, k, at which inflation has returned permanently to within a
target range of ± 0.1 percentage points, following a shock today.  The
second definition is based on what fraction of a shock’s effect policy has
succeeded in eliminating.  Specifically, it interprets the optimal policy
horizon as the number of periods ahead, k, at which 90% of the peak effect
of the shock on inflation has been extinguished.  We denote OPHs under
the absolute criterion by ‘kA*’, and OPHs under the relative criterion by
‘kR*’.  Since, typically, both kA* and kR* will vary according to the nature
of the economic shock, we compute OPHs under the two criteria for
different kinds of shocks.  In our discussion, we focus primarily on kR*.
This is because, in these two linear models, the kA* value depends on the
size of the initial shock, but kR*   defined in terms of a percentage of the
effect of the shock     does not.
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After solving each model of Section 3 under its optimal rule, we computed
impulse responses for inflation.(16)  Charts 1(a) to 1(c) show the optimal
paths of inflation associated with each model in the face of 1% shocks to
aggregate demand, aggregate supply and the exchange rate, respectively.
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_________________________________________________
(16) We follow King and Wolman (1999) by augmenting the model’s structural equations
with the policy-makers’ first-order conditions for optimality, and solving the resulting
system of expectational difference equations.  The Lagrange multipliers for the
policy-makers’ problem form part of the state vector in this commitment solution.  The
technical appendix provides details.
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Table B gives OPHs for each model under=the two definitions (kA* and
kR*).  We discuss these results in turn as we comment on the impulse
response function of inflation for each shock.(17)

_________________________________________________
(17) Since the OPHs are obtained from impulse response functions, the OPHs for models in
previous papers, Rudebusch and Svensson (1999) for example, can be deduced provided the
papers include plots of impulse responses under optimal policy (eg Rudebusch and
Svensson’s Figs. 5.3 and 5.4).
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Table B: Optimal policy horizons (OPHs)

kA
* kR*

Shock VAR FLSM VAR FLSM

AD 14 9 17 14

AS 18 16 10 8

Exchange
rate

0 5 16 19

Aggregate demand shock

Chart 1(a) shows the impulse response functions of inflation for the two
models described in Section 3, in the wake of a temporary positive 1%
shock to aggregate demand.

In the VAR (the dashed line in Charts 1(a)-1(c)), an AD shock has no
effect on inflation until period t+1; and by that time the policy-maker
(whose actions in t affect inflation in t+1) is in a position to provide
offsetting pressure on inflation through interest rates.  Consequently, the
initial net response of inflation to the positive demand shock is negative in
Chart 1(a).  Within a couple of periods, inflation has returned to zero, but
inflation then overshoots for several periods — leading to a long OPH
(defined by kR*) of 17 quarters. This is partly due to the presence in the
loss function of a penalty for volatility in the policy instrument.  If this
were absent, the interest rate would be raised much more sharply in
response to the shock, restraining the response of inflation, and leading to
a lower OPH (kR = 9).
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In the FLSM (the solid line), the presence of forward-looking elements,
together with a contemporaneous effect of the real interest rate on output,
reduces the length of the policy transmission lag and increases the capacity
of policy to offset shocks.  The OPH under the relative criterion is less
than that for the VAR, and suggests that it is optimal to carry out
disinflation within fourteen quarters of the shock (Table B).(18)

Aggregate supply shock

Chart 1(b) shows the impulse responses of inflation for the two models, in
the wake of a temporary positive 1% shock to aggregate supply.  For this
disturbance, both models display quite smooth inflation dynamics.  In the
VAR case, monetary policy cannot affect inflation in the period of the
shock, so the 1% supply shock raises inflation by a full 1% in the first
period.  Strong inflation persistence inhibits policy-makers’ ability to
remove the effect of the shock without unduly large output costs; it takes
two and a half years for this shock to be reversed under the optimal rule
(kR* = 10).

For the FLSM, the response of inflation to the supply shock is visually
close to that in the VAR.  This reflects some similarities between the
Phillips curve in this model and the VAR’s inflation equation, notably the
fact that lagged inflation enters with a sizable coefficient.  As with the AD
shock, the OPH is shorter in the FLSM than in the VAR (kR* = 8 instead of
10) — partly due to forward-looking dynamics in the IS curve (1), which
make a more rapid disinflation optimal in this case.

Exchange rate shock

Chart 1(c) shows the impulse responses of inflation, in the face of a
temporary positive 1% shock to the exchange rate equation of each model
— constructed such that it would lead to a 1% appreciation in both cases,
ceteris paribus.

_________________________________________________
(18) If the IS shock were white noise in this model, the OPH would be five quarters shorter
(kR  = 9).
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The estimated VAR contains an exchange rate equation that is essentially
detached from the rest of the model, in the sense that there is virtually no
feedback to other variables from the exchange rate.  This explains the very
flat response of inflation to such a shock in Chart 1(c).  Under the relative
criterion, the OPH is long (kR* = 16) because it demands that 90% of an
already negligible inflation response be eroded.  In this case, the OPH as
measured by the absolute criterion (kA*) provides useful auxiliary
information: it is zero quarters, and would be zero even if the initial shock
were 10% or larger, rather than 1%.

The appearance of the exchange rate in both the IS and the AS functions
implies that the exchange rate has an important role in the FLSM.  In
response to the UIP shock, the exchange rate appreciates on impact and
(partly because of the shock’s persistence) this appreciation is not
completely reversed for more than a year.  The response of inflation is also
protracted, as inflation depends on long lags of the exchange rate (both via
the output gap channel and via the ‘direct’ exchange rate channel).  The
optimal policy response is to cut interest rates, which reduces the extent of
the appreciation.  This also stimulates demand, offsetting some of the
contractionary effects of the appreciation, at the cost of creating a positive
output gap and a rise in inflation above target for a few quarters.  Overall,
the combined effect on inflation of the UIP shock and the policy reaction
is quite small — inflation is never more than 0.05 percentage points from
target.  This turns the optimal horizon measured by kR* almost into a point
target, so the OPH (at 19 quarters) exceeds the OPHs for the other two
shocks.

5 Optimal feedback horizons (OFHs)

The previous section obtained optimal horizons assuming that the
policy-makers followed a complex optimal rule — a function of the entire
state vector.  Suppose instead that the policy-makers operate via a simple
rule that involves changing the policy instrument in response to deviations
of expected inflation from its target value, as in equation (1).
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By suitable choice of the feedback horizon, this rule can be designed so as
to incorporate monetary transmission lags.  In particular, in the case where
lags hinder control of current inflation, the date of the inflation forecast in
the rule can be chosen so that inflation at that date is indeed affected by
monetary policy.

When inflation targeting is implemented through rules like (1), the best k
period ahead forecast of inflation will be the one that minimises the costs
of inflation control according to loss function (2).  As explained in Section
2 above, we define this horizon as the optimal feedback horizon (OFH).
Two things are worth noting here.  First, we consider the OFH to be the k
that minimises (2) when the feedback coefficient in (1) is itself optimally
chosen.  That is, the choice of the optimal k is conditioned on ψp (and
possibly an interest rate smoothing coefficient) being optimal.  Second, in
contrast with the previous section, the optimal horizon is not a concept that
can be bracketed by a range.  Rather, it can only be a specific period (ie
the best k at which to form the forecast of inflation that enters the rule).
The OPHs and OFHs are thus very distinct concepts: the first is a metric
associated with an optimal rule, the second is an optimised parameter of a
simple rule.

In this section we derive OFHs for our two models.  We generalise rule (1)
by including an interest rate smoothing term (a coefficient on the lag of the
nominal interest rate).  This gives equation (6) below, where the degree of
interest rate smoothing is governed by the parameter ρR ∈  [0,1].

Rt  = ρR Rt-1 + ψp (Et πt+k − π*) + constant (6)

Table C summarises the results on OFHs.  To obtain them, we closed the
models with rule (6), where the parameters (ψp , ρR, and k) were chosen
optimally by minimising loss function (2), evaluated using analytical
formulae for the model moments.  We contemplated values of k of
0, 1, ..., 15 — horizons up to four years ahead.
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Table C: Optimal feedback horizons (OFHs)

    Model ψp* ρR* k* (OFH)

VAR 35 0.85 15

FLSM 1.24 0.98 2

Table C indicates that both the VAR and the FLSM favour a positive
feedback horizon.  This is in line with Batini and Haldane (1999), who
find that responding to expected future rather than current inflation is
beneficial when there are lags in the effect of monetary policy.  Comparing
results on OFH for our two models, it appears as if
forward-looking behaviour ‘brings forward’ the optimal feedback horizon;
forward-looking agents take into account current and prospective interest
rate decisions in their spending and pricing decisions, which reduces the
transmission lag (but does not eliminate it, since inflation still has an inert
component).  Specifically, the OFH is k = 2 for the FLSM, compared with
15 for the VAR.

The optimal value of ψp is very large in the case of the VAR, whose
backward-looking, data-based nature might instead have led us to expect
instrument instability when policy becomes too aggressive.  Such a large
feedback parameter is consistent with relatively low interest rate variability
because, in equilibrium, the standard deviation of the variable in the rule
(Etπt+15) is very low (0.02% annualised).(19)  The short-run feedback
parameter is much smaller for the FLSM.  In a forward-looking model,
agents’ actions take the expected long-run policy response into account.
An integral component of policy in the FLSM is therefore high interest

_________________________________________________
(19) Evaluating the VAR model’s properties where the feedback parameter takes such large
values may take the model into ranges where it ceases to be a useful approximation for
policy analysis. This is a caution when interpreting our results.
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rate smoothing, which, for reasons discussed in Rotemberg and Woodford
(1999), exerts a restraining effect on inflation via the
forward-looking IS function.

To get an impression of the inflation cost of responding to the ‘wrong’
horizon, Chart 2 plots (for both models) the standard deviation of inflation
against the horizon included in rule (6).(20)  For the VAR, the inflation
outcome seems equally good for all reasonably long horizons (six quarters
or longer); k = 15 is optimal in Table C largely because of the lower
interest rate and gap volatility associated with that long horizon.  By
contrast, for the FLSM, there is a much sharper increase in inflation
volatility from using horizons other than the OFH (both shorter and
longer).  The common message from both models is that inflation control
is sacrificed if the chosen horizon is too short.

The optimised simple rules in Table C go a long way to approaching the
minimum of the loss function achieved by the optimal rules.  For the VAR,
the optimal-rule loss function value is 0.0220 compared with a loss
function value of 0.0224 for the OFH rule, a difference of only 1.8%.
Similarly, for the FLSM the loss from optimal policy is 0.5945, versus
0.6080 for the optimised simple rule, a difference of 2.2%.
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_________________________________________________
(20) In each case, the coefficients in (6) were re-optimised for the fixed k.
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For this reason, we found little welfare gain from amending rule (6) to
respond to multiple horizons.  We undertook two experiments in this
regard.  First, we examined optimised simple rules that responded to
annual inflation one, two, three, or four years ahead (eg responding to a
moving average of πt, Etπt+1, Etπt+2, and Etπt+3, in the case of the one-year
rule).  But we found no welfare improvement for either model from any of
these annual horizons, relative to the optimised simple rules in Table C.

Second, we looked at simple rules that responded to two distinct horizons.
Specifically, for the FLSM with its low OFH, we examined rules that
responded to horizon 3, 4, 5, or 6 in addition to horizon 2; and for the
VAR, we examined rules that responded to horizon 11, 12, 13 or 14 in
addition to horizon 15.  Response coefficients were re-optimised, but again
we found no significant gain.  For the FLSM, responding to two and three
quarter ahead inflation gave a welfare improvement relative to the rule that
responded to two quarters alone, but the gain was less than 0.05%.  For the
VAR, we found that a single horizon dominated all the multiple-horizon
alternatives.

6 Parameter uncertainty

As our comparison of results from the VAR and FLSM shows, the
specification of model structure is an important factor determining the
OFH.  Another issue is how sensitive the OFH is to the choice of
parameter values for a given model structure.  In this section we briefly
explore this issue for the FLSM.

We focus on the most contentious parameter in the FLSM — namely, σ=in
equation (2).(21)  In a closed-economy model, σ can be interpreted as the
intertemporal elasticity of substitution for consumption.  Values of σ in
policy rule studies vary drastically. For example, the studies of Estrella
and Fuhrer (1998) and McCallum and Nelson (1999a) (the source for our

_________________________________________________
(21) Of course, the parameter α in (4) varies across studies but (unlike σ) it is at least
bounded in [0,1].
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calibration) suggest quite low values — σ = 0.2 in the latter — while at the
opposite extreme, Rotemberg and Woodford (1999) find σ = 6.0.

How then does the OFH change if we adopt a higher value of σ=?  Table D
examines this issue by presenting OFHs for a version of the FLSM that
uses a value of σ = 1.0 — popular in the literature because it is associated
with logarithmic preferences.

Table D: OFHs under different assumptions about σ

ψp* ρR* k* (OFH)

FLSM, σ = 0.2 1.24 0.98 2

FLSM, σ = 1.0 5.02 0.00 8

Intuitively, a higher value of σ could shorten the OFH by making spending
more sensitive to current monetary policy changes.  In practice, raising σ
to 1.0 lengthens the OFH from 2 to 8.  The reason is that a longer horizon
means responding to a lower variance variable —
a far-ahead forecast of inflation.  The resulting rule features low interest
rate volatility and consequent low output gap volatility, producing welfare
gains.(22)  When σ is 0.2 (our baseline parameterisation), a given amount of
interest rate volatility has less of an effect on gap volatility than when
σ = 1.0.  Responding to inflation eight periods ahead reduces interest rate
volatility, but the gains in terms of reduced gap volatility are not as
substantial, and policy sacrifices too much control over inflation.  A
shorter horizon then becomes optimal.

_________________________________________________
(22) The standard deviations of 4*∆Rt and the output gap in the σ== 1.0 model are 0.8% and
3.2% when the optimised rule in Table D is used.  If, on the other hand, the coefficients in
that rule were used but a horizon of 2 were put in the rule instead of 8, the standard
deviations of 4*∆Rt and the gap would rise to 8.8% and 3.9% respectively.



30

Thus, a policy-maker that used the baseline version of our model, but was
uncertain about the true value of σ (aware that it could be too low in the
baseline version), might want to respond to a longer inflation horizon than
it would if it knew that σ = 0.2 with certainty.

7 Conclusions

In this paper we investigated the problem of selecting an optimal horizon
for inflation targeting.  For this purpose, we provided two operational
definitions of ‘optimal horizon’, corresponding to two different
interpretations of how inflation targeting works in practice.  Results were
obtained from two small-scale models with divergent dynamic properties:
a VAR and a forward-looking structural model.

For the optimal policy horizon, a definition based on the assumption that
inflation targeting involves an optimal policy (obtained in a ‘flexible
inflation targeting’ framework that penalises inflation, interest rate, and
output gap volatility), we found that it is optimal to remove the effects of
the various shocks considered here over a period of 8 to 19 quarters.  For
the optimal feedback horizon, a definition based on the view that inflation
targeting is well approximated by a simple forward-looking policy rule, we
found that the best horizon to focus on depends crucially upon the degree
of forward-looking behaviour in the economy.  With no
forward-looking behaviour (the VAR), long feedback horizons —
responding to forecasts of far-ahead inflation — are desirable.  With at
least some forward-looking behaviour (the FLSM), the appropriate
feedback horizon is much shorter.  Even in this case, however, it appears
sub-optimal to feed back on current or next-quarter inflation.

To summarise, our analysis supports the view that inflation targeting in
practice should be designed so that the target is achieved over the medium
term. In other words, central banks wishing to act optimally should not
attempt to neutralise inflationary shocks immediately, but instead should
respond gradually to those shocks.  This becomes particularly important
when the economy adjusts sluggishly to economic shocks.  Further
research on optimal horizons could investigate the robustness of our
results to different models.
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Data appendix

Definitions of the variables used in the VAR

The variables we use in the VAR are:

yt : log of real GDP (quarterly, seasonally adjusted).

πt
DEV: πt −=πt

TAR, where:

πt :  log (RPIXt / RPIXt−4), where RPIXt is the RPIX deflator in quarter t.
Our use of the four-quarter inflation rate rather than the quarterly change is
motivated by the fact that, historically, targets for UK inflation or other
nominal aggregates have been expressed in terms of annual changes rather
than quarter-to-quarter movements.  It is also conceivable that a
four-quarter inflation rate may be a better empirical measure of underlying
quarterly inflation than actual quarterly inflation.

πt
TAR :  Target (annualised) inflation rate, calculated as follows:

• =1976 Q3 −=1985 Q1: The implicit inflation target was the one implied by
the monetary aggregate (£M3) targets.  Using the assumption about trend
velocity growth of +1.25% per annum stated by the Treasury in 1980, (23)

we backed out the nominal income growth targets implicit in the
1976−1980 £M3 targets and in the targets for 1980−1984 announced in
the Medium Term Financial Strategy (MTFS) in 1980.  To obtain the
implied inflation target, we subtracted 2.5% (to allow for output growth)
from each nominal income growth target.

A new set of £M3 targets for 1982-1985 was announced in March 1982;
for the years also covered by the 1980 MTFS, the £M3 growth targets now
had a 3 percentage point higher mid-point, which we take as a change in
the annual trend velocity growth assumption from +1.25% to −1.75%
rather than changed targets for nominal income growth.  Subsequent
revisions to the 1982 MTFS are again assumed to represent changed

_________________________________________________
(23) The Treasury, in its submission to the Treasury and Civil Service Committee (1980),
estimated trend £M3 velocity growth at 1.0-1.5% per annum.



35

assumptions about velocity rather than changed targets for nominal income
growth.

From 1985 to 1990, we use the announced nominal income growth target,
then subtract 2.5% for output growth.

• =1990 Q4 −=1992 Q3: given the ERM agreement, the implicit inflation
target coincided with the German 2% inflation target;

• =1992 Q4 onwards: 2.5% (explicit inflation target).

∆et : Nominal exchange rate change, log(ERIt / ERIt-1), where ERI is the
exchange rate index.  This variable is measured such that an observation of
−0.10 indicates a depreciation of sterling of 10%.

Rt : Quarterly average of the annualised nominal interbank lending rate,
measured as a fraction.

Time series properties of the data

We now show that all of the variables in our VAR are adequately
described as stationary (I(0)) or trend-stationary processes, and hence, a
Johansen-style cointegration approach to our VAR is not appropriate.

We model log output (yt) as trend-stationary, with πt
DEV and ∆et treated as

I(0) series, and Rt as an I(0) series after controlling for key shifts in
monetary policy regime.  As evidence, in Table E we present augmented
Dickey Fuller (ADF) statistics that test the null of a unit root for the
variables in our model.  Since our contention is that output can
satisfactorily be modelled as trend-stationary, Table E actually gives a test
for a unit root in detrended output.(24)  Two ADF test statistics are

_________________________________________________
(24) Detrended output is the residual from a prior regression of yt on a constant and linear
trend over 1980 Q3 − 1998 Q1.  No constant is included in the regression used in calculating
the ADF test for the stationarity of detrended output because the dependent variable is mean
zero by construction.
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calculated for the nominal interest rate, Rt :  the first includes only a
constant in the ADF regression, whereas the second includes a constant,
DERMt , and D924t   Excluding these dummy variables may bias the test
toward suggesting a unit root in Rt.

Table E:  ADF Tests for VAR

Variable ADF statistic
Detrended yt ==−2.427

πt
DEV

==−3.297*
∆et ====−3.817**

Rt (no shifts)
=−1.984

Rt (shifts included)
===−3.675*

Note: A lag length of four is used in the ADF regressions for each variable
except Rt (one lag).  A * denotes significance at 0.05 level according to the
Dickey-Fuller distribution’s critical values; a ** significance at the 0.01 level
according to these values.

The tests generally reject the null of a unit root in favour of the alternative
of stationarity (or, in the case of Rt , an I(0) series with structural breaks).
So we believe it is satisfactory to treat the elements of our VAR as all I(0),
and therefore we do not apply cointegration analysis.(25)

_________________________________________________
(25) There is also an economic reason for not favouring a cointegration-based approach to
this VAR.  The only real variable in the VAR is yt and we do not want to explain the trend in
yt with nominal variables.
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Technical appendix=
==

=−−−− solution methods

To demonstrate how we solve for the optimal rule, consider the
policy-makers’ problem for determining optimal policy when the
economy’s structure is described by the forward-looking structural model
(FLSM).  The optimal policy exercise for this model is not a standard
optimal control problem because the model’s equations, and therefore the
policy-makers’ constraints, contain forward-looking elements.  A similar
problem is faced by King and Wolman (1999), who assume certainty
equivalence and then follow the standard Lagrangean optimisation
approach.  We follow King and Wolman’s procedure here.

For convenience, we restate the equations of the FLSM here.

yt = Etyt+1 – σ(Rt – Etπt+1) + δq� t−1 + eyt (A1)

πt = απt−1 + (1 – α)Etπt+1 + φyyt−1 + φq∆ q� t−1 + eπt (A2)

Etqt+1 = qt + Rt – Etπt+1 + κt (A3)

If we let Λt, φt , and Ωt denote the Lagrange multipliers on (A1)-(A3)
respectively, the policy-makers’ first-order conditions (with respect to yt,
πt, qt, and Rt) for minimising the loss function (2) are:

βφy Et Γt+1 =  2λyyt + λt –(1/β)λt−1 (A4)

αβEt Γt+1 = 2λππt + Γt –((1−α)/β)Γt−1 –(σ=/β)λt−1 + (1/β) Ωt−1 (A5)
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==β4(δ=/4)Et λt+4 + β3(δ=/4)Et λt+3 + β2(δ=/4)Et λt+2 + β(δ=/4)Et λt+1

−β5(φq/4)=Et=Γt+5 + β(φq/4)Et Γt+1 = −Ωt  + (1/β)Ωt−1

(A6)

2βλ∆R Et Rt+1  = σλt −Ωt + (2λ∆R  + 2βλ∆R )Rt –2λ∆R Rt−1 (A7)

In deriving these first-order conditions, we have suppressed the shocks to
equations (A1)-(A3), in effect exploiting certainty equivalence.  The
FLSM equations (A1)-(A3), combined with the policy-makers’ first-order
conditions (A4)-(A7) for optimal policy, can be cast in the vector form:

A Et yt+1 = B yt  + C zt (A8)

where yt is the vector of endogenous variables and zt is the vector of
exogenous shocks.  Once this system of expectational difference equations
has been solved, we restore the shocks to (A1)-(A3), and can calculate
impulse responses and analytical variances under the optimal rule.  In the
model’s solution, the state vector consists of the exogenous shocks in
(A1)-(A3); the lagged endogenous variables Rt−1,=πt−1, qt−1, qt−2, qt−3, qt−4,
and qt−5 that appear in equations (2), (A1), and (A2); and the lagged
Lagrange multipliers Γt−1, λt−1 and Ωt−1 that appear in the
policy-makers’ first-order conditions (A4)-(A6).

For the optimal feedback rules, we simply supplemented equations
(A1)-(A3) with rule (6), and optimised over the parameters (ψp, ρR, and k),
with the criterion being minimisation of loss function (2).  In conducting
this search over parameter values, whenever we found multiple solutions
to the model, we used the minimal state variable criterion to pick the
bubble-free solution.  An alternative approach, used in Levin, Wieland,
and Williams (1999), is to exclude from consideration those regions of the
parameter space that are associated with multiple solutions.


