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Abstract

Implied probability density functions (PDFs) estimated from
cross-sections of observed option prices are gaining increasing attention
amongst academics and practitioners. To date, however, little attention
has been paid to the robustness of these estimates or to the confidence
that users can place in the summary statistics (for example the
skewness or the 99th percentile) derived from fitted PDFs. This paper
begins to address these questions by examining the absolute and
relative robustness of two of the most common methods for estimating
implied PDFs—the double-lognormal approximating function and the
smoothed implied volatility smile methods. The changes resulting from
randomly perturbing quoted prices by no more than a half tick provide
a lower bound on the confidence intervals of the summary statistics
derived from the estimated PDFs. Tests are conducted using options
contracts tied to short sterling futures and the FTSE 100 index—both
trading on the London International Financial Futures and Options
Exchange. Our tests show that the smoothed implied volatility smile
method dominates the double-lognormal as a technique for estimating
implied PDFs when average goodness-of-fits for both methods are
comparable.

Journal of Economic Literature classification: G13, C13, C15

Keywords: options, implied probability density functions, stability.
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1 Introduction

Implied probability density functions (PDFs) estimated from
cross-sections of observed option prices are gaining increasing
attention. They are used to price complex derivatives. A number of
authors have used implied PDFs as indicators of market sentiment to
examine whether options markets anticipated major economic
events.(1) Central banks, in particular, have been interested in using
implied PDFs to assess market participants’ expectations of future
changes in interest rates, stock prices and exchange rates.(2) A number
of methods have been developed in the literature for estimating implied
PDFs. To date, however, little attention has been paid to the
robustness of these estimates or to the confidence that users can place
in the summary statistics (for example the skewness or the 99th
percentile) derived from these fitted PDFs.

This paper begins to address these questions by examining the absolute
and relative robustness of two common methods for estimating implied
PDFs—the double-lognormal approximating function (DLN), and the
smoothed implied volatility smile (SML) methods—to small errors in
recorded option prices. We do this by randomly perturbing prices by
no more than plus or minus one half of the quotation tick size. The
half-tick size represents the minimum irreducible uncertainty associated
with option prices.

Tests are conducted using short sterling futures options and FTSE 100
index options contracts, both trading on the London Financial Futures
and Options Exchange. Our results show that the double-lognormal
method for estimating implied PDFs is systematically less stable than

(1)See for example Butler and Davies (1998), Campa, Chang and Refalo (1998),
Coutant, Jondeau and Rockinger (1999), Gemmill and Saflekos (1999), Leahy and
Thomas (1996), Malz (1996), McCauley and Melick (1996b), McManus (1999),
Nakamura and Shiratsuka (1999), and Söderlind (1999).

(2)Examples of central bank research in the use of implied PDFs include Banco de
Espana: Manzano and Sanchez (1998); Bank of Canada: McManus (1999); Bank of
England: Bahra (1996, 1997) and Butler and Davies (1998); Bank of International
Settlements: Galati and Melick (1999); Bank of Japan: Nakamura and
Shiratsuka (1999) and Shiratsuka (1999); Banque de France: Coutant, Jondeau and
Rockinger (1999) and Coutant (1999); European Central Bank: Hördahl (1999);
Federal Reserve Bank of Atlanta: Abken, Madan and Ramamurtie (1996); Federal
Reserve Bank of New York: Malz (1996, 1997a, 1997b); Federal Reserve Board:
Leahy and Thomas (1996) and Melick and Thomas (1997); and Deutsche
Bundesbank: Neuhaus (1995).
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the smoothed implied volatility smile method, even when the latter is
calibrated to have the same goodness-of-fit. We conclude that the
smoothed implied volatility smile method dominates the
double-lognormal as a technique for estimating implied PDFs.

The remainder of the paper is organised as follows: Section 2 provides
an overview of PDF estimation techniques and their applications,
together with a discussion of the potential sources of error in the
underlying options prices. Technical details of the two implied PDF
estimation methods used in this paper are given in Appendix A.
Section 3 discusses the data and empirical tests to be carried out.
Details of the underlying options contracts are given in Appendix B.
Section 4 discusses the empirical results and Section 5 concludes.

2 Implied PDF estimation

2.1 Literature review

Methods for estimating implied PDFs fall into five groups: stochastic
process methods, implied binomial trees, PDF approximating function
methods, finite-difference methods, and implied volatility smoothing
methods.

Stochastic process methods for estimating PDFs begin by assuming a
model for the stochastic process driving the prices of the underlying
security, usually one for which it is possible to obtain an analytical
solution to the implied PDF for a given horizon.(3) After estimation,
the parameters of the stochastic process are plugged into the analytical
formula for the PDF. For instance, Malz (1996) fits a lognormal-jump
diffusion process to OTC foreign exchange derivative prices and then
analytically computes risk-neutral realignment probabilities around the
time of the 1992 ERM crisis. The stochastic process approach can be
used in the absence of options prices (the other approaches cannot).
For instance, Hördahl (1999) applied the Longstaff-Schwartz model to
Swedish interest rates. The Longstaff-Schwartz model has analytic
solutions for both the term structure of interest rates observed at any

(3)Such analytic tractability is not necessary. Monte Carlo methods could also be
used to generate the PDF for intractable stochastic processes.
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point in time and the future distribution of short rates at any given
horizon. Hördahl used the observed term structure of Swedish interest
rates to estimate the Longstaff-Schwartz model parameters. These
estimated parameters were then substituted into the analytically
derived PDF function to produce the estimated implied PDF.

The implied binomial tree method was developed in Rubinstein (1994)
and Jackwerth and Rubinstein (1996). The method seeks to build a
binomial tree for the value of the underlying asset. The tree is
constructed so as to minimize deviations from a lognormal process
subject to the tree fitting the observed options prices. The implied
binomial tree is thus a non-parametric Bayesian technique related to
stochastic process methods in that its focus is on modelling the
evolution of the underlying asset’s price.

Approximating function methods begin with the option-pricing relation
in Cox and Ross (1976), who show that the price of an option is the
discounted risk-neutral expected value of the payoffs:

C(t, T, K) = e−r(T−t)

∫ ∞

K

w(ST )(ST − K)dST

P (t, T, K) = e−r(T−t)

∫ K

−∞
w(ST )(K − ST )dST

(1)

where C(t, T, K) and P (t, T, K) are the prices of European calls and
puts observed at time t having expiries at T and strike prices of K; r is
the riskless rate of interest, and w(ST ) is the risk-neutral probability
density function for the value of the underlying asset S at time T .
Parametric approximating function methods assume that w(ST ) has a
particular functional form, chosen to allow for a variety of possible
shapes. Parameter values are found by minimizing some function of the
fitted price errors. Examples of the approximating functions that have
been used include: mixtures of lognormals, developed by Melick and
Thomas (1997);(4) Hermite polynomials, developed by Madan and
Milne (1994); and a Burr III distribution, used by Sherrick, Garcia and
Tirupattur (1996). Alternatively, non-parametric methods can be used.
Examples include the kernel estimator of Ait-Sahalia and Lo (1998)
and maximum entropy methods developed by Buchen and Kelly (1996).

(4)A variant is to model the log-price as a mixture of normals, as was done in
Söderlind and Svensson (1997) and Söderlind (1999).
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The mixture of lognormals and the related mixture of normals applied
to the log-price are the most widely used methods for estimating
implied PDFs. This paper uses a double-lognormal as one method for
estimating implied PDFs. Details of the method are presented in
Appendix A.

The finite difference methods begin with the observation, made by
Breeden and Litzenberger (1978), that differentiating equation (1) once
with respect to K produces the cumulative density function (less 1)

∂C(t, T, K)
∂K

= −e−r(T−t)

∫ ∞

K

w(ST )dST (2)

while differentiating twice yields the probability density function

∂2C(t, T, K)
∂K2

= e−r(T−t)w(K). (3)

Breeden and Litzenberger (1978) show that one can use finite difference
methods to approximate equation (3) using strikes where bond prices
are observed. Neuhaus (1995) applied finite difference methods to
equation (2) instead.

The smoothed implied volatility smile method was originally developed
by Shimko (1993). The method is an approximating function method
applied to the volatility smile rather than to the PDF. Option prices
are first converted to implied volatilities using the Black-Scholes
options pricing formula. A continuous approximating (smoothing)
function is then fitted to the implied volatilities and the associated
strike prices (on the X-axis). This continuous implied volatility
function is converted back into a continuous call price function and
then equation (3) is used to obtain the PDF. The Black-Scholes model
is used here simply as a transformation or mapping from one
measurement space to another. The smoothed implied volatility smile
method does not assume that the underlying price process is
lognormal. Malz (1997b) used delta, ∆ ≡ ∂C/∂F , rather than strike
price as the X-axis variable when fitting the implied volatility smile
smoothing function. Both Shimko and Malz used low-order polynomial
functional forms to fit the implied volatility smile. Campa, Chang and
Reider (1997) introduced the use of smoothing splines to fit the implied
volatility function; in their case as a function of the strike price. The
second method examined in this paper is a variant of the smoothed
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implied volatility smile method developed by Panigirtzoglou at the
Bank of England, combining the innovations of Malz (1997b) and
Campa, Chang and Reider(1997). The method uses a natural spline, as
described in Appendix A, to fit Black-Scholes implied volatilities as a
function of the deltas of the options in the sample.

A number of papers have compared different implied PDF estimation
methods. Campa, Chang and Reider (1997) compared binomial tree,
smoothed implied volatility smile and mixtures of lognormal methods.
Comparing various moments of the implied distributions they
concluded that all methods produced similar results. They chose to use
the binomial tree method in their subsequent analysis. Coutant,
Jondeau and Rockinger (1999) compared single lognormal, mixtures of
lognormals, Hermite polynomials and maximum entropy methods.
Again results were broadly similar, although they noted that the
maximum entropy method ran into convergence problems. They chose
to use the Hermite polynomial approach in their subsequent analysis.
Hördahl (1999) compared implied PDFs derived from the
Longstaff-Schwartz stochastic process with PDFs derived using the
double-lognormal method. He concluded that the PDFs implied by the
two methods were similar and therefore the Longstaff-Schwartz
stochastic process method could reliably be used where options data
were non-existent. McManus (1999) compared two stochastic process
methods, using Black and jump diffusion processes, and four
approximating function methods, double-lognormal, 4th and 6th order
Hermite polynomials and maximum entropy. Using comparisons of
in-sample fit, he concluded that the double-lognormal method was
best. Sherrick, Garcia and Tirupattur (1996) compared two PDF
approximating function approaches using double-lognormal and Burr
III functions. Based on in-sample goodness-of-fit they concluded that
the Burr III approximating function produced the better results.

Like all statistics estimated from finite data samples, implied PDFs
and their summary statistics are point estimates, subject to estimation
error. However, while many papers have estimated and interpreted
implied PDFs, surprisingly few have considered the reliability of
estimated implied PDFs and their associated summary statistics. Two
methods have been used in previous papers to examine the stability of
implied PDFs: working with the parameter variance-covariance matrix
and perturbing pseudo-prices generated from known PDFs.
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Söderlind and Svensson (1997) assumed that the distribution of
estimated parameters was multivariate normal. The PDF confidence
intervals were derived analytically using the delta method applied to
the heteroskedastic-consistent estimator. Melick and Thomas (1998)
used the Hessian at the maximum likelihood solution as the estimated
parameter variance-covariance matrix, again assuming the parameters
were multivariate normals. They then used a Monte Carlo simulation
to randomly perturb the parameters, recomputing the implied PDF for
each simulation. Both papers applied their methods to a single
cross-section of option prices, which were then analysed visually by
plotting the value of the PDF and the estimated 5% to 95% confidence
intervals.(5) Melick and Thomas also used a second method for
obtaining the distribution of the implied PDF. This was to bootstrap
their original sample of option prices and re-estimate the PDF for each
resampling.

Both Söderlind and Svensson (1997) and Melick and Thomas (1998)
found that confidence intervals based on the theoretical distributions of
the parameters at the solution appeared to be quite narrow. However,
when Melick and Thomas resampled the data the confidence intervals
were much wider. This disparity suggests that the assumptions
underlying the maximum likelihood estimation of the implied PDFs
were perhaps violated in some way.

Söderlind (1999) and Cooper (1999) both began with known PDFs.
The PDF was used to generate fitted prices, which were then
perturbed. The resulting pseudo-prices were then used to estimate the
implied PDF. Söderlind (1999) estimated implied PDFs from actual
prices and then applied Monte Carlo methods to the fitted option
prices. Two error distributions were examined: in the first experiment
Söderlind used normally distributed perturbations with variance equal
to the observed variance of the actual fitted price errors; in the second
experiment Söderlind resampled from the actual fitted price errors. To
examine the resulting distributions Söderlind plotted the time series of
means, 5th and 95th percentiles of the distribution each day for five

(5)It is somewhat difficult to interpret these error bands. For each value of X the
confidence intervals represent the confidence band for the PDF at that single point.
However, taken together the lower bound necessarily integrates to less than unity,
and the upper bound integrates to more than unity. Thus, unlike confidence
intervals for an estimated parameter, which represent possible values for that
parameter, the confidence intervals that Söderlind and Svensson (1997) and Melick
and Thomas (1998) estimate do not represent possible PDFs.
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months and four different contract types. The confidence intervals were
deemed to be narrow.(6) Cooper (1999) generates PDFs from an
assumed Heston stochastic volatility process and then generates
pseudo-prices from the PDFs. Cooper then applies the test
methodology developed in this paper to the pseudo-prices. Advocates
of the pseudo-prices approach used by Söderlind (1999) and Cooper
(1999) argue that by beginning with a known PDF one can compare
the fitted implied PDFs to the ‘true’ PDF to examine how well the
estimated PDFs fit the original PDFs. This is correct, but may be of
limited usefulness. Goodness-of-fit results may not be generalised to
PDFs outside the set examined. A double-lognormal implied PDF
estimation method may do well when the assumed PDF has a
double-lognormal functional form, but may do less well when the
assumed PDF is another distribution. Neither Söderlind nor Cooper
consider this issue. Since we cannot know the true distribution
underlying actual option prices, it is difficult to extrapolate from such
experiments to practical applications.

The robustness results of both parameter variance-covariance matrix
and pseudo-price approaches are apt to be misleading for another
reason. Stability of an estimated PDF has two components: the
theoretical stability at the solution, and the stability of the convergence
to a solution. Söderlind and Svennson (1997) and Melick and Thomas
(1998) examined only the stability at the solution. These studies rely
on assumed distributions for estimated parameters and on estimated
variance-covariance matrices. This approach is open to the criticism
that actual parameter distributions may be very different from the
assumed distribution.

The other component of stability is the stability of the convergence to
the original solution. Methods such as Söderlind (1999) and Cooper
(1999) that use data created from idealized PDFs—either fitted values
or simulated from assumed stochastic processes—are imposing a degree
of smoothness in the simulated data that may not be congruent with
reality. Perturbing fitted, rather than actual, prices may result in quite
different convergence behaviour of the optimizing algorithm. Actual
fitted-price errors may be larger than the small perturbations used in
Cooper (1999). Söderlind (1999), by resampling from actual fitted price

(6)The confidence intervals were 2%-6% wide for interest rates that vary
approximately 2%-3% over the entire sample period. Others might reasonably
consider this range to be wide.
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errors, offers a somewhat better methodology. However, where actual
fitted price errors are not homoskedastic and independent across
strikes, his method may still mislead. In both cases, the convergence of
the optimisation may be influenced by the well-behaved nature of the
assumed functional form of the PDFs used to generate pseudo-prices.

Only by perturbing actual option prices can we examine the robustness
of estimated implied PDFs in an environment that approximates the
real world. Until this paper, there has been no systematic comparison
of the absolute and relative robustness of implied PDF estimation
methods to measurement errors in actual option prices.(7)

2.2 Sources of error in option prices

The prices used as inputs for estimating implied PDFs are subject to
various errors that cause the observed prices to deviate from those we
expect would obtain in a frictionless world, the world envisioned in the
models we invert in order to estimate distributions from prices. These
include:

• Data errors—mistakes in the recording and reporting of prices.

• Non-synchronicity—arising from the need to use multiple
simultaneous prices (option and underlying values) as inputs to
the model.

• Liquidity premia—arising from the potential impact of
differential liquidity on prices.

• Discreteness—arising from quoting, trading and reporting of
prices in discrete increments.

It is frequently possible to obtain evidence suggestive of pricing errors,
though it is not always possible to determine whether there is in fact
an error, or of what type. Suspicious circumstances would include a

(7)The resampling approach of Melick and Thomas (1998) is a plausible
alternative where there are sufficient usable strikes available in each cross-section of
prices. Melick and Thomas limited their study to one estimation method and a
single cross-section of prices.
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series of option prices which violate basic arbitrage restrictions such as
monotonicity (call prices should decrease as exercise prices increase) or
convexity (prices of option triplets should be convex in their exercise
prices). Another basic no-arbitrage relation is put-call parity. This may
be verified for individual strikes using observed values for the
underlying asset’s price and the riskless interest rate to test put-call
parity for each pair of puts and strikes. Alternatively, if some doubt
exists as to the appropriate values for the underlying asset and risk-free
rate (Treasury bills may not be a good proxy), a cross-section of puts
and calls may be tested simultaneously by finding the underlying price
and interest rate values that minimize put-call parity violations across
all put-call pairs, and then examining the magnitude of violations given
these ‘best fit’ values. When violations of these no-arbitrage
restrictions occur, it is unclear whether it is due to data errors,
non-synchronicity, or liquidity premia.

The data used in this study consist of settlement prices, which are used
to mark positions to market at the end of each day’s trading.
Settlement prices are set by the exchange at the end of trading.
However, as most option strikes trade infrequently and with great
variations in time-of-last-trade, the market information used by the
exchange when setting settlement prices is likely to be
non-synchronous. Unless LIFFE actively corrects for non-synchronicity,
the problem will be transfered to simultaneously determined settlement
prices.

To the degree that liquidity is reflected in options prices, it represents a
misspecification of the model that we use to infer unobservables such as
implied volatility and PDFs from option prices. There is abundant
evidence of differential liquidity across options with different strikes for
the same expiry. Unfortunately, there is no option-pricing model (that
we are aware of) that incorporates liquidity into pricing equations.
Even if there were, liquidity is time-varying and difficult to measure.
Thus the potential impact of differential liquidity on the values derived
from options prices is a currently unresolved problem. The problem can
however be mitigated by using only the most liquid strikes—implicitly
assuming that there is no premium for liquid options, only discounts
for illiquid ones. Doing this has the added advantage of reducing the
potential severity of non-synchronicity problems. This approach is
practical when computing implied volatilities, when we are interested
in representative values for time-series application, rather than the
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cross-section of implied volatilities. However, when computing implied
PDFs, restricting the estimation to the most liquid issues limits the
range of available strikes and thus, to the extent that there is
information in the illiquid strike quotes, limiting the information
incorporated into the estimated implied PDF. Furthermore, as only the
four or five nearest-the-money strikes trade reasonably often, restricting
our sample to these few would preclude application of implied PDF
estimation methods with more than four or five parameters.

It is worth noting that option prices can provide information about the
underlying density function only at their strike prices. The shape of the
density function between strikes may be constructed by smoothing. If
the strikes are not too widely spaced and the PDF not too ill-behaved,
this smoothness assumption is likely to be innocuous. However, a
cross-section of options can only tell us the total probability mass above
the highest strike and below the lowest strike, and that imperfectly.
The shape of the tails beyond the range of included strikes is entirely
an artifact of the PDF estimation method used. Unfortunately,
estimates of higher moments such as skewness and kurtosis are sensitive
to small variations in the tails of the distribution. It is thus desirable
to use as wide a range of strikes as possible so as to reduce the reliance
on unverifiable assumptions about the functional form of the PDF.

The discreteness with which prices are quoted imposes an irreducible
level of uncertainty as to the underlying ‘true’ or equilibrium price of
an option. Even if no data errors occur in the reporting process and
there are no non-synchronicity and liquidity errors, it remains the case
that we cannot know to an accuracy of less than one half a tick what
price the option would have traded at if prices were quoted on a
continuum of positive real numbers.

2.3 Weighting

In fitting an implied PDF, regardless of the method used, the objective
is to minimize some function of the distance between the observed call
and put prices, Ci, and Pi, i = 1, . . . , N , and the fitted prices derived
from the estimated PDF, Ĉi and P̂i. In a maximum likelihood
framework, where the errors attached to the observed prices are
assumed to be normally distributed with mean zero and variances η2

i ,
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we would have

min
Φ

NC∑
i=1

(
Ci − Ĉi(Φ)

)2

η2
i

+
NC+NP∑
i=NC+1

(
Pi − P̂i(Φ)

)2

η2
i

where Φ is the vector of parameters that define the fitted prices,
including the PDF, and NC and NP are respectively the numbers of
call and put prices to be fitted. Defining wi ≡ 1/η2

i we see that this
objective function is just weighted least squares.

min
Φ

NC∑
i=1

wi

(
Ci − Ĉi(Φ)

)2

+
NC+NP∑
i=NC+1

wi

(
Pi − P̂i(Φ)

)2

While in this paper we do not use maximum likelihood or impose the
normality assumption, we do retain the weighted squared fitted price
error loss function. Unfortunately, ηi is not known and must be
inferred. The determination of ηi depends in turn on which sources of
error in quoted or fitted prices we wish to consider. Errors in the
inputs to the fitted price computations, as well as errors in the
observed prices, all contribute to ηi.

Fitted prices are functions of the strike price, K, the underlying asset’s
current price, S, the time to expiry, τ , the riskless rate r, and the
risk-neutral distribution of values of the underlying asset at expiry, the
PDF. The strike price is a contractual parameter and is known with
certainty, as is the expiry date. Uncertainty regarding precise
time-of-quote is generally a tiny fraction of time-to-expiry (minutes or
hours rather than weeks or months) and option prices are not sensitive
to small changes in time-to-expiry. Thus, for all practical purposes we
may consider time-to-expiry as known with certainty. The riskless rate
is more problematic. Proxies, such as an equivalent-maturity T-Bill
rate, may be affected by market microstructure factors unrelated to the
rates at which market participants can borrow and lend (see Duffee
(1996)) and other money market rates may embed non-equivalent
default premia. Fortunately, like time-to-expiry, small variations in
discount rates have a negligible effect on option prices.(8)

Uncertainty regarding the value of the underlying asset is an important
factor in determining the uncertainty regarding fitted option values.

(8)For options such as short sterling that have a pay-at-exercise feature, both
time-to-expiry and the riskless rate drop out of the pricing equations.
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Changes in the value of the underlying asset have a large impact on the
theoretical value of all but deep out-of-the money options. Uncertainty
regarding the value of the underlying asset arises from uncertainty as
to the exact time at which the price of the option was determined and
hence which intra-day value of the underlying asset should be used.
Lastly, uncertainty regarding the probability distribution of the value
of the underlying asset is also an important component of the
uncertainty regarding the fitted option values.

So in determining ηi we should ideally consider three potential sources
of error: non-synchronicity, uncertainty regarding the distribution of
future values of the underlying asset, and uncertainty regarding the
actual equilibrium price arising from quote discreteness. We may safely
ignore other factors. Unfortunately, there is no simple or generally
accepted manner for modeling all of these effects.

Errors arising from non-synchronicity affect the values of the underlying
asset, S. These in turn are related to the call (and put) price through
delta, ∆ ≡ ∂C/∂S. So an error of εS in measuring the price of the
underlying asset results in an error for the option price, εCi of

εCi =
∂Ci

∂S
εS = ∆iεS .

The value of ∆ increases from zero for deep out-of-the-money options
to approximately 0.5 for at-the-money options and then 1.0 for deep
in-the-money options. Translating uncertainty about the current value
of the underlying asset, which is the same for all strikes, into
uncertainty about the option price leads to inverse-∆ weighting
(wi = 1/∆2

i ). However, this has the disadvantage of the weights
becoming excessively large as ∆ → 0 for deep out-of-the-money
options, which are also the most illiquid.

Errors arising from uncertainty about the distribution of futures values
of the underlying asset relate the unknown PDF directly to the option
prices. In the context of the Black-Scholes pricing model, the
uncertainty concerning the PDF lies only in the unobservable volatility
parameter σ, as it is assumed that the other parameters are observable
and that the functional form of the distribution is lognormal. The
relation between volatility, σ, and call (and put) price is termed ν
(vega)

ν ≡ ∂C

∂σ
.
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The value of ν approaches zero for deep out-of-the-money and
in-the-money options and reaches a maximum for at-the-money
options. This is because the value of far away-from-the-money options
is almost entirely determined by the intrinsic value, and the time value,
which depends on σ, is vanishingly small. If we assume that
uncertainty regarding implied volatility is the same across strikes,
translating this (homoskedastic) uncertainty into uncertainty about the
option price leads to inverse-ν weighting (wi = 1/ν2

i ). Equal-weighting
(wi = 1) when fitting smoothing functions to implied volatilities is the
same thing. Both weightings produce the nonsensical result of giving
the greatest weight to options with the lowest ν, those farthest
away-from-the-money, which are also the least liquid contracts and
most susceptible to non-synchronicity errors. The alternative of
ν-weighting (wi = ν2

i ) is intuitively appealing as it would place the
most weight on near-the-money options, and corresponding lesser
weight on away-from-the-money options. Nonetheless, without a known
or assumed structure for option pricing errors, ν-weighting is ad hoc.

Equal weighting of fitted price errors is appropriate where the sources
of price measurement error are homoskedastic. In this paper we focus
on price errors resulting from the discrete tick size, which is the same
for all options regardless of moneyness. Our maintained hypothesis is
that the discreteness with which options are quoted imposes a
homoskedastic uncertainty on the observed prices unrelated to the
determinants of their fundamental value. For this reason we use
equal-weighting in the DLN method and set wi = 1, ∀i. In the SML
method we are minimizing not fitted price errors, but fitted implied
volatility errors. ν-weighting the fitted implied volatility errors is
equivalent to equally weighting the fitted price errors of the options
from which the target implied volatilities are derived under the
Black-Scholes model. Chart 1 shows this graphically by plotting, for
one contract, the option prices with error bars corresponding to plus
and minus one half of a tick (difficult to see due to the small tick size)
together with the corresponding implied volatilities for the original
option prices and error bars for the implied volatilities for option prices
one half tick above and below the original prices. The chart shows how
small equal-sized price perturbations can produce variable-size implied
volatility perturbations with the size of the change increasing as strikes
move further from at-the-money. Thus, the SML estimation method
uses ν-weighting when fitting the volatility smile. However, when we

19



compare the two methods we do so on the basis of their equally
weighted fitted price errors.

It would be difficult to devise an ideal weighting scheme that was not
completely ad hoc; one that could account for all sources of pricing
error. Such a weighting scheme would require an asymmetric function
that placed greatest weight on near-the-money options and decreasing
weight on away-from-the-money options, but with weights falling off
faster for in-the-money options than for out-of-the-money options. The
choice of weighting scheme is likely to be less important if fitted price
errors are small. Fortunately, about 90% of the fitted price errors in
our estimations are less than one half of a tick. To ensure that the full
sample results are not dependent on choice of weighting scheme we test
several weighting schemes using a subset of the data used in this study.

2.4 Mean-forward price equality

Option theory dictates that the mean of the risk-neutral PDF should
equal the currently observed forward price of the underlying asset. In
the DLN procedure, it is possible to impose the forward-mean equality
as a constraint using the futures price as a proxy for the forward price,
thus reducing the free parameters from five to four. However, this
theoretical relation is not required by the mathematics underlying the
DLN method, it follows from related, but separate, arbitrage
arguments. This constraint will usually be binding and will degrade the
goodness-of-fit. Not imposing the constraint allows us to see how
closely the estimated PDF conforms to the theoretical restriction on
the mean; in effect, how well the underlying conditions for no-arbitrage
hold. The choice is a matter of taste.(9)

By construction, the SML method prices a zero-strike call to be equal
to the value of the underlying asset. The value of a zero-strike call is
just the expected value of the underlying asset at expiry.(10) For the

(9)In an earlier version of this paper, using approximately 175 option
cross-sections and 30 Monte Carlo simulations per cross-section, we imposed the
mean-forward constraint. The results obtained were not qualitatively different from
those we present in this paper.
(10)This is true for options on futures and for pay-upon-exercise deferred premium
options. For normal options on positive-investment underlying assets such as stocks,
the value of a zero-strike call would equal the present value of the expected value of
the underlying asset at expiry.

20



STLG options used in this study, the underlying is the futures price.
The FTSE options, though options on an index, can be thought of as
an option on the futures on the index, as the futures contract expires
at the same time as the option and so will have the same value as the
index at option expiration. Thus the SML method naturally enforces
the forward-mean constraint, abstracting from forward-futures
differences.

3 Stability test methodology

The stability of an estimated function, as used in this paper, is a
measure of how much estimates are likely to be affected by data
imperfections or computational problems. There are several methods of
assessing stability. For simple linear models we can examine the
conditioning of the data matrix. It is well known that an
ill-conditioned problem leads to unstable estimates.(11)

However, no simple equivalent of the condition number of a data
matrix exists for more complicated estimation procedures such as
various methods of estimating the PDFs implicit in a cross-section of
option prices.

In this paper we therefore rely on repeated-estimation methods.
Bootstrap and jack-knife methods are one possibility already discussed.
In the present context, this would take the form of repeatedly selecting
a subset (with or without replacement) of the option prices available in
a cross-section, estimating the PDF on this sample, and repeating the
procedure numerous times to build a distribution of estimated PDFs.
These methods work best where there is a large number of option
strikes from which to sample. In practice, this is not always the case.

An alternative re-estimation method is to slightly perturb the inputs
and then re-estimate. This can be done any number of times with even
a small number of strikes. Perturbing the data simulates the effects of
measurement error between the ‘true’ option value representing the
underlying economic factors we seek to uncover (the market-clearing
risk-neutral distribution of future values of the underlying asset) and
the observed quotes that add to this information noise from the various

(11)See Belsley, Kuh and Welch (1980) for a discussion.

21



sources of error discussed above. Furthermore, if the perturbations are
calibrated to the size of the possible measurement errors, the
distribution of simulated PDF summary statistics provides a confidence
region for assessing the summary statistics, and their period-to-period
changes, estimated from the original unperturbed data.

In this paper we introduce the price-perturbation method for assessing
the stability of PDFs estimated from options prices. We apply this
technique to two methods for estimating PDFs and to options on two
important underlying assets.

3.1 Data

The data used in this study are the daily settlement prices published
by the London International Financial Futures and Options Exchange
(LIFFE). These prices are based on quotes and transactions during the
day and are used to mark options and futures positions to market.
Two contract types are used to ensure the results are not
contract-specific. These are the FTSE 100 index options (FTSE) and
the short sterling futures options (STLG). Details of the contracts are
presented in Appendix B. Summary statistics for the full sample and
final sample (following various filters described below) are presented in
Table A. The original dataset covered all observed option cross-sections
(a set of put and call prices with identical expiries observed on a given
quotation date) for all available expiries for these two contract types
during 1997: 1,506 FTSE option cross-sections and 1,000 STLG option
cross-sections.

For STLG options put-call parity always holds exactly, so puts and
calls for the same strike are redundant. So, for the STLG portions of
the study we use only call prices. For FTSE options put-call parity
does not always hold and so FTSE put and call prices are not
redundant. Rather than include both we seek to use the most liquid
strikes. A related unpublished investigation by Bliss and Xu at the
Bank of England looked at daily trading and quotation activity for
both STLG and FTSE options contracts as a function of moneyness.
Except for the four or five nearest-the-money strikes and with
expirations of less than six months, most option strikes are not quoted
or traded on most dates. That study also confirmed the general
understanding that out-of-the-money calls tend to be more liquid than
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puts of the same strike, and similarly for out-of-the-money puts and
in-the-money calls. Thus we use only out-of-the-money options in the
FTSE portions of this study.

The data were filtered to exclude option cross-sections with less than
seven days to expiry or less than five ‘good’ option strikes. A minimum
of five strikes is required to estimate the five-parameter
double-lognormal function. Good strikes are defined as those with
positive put and call prices(12) for which it is possible to compute a
Black-Scholes implied volatility that is strictly greater than zero. These
two filters reduced the sample sizes to 1,446 FTSE option
cross-sections and 794 STLG option cross-sections.

3.2 Comparability of estimation methods

When comparing implied PDF estimation methods it is important to
ensure that inputs of the two methods are as similar as possible. The
goodness-of-fit of the SML method can be controlled while that of the
DLN method cannot. The DLN method sometimes fails entirely, thus
producing no output for option cross-sections for which the SML
method is successful. In ensuring comparability of results we adjust for
both factors.

There is a natural tension between goodness-of-fit and stability. While
not invariably true, one expects a method that fits the data accurately
to be less stable to perturbations of the data. In this paper our focus is
on stability and so we abstract from goodness-of-fit considerations.
The SML method involves a smoothing parameter, λ, which controls
the trade-off between smoothness and goodness-of-fit. The DLN
method has no such degree of control. In this paper, λ was selected so
that the two goodness-of-fit measures, as measured by the mean
squared fitted option price error across all option cross-sections and
strikes (those included in the estimations), were approximately equal in
the unperturbed datasets. In this way, we are able to compare the
stability of two PDF estimation methods that fit the data equally well.
In practice, the λ required to accomplish this is too ‘loose’ and
occasionally produces improbably contorted PDFs, just as the DLN

(12)Away-from-the-money STLG options are frequently quoted at their intrinsic
value (max{0, S −K} for calls, max{0, K − S} for puts) regardless of time to expiry.
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method sometimes produces improbably spiked PDFs. A tighter λ,
while still fitting the option prices to well within a half tick in the vast
majority of cases, will produce PDFs that are more plausible. This
smoother SML PDF would be more stable than the SML PDF
calibrated to match the goodness-of-fit of the DLN PDFs.

The DLN method failed to converge to a solution on the original
unperturbed data for a number of option cross-sections. This never
occurred with the SML method. The middle panel of Table A tracks
the resulting adjustments to the samples. To ensure comparability of
tests across PDF estimation methods, we excluded option
cross-sections for which it was not possible to compute both DLN and
SML solutions. This reduced the sample to 1,438 FTSE option
cross-sections and 783 STLG option cross-sections. Similar convergence
failures occurred during price-perturbation simulations. Again, failures
in either method resulted in the option cross-section being excluded
from the sample, reducing the sample sizes to 1,433 FTSE option
cross-sections and 778 STLG option cross-sections. Deleting
cross-sections where the DLN solutions produced evidence of a spiked
PDF (when volatility constraint was binding or when the mode of the
PDF had an extremely high value) reduced the final samples to 1,415
FTSE option cross-sections and 721 STLG option cross-sections. The
quotation dates and times to expiry of the surviving option
cross-sections are plotted in Chart 2. The short-expiry STLG
cross-sections invariably had too few usable strikes. This problem
occured less frequently with FTSE options.

3.3 Monte Carlo simulations

To test the relative effects of measurement error on the stability of
estimated PDFs, we take observed option prices, perturb them and
re-estimate the PDFs repeatedly. To obtain each simulated price we
add a uniformly distributed random price perturbation of between plus
and minus one half of the contract’s tick size. The tick size for the
STLG contract is 0.01, and for the FTSE contract 0.5. As the
simulated prices lie within a half tick of the original data they are
observationally equivalent to the original data.(13) For each set of

(13)For example, short sterling option prices of 1.796 and 1.804 would both be
quoted as 1.800 and hence are ‘observationally equivalent’.
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simulated prices, we estimate both DLN and SML PDFs. This process
is then repeated 100 times for each option cross-section.

Numerous DLN and some SML failures occured during the
price-perturbation simulations. DLN failures were due either to
convergence failures or degeneracy resulting in PDFs not integrating to
unity. SML failures occured when Black-Scholes implied volatilities
could not be computed for all of the perturbed prices in the option
cross-section.(14) When failures occured for either DLN or SML, that
set of simulated prices was discarded and another random sample was
drawn. If 50 such simulation failures occurred before the target of 100
successful solutions was reached, then the entire option cross-section
was discarded from the simulations sample.

The result of this process was a set of 100 DLN PDFs and 100 SML
PDFs for each option cross-section, and their associated mean-squared
fitted option price errors (VOFs), estimated on identical sets of
perturbed prices for each option cross-section. These simulated PDFs
were then filtered to delete instances when the DLN method arrived at
a corner solution, usually the lower bound on one of the component
lognormal variances (indicative of a possible spike). This reduced the
number of usable FTSE simulations from 141,500 to 140,610 and the
number of STLG simulations from 68,000 to 63,611.

The several filters applied to the unperturbed data PDFs and to the
simulation results exclude most ill-behaved DLN solutions. Because
there are no corresponding problems with the SML method, the
filtering favours the DLN method.

It is difficult to compare more than a few PDFs in their entirety (for
example by overlaying graphs). Therefore, we analyse the
perturbed-price PDFs by examining the distributions of twelve PDF
summary statistics. For a number of applications, such as inferring
asymmetries of market expectations, estimated PDFs are used as an
intermediate step to computing measures of asymmetry or skewness.
For such purposes it is the stability of the derived statistic that is of
interest. For applications, such as pricing other derivatives, the entire
PDF is needed. However, the stability of the moments derived from
estimated PDFs, when taken together, provides insight into the

(14)By construction Black-Scholes implied volatilities can be estimated for all the
unperturbed prices.
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stability of the entire PDF. Thus, focusing on implied PDF summary
statistics provides a practical method for assessing the absolute and
relative stability of estimated PDFs.

This study examines the following PDF summary statistics:

µ̂: Mean.

σ̂: Standard deviation.

Skew1: The skewness coefficient; defined as the third central
moment normalized by the cube of the standard deviation:

Skew1 =
m̂3

σ̂3

where m3 is the third central moment about the mean. This is
the most commonly used measure of skewness.

Skew2: The Pearson mode-based skewness measure, defined as

Skew2 =
µ̂ − ˆmode

σ̂

Skew3: The Pearson median-based skewness measure, defined as

Skew3 =
µ̂ − X̂50

σ̂

where Xn is the nth percentile of the PDF, in this case 50th

percentile or median.

Skew4: A measure of asymmetry defined by

Skew4 =
X̂75 − X̂50

X̂50 − X̂25

When computing sample statistics, this measure is robust to the
presence of outliers.(15) In the context of PDF functions, this
measure should be robust to fluctuations in the tails of the
distribution, where there is no underlying options data.

(15)See Barnett and Lewis (1984), page 81.
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Kurt: The kurtosis coefficient; defined as the fourth central
moment normalised by the square of the variance:

Kurt =
m̂4

σ̂4

where m4 is the fourth central moment about the mean.

Xn: Tail percentiles X01, X05, X95, X99. These are important in
risk management.

To compute the above moments we first compute the value of the PDF
at 10,000 points spanning a range of values sufficient to ensure that the
PDF integrates to approximately unity.(16) We then numerically
integrate the appropriate function of the PDF to estimate the
moments, numerically integrate the CDF to estimate the percentiles,
and find the maximum value of the PDF to estimate the mode. For the
simulations, we then compute the deviations of the VOFs and
summary statistics from their unperturbed values.

4 Empirical results

The means and standard deviations of the unperturbed data VOFs and
summary statistics for DLN and SML are presented in Table B. The
VOFs, means, standard deviations, and tail percentiles are quite close
in their means and, except for the FTSE VOFs, in their standard
deviations.(17) Differences in means of the several skewness measures
sometimes appear moderately large (for example FTSE Skew2 and
STLG Skew4). The standard deviations of the DLN skewness measures
are generally larger than the SML skewness measures, in several cases
by a factor of two or more. Similarly, the DLN method produces much
greater variation in estimated kurtosis than does the SML method of
both FTSE and STLG. However, the mean kurtosis is comparable
across methods. The unperturbed data results suggest that the DLN
and SML methods are similar in performance.

(16)If the PDF integrated to less than 0.90, the solution is deemed a failure. This
usually occured for DLN PDFs where the PDF contained a spike, rather than
because the range of integration was insufficient. When the PDF integrated to a
value between 0.90 and 1.00, the PDF was normalised by dividing by that value.
(17)By construction the mean VOFs are comparable.
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Chart 3 plots the DLN results against the SML results for selected
statistics. The range of the DLN axes were shortened to exclude
outliers. Goodness-of-fit is correlated for the two methods for the
STLG cross-sections, but not for the FTSE cross-sections. There are
varying degrees of correlation for the other statistics. It is noteworthy
that particularly large values of DLN skewness and kurtosis are not
associated with particularly large SML values.

Table C presents measures of the distribution of day-to-day changes in
the various PDF summary statistics for the unperturbed option
cross-sections. While the average values of these statistics and their
standard deviations did not differ systematically across PDF
estimation methods, their changes do. In virtually every instance the
day-to-day changes in the SML-derived statistics had a smaller
dispersion than the corresponding DLN-derived numbers; in some cases
by a factor of three or more. Thus, while average values do not differ,
there is much less short-run stability in the DLN numbers. Changes in
the underlying options prices from one day to the next appear to have
a larger effect on DLN PDFs than on SML PDFs.

Chart 4 plots the day-to-day changes in selected DLN statistics against
the corresponding SML values. The correlations are weak at best.
Thus the DLN and SML methods are apt to give conflicting signals of
changes in the underlying distribution. The X01 results provide
evidence of the hazards of extrapolating the tails of the PDF beyond
the range of available data. Recall that the number and range of usable
FTSE strikes in each cross-section is greater than in most STLG
cross-sections. Thus there is more information about
away-from-the-money prices in the FTSE cross-sections than in the
STLG cross-sections, leading to relatively high positive correlation for
the FTSE X01 statistics, in contrast to the complete lack of correlation
for the same STLG statistic.

This greater day-to-day stability of the SML method when fitting
cross-sections of options cannot be simply be due to the SML PDFs
under-fitting the data and thus not responding to actual changes in the
underlying risk-neutral distributions. The SML PDFs are calibrated to
have the same average goodness-of-fit as the DLN PDFs. It is likely
that the relative instability of the DLN PDFs is due to the parametric
nature of the DLN method which may result in local price changes
affecting the entire distribution, while the non-parametric SML method
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is more likely to isolate the effects of small price changes to a smaller
portion of the estimated PDF. Alternatively, the problem could be due
to numerical instability in the DLN method, as suggested by the failure
of this method to obtain a solution in a number of cases (see Table A),
a failure not observed with the SML method.

To test this conjecture we turn to our price-perturbation tests. By
keeping the perturbed data close to the original data (within half a
tick) we are holding the underlying distribution nearly constant for
each round of simulations. Table D presents various measures of
dispersion in the perturbed-price implied PDF summary statistics. The
first two panels present the statistics for various subsets of the results.
Use of percentile ranges is robust as long as the range is not so broad
as to include ill-behaved tail outcomes. For every range we observe
that the dispersion of SML results is almost always smaller than those
derived from the DLN method, often by an order of magnitude. As the
number of simulations included expands, the ranges expand as well.
The X01 to X99 DLN results show a particularly precipitous decline in
the ability of the DLN method to produce stable PDFs. The exception
is in the SML µ̂-measures. SML PDFs naturally fit the PDF mean to
the futures price. The DLN means on the other hand vary considerably.

Table E presents the standard deviations of the perturbed-price PDF
summary statistics. The ‘Before Filtering’ sample includes the entire
set of option cross-sections included in the analysis (after filtering as
described in the previous section). These statistics show a marked
disparity in the stability of the DLN results when compared to the
SML results. In some cases, such as the FTSE µ̂, σ̂, Skew1, Skew2,
and Kurt, the differences are approximately two orders of magnitude
(100 times).

Standard deviation estimates are not robust to outliers. To test the
robustness of these results we filter the simulated data once again. The
X0.5 to X99.5 range of each summary statistic for each estimation
method was first computed. Any simulations that contained a
summary statistic that fell outside this range was then discarded.
Applied to a single summary statistic this would have reduced the
sample size by 1%. Applied to all 22 summary statistics (11 statistics,
2 estimation methods), this reduced the sample sizes to 127,491
simulations for FTSE and 59,915 for STLG.

Filtering out the potential outliers somewhat mitigates the extreme
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disparities between the two methods, but does not change the results.
In virtually all cases the SML method is more stable than the DLN
method, usually by an order of magnitude. The sole exception is the
STLG Skew2 results. Taken together, these test results show that
DLN-estimated PDFs are extremely sensitive to small changes in the
data compared with the SML-derived PDFs.

The perturbed-price simulations may also be used to provide rough
confidence intervals for the estimated unperturbed data PDF summary
statistics. For example, if we are interested in a 90% confidence
interval we may use the X05 to X95 ranges of the summary statistic
deviations from the perturbation results. Table F presents these ranges
as percentages of the corresponding mean statistic value and the mean
absolute day-to-day change in the statistic. The FTSE DLN Skew1

estimates have a rough 90% confidence interval of 0.091 or 17% of the
average estimated skewness (-0.544) and 77% of the mean absolute
day-to-day change in Skew1 (0.118). The FTSE SML Skew1 measure
has a confidence interval of only 0.018 or 3% of the average skewness
value (-0.683) and 41% of the mean absolute day-to-day change in
Skew1 (0.044). For STLG the confidence regions are much larger in
relation to the measured statistics for both PDF estimation methods.
This is because the average number of strikes per option cross-section
is much smaller. For the STLG DLN Skew1, the 90% confidence
interval (0.771) is actually 17% larger than the average value of the
statistic (0.657) and more than three times the mean absolute
day-to-day change in the statistic (0.226). For STLG SML Skew1, the
confidence interval (0.249) is 33% of the average value (0.766) and
165% of the mean absolute day-to-day change (0.151). The problem is
similarly severe for other skewness measures and for kurtosis. The tail
percentiles also show relatively larger confidence intervals for DLN and
smaller ones for SML. In almost all cases, the confidence intervals for
STLG higher moment and tail summary statistics exceed the
corresponding mean absolute day-to-day changes. The exceptions are
the STLG Skew2 and Skew4 statistics. The confidence intervals for µ̂
and σ̂ are much smaller. For FTSE DLN PDFs, the 90% confidence
intervals for µ̂ and σ̂ (1.67 and 3.00) are 4% and 26% of their
respective mean absolute day-to-day changes (40.8 and 11.4). For
FTSE SML PDFs the corresponding numbers are 0% and 6%
respectively. The STLG DLN µ̂ confidence interval is likewise
approximately equal to the day-to-day variation, while STLG DLN and
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SML σ̂ confidence intervals are roughly three times and almost equal to
their mean absolute day-to-day changes respectively.

These results show that, except for measures of location and dispersion
(µ̂ and σ̂) where cross-section sizes are large (FTSE), the effect of price
measurement error introduces a significant degree of uncertainty to the
accuracy of implied PDF-derived summary statistics. It should be
remembered that these are minimal confidence intervals—they account
for only one source of pricing uncertainty and probably the smallest
one at that.

Lastly, we examine the impact that the choice of weighting scheme
might have on our results. We examined three weighting schemes:
equal weighting; vega weighting; and an ad hoc weighting that placed
weights of 1 on the four strikes closest-to-the-money, weights of 1/2 for
the remaining out-of-the-money strikes and 1/4 for the remaining
in-the-money strikes. These fitted price error weights were applied to
the DLN estimations. For the SML estimations the fitted price error
weights were converted to fitted implied volatility error weights by
multiplying them by the appropriate vegas. The test sample was
created by finding the first 120 cross-sections for which it was possible
to find DLN and SML solutions (again, only the former were
problematic) for all three pairs of estimations. For each pair of
estimations the λ was calibrated so that the SML method had
approximately the same overall goodness-of-fit as the DLN method. For
each cross-section 100 perturbed-price simulations were run, as before.

Table G presents selected results. Again the DLN method is less stable
overall than is the SML method, regardless of the weighting scheme
used. In only three cases for each estimation pair does the DLN show
less variability in the PDF summary statistic: Skew2 and Skew4 in the
inter-quartile range results, and Skew2 in the 90% confidence interval
results. There is no variation in this pattern across weighting methods.
Nor does the choice of weighting scheme much affect the size of the
individual statistics. This is consistent with the hypothesis advanced
earlier that because the fitted price errors are generally very small, the
weights used to multiply them have little impact on the estimation.
These results provide evidence that the full-sample results presented
above are not artifacts of the somewhat arbitrary choice of weighting
used in the tests.
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5 Conclusions

This paper has developed and applied a methodology for assessing the
relative and absolute stability of implied PDFs estimated from options
prices to small errors in prices. The technique consists of re-estimating
PDFs on randomly perturbed sets of options prices constructed so as
to be observationally equivalent to the original data. The perturbed
data PDFs are then evaluated by examining the distribution of a
number of summary statistics estimated from each PDF.

The test methodology introduced in this paper is applied to the DLN
and to the SML PDF estimation methods. These PDF estimation
methods are tested on two sets of options data: FTSE 100 and short
sterling.

The results in this paper provide strong evidence of the superior
stability of the smoothed implied volatility smile implied PDF
estimation method over the double-lognormal method. Furthermore,
we show that higher-order statistics, such as skewness, cannot always
be estimated with precision; for either PDF estimation method, the
confidence intervals can be so large as to make the estimates useless.
This is particularly true of the STLG data. This suggests that
day-to-day or month-to-month changes in skewness and kurtosis should
not be over-analysed. Regardless of the dataset or estimation method
used, confidence regions are too large to reliably measure day-to-day
changes in summary statistics. Studies which look at announcements
on estimated implied PDFs should take this uncertainty into
consideration. Only persistent changes in these measures, of an order
exceeding the minimal confidence intervals derived using the methods
developed in this paper, are likely to contain useful information.

The problems with the DLN method arise from its sensitivity to
computational problems. The statistical analysis presented here ignores
the frequent convergence failures encountered in applying the DLN
implied PDF estimation method and the tendency of the method to
produce spurious spikes in the estimated PDFs when one of the
component lognormal density functions collapses. It may be possible to
restart the DLN solution by repeatedly using a grid of initial values
and then visually inspecting the PDFs for abnormalities to arrive at a
plausible solution. This is impracticable for large numbers of option
cross-sections and the solution thus laboriously achieved is apt still to
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be more sensitive to data problems than solutions from more robust
methods such as the smoothed smile used in this paper.(18)

The smoothed implied volatility smile implied PDF estimation method
is remarkably free of computational problems. Applied to a large
cross-section of strikes, such as we find with FTSE options, the
estimated implied PDFs are reasonably insensitive to small
measurement errors. However, for small cross-sections, such as we find
with STLG options, the estimated SML implied PDFs, while much
more stable than the DLN implied PDFs estimated on the same
dataset, are nonetheless not so stable that derived statistics can safely
be viewed as precise measures. As always in statistics, parameters
estimated from sample data are estimates with associated
uncertainties. In the case of higher-moment statistics derived from
options prices, this cannot be ignored.

It is clear from this analysis that the double-lognormal method, while
widely used, should not be. In the future, other alternatives may well
prove superior to the smoothed implied volatility smile. It is likely that
the smoothed implied volatility smile method used in this paper,
chosen to have the same goodness-of-fit as the DLN method, may itself
be improved upon by trading off a small degree of fit for a more stable
implied PDF estimate. The methods used in this paper both fit the
data to a high precision, which the nature of the quotation process
cannot justify. There is considerable room to trade off fit and stability.
The smoothed implied volatility smile method permits this fine tuning.
The double-lognormal method does not.

(18)It is conceivable that a solution arrived at by the labour-intensive measures
mentioned would be more stable than the straightforward application of the DLN
estimation method.

33



7DEOH $� 6XPPDU\ VWDWLVWLFV RI RSWLRQ
FURVV�VHFWLRQ VDPSOHV

2ULJLQDO VDPSOH )76( ��� 6KRUW VWHUOLQJ

1XPEHU RI FURVV�VHFWLRQV �� ��� �� ���

6WULNHV SHU FURVV�VHFWLRQ
5DQJH ��b �� ��b ��
$YHUDJH ���� ����

7LPH WR H[SLU\ �\HDUV�
5DQJH �����b ����� �����b �����
$YHUDJH ����� �����

)LOWHU ORVVHV

6KRUW H[SLU\ RU WRR IHZ JRRG VWULNHV �� ���

'/1 IDLOXUHV RQ XQSHUWXUEHG GDWD � ��

6LPXODWLRQ IDLOXUHV � �

'/1 VSLNHV �� ��

)LQDO VDPSOH

1XPEHU RI FURVV�VHFWLRQV �� ��� ���
6WULNHV SHU FURVV�VHFWLRQ

5DQJH ��b �� �b ��
$YHUDJH ���� ����

7LPH WR H[SLU\ �\HDUV�
5DQJH �����b ����� �����b �����
$YHUDJH ����� �����

��



7DEOH %� 'LVWULEXWLRQ RI 3') VXPPDU\ VWDWLVWLFV
IRU XQSHUWXUEHG GDWD

6WDWLVWLF PHDQV 6WDWLVWLF VWDQGDUG GHYLDWLRQV

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

92) ������ ������ ������ ������ ������ ������ ������ ������

Ax ������ ������ ����� ����� ����� ����� ����� �����

A} ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� b����� b����� ����� ����� ����� ����� ����� �����

6NHZ� b����� b����� ����� ����� ����� ����� ����� �����

6NHZ� b����� b����� ����� ����� ����� ����� ����� �����

6NHZ� b����� b����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ����� �����

;�� ������ ������ ����� ����� ����� ����� ����� �����

;�� ������ ������ ����� ����� ����� ����� ����� �����

;�� ������ ������ ����� ����� ����� ����� ����� �����

;�� ������ ������ ����� ����� ����� ����� ����� �����

1 ����� ��� ����� ���

��



7DEOH &� 8QSHUWXUEHG GDWD 3') VXPPDU\ VWDWLVWLFV
RI GD\�WR�GD\ FKDQJHV

0HDQ DEVROXWH 6WDQGDUG GHYLDWLRQ

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax ���� ���� ����� ����� ���� ���� ����� �����

A} ���� ��� ����� ����� ���� ���� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ���� ����� �����

;�� ���� ���� ����� ����� ����� ���� ����� �����

;�� ���� ���� ����� ����� ���� ���� ����� �����

;�� ���� ���� ����� ����� ����� ���� ����� �����

,QWHU�TXDUWLOH UDQJH ;�� WR ;�� UDQJH

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax ���� ���� ����� ����� ����� ����� ����� �����

A} ���� ��� ����� ����� ���� ���� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ����� ����� �����

��



7DEOH '� 'LVWULEXWLRQ RI 3') VXPPDU\ VWDWLVWLFV
IRU SHUWXUEHG GDWD

,QWHU�TXDUWLOH UDQJH ;�� WR ;�� UDQJH

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax ���� ���� ����� ����� ���� ���� ����� �����

A} ���� ���� ����� ����� ���� ���� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ����� �����

;�� ���� ���� ����� ����� ����� ���� ����� �����

;�� ���� ���� ����� ����� ���� ���� ����� �����

;�� ���� ���� ����� ����� ���� ���� ����� �����

;�� ���� ���� ����� ����� ���� ���� ����� �����

1 ������� ������ ������� ������

;�� WR ;�� UDQJH ;�� WR ;�� UDQJH

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax ���� ���� ����� ����� ����� ���� ����� �����

A} ���� ���� ����� ����� ����� ���� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ������ �����

;�� ����� ���� ����� ����� ������ ����� ����� �����

;�� ����� ���� ����� ����� ������ ���� ����� �����

;�� ���� ���� ����� ����� ����� ���� ����� �����

;�� ����� ���� ����� ����� ������ ���� ����� �����

1 ������� ������ ������� ������

��



7DEOH (� 6WDQGDUG GHYLDWLRQ RI 3') VXPPDU\ VWDWLVWLFV
IRU SHUWXUEHG GDWD

%HIRUH nOWHULQJ $IWHU nOWHULQJ

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax ����� ���� ����� ����� ���� ���� ����� �����

A} ����� ���� ����� ����� ���� ���� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

6NHZ� ����� ����� ����� ����� ����� ����� ����� �����

.XUW ����� ����� ����� ����� ����� ����� ����� �����

;�� ����� ���� ����� ����� ����� ���� ����� �����

;�� ����� ���� ����� ����� ���� ���� ����� �����

;�� ����� ���� ����� ����� ���� ���� ����� �����

;�� ����� ���� ����� ����� ����� ���� ����� �����

1 ������� ������ ������� ������

q 7KH nOWHUHG VDPSOH ZDV FRQVWUXFWHG E\ GHOHWLQJ DOO REVHUYDWLRQV WKDW FRQWDLQHG DQ
RXWOLHU IRU DQ\ RI WKH HOHYHQ VXPPDU\ VWDWLVWLFV� $Q RXWOLHU LV GHnQHG DV DQ\ YDOXH
RXWVLGH WKH ��� WR ���� SHUFHQWLOHV RI WKH UHVSHFWLYH HPSLULFDO GLVWULEXWLRQ�

��



7DEOH )� ��� FRQnGHQFH LQWHUYDOV DV SHUFHQWDJHV

��� FRQnGHQFH LQWHUYDO DQG SHUFHQWDJH RI

0HDQ DEVROXWH
0HDQ VWDWLVWLF GD\�WR�GD\ FKDQJH

6XPPDU\ )76( ��� 6KRUW VWHUOLQJ )76( ��� 6KRUW VWHUOLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/ '/1 60/

Ax � � � � � � ��� �

A} � � �� � �� � ��� ��

6NHZ� �� � ��� �� �� �� ��� ���

6NHZ� �� � ��� ��� �� �� ��� ���

6NHZ� �� � ��� �� �� �� ��� ���

6NHZ� �� � ��� ��� �� �� ��� ���

.XUW � � �� �� �� �� ��� ���

;�� � � �� � �� �� ��� ���

;�� � � � � �� � ��� ���

;�� � � � � �� � ��� ��

;�� � � � � �� �� ��� ���

q 7KH ��� FRQnGHQFH LQWHUYDO LV GHnQHG DV WKH GLmHUHQFH EHWZHHQ WKH �WK DQG WKH
��WK SHUFHQWLOHV RI WKH SHUWXUEHG VWDWLVWLFV�

��



7DEOH *� 'LVWULEXWLRQ RI 3') VXPPDU\ VWDWLVWLFV
IRU SHUWXUEHG GDWD DQG YDULRXV ZHLJKWLQJV

,QWHU�TXDUWLOH UDQJH

(TXDO 9HJD 6WHS

6XPPDU\ ZHLJKWLQJ ZHLJKWLQJ ZHLJKWLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/

Ax ������ ������ ������ ������ ������ ������

A} ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

.XUW ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

1 ������ ������ ������

;�� WR ;�� UDQJH

(TXDO 9HJD 6WHS

6XPPDU\ ZHLJKWLQJ ZHLJKWLQJ ZHLJKWLQJ

VWDWLVWLF '/1 60/ '/1 60/ '/1 60/

Ax ������ ������ ������ ������ ������ ������

A} ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

6NHZ� ������ ������ ������ ������ ������ ������

.XUW ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

;�� ������ ������ ������ ������ ������ ������

1 ������ ������ ������

��



Chart 1: The effect of price perturbations on implied volatility
(Tick size = 0.01)
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Chart 2a: Short sterling option cross-sections

Quote date (1997)
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Chart 2b: FTSE 100 option cross-sections

Quote date (1997)
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Chart 3: Comparison of SML and DLN summary statistics
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Chart 4: Comparison of day-to-day changes in SML and DLN
summary statistics
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Appendix A: Methods for estimating implied
PDFs

A.1 Double-lognormal approximating function

The double-lognormal approximating function method for estimating
implied PDFs from option prices is based on the following theoretical
pricing relations for European calls and puts:

Ct(K) = e−rτ

∫ ∞

K

(ST − K)df(ST )

and

Pt(K) = e−rτ

∫ K

−∞
(K − ST )df(ST )

where C and P are the call and put prices observed at time t; r is the
riskless rate; τ is the time to expiry; K is the exercise price; and df(ST )
is the risk-neutral probability density function for the value of the
underlying asset, S, at expiry, T = t + τ . The double-lognormal
method approximates this density function with a mixture of two
lognormal density functions:

df(ST ) = θL(ST |µ1, σ1, St) + (1 − θ)L(ST |µ2, σ2, St)

L(ST ) =
1

ST σ
√

2πτ
exp

{−[log ST − log St − (µ − 1
2σ2)τ ]2

2σ2τ

}

where St is the current value of the underlying asset and
{µ1, σ1, µ2, σ2, θ} are the unknown parameters that define the
double-lognormal density function; θ ∈ [0, 1].(19) Thus the fitted value
for a call price, given parameters {µ1, σ1, µ2, σ2, θ}, is given by

Ĉt(K|µ1, σ1, µ2, σ2, θ) = e−rτ

{
θ

∫ ∞

K

(ST − K)L(ST |µ1, σ1, St)dST

+ (1 − θ)
∫ ∞

K

(ST − K)L(ST |µ2, σ2, St)dST

}

(19)See Melick and Thomas (1997) and Bahra (1997) for development of this model.
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with an equivalent expression for the value of the put option. Given
observations of call and put prices, the parameters, {µ1, σ1, µ2, σ2, θ},
of the implied double-lognormal PDF can be estimated using
non-linear optimisation methods to minimise the weighted sum of fitted
price errors:

min
{µ1,σ1,µ2,σ2,θ}

Nc∑
i=1

wi[Ct(Ki) − Ĉt(Ki|µ1, σ1, µ2, σ2, θ)]2

+
Np∑
j=1

wj [Pt(Ki) − P̂t(Ki|µ1, σ1, µ2, σ2, θ)]2

subject to

Nc∑
i=1

wi +
Np∑
j=1

wj = 1 and wi, wj >= 0 ∀i, j

and where Nc and Np and the number of calls and put contracts in the
estimation sample for a given pair of observations and expiry dates
{t, T } and the wi, wj are the weights placed on each option.

A.2 Smoothed implied volatility smile

The smoothed implied volatility smile implied PDF estimation method
is based on a few simple ideas. Breeden and Litzenberger (1978)
showed that the PDF for distribution of the value of the underlying
asset at option expiry, f(ST ), is related to call (or put) prices through

f(ST ) =
∂2C

∂K2

so that if we observed the call price function (as a function of strike)
we could differentiate twice to obtain the PDF. However, we only
observe call prices for relatively few discretely spaced strikes.

The obvious solution is to interpolate (and extrapolate), or
alternatively smooth, the observed prices by fitting a function to the
observed prices. However, several technical reasons make this approach
undesirable. Small fitted price errors can have large effects on the
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PDFs, particularly in the tails, and otherwise advantageous smoothing
splines are not well suited to fitting a fundamentally exponential
functional form that asymptotes to zero slope for deep
out-of-the-money and slope of one for deep in-the-money.

Shimko (1993) proposed as an alternative that the observed option
prices first be converted to implied volatilities using the Black-Scholes
option pricing formula. The implied volatility function could then be
fitted and the continuum of fitted implied volatilities converted back to
a continuum of fitted option prices and thence to a fitted PDF. Shimko
chose to use a simple quadratic polynomial smoothing function within
the span of available strikes and with flat linear extrapolations outside
the range of available strikes. While this method relies on the
Black-Scholes pricing model as a method for transforming from one
space (price/strike) to another (BS-implied volatility/strike) this is
purely a computational convenience and does not presume that the
Black-Scholes model is true.

Malz (1997b) modified Shimko’s technique by transforming the original
data from price/strike space to implied volatility/delta space, where

delta ≡ ∆ =
∂C

∂S

Using delta, ∆, rather than strike, K, as the function argument, groups
away-from-the-money implied volatilities more closely together than
near-the-money implied volatilities. This has the effect of permitting
greater ‘shape’ near the centre of the distribution where the data is
more reliable (frequently traded), without using a variable smoothness
penalty across the length of the spline.(20) Malz (1997b) followed
Shimko in using a low-order polynomial as the smoothing function.

Campa, Chang and Reider (1997) introduced the use of a smoothing
spline for fitting implied volatility curves. They applied this to
smoothing the implied volatility/strike function. Use of a natural
spline, rather than a low-order polynomial, permits the user to control
the smoothness of the fitted function. The spline is also less restrictive
of the shapes the fitted function can assume.

The smoothed smile PDF estimation method used in this paper was
developed by Panigirtzoglou in previously unpublished work at the

(20)See Waggoner (1997) for the application of variable smoothness penalties to
fitting natural splines.
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Bank of England. The method follows Malz (1997b) in smoothing in
implied volatility/delta space and Campa, Chang and Reider (1997) in
using a natural spline to smooth the function. In addition, the fitted
implied volatility errors are weighted by the option vegas (ν ≡ ∂C

∂σ ) to
account for presumed homoskedastic pricing errors in the underlying
raw price data.

A natural spline is a piece-wise cubic polynomial. For a natural spline
the points on the x-axis corresponding to each of the data points define
the ‘knot points’.(21) Between the knot points the function is a simple
cubic polynomial. However, the function is constrained so that it is
continuous at the knot points and has continuous first and second
derivatives. The smoothness of the spline is controlled by a smoothness
penalty, λ, which multiplies a measure of the degree of curvature in the
function—the integral of the squared second derivative of the function
over its range. The objective function to be minimised is thus

min
Θ

N∑
i=1

wi

(
IVi − ˆIV i(Θ)

)2

+ λ

∫ ∞

−∞
f ′′(x; Θ)2dx

where Θ is the matrix of parameters of the cubic spline (knot points
and component polynomial parameters), f(Θ) is the cubic spline
function, and ˆIV i(∆i, Θ) is the fitted implied volatility at ∆i, given the
spline parameters Θ. Implementing the natural spline is both simple
and computationally efficient.

The cubic smoothing spline has the property that it becomes linear
outside the range of available data. If the slope at the extreme knot
points is negative, it is possible for extrapolated values of the fitted
density to be negative. It is possible to alter the spline function or to
constrain it to avoid this problem, though at some cost in
computational efficiency. In this study, the negative fitted-density
problem did not occur.

Once the natural spline is fitted, a large number of equally ∆-spaced
points on the function are computed. These are then converted into
equally K-spaced values in price/strike space. These in turn are used
to compute the PDF using numerical methods.

(21)Some applications use a smaller set of knot points at predetermined intervals or
selected to span approximately equal numbers of data points.
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Appendix B: Data description

B.1 Short sterling

The LIFFE short sterling options contract is an American-style option
on the three-month sterling interest rate futures contract. Options and
the underlying futures contract expire simultaneously on the third
Wednesday of the nearest March, June, September and December. No
options are listed with expiry beyond one year. The short sterling
option exercise prices are in intervals of 0.25 (25 basis points) except
for the near contract which is quoted in strike intervals of 0.125. The
minimum tick size is 0.01.(22) The underlying futures contract cash
settles to 100 minus the 3-month LIBOR rate on the futures contract
expiry date. Option premia are not paid at time of purchase. Option
positions are marked-to-market daily and the premium is paid only if
the option is exercised. The combined effect of the deferred premium
and the (initially costless) underlying asset results in the following
put-call parity relation for the short sterling contract:(23)

C − P = S − K

where C is the call price for an option with strike K, P is the
corresponding put price, and S is the current value of the underlying
asset. This condition is not violated for any contracts in the 1997
dataset, indicating that the condition is imposed when short sterling
option settlement prices are determined. It also means that put and
call prices are redundant and we may use either. In this study we use
call prices.

In 1997 the average near-the-money(24) short sterling call price was

(22)After April 1998 the tick size was reduced to 0.005 for contracts trading at less
than 0.03.
(23)This assumes all cash flows occur at expiration and ignores mark-to-market
effects. Evidence from studies of price differences for interest rate futures and
interest rate forwards indicates that the mark-to-market distortion is minimal.
Strict equality theoretically only holds for European-style options. However, the
absence of potential ‘dividends’ from holding the underlying makes early exercise of
the call suboptimal, and the premium-payment-on-exercise raises the threshold at
which it is optimal to exercise the put early. In practice the short sterling contract
trades as if it were a European-style option.
(24)Defined as the strike immediately above and the strike at or immediately below
the futures price.
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0.219 (range 0.010 to 0.600).(25) The tick size is therefore 4.6% of the
average near-the-money short sterling option premium. For
away-from-the-money options the tick size would be a correspondingly
higher percentage of the time value (the intrinsic value portion of the
option price is irrelevant in this context). If we are interested in the
time series of changes in derived statistics rather than in their absolute
levels, the more relevant benchmark for evaluating the tick size is the
daily price change. In 1997, the daily near-the-money short sterling call
price changes ranged between −0.240 and 0.280, with a mean absolute
value of 0.155 and a standard deviation of 0.141. Thus the tick size is
6.6% of the mean absolute daily price change and 7.1% of the standard
deviation of daily near-the-money short sterling call price changes and
correspondingly greater for away-from-the-money strikes.

B.2 FTSE 100

The LIFFE FTSE 100 option contract used in this study is an
European-style option on the FTSE 100 stock index.(26) Options are
listed for the nearest four months and for the nearest June and
December. FTSE 100 options expire on the third Friday of the expiry
month. The FTSE 100 option strikes are in intervals of 50 or 100
points depending on time-to-expiry. The minimum tick size is 0.5.
FTSE 100 options cash settle to the daily settlement price, which is
determined by taking the average level of the FTSE 100 index sampled
every 15 seconds between 16:20 and 16:30 (London time). For expiring
contracts the sampling is done between 10:10 and 10:30 on the last
trading day. The option premium is payable in full at the time of
purchase (next business day).

Because the FTSE 100 futures contract expires on the same date as the
option and therefore will have the same value as the index when the
option expires, the European-style FTSE 100 contract may be viewed
as an option on the futures. The put-call parity relation for the FTSE
100 contract is therefore

C − P = (S − K)e−rfτ

(25)Statistics are based on all options with at least seven days to expiry. Price
change statistics are based on consecutive quotations over intervals of no more than
three days. The same applies to the FTSE 100 options statistics below.
(26)LIFFE also lists an American-style FTSE 100 contract. This contract is less
liquid than the European-style contract.
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where C is the call price for an option with strike K, P is the
corresponding put price, S is the current value of the underlying asset,
in this case a futures price, τ is the time to expiry, and rf is the
risk-free interest rate. Again, this theoretical relation ignores
mark-to-market effects.

Put-call parity is frequently violated for FTSE 100 options contracts in
the 1997 dataset. As a result put and call prices are not redundant.

In 1997 the average near-the-money FTSE 100 call price was 188.4
(range 9.50 to 583.5). The tick size is therefore 0.3% of the average
near-the-money FTSE 100 option premium. In 1997, the daily price
changes ranged between −164.0 and 186.0, with a mean absolute value
of 42.44 and a standard deviation of 49.78. Thus the tick size is 1.2%
of the mean absolute daily price change and 1.0% of the standard
deviation of daily price changes. One would expect therefore that
tick-size effects are less of a problem in the FTSE 100 option market
than in the short sterling market.
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