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Abstract

This paper critically assesses the practice of band-pass filtering—the non-structural,
frequency-domain based decomposition of economic time series into trend and cyclical
components—making two main points.  First, it is shown that:  (a) depending on the stochastic
properties of the filtered process, the band-pass filtered cyclical component is entirely authentic,
partly or mostly spurious, or even entirely spurious ;  and (b) as a simple consequence of the Lucas
critique, the degree of authenticity of band-pass filtered cyclical components crucially depends on
the monetary rule followed by the policy-maker.

Second, taking a number of macroeconomic models as data-generation processes it is shown that
band-pass filtering:  (a) may markedly distort key business cycle stylised facts, as captured by the
cross-correlations and the cross-spectral statistics between the cyclical components of the variables
of interest and the cyclical component of GDP;  and (b) may well create entirely spurious stylised
facts.  For example: both productivity and the money supply may appear procyclical even when they
follow random walks by construction; the real wage may appear procyclical when in fact it is
countercyclical; in general, the Phillips correlation between inflation and the cyclical component of
economic activity will appear weaker than it is in reality.  Again, the degree of authenticity of
business cycle stylised facts uncovered via band-pass filtering crucially depends on the monetary
rule followed by the policy-maker.

Keywords:  Band-pass filter;  time series;  frequency domain;  unit roots;  business cycles;
Lucas critique ;  monetary policy.

JEL classification:  E30, E32.
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Summary

In recent years, band-pass filtering—the non-structural, frequency-domain based decomposition of
economic time series into trend and cyclical components—has become more and more popular
among macroeconomists, as a way of capturing and describing business cycle stylised facts.
Compared with the Hodrick-Prescott filter, the band-pass filter offers the advantage of allowing the
researcher to target a specific frequency band, thus extracting from the series of interest all the
components associated with that band, while essentially discarding all the others.  The growing
interest of the macroeconomics profession in band-pass filtering techniques is demonstrated, first by
the number of recent papers on business cycle stylised facts that make use of the band-pass filter,
second, by the inclusion in the recent Handbook of Macroeconomics of a chapter on US post-World
War II business cycle stylised facts entirely based on band-pass filtering, and third, by the continuing
attempts to develop new and better approximations to the ideal band-pass filter.

This paper critically assesses the practice of band-pass filtering, making two main points.  First, it is
shown that, depending on the stochastic properties of the filtered process, the band-pass filtered
cyclical component could be entirely authentic, partly or mostly spurious, or even entirely spurious.
While, in general, there does not exist any universally valid measure of authenticity for band-pass
filtered cyclical components, it is shown that for unobserved components (UCARIMA) processes
there does indeed exist such a natural measure, based on the integral of the spectral density of the
band-pass filtered process.  Taking a simple sticky-price DSGE model as the data-generation
process, it is shown that:  (a) under a number of circumstances, band-pass filtered output may
provide a surprisingly bad proxy for the structural output gap;  and (b) as a technique for extracting a
proxy for the output gap, band-pass filtering suffers from the distinct disadvantage that, as a simple
consequence of the Lucas critique, the accuracy of the approximation is not invariant to the monetary
rule followed by the policy-maker, and in fact crucially depends on it.

Second, taking some alternative macroeconomic models as data-generation processes, it is shown
that band-pass filtering:  (1) may markedly distort key business cycle stylised facts, as captured by
the cross-correlations and the cross-spectral statistics (gain, phase angle, and coherence) between the
cyclical components of the variables of interest and the cyclical component of GDP;  and (2) may
well create entirely spurious stylised facts.  For example:  (a) the Phillips correlation between
inflation and the cyclical component of economic activity will in general appear weaker than it is in
reality;  (b) both money supply and productivity may appear procyclical even when they follow
random walks by construction;  (c) the real wage may appear procyclical when in fact it is
countercyclical.  These results are not peculiar to a particular class of model, but instead illustrate a
general problem:  the presence of stochastic trends, and possibly of cointegrating relationships
among macroeconomic variables, may significantly alter the business cycle stylised facts as captured
by the band-pass filter.  Again, the degree of authenticity of business cycle stylised facts uncovered
via band-pass filtering crucially depends on the monetary rule followed by the policy-maker.
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The general conclusion emerging from the paper is that, far from being the neutral, atheoretical, and
objective approach to the study of business cycle stylised facts that it is often claimed to be,
band-pass filtering may markedly distort those very same stylised facts in unpredictable ways,
simply because such distortions crucially depend on the unknown true structure of the economy that
the researcher is investigating.



9

1. Introduction

In recent years, band-pass filtering—the non-structural, frequency-domain based decomposition of
economic time series into trend and cyclical components—has become more and more popular
among macroeconomists, as a way of capturing and describing business cycle stylised facts.
Compared with the Hodrick-Prescott filter, the band-pass filter indeed offers the advantage of
allowing the researcher to target a specific frequency band, thus extracting from the series of interest
all the components associated with that band, while essentially discarding all the others.  The
growing interest of the macroeconomics profession in band-pass filtering techniques is demonstrated,
first by the number of recent papers on business cycle stylised facts that make use of the band-pass
filter,(1)  second, by the inclusion in the recent Handbook of Macroeconomics of a chapter on US
post-World War II business cycle stylised facts entirely based on band-pass filtering,(2) third, by the
continuing attempts to develop new and better approximations to the ideal band-pass filter.(3)

This paper critically assesses the practice of band-pass filtering, making two main points.  First, it is
shown that, depending on the stochastic properties of the filtered process, the band-pass filtered
cyclical component could be entirely authentic, partly or mostly spurious, or even entirely spurious.
While, in general, there does not exist any universally valid measure of authenticity for band-pass
filtered cyclical components, it is shown that for unobserved components (UCARIMA) processes
there does indeed exist such a natural measure, based on the integral of the spectral density of the
band-pass filtered process.  Taking a simple sticky-price DSGE model as the data-generation
process, it is shown that:  (a) under a number of circumstances, band-pass filtered output may
provide a surprisingly bad proxy for the structural output gap;  and (b) as a technique for extracting a
proxy for the output gap, band-pass filtering suffers from the distinct disadvantage that, as a simple
consequence of the Lucas critique, the accuracy of the approximation is not invariant to the monetary
rule followed by the policy-maker, and in fact crucially depends on it.

Second, taking some alternative macroeconomic models as data-generation processes, it is shown
that band-pass filtering:  (1) may markedly distort key business cycle stylised facts, as captured by
the cross-correlations and the cross-spectral statistics (gain, phase angle, and coherence) between the
cyclical components of the variables of interest and the cyclical component of GDP;  and (2) may
well create entirely spurious stylised facts.  For example:  (a) the Phillips correlation between
inflation and the cyclical component of economic activity will in general appear weaker than it is in
reality;  (b) both money supply and productivity may appear procyclical even when they follow
random walks by construction;  (c) the real wage may appear procyclical when in fact it is
countercyclical.  These results are not peculiar to a particular class of model, but instead illustrate a

                                                                                                                                                                                                                         

(1) See Englund, Persson and Svensson (1992), Baxter (1994), Hassler et al (1994), Baxter and King (1999), King and
Watson (1996), Bergman et al (1998), Basu and Taylor (1999) and Haldane and Quah (1999).  For a critical perspective,
see Murray (2000).  See also the related work of Pollock (2000, 2001).
(2) See Stock and Watson (1999).
(3) See Christiano and Fitzgerald (1999).
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general problem:  the presence of stochastic trends, and possibly of cointegrating relationships
among macroeconomic variables, may significantly alter the business cycle stylised facts as captured
by the band-pass filter.  Again, the degree of authenticity of business cycle stylised facts uncovered
via band-pass filtering crucially depends on the monetary rule followed by the policy-maker.

The general conclusion emerging from the paper is that, far from being the neutral, atheoretical, and
objective approach to the study of business cycle stylised facts that it is often claimed to be,
band-pass filtering may markedly distort those very same stylised facts in unpredictable ways,
simply because such distortions crucially depend on the unknown true structure of the economy that
the researcher is investigating.

1.1. Structural and non-structural trend-cycle decompositions:  an ‘econometric free lunch’?

What is a trend, and what is a cyclical component?  This apparently simple question possesses a
unique answer only within the context of a well-defined structural model.  To fix ideas, let us assume
that Christiano, Eichenbaum and Evans (2001) (dynamic stochastic general equilibrium) DSGE
model represents the authentic structure of the economy.  For all of the endogenous variables, the
model uniquely defines a structural trend and a structural cyclical component, which, in what
follows, will be defined as the authentic trend and cycle components.  The attractiveness of such a
trend-cycle decomposition is clear.  First, the decomposition is uniquely defined.  Second, it
automatically and directly follows from the structure of the economy.  This, unfortunately, creates an
obvious problem:  in order to implement such a decomposition, a researcher has to commit to a
particular structural model.(4)

Since nobody knows exactly what the authentic structure of the economy really is, non-structural
decompositions between trend and cyclical components—univariate or multivariate
Beveridge-Nelson decompositions, one-sided or two-sided HP filters, band-pass filters, etc—may
provide a reasonable second-best solution.  One disadvantage of non-structural decompositions is
clear:  while a structural decomposition is uniquely defined, there are potentially infinite ways of
decomposing a time series into a trend and a cyclical component based on non-structural methods.  A
second potential disadvantage of such an approach has been overlooked in the literature.(5)  The
adoption of a particular non-structural decomposition may be justified if and only if such a
decomposition may reasonably be expected to perform well under a wide range of possible
alternative circumstances.  As this paper shows, in the case of band-pass filtering such a presumption
                                                                                                                                                                                                                         

(4) If we knew, with absolute certainty, that a particular macroeconomic model represents the authentic structure of the
economy, and we further knew the stochastic properties of all structural shocks and error terms, the optimal thing to do
would be to estimate the model via maximum likelihood.  (Typically, the model would involve unobserved variables
like technology, but if we knew their stochastic properties, the problem could be trivially solved by casting the model
 in state-space form and applying the Kalman filter.)  This would give us optimal estimates of trend and cyclical
components, and would allow us to establish a set of stylised facts concerning growth and cyclical fluctuations.  Finally,
it would provide us with optimal estimates of a number of quantities of direct interest to policy-makers, like the
output gap.
(5) With the notable exception of Cogley (1997).
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is in general incorrect, for the simple reason that the performance of the filter is not invariant with
respect to the structure that is being filtered.  On the contrary, the ability of the band-pass filter to
extract reasonably accurate approximations to the authentic trend and cyclical components, as
defined by the true model of the economy, crucially depends on the model’s structure.  It is shown
that, depending on the particular structure that is being filtered, the performance of the band-pass
filter may be extremely good, extremely bad, or anything in between, and since the true structure of
the economy cannot be known, it is logically impossible to tell, a priori, whether the performance of
the filter will be reasonably good or not.  To put it differently, there is no such a thing as an
‘econometric free lunch’ :  if the researcher is not willing to commit to a particular structural model,
and therefore decides to resort to a frequency domain based decomposition between trend and
cyclical components, then a price has to be paid.  And the price is that it will generally be impossible
to tell the true meaning of such components.(6)

1.2. Spurious and ‘contaminated’ business cycle stylised facts from band-pass filtering

Band-pass filters are typically used to establish so-called ‘business cycle stylised facts’, in terms of
the cross-correlations and/or the cross-spectral statistics between the cyclical components of the
variables of interest and the cyclical component of a reference series (from now on, I will assume
that real GDP is such a series).  Ideally, we would like to be able to establish the relationships
between the authentic cyclical components of the series of interest and the authentic cyclical
component of GDP.  Unfortunately the problem is that, by the very nature of band-pass filtering, this
is technically impossible :  band-pass filtering is based on the notion of extracting from a series all of
the components lying within a pre-specified frequency band,(7) irrespective of the fact that such
components may come from filtering a stochastic trend, as opposed to filtering the authentic
stationary component of the process.  As a result, two types of problem will typically appear.

First, key business cycle stylised facts will end up being distorted and contaminated by the presence
of the filtered stochastic trend(s).  A typical example is the Phillips correlation between inflation and
the cyclical component of economic activity, which, as we will see, will in general appear weaker
than it is in reality.  The problem will be particularly serious when a cointegrating relationship exists
between the series of interest and GDP.  In such a circumstance, indeed, the business cycle stylised
facts captured by the band-pass filter will reflect both the relationship between the cyclical
components of the two series, and the cointegrating relationship between the two stochastic trends.
A typical example is the real wage.  Assuming the presence of a unit root in technology, the real

                                                                                                                                                                                                                         

(6) In the recent work of Pedersen (2001), cyclical components are defined as the outcome of the ideal band-pass filter
(for a definition of the ideal band-pass filter, see Section 2.4 below).  Such a purely tautological approach clearly
eliminates the problem at the root by ‘defining it away’, and possesses a number of distinctly unpalatable implications—
for example, based on such a definition, a white noise process possesses both a ‘trend’ and a ‘cyclical’ component.  The
absurdity of such implications clearly casts doubts on the meaningfulness of such an approach.
(7) With quarterly data, this is usually taken to be [π/16, π/3], associated with fluctuations between 6 and 32 quarters (see,
for example, the recent work of Baxter and King (1999) or Christiano and Fitzgerald (1999)).
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wage and GDP share a common stochastic trend, and therefore tend to covary positively not only at
very low frequencies, but also within the business cycle frequency band.  As I will show in
Section 4.4, the band-pass filtered real wage may appear to be procyclical even if the cyclical
component of the real wage is negatively correlated with the cyclical component of GDP, simply
because the authentic negative correlation may be ‘swamped’ by the positive cointegrating one.

Second, band-pass filtering may well create entirely spurious stylised facts.  Technology, for
example, may appear strongly procyclical even when it follows a random walk by construction, due,
once again, to the cointegrating relationship with GDP.

1.3. Observational equivalence between alternative economic structures

A conceptually related problem is the observational equivalence between radically alternative
economic structures.  When seen through the lenses of the band-pass filter, economic structures with
markedly different stochastic properties may indeed give rise to qualitatively similar business cycle
stylised facts.

As a simple example, consider the following alternative and contrasting ‘visions of the world’.
According to vision A, economic variables either contain deterministic time trends, or, in case they
possess stochastic trends, the amount of power displayed by such trends within the business cycle
frequency band is negligible compared with the amount of power displayed by the stationary
components of the processes.(8)  According to vision B, on the other hand, the opposite is true:
economic time series do contain large stochastic trends, while the stationary components of the
processes are essentially negligible, so that most of the variance at the business cycle frequencies
comes from movements in the stochastic trends.  Consider now a researcher who, armed with the
band-pass filter, wants to establish a number of basic business cycle stylised facts on the economy
under investigation.  What kind of picture would be obtained?  In the case where vision A is the
correct one, band-pass filtering the economy would generate a number of mostly authentic(9) cyclical
components, which, for plausible propagation mechanisms, would exhibit significant correlations
with one another and, in particular, with GDP.  What about the case in which vision B is, instead, the
correct one?  Unfortunately, a qualitatively similar picture would emerge.  Indeed, since (a) in the
reduced form of the model most (or all) variables are driven by the same common structural shocks,
and (b) in many cases cointegrating relationships between various stochastic trends may plausibly be
expected to exist, band-pass filtering the economy will produce a number of mostly spurious cyclical
components, which, under plausible assumptions, would exhibit significant correlations with one
another and with GDP.  Once again, exclusive reliance on a frequency domain based decomposition
between trend and cyclical components will not allow the researcher to say anything about the
authentic meaning of the ‘business cycle stylised facts’ uncovered.
                                                                                                                                                                                                                         

(8) To put it differently, the standard deviations of the shocks to the stochastic trends are small, and most of the variation
at the business cycle frequencies comes from the authentic stationary components of the series.
(9) This is shown in Section 3.



13

The rest of the paper is organised as follows.  Section 2 provides a brief introduction to
frequency-domain analysis and linear filtering techniques.  Section 3 illustrates the problem of
spurious cyclicality in a univariate context.  Section 4 analyses the problem in a multivariate context
by means of a number of theoretical macroeconomic examples, focusing in particular on the problem
of the spurious and contaminated business cycle stylised facts generated by band-pass filtering.
Section 5 concludes.

2. Frequency-domain analysis and linear filtering:  a brief overview(10)

Let yt, t =-∞, …, +∞, be a covariance-stationary stochastic process, let

( ) ∑=
+∞

−∞=k

y
k

k
y zzg γ     (1)

be its autocovariance-generating function, and let us further assume that yt possesses absolutely
summable autocovariances, namely

+∞<∑
+∞

−∞=k

y
kγ    (2)

A well-known result in time series analysis is that, under such conditions, yt possesses a Cramer
representation—that is, it can be decomposed into the infinite sum of either sine and cosine waves,
or complex exponentials(11)
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for ω =[-π , π], where the Fourier coefficients—the cω’s—are given by

∑=
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−

t

ti
teyc      ω

ω (4)

The Cramer representation of a covariance-stationary stochastic process provides a mathematically
rigorous way of expressing the common sense notion that (economic) time series do contain
components associated with different frequencies of oscillation—very slow-moving, low-frequency
components intuitively associated with the notion of trend ;  medium-frequency components that can

                                                                                                                                                                                                                         

(10) An introduction to frequency-domain analysis can be found in Wei (1990).  Excellent references are Sargent (1987)
and Fuller (1996).  MATLAB programs for spectral and cross-spectral analysis based on the formulas contained in Fuller
(1996, chapter 7) are available from the author on request.
(11) Due to De Moivre’s formula (see, for example, Hamilton (1994), page 716), exp(±ikω)=cos(kω)±isin(kω), where i is
the imaginary number, i=(-1)1/2, the two expressions are perfectly equivalent.
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be thought of as being associated with the notion of business cycle fluctuations;  and fast-moving,
high-frequency components associated with seasonal and irregular (or noise) factors.

2.1. Spectral analysis

Which frequencies of oscillation are dominant, and which are less important in explaining
movements in yt?  A simple answer to such a question is provided by the spectral density, or
spectrum, of the process, defined as the Fourier transform(12) of the autocovariance-generating
function, namely as

( ) ( ) ( ) ( ) ∑=≡≡
+∞

−∞=

−−−

k

kiy
k

i
y

i
y

i
yy eegegegS  2       ωωωω γω (5)

The spectral density of a covariance-stationary process yt decomposes the overall variance of the
process frequency by frequency, thus highlighting which frequencies of oscillation are more
important, and which are less important, in explaining its movements over time.  By applying
De Moivre’s formula (see footnote 11) to (5) it can be easily shown that

( ) ( )∑+=
+∞

=1
0  cos2     

k

y
k

y
y kS ωγγω (6)

where γ0
y is the variance of the process, which implies the following two important properties of the

spectrum.  First, the spectrum is always real.  Second, it is symmetric with respect to ω = 0, which
implies that, in analysing it, we can restrict our attention to the interval [0, π].

Chart 1 shows the spectral densities of four stationary processes, a white noise, an MA(1), an AR(1),
and an AR(2).  The broken vertical lines indicate the business cycle frequency band, [π/16, π/3],
associated with fluctuations between 6 and 32 quarters.  The fact that the spectral density of a white
noise process is perfectly flat implies that all frequencies are equally important in explaining its
movements over time.  In the other three cases, on the other hand, the shape of the spectral density
clearly indicates which frequencies dominate, and which play instead a minor role.  The MA(1)
process yt = ε t-0.75ε t-1, for example, mostly contains rapid, high-frequency components, while in the
case of the AR(1) process yt = 0.75yt-1+ε t the opposite is true, thus implying that the process is a
highly persistent one.  Finally, in the case of the AR(2) process in panel (d) most of the variance is
concentrated within the business cycle frequency band.(13)

                                                                                                                                                                                                                         

(12) The Fourier transform of a generic polynomial p(z) is obtained by replacing z with exp(-iω), for ω =[-π, π], where i is
the imaginary number.
(13) As stressed for example by Sargent (1987, page 261), the fact that an AR(1) process has a peak in the spectrum at
ω = 0, which means that most of its variance is concentrated at the very low frequencies, automatically implies that the
business-cycle frequency component of economic activity must necessarily possess (at least) two autoregressive roots.
As panel (d) clearly shows, an AR(2) process can indeed possess a peak in the spectrum within the business-cycle
frequency band.
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2.2. Cross-spectral analysis

Consider now two jointly covariance-stationary stochastic processes with absolutely summable
autocovariances and cross-covariances, yt and xt, and, to fix ideas, think of xt as the ‘input series’ and
of yt as the ‘output series’.(14)  It can be easily shown that the relationship existing between the two
series at the various frequencies—in terms of leads/lags, strength of the correlation, etc—is entirely
summarised(15) by the two series’ cross-spectrum, defined as the Fourier transform of the
cross-covariance generating function, namely as
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where the γk
xy’s are the cross-covariances.  While spectral densities are always real, cross-spectra are,

in general, complex quantities, and can therefore be written as
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where cxy(ω) and qxy(ω) are, respectively, the co-spectrum and the quadrature spectrum.  The
following three quantities—respectively known as gain, phase angle (or simply phase), and
coherence—are crucial in cross-spectral analysis:
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and have the following interpretation.  The gain is the absolute value of the β  coefficient in the OLS
regression of yt on xt frequency by frequency, while the coherence is the R2 in such a regression.
Finally, the phase angle captures the lead-lag relationship between the two variables:  a positive
(negative) phase angle at frequency ω  implies that xt leads (lags) yt at such frequency.  As previously
mentioned, cross-spectral statistics capture all aspects of the relationship between yt and xt at the
various frequencies, with a single exception:  the sign of the correlation between the two variables.

                                                                                                                                                                                                                         

(14) This is the terminology of the so-called transfer function models (see, for example, Wei (1990), Chapter 13).
(15) With a single exception to be discussed shortly.
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Since the gain is the absolute value of the β  coefficient in the OLS regression of yt on xt frequency by
frequency, it clearly cannot shed any light on the sign of the correlation between the two series.

Chart 2 shows the estimated gain, phase, and coherence between the rate of capacity utilisation in the
US manufacturing sector and the rate of unemployment, based on quarterly data for the period
1948 Q1-1998 Q1, together with the 90% confidence bands.(16)  Estimated cross-spectral statistics
clearly show:  (a) the existence of a strong and statistically significant relationship between the two
variables, especially at the business cycle frequencies, and (b) how, within the business cycle
frequency band, capacity utilisation leads the rate of unemployment.

2.3. Linear filtering

Let yt, t =-∞, …, +∞, be once again a covariance-stationary process with absolutely summable
autocovariances, and let zt be given by

( ) t
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t
j

j
j

jtjt yLbyLbybz ≡∑=∑=
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−∞=

+∞

−∞=
−     (12)

A crucial question is:  what is the relationship between the original process yt and the new process zt

we have obtained by passing yt through the filter b(L)?  Consider the transfer function of the filter,
defined as the Fourier transform of b(L).  In general, the transfer function is a complex quantity, and
can therefore be written in polar notation(17) as

( ) ( ) ( )ωψωω ωθ i

j

ji
j

i eebeb =∑=
+∞

−∞=

−−          (13)

where θ(ω) and ψ(ω) are, respectively, the gain and the phase shift of the filter.  The squared gain
and, respectively, the phase shift of b(L) provide an answer to the following two questions:  (a) what
is the impact of the filter b(L) on the stochastic properties of zt = b(L)yt, frequency by frequency?;
and (b) what is the lead/lag relationship between zt and yt, frequency by frequency?  For our purposes
the phase shift of the filter is much less relevant, and in what follows I will therefore concentrate
exclusively on the squared gain.  A squared gain function equal to one over a frequency band Ω
implies that the filter b(L) leaves the stochastic properties of yt over such a band completely
unaffected—to put it differently, over the band Ω the stochastic properties of yt and zt are identical.
On the other hand, a squared gain equal to zero over Ω implies that the variance of yt is completely
erased, so that zt does not possess any component within the band.  Finally, a squared gain equal to,
say, k implies that all of the components of yt get amplified (dampened) by a factor k.

                                                                                                                                                                                                                         

(16) The rate of unemployment refers to the overall labour force, 16 aged and over.  The data are from CITIBASE.
(17) See, for example, Sargent (1987, Chapter XI).
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2.4. The ideal band-pass filter

The ideal band-pass filter is defined as a filter whose squared gain function is equal to zero outside
the band of interest, and equal to one inside the band.  By construction, therefore, such a filter
completely shuts off all the frequencies the researcher is not interested in, at the same time leaving
the ones of interest completely unaffected.  As shown, for example, in Sargent (1987, page 259), for
a frequency band [ωL,ωU], with 0<ωL<ωU≤π , the ideal band-pass filter is given by
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where the filter’s weights are given by
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As is well known, the ideal band-pass filter could be implemented if and only if the researcher had
access to a series of infinite length.  Given the data limitations of real-world situations it is necessary
to resort to some kind of approximation.  Three well-known approximations that have been proposed
in recent years are the frequency-domain filter of Englund, Persson and Svensson (1992), and
Hassler, Lundvik, Persson and Söderlind (1994), and the two approximated band-pass filters of
Baxter and King (1999) and Christiano and Fitzgerald (1999).

Chart 3 plots the squared gain of the ideal band-pass filter, together with the squared gains of some
popular filters.  Panel (b) clearly shows how the widely used first-difference filter dramatically
distorts the stochastic properties of the filtered process, erasing most of the variance at the business
cycle frequencies, and strongly amplifying the high-frequency components of the data.  Panel (c), on
the other hand, illustrates how the Hodrick-Prescott (1997) filter operates essentially as a ‘high-pass’
filter, removing the very low frequencies, and leaving all other components of the data virtually
unaffected.  Finally, panel (d) plots the squared gain of the Baxter-King (1999) filter, currently the
most popular approximated band-pass filter.  As the chart clearly shows, the Baxter-King filter
indeed represents an excellent approximation to the ideal filter.

2.5. The issue of stationarity

Up until now we have assumed that the stochastic processes we are dealing with are
covariance-stationary.  Since non-stationary processes do not possess a Cramer representation,
applying frequency-domain logic to such a class of processes is indeed impossible.  This, however,
does not rule out the possibility of applying frequency-domain analysis to filtered processes.  Indeed
it can be easily shown that the ideal band-pass filter, and many popular linear filters, contain a
number of differencing operations sufficient to induce stationarity both in I(1) and in I(2)
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processes.(18)  To the extent that the highest order of integration of economic time series can
reasonably be expected to be two,(19) these filters will therefore induce stationarity in the data, thus
making it possible to apply frequency-domain analysis to the filtered series.

3. Spurious cyclicality from band-pass filtering

Let us define the log of the variable of interest as yt = ln(Yt), and let us start by assuming that it
admits the following trend stationary representation

tt cty ++=       γα (16)

where α and γ are constants, t is a time trend,(20) and ct is a stationary stochastic process on which we
do not need to impose any particular structure.  Let us now define a frequency band of interest,
Ω = [ωL,ωU], with 0<ωL<ωU≤π , and let us suppose we want to extract from yt all the components of
ct associated with such a band.  By defining the ideal band-pass filtered x as β(x) we have(21)

( ) ( ) ( ) ( )ttt ccty ββγαββ =++=      (17)

In the case of a trend stationary process, therefore, band-pass filtering allows us to extract from yt all
of the components of ct associated with the frequency band Ω, and only those components—in other
words, the filtered component we obtain from band-pass filtering a trend-stationary process is always
entirely authentic, and band-pass filtering does not introduce any spurious element.

Let us now assume, instead, that yt admits the following representation, suggested by the work of
Beveridge and Nelson (1981)

ttt cy += τ     (18)

where τt is a stochastic trend, and ct is a stationary component.(22)  Passing yt through the ideal
band-pass filter we now have

( ) ( ) ( )ttt cy βτββ +=     (19)

                                                                                                                                                                                                                         

(18) King and Rebelo (1993) show that the Hodrick-Prescott filter contains four differencing operations.  Baxter and
King (1999) show how their approximated band-pass filter contains at least two differencing operations. In Appendix A,
I show that the ideal band-pass filter, too, contains at least two differencing operations.
(19) See, for example, the discussion in Baxter and King (1999).
(20) I consider a linear time trend just for convenience.
(21) Indeed, by applying the expression for the ideal band-pass filter developed in Appendix A—namely, expression
(A1)—it can be trivially shown that β(α+γt)=0.
(22) Once again, we do not need to impose any particular structure on (18)—either on τt, or on ct, or on the correlation
between the two components.
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and β(yt) is therefore equal to the sum of two components, an authentic component, β(ct), and a
spurious one, β(τt).  It is important to stress how in filtering non-stationary processes with the
time-series representation (18) this will always be the case, simply because the stochastic trend τt

possesses a certain amount of power within the frequency band of interest, which the band-pass filter
will retain.(23)  While I have not been able to find any universally valid measure of authenticity for
band-pass filtered cyclical components, for one particular class of stochastic processes—UCARIMA,
or unobserved components(24) ones—there does indeed exist such a natural metric:
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where Sβ(c)(ω) is the spectral density of β(ct), while Sβ(y)(ω) is the spectral density of β(yt).  The
denominator therefore measures the variance of the filtered process, while the numerator measures
the variance of the filtered stationary component.  The key identifying assumption of UCARIMA
models is that all of the structural shocks are uncorrelated at all leads and lags, which amounts to
assuming that β(ct) and β(yt) are uncorrelated at all frequencies.  Under such an assumption Γ varies
between 0 and 1, and for Γ which tends to 1 β(yt) is to be regarded as mostly authentic, while for Γ
which tends to 0 it is to be regarded as mostly spurious.  The intuition is that for values close to 1
most of the variance of the filtered process comes from filtering the stationary component, while for
values close to 0 it comes from filtering the stochastic trend.

4. Macroeconomic examples

4.1. Is band-pass filtered output a reasonably good proxy for the structural output gap?

Does the band-pass filtered cyclical component of GDP represent a reasonably good proxy for the
structural output gap?  This question is addressed both via the natural metric proposed in the
previous section, and via theoretical cross-spectral statistics.  Once again, the focus is on the ideal
band-pass filter.(25)

                                                                                                                                                                                                                         

(23) Such a result is therefore independent of the specific assumptions we make about the stochastic properties of τt and ct,
and about the correlation between the two components, and only depends on yt possessing a stochastic trend, as opposed
to a deterministic one.
(24) Unobserved components models have been advocated by Harvey (see, for example, Harvey (1985, 1989) and
Maravall (see, for example, Maravall (1995)).  Applications can be found in Watson (1986) and Clark (1987, 1989).
(25) Focusing on the theoretical case of the ideal band-pass filter clearly highlights how the problems analysed in this
paper have nothing to do with the purely practical issue of designing better and better approximations to the ideal
band-pass filter.
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Let us start by considering a simplified version of Erceg et al’s (1998) DSGE model.(26)  Specifically,
and in contrast to the original model, I assume full wage flexibility, I set the shocks to the marginal
utility of consumption, leisure, and real money holdings equal to zero, and I assume the central bank
sets the nominal interest rate according to

ttti ψφπ +=     (21)

where π t is the rate of inflation, φ>1, and ψ t is a shock to the policy rule, which is assumed to follow
the stationary AR(1) process ψ t= ρψ t-1+ε t.  Finally, the log of technology, xt, is assumed to follow a
random walk with innovation vt (the two structural innovations are assumed to be completely
uncorrelated at all leads and lags).  It can easily be shown that such a model possesses a UCARIMA
reduced form—in other words, stochastic trends and cyclical components are driven by completely
unrelated processes—which makes it possible to apply the indicator illustrated in the previous
section.  Conditional on the same set of parameters chosen by Erceg et al,(27) Chart 4a shows the
value(28) taken by Γ for different values of ρ (which, without any loss of generality, has been
restricted between 0 and 1) and of the ratio between the standard deviations of the two structural
shocks, k=σv/σε.  As the chart makes clear, unless σv happens to be sufficiently small compared to
σε, the band-pass filtered cyclical component of GDP may provide a surprisingly bad approximation
to the structural output gap.  The intuition for such a result is simple:  the larger the standard
deviation of the technology shock with respect to the standard deviation of the shock to the policy
rule, the larger the fraction of the variance of GDP at the business cycle frequencies originating from
movements in potential output, as opposed to movements in the output gap, and, as a result, the
worse the approximation provided by band-pass filtered GDP to the structural output gap.

This simple example also illustrates a second shortcoming of band-pass filtering as a technique for
extracting a proxy for the structural output gap:  as a simple consequence of the Lucas critique, the
quality of the approximation is not invariant to the monetary rule followed by the policy-maker, and
on the contrary crucially depends on it.  Chart 4b clearly illustrates such a problem, by focusing on
the relationship between Γ and the key parameter of the monetary policy rule, φ, for different values
of  k=σv/σε.  Without any loss of generality, φ has been restricted between 1 and 10.  As the chart
makes clear, (a) once again, ceteris paribus, Γ is a decreasing function of k;  and (b) the stronger the
central bank’s reaction to inflation, the less authentic band-pass filtered output becomes.  The
intuition for such a result is straightforward:  the stronger the central bank’s reaction to inflation, the
closer the economy gravitates around a steady-state equilibrium with zero inflation and a zero output

                                                                                                                                                                                                                         

(26) I focus on the original 1998 working paper version, instead of the one published in the Journal of Monetary
Economics, 2000, for reasons of personal convenience.
(27) See Erceg et al (1998, Table 3).
(28) The two spectral densities in (20) have been computed based on the formula for the ideal band-pass filter derived in
Appendix A.  The infinite sum has been approximated with a sum with a finite but very large number of terms, 50,000.
Results are insensitive to the number of terms as long as such number is sufficiently large.
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gap,(29) and, as a result, the larger the fraction of the variance of band-pass filtered output originating
from filtering potential output, as opposed to filtering the output gap.(30)

Let us now suppose that log GDP does indeed possess a UCARIMA representation:  specifically,
following Watson (1986), I assume it can be represented as the sum of two orthogonal components, a
natural one following a random walk with drift, τ t=τt-1+δ+ut, and a cyclical one following a
stationary AR(2), ct=φ1ct-1+φ2ct-2+vt.  Maximum likelihood estimation of such a process based on US
data(31) produces the following results: δ=0.008 (0.0007); σu=0.007 (0.002); σv=0.007 (0.002);
φ1=1.472 (0.152);  φ2=-0.518 (0.155).  Based on these estimates and on (20), it is then easy to
compute a MLE estimate(32) of Γ for US GDP conditional on the stochastic process we postulated.
The value we obtain, Γ=0.785, suggests that, conditional on the assumed time series representation,
more than one fifth of the variance of band-pass filtered output is spurious, in the sense of coming
from filtering potential output, as opposed to filtering the output gap.

Finally, following Kiley (1996), consider a Calvo sticky-price framework in which the logs of both
potential output and the money stock follow random walks, with orthogonal innovations respectively
given by ut (demand shock) and vt (supply shock).  It can be easily shown that, in contrast to the
simplified version of Erceg et al’s (1998) model that we previously analysed, the output gap is here
driven by both demand and supply shocks, so that the natural and cyclical components of GDP are
not orthogonal to each other.  Under such circumstances, Γ is no longer bounded between 0 and 1,
and does not provide an indication of the authenticity of band-pass filtered output.  In order to
investigate the accuracy of the approximation provided by band-pass filtered output to the structural
output gap, the theoretical cross-spectral statistics between the two variables are analysed.  Focusing
on the business cycle frequency band, and for four different values of k=σu/σv,

(33)  Chart 5 shows the
phase angle, gain, and coherence between the structural output gap and band-pass filtered output.

                                                                                                                                                                                                                         

(29) Quite obviously, the same result obtains when the central bank reacts either to the output gap, or to both inflation and
the output gap.
(30) Over the most recent years, a number of papers (see, for example, Wynne and Koo (2000)) have resorted to band-pass
filtering techniques in order to assess the degree of business cycle synchronisation within the euro zone.  Now, assume
that (a) the degree of business cycle synchronisation within the euro zone has increased over time, and is now greater
than it was (say) during the 1970s;  and (b) the ‘quality’ of monetary policy has steadily improved over time, in the
specific sense that, over the most recent years, output gaps have been much smaller than they were during the 1970s.
Based on the results contained in this paragraph, it immediately follows that the use of band-pass filtering techniques will
tend to systematically underestimate not only the current degree of business cycle synchronisation among countries, but
also the average degree of synchronisation over the sample period, for the simple reason that filtered output over the
most recent years, during which synchronisation has been stronger, provides a noisier and worse approximation to the
structural output gap.
(31) Data are from Table 1.2 of the National Income and Product Accounts, and the sample period is 1947 Q1-1998 Q4.
Estimation has been performed via exact maximum likelihood.  The likelihood function has been computed via the
Kalman filter and has been maximised numerically with respect to unknown parameters via the EM algorithm for
state-space models derived in Shumway and Stoffer (1983).
(32) Indeed, since Γ is a continuous function of the vector of parameters of interest, plugging MLE parameters estimates
into (20) we obtain the MLE estimate of Γ, conditional on the chosen data-generation process.
(33) α, the key parameter in the Calvo model (representing the fraction of firms which are allowed to reset their prices in
each single period) has been set equal to 0.2, a standard choice in the literature.
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Ideally, we would like the phase shift to be equal to zero, and both the gain and the coherence to be
equal to unity across the whole band.  Unfortunately, as the charts make clear, unless the standard
deviation of the technology shock is relatively small compared with the standard deviation of the
money shock, this is not the case.  In particular, for k between 0.5 and 2, band-pass filtered output
displays (a) a phase shift with respect to the structural output gap, and (b) both a gain and a
coherence significantly lower than one.

4.2. The Phillips correlation(34)

Let us now consider the Phillips correlation between inflation and the cyclical component of
economic activity.  Having just found that, under a number of circumstances, band-pass filtered
output may represent a poor proxy for the output gap, it should come as no surprise that the Phillips
correlation, too, may end up being distorted by band-pass filtering.  Chart 6, based, once again, on
Calvo’s version of Kiley’s (1996) model, shows that this is indeed the case.  For three values of the
ratio between the standard deviations of the two structural shocks, the chart shows the ‘true’ and
‘false’ theoretical cross-spectral statistics for the Phillips correlation, where the true statistics refer to
the relationship between inflation, which is I(0), and the output gap, while the false ones refer to the
relationship between ideal band-pass filtered inflation and ideal band-pass filtered output.(35)  As the
graphs make clear, once again, the greater the variance of shocks to potential output compared with
the variance of money shocks, the more band-pass filtering distorts the authentic, structural Phillips
correlation, (a) decreasing both the gain and the coherence—eg causing the correlation to appear
weaker than it is in reality—and (b) introducing a spurious phase shift between output and inflation,
thus giving the illusion that inflation leads the cycle when, in fact, inflation and the cyclical
component of output are perfectly synchronised.

In their investigation of the Phillips correlation via the Baxter-King filter, King and Watson (1994,
footnote 9) state:

One concern about exploration of filtered data […] is that one is uncovering ‘spurious relations’ that arise
from the filtering rather than from the original series. […]  However, the features that we stress are unlikely to
be spurious.  We are not concerned with the periodic nature of the univariate series, which is an artifact of the
filtering.  Rather, we are interested in the comovements of the two series […].  Note also that we have applied
the same symmetric linear filter to each series, so that no phase shifts have been induced. (emphasis added)

Conditional on taking Kiley’s (1996) model as the data generation process, the Phillips correlation
uncovered via band-pass filtering is clearly not spurious but, at the same time, it may get
significantly distorted, and King and Watson’s presumption that the application of the same

                                                                                                                                                                                                                         

(34) Recent investigations of the Phillips correlation via band-pass filtering techniques include King and
Watson (1994, 1996), Stock and Watson (1999), Baxter and King (1999), and Christiano and Fitzgerald (1999).
(35) All the expressions for cross-spectral statistics are based on the expression for the ideal band-pass filter derived in
Appendix A.  Once again, I approximate the infinite sums with finite sums with a large number of terms, 50,000.
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symmetric linear filter to both variables does not induce any phase shift(36) in the relationship under
investigation is mistaken:  as we have seen, band-pass filtering does indeed introduce a spurious
phase shift between output and inflation.

Finally, on strictly logical grounds, and based on the same reasoning as in Section 4.1, it is clear that
the degree of authenticity of the Phillips correlation uncovered via band-pass filtering will crucially
depend on the monetary rule followed by the policy-maker.  The more aggressively the policy-maker
reacts to deviations of output from potential, and/or to deviations of inflation from a target value, and
the smaller the output gap, the larger the fraction of the variance of band-pass filtered output coming
from filtering potential output, and therefore the noisier the Phillips correlation uncovered via
band-pass filtering will be.  It is quite reasonable, for example, to expect that the degree of
authenticity of the Phillips correlation uncovered via band-pass filtering was much greater during the
1970s than in recent years.

4.3. Productivity

The procyclical behavior of measured productivity is one of the best-known stylised facts in the
whole field of macroeconomics.  A currently popular explanation for such a phenomenon, proposed
for example by Basu and his co-authors,(37) and by Burnside, Eichenbaum and Rebelo,(38) ascribes it
to unobserved input variation, namely to the unobserved cyclical utilisation of the factors of
production, both capital and labour.  In their recent investigation of US post-World War II business
cycle stylised facts via the Baxter-King filter, Stock and Watson (1999) state:

‘[b]oth total factor productivity and labour productivity are procyclical and slightly lead the cycle […]’.

As I will now show, on strictly logical grounds, the procyclical behaviour of productivity cannot
possibly be established via band-pass filtering, for the simple reason that, due to the presence of a
cointegrating relationship with GDP, band-pass filtered productivity appears procyclical even when
productivity follows a random walk by construction.  If technology and output share a common
stochastic trend, they tend to move together not only at the frequencies near zero, but also within the
business cycle frequency band.  As a result, analysing the relationship between band-pass filtered
productivity and band-pass filtered output gives the illusion of procyclicality, even though
technology follows a random walk by construction.

Chart 7 shows the theoretical cross-spectral statistics between ideal band-pass filtered output and
ideal band-pass filtered productivity based on a simple aggregate demand-aggregate supply model

                                                                                                                                                                                                                         

(36) It can be trivially shown, indeed, that in the case of symmetric filters—eg of filters for which bj=b-j in (12)—ψ(ω) in
(13) is equal to zero, so that no phase shift between yt and zt is induced.
(37) See Basu (1996, 1998), and Basu, Fernald and Kimball (1998).
(38) See for example Burnside, Eichenbaum and Rebelo (1993, 1995, 1996).
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with Calvo sticky prices,(39) in which unobserved input variation is absent by construction (in other
words, all of the relevant variables are perfectly observed).  The logs of both driving processes,
money and technology, are modeled as random walks, with uncorrelated structural shocks ε t (money)
and ψ t (technology).  The charts clearly show how independent of the value of k=σψ/σε, band-pass
filtered productivity displays an insignificant phase shift with respect to band-pass filtered output,
and a gain approximately equal to one ;  and while the specific value taken by the coherence crucially
depends on k, it is generally quite significant.

Chart 8 reports results from 10,000 stochastic simulations of the model.  Specifically, the three
panels report the average cross-correlations at leads and lags between Baxter-King- filtered(40)

technology and Baxter-King-filtered output, together with the 95% confidence bands, computed
based on the 10,000 replications, for three different values of the ratio between the standard
deviations of the two structural shocks.  As the chart shows, technology clearly appears as
procyclical, and the extent of procyclicality crucially depends on the ratio between the standard
deviations of the two structural shocks—specifically, as expected, the strength of the spurious
correlation is increasing in k :  the larger the variance of the technology shock compared with the
variance of the money shock, the more procyclical productivity appears.

4.4. Is the real wage procyclical?

A commonly heard argument(41) against sticky-wage models, and in favour of sticky-price ones, is
that models featuring sticky nominal wages automatically imply countercyclical real wages, a
prediction that is not supported by the data.  The pro or acyclicality of real wages may well be an
entirely authentic business cycle stylised fact.  As will be shown, however, once again on strictly
logical grounds it cannot possibly be established via band-pass filtering for the simple reason that,
assuming the presence of a unit root in technology, the cointegrating relationship between output and
the real wage may cause the band-pass filtered real wage to appear procyclical even if the cyclical
component of the real wage is negatively correlated with the cyclical component of output.

Let us consider once again the simple AD-AS model used in Section 4.3, and replace Calvo sticky
prices with Calvo sticky wages.  Chart 9, based, once again, on 10,000 replications of the model for
three different values of the ratio between the standard deviations of the two structural shocks, shows
the average cross-correlations at leads and lags between the Baxter-King filtered real wage and

                                                                                                                                                                                                                         

(39) Specifically, the model features a constant capital stock and a Cobb-Douglas production function for output, and a
labour supply curve according to which the amount of labour supplied is a linear increasing function of the real wage.
Details about the model, as well as MATLAB programs for both stochastic simulations and the computation of
theoretical cross-spectral statistics, are available on request.
(40) Since the Baxter-King filter is a symmetric linear filter, it does not introduce any spurious phase shift in the
relationship under study (see footnote 37).
(41) See, for example, Kimball (1995, page 1,244).  To be entirely fair, however, Kimball also discusses a second, much
stronger argument against models with sticky nominal wages, namely the (most likely) non-allocative nature of wage
payments.
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Baxter-King-filtered output, together with the average cross-correlations between the structural
cyclical components of the two variables (plus the 95% confidence bands computed based on the
replications).  As the charts make clear, while the ‘true’ business cycle stylised facts are independent
of the ratio between the standard deviations of the two structural shocks, the ‘false’ ones crucially
depend on such a ratio, and while the structural cyclical component of the real wage is negatively
correlated with the structural cyclical component of output, the band-pass filtered real wage is,
depending on the relative magnitude of the standard deviations of the structural shocks, weakly or
strongly positively correlated with band-pass filtered output.

Finally, once again, as a matter of pure logic, the correlation uncovered via band-pass filtering
crucially depends on the monetary rule followed by the policy-maker.  A policy-maker who reacted
with infinite strength to deviations of output from potential, thus causing the output gap to be equal
to zero in each period, would cause the relationship between output and the real wage uncovered via
band-pass filtering uniquely to reflect the cointegrating relationship between the two variables.  In
less extreme cases, the stylised fact uncovered via band-pass filtering will partly reflect the authentic
relationship between the two structural cyclical components, and partly the cointegrating relationship
between the two stochastic trends—the degree of authenticity being uniquely determined by the
particular monetary rule followed by the policy-maker.

4.5. Are monetary aggregates procyclical?

Together with the procyclical behaviour of measured productivity, the procyclicality of monetary
aggregates is one of the best-known stylised facts about business cycle frequency economic
fluctuations.  In their recent investigation of US post-World War II business cycle stylised facts
based on the Baxter-King filter, for example, Stock and Watson (1999) state:

‘Over the full sample, the log level of nominal M2 is procyclical with a lead of two quarters, and the nominal
monetary base is weakly procyclical and leading.’

The procyclicality of monetary aggregates may well be an entirely authentic stylised fact.  Once
again, however, on strictly logical grounds it cannot be possibly established via band-pass filtering,
for the simple reason that, as will be shown within the context of Kiley’s (1996) model(42)—the same
one used in Section 4.1—band-pass filtered money may appear as procyclical even when the money
stock follows a random walk by construction.

Chart 10 reports the theoretical cross-spectral statistics between ideal band-pass filtered money,
β(mt), and ideal band-pass filtered output, β(yt), for three possible values of the ratio between the
standard deviations of the two structural shocks, ut (money shock) and vt (potential output shock).

                                                                                                                                                                                                                         

(42) Qualitatively identical results can be obtained both within the simple AD-AS model of Section 4.3 and within the
Erceg et al (1998) model.
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Once again, the business cycle frequency band has been taken to be [π/16, π/3].  The charts clearly
show, first, how the ‘cyclical’ component of money, β(mt), slightly lags the cycle, and displays a
significant gain with respect to band-pass filtered output at the business cycle frequencies (both the
gain and the phase angle are independent of the relative magnitude of the two structural shocks).
Second, the coherence between β(yt) and β(mt) depends on the relative magnitude of the two
structural shocks, and is generally strong.

Chart 11 illustrates the same point, reporting the results from a numerical simulation of Kiley’s
model.  The model has been simulated 10,000 times for three different values of the ratio between
the standard deviations of the two structural shocks, 0.5, 1, and 2.  Each simulation comprises 200
observations, roughly equal to the length of the typical sample available for post-World War II US
quarterly series.  The three panels report the average cross-correlations at leads and lags between
Baxter-King filtered money and Baxter-King filtered output, together with the 95% confidence bands
(confidence bands have been computed based on the numerical simulations).  From the charts we see
that money displays a significant positive correlation with output at the business cycle frequencies,
and tends to slightly lag output.

As the above simple example shows, the fact that β(mt) is procyclical with respect to β(yt) does not
necessarily imply that money truly is procyclical.  This is obviously not to say that the business cycle
stylised facts about money established via band-pass filtering are an artifact of the filter.  In fact, they
might well be entirely authentic.  However, the mere fact that cross-correlations similar to those
found in the data can be generated by a model in which money is a random walk should induce one
to be sceptical about the authenticity of the stylised facts uncovered via band-pass filtering.

4.6. The cyclical behaviour of prices

Focusing again on Calvo’s version of Kiley’s (1996) model,(43) Chart 12 shows the theoretical
cross-spectral statistics between the structural output gap and the structural cyclical component of
prices, and ideal band-pass filtered output, β(yt), and ideal band-pass filtered prices, β(pt), for three
possible values of k=σu/σv.  It is possible to see how the authentic relationship between the two
structural components is independent of k, while the ‘false’ relationship between β(yt) and β(pt)
crucially depends on the ratio between the standard deviations of the two structural shocks, and is, in
general, quite significantly distorted.  In particular, panel (c) clearly shows how, depending on the
particular value taken by k, the extent of countercyclicality(44) may get either enhanced or attenuated.

                                                                                                                                                                                                                         

(43) Once again, analogous results can be obtained based on other models—like Erceg et al’s (1998), and the simple
AD-AS model I previously used—and are available on request.
(44) It can be trivially shown, indeed, that in this model prices are countercyclical.
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4.7. Spot and forward exchange rates

Hai, Mark and Wu (1997) propose an unobserved components model for the spot and forward
exchange rate motivated by Mussa’s (1982) stochastic sticky-price model.  The log spot and log
forward rates, st and ft, share a common stochastic trend, zt (modelled as a driftless random walk),
while their transitory components, st

T  and ft
T , are assumed to evolve according to a vector

ARMA(1,1) process.  Their maximum likelihood estimates indicate that exchange rate dynamics are
almost entirely driven by the dynamics of the permanent component, which suggests that the cyclical
components of both spot and forward exchange rates extracted via band-pass filtering will be largely
spurious.  Given that the model possesses a UCARIMA form, it is once again possible to apply the
natural metric I proposed in Section 3 in order to evaluate, conditional on Hai et al’s MLE estimates,
how authentic the band-pass filtered cyclical components of spot and forward exchange rates are.
Focusing on the case of the ideal band-pass filter, and for a frequency band of interest [π/16, π/3], we
obtain 0.1979 for log spot rates, and 0.1657 for log forward rates.

Once again, although it is technically possible to band-pass filter any economic time series, the
economic meaning of the components obtained based on such a methodology crucially depends on
the structure being filtered.  Since, in general, such a structure is unknown to the researcher, it is
logically impossible to tell, a priori, the authentic meaning of the band-pass filtered cyclical
components obtained.

4.8. Real exchange rates and real interest rates differentials

An early application of band-pass filtering techniques is Baxter’s (1994) investigation of the
relationship between real exchange rates and real interest rate differentials at the low-to-medium
frequencies.  Previous empirical studies, most of the times based on first-differenced data, had failed
to uncover any relationship between the two variables, despite the fact that a host of theoretical
sticky-price models predicts such a relationship to exist.(45)  As stressed by Baxter, and as previously
shown in Section 2.4, the application of the first-difference filter has the effect of destroying most of
the variance at the low-to-medium frequencies, at the same time dramatically amplifying the
high-frequency components of the data.  Assuming that the relationship between real exchange rates
and real interest rate differentials pertains to the low-to-medium frequencies, it is therefore not
surprising that previous studies had been incapable of uncovering it.  By extracting low, medium,
and high frequency(46) components from both variables, Baxter identifies a significant relationship
between them at the low-to-medium frequencies, at the same time rejecting the notion of any
relationship at the high frequencies.

                                                                                                                                                                                                                         

(45) See the extensive discussion in Baxter (1994, pages 17-26), both of the theory and of previous empirical studies.
(46) As usual, the three components are the ones associated with fluctuations, respectively, beyond 32 quarters, between 6
and 32 quarters, and below 6 quarters.
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In a previous study based on an unobserved components model, Campbell and Clarida (1987)
postulate a structure in which, first, the ex ante one-period real interest rate differential, dt, follows
the process

( )L

uu
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where u1,t and u2,t-1 are, respectively, a zero-mean error, and the (zero-mean) inflation surprise at time
t-1;  and second, the log real exchange rate, qt, is given by
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where qt+1|t is the rational expectation of qt+1 based on information available at time t, and kt is a risk
premium, which, for the sake of simplicity, is assumed to follow the process kt = kdt, with k constant.
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is the stochastic trend in the real exchange rate, it can be easily shown that (23) reduces to
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Finally, Campbell and Clarida assume the three shocks are uncorrelated at all leads and lags, with the
only exception of u1,t and u3,t, for which they postulate E[u1,tu3,t]=σ13.  Based on their maximum
likelihood estimates for four currencies(47) vis-à-vis the US dollar, they conclude that real exchange
rate dynamics are almost entirely driven by the dynamics in the random walk component, while
transitory stationary components are essentially negligible.

Let us assume, just for the sake of argument, that the Campbell-Clarida model represents the
authentic structure of the world, as far as the particular relationship under study is concerned.  Based
on the results illustrated in the previous sections, the Campbell-Clarida estimates suggest, once
again, that band-pass filtering the data will dramatically distort the authentic relationship between the
structural stationary components of the real exchange rate and of the real interest rate differential.
Based on (22) and (25), the theoretical cross-spectral statistics for the Campbell-Clarida model can
be trivially computed, and conditional on their maximum likelihood estimates it is possible to
evaluate how band-pass filtering the data would distort the authentic structural relationship between
the two variables.  Chart 13 reports results for the US dollar-Canadian dollar exchange rate, but

                                                                                                                                                                                                                         

(47) German Mark, British pound, Canadian dollar, and the Japanese yen.
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qualitatively similar results hold for all of the other three currencies, and are available from the
author on request.  As the graphs clearly show, although the induced phase shift is negligible,
band-pass filtering significantly amplifies the gain between the two variables, and dramatically
reduces the coherence.  Once again, this is obviously not to say that the relationship uncovered by
Baxter (1994) is to a large extent spurious.  It is important however to stress how, as we have seen in
this paper again and again, for plausible economic structures band-pass filtering has been shown to
perform badly under a wide array of circumstances, which, again, casts doubts on its ability to
extract reasonably accurate approximations to the authentic, structural trend and cycle components.

4.9. Does band-pass filtering necessarily distort business cycle stylised facts?

The following example, based once again on Kiley’s (1996) model, illustrates a case in which
band-pass filtering leaves the authentic stylised facts completely unaffected even in the presence of
stochastic trends.  As Chart 13 clearly shows,(48) in the case of real balances there is absolutely no
difference between the ‘true’ and ‘false’ phase, gain, and coherence.  Given the results reported so
far, however, I tend to regard this case as peculiar and unrepresentative.

5. Conclusions

In recent years, band-pass filtering—the non-structural, frequency-domain based decomposition of
economic time series into trend and cyclical components—has become more and more popular
among macroeconomists, as a way of capturing and describing business cycle stylised facts.  This
approach is based on the notion of defining a business cycle frequency band ;  using
frequency-domain techniques in order to extract from the series of interest all of the components
associated with such a band;  and analysing the relationship (in terms of cross-correlations,
coherence, etc) between the band-pass filtered series of interest and a band-pass filtered reference
series, usually GDP.

This paper has critically assessed the practice of band-pass filtering, making three main points.  First,
I have shown that, depending on the stochastic properties of the filtered process, the band-pass
filtered cyclical component is entirely authentic, partly or mostly spurious, or even entirely spurious.
While, in general, there does not exist any universally valid measure of authenticity for band-pass
filtered cyclical components, it has been shown that for unobserved-components (UCARIMA)
processes there does indeed exist such a natural measure, based on the integral of the spectral density
of the band-pass filtered process.  Taking a sticky-price DSGE model as data generation process, it
has been shown that under a number of circumstances, band-pass filtered output may provide a
surprisingly bad proxy for the structural output gap;  and as a technique for extracting a proxy for the
output gap, band-pass filtering suffers from the distinct disadvantage that the accuracy of the

                                                                                                                                                                                                                         

(48) Analogous results based on numerical simulations are not reported, but are available on request.
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approximation is not invariant with respect to the monetary rule followed by the policy-maker, and
on the contrary crucially depends on it.

Second, taking a number of macroeconomic models as data generation processes, it has been shown
that band-pass filtering may markedly distort key business cycle stylised facts, as captured by the
coralations and the cross-spectral statistics (gain, phase angle, and coherence) between the cyclical
components of the variables of interest and the cyclical component of GDP;  and may well create
entirely spurious stylised facts.  For example, the Phillips correlation between inflation and the
cyclical component of economic activity may appear weaker than it is in reality;  both money supply
and productivity may appear procyclical even when they follow random walks by construction;  the
real wage may appear procyclical when in fact it is countercyclical.  Again, the degree of authenticity
of business cycle stylised facts uncovered via band-pass filtering crucially depends on the monetary
rule followed by the policy-maker.  The general conclusion emerging from the paper is that, far from
being the neutral, atheoretical, and objective approach to the study of business cycle stylised facts
that it is often claimed to be, band-pass filtering may markedly distort those very same stylised facts
in ways that are completely unpredictable, simply because such distortions crucially depend on the
unknown true structure the researcher is investigating.

Finally, although this paper has focused on band-pass filtering, similar problems may be reasonably
expected to plague other detrending methods.  Two directions of research therefore seem worth
pursuing.  First, check how severe the distortions induced by alternative detrending methods are,
conditional on taking a number of macroeconomic models as data generation processes.  Second, and
possibly even more important, investigate whether it is possible to identify a detrending method
whose performance is reasonably robust across a number of alternative macroeconomic structures.
Conditional on taking the Christiano-Eichenbaum (1992) real business cycle model as data
generation process, for example, Cogley (1997) has shown that the consumption-based detrending
methodology proposed by Cochrane (1994) performs significantly better than any of the alternatives
he considers (HP and band-pass filters, and a Beveridge-Nelson decomposition).  It would be
interesting to ascertain whether such a result is peculiar to the Christiano-Eichenbaum model, or is
instead robust across a number of alternative macroeconomic structures.
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Appendix A:  A simple expression for the ideal band-pass filter

By definition, the squared gain function of β(L) is equal to 1 for ω∈Ω and zero otherwise, thus
implying that the filter wipes out all the power outside the band Ω, leaving everything inside the
band completely unaffected.  For our purposes, two are the key characteristics of the ideal band-pass
filter.  First, the filter’s weights, given by (2) in the text, are symmetric, namely bj = b-j for any
j = ±1, ±2, ±3, …. (The proof is trivial).  Second, the sum of the filter’s weights is equal to zero.
This is an immediate consequence of the trend reduction property of the ideal band-pass filter—
namely the fact that, since the filter wipes out all the power outside the band Ω, its squared gain
function takes the value 0 for ω  = 0—and can be proved simply by noticing that, for ω  = 0, the
squared gain function of the filter is given by:
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Now, following the same logic of Baxter and King (1999, Appendix A), we have
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which implies that the ideal band-pass filter can be rewritten as
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In particular, the previous manipulations use both the symmetry property of the ideal band-pass
filter’s weights, and the fact that the sum of the filter’s weight is equal to zero.
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Appendix B:  Details on the macroeconomic models used in Section 4

This appendix provides some details on the macroeconomic models used in Section 4.

B.1. Kiley’s (1996) sticky-price model

In Kiley’s (1996) sticky-price model the log of natural output, xt, and the log of the money supply,
mt, are assumed to evolve according to random walk processes, xt = xt-1+vt, and mt = mt-1+ε t, with vt

and ε t normally distributed shocks (assumed to be uncorrelated both contemporaneously and at all
leads and lags), with mean zero and variances respectively equal to σv

2 and  σε
2.  The actual level of

output is given by yt = mt-pt, where pt is the log of the price level.  The instantaneously optimal price
for the single firm (the price the firm would like to charge in each period were it able to continuously
reset its price) is given by pt* = mt-xt.  Firms are assumed to set prices Calvo-style.  The Calvo
sticky-price model is described by the following two equations:
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where α, between 0 and 1, is the probability for the single firm of getting the chance to reset its own
price (the probability is assumed to be the same for all firms);  zt is the optimal reset price at time t—
namely, the price charged at time t by all firms which get the chance to reset their price;  and
st+j|t≡E[st+j|t] is the expectation of st+j conditional on information available at time t.

It can be easily shown that the reduced-form expressions for output and the price level are given by
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where L is the lag operator, from which the expressions for inflation, ∆pt, the output gap, yt
C=yt-xt,

the cyclical component of prices, pt
C=pt-pt*, and all of the other variables of interest can easily be

derived.

B.2. Erceg et al’s (1998) DSGE model

The simplified version of the DSGE model proposed by Erceg et al (1998) used in Section 4 is
described by the following equations.  The aggregate demand side of the economy is described by
the following two log- linearised equations:
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where gt is the structural output gap, it is the nominal interest rate (the monetary policy instrument of
the central bank), π t is the rate of inflation prevailing between periods t-1 and t, σ is the inverse of
the elasticity of intertemporal substitution in consumption, and ψ t is a shock to the nominal interest
rate, which is assumed to follow the stationary AR(1) process ψ t=ρψt-1+ε t, with 0<ρ<1, and ε t white
noise (0, σε

2).  With sticky prices and fully flexible wages, the aggregate supply side of the model is
described by the Phillips curve:
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where β  is the intertemporal discount factor of the representative individual, α is the capital share
parameter in the Cobb-Douglas production function, kP and ∆ are defined as kP=[(1-ξP)(1-βξP)]/ξP,
and ∆=α+χlL+(1-α)σ.(49)  The real wage, ζt, evolves according to ζt=ζt*+gt(∆-α)/(1-α), with ζt*
being the natural level of the real wage (namely, the stochastic trend) which evolves according to
ζt*=xt(σ+χlL)/∆, where xt=xt-1+vt is the log of technology.  Finally, the stochastic trend for output is
given by yt*=xt(1+χlL)/∆, and overall output is therefore equal to yt=yt*+gt.  It can be easily shown
that inflation obeys the following expectational difference equation
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where B is the backshift operator,(50) defined by the property B-1st+j|t=E[st+j+1|t].  Assuming that the
condition for determinacy, φπ>1, is satisfied, the polynomial in the backshift operator in equation
(B.7) has two stable roots, λ1 and λ2, with 0<λ1<λ2<1 (the roots are not reported here).  Inflation is
therefore given by
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while the expressions for the output gap, overall output, the cyclical component of the real wage, and
the overall real wage, follow immediately, and are not reported here, but are available from the
author upon request.

B.3. A sticky-wage (sticky-price) aggregate demand-aggregate supply model

The sticky-wage AD-AS model used in Section 4.4 has the following structure.(51)  The log of output,
yt, is given by yt=αlt+ut, where lt and ut are, respectively, the logarithms of employment and
                                                                                                                                                                                                                         

(49) Where lL is the ratio between labour and leisure in the steady-state, χ is the inverse of the elasticity of intertemporal
substitution for leisure, and ξP is the fraction of firms which are not allowed to reset their prices in each period.
(50) A discussion of the properties of the backshift operator can be found in Sargent (1987, ch. XIV).
(51) Its sticky-price counterpart, used in Section 4.3, can be derived along the same lines, and is not described here.
Details, however, are available upon request.
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technology, and α is the Cobb-Douglas parameter for labour (capital is assumed to be fixed).  Labour
demand is given by ltD=[ut-(wt-pt)]/(1-α), which comes directly from the profit-maximising condition
for the single firm, with (wt-pt) being the log real wage.  Log labour supply is given by ltS=θ(wt-pt),
with θ>0.  The two driving processes for the logs of technology and money, respectively ut and mt,
are ut=ut-1+ψ t and mt=mt-1+εt, where ψ t and ε t are the two structural shocks (assumed to be
uncorrelated at all leads and lags).  Households set nominal wages Calvo-style, with γ being the
probability for the single household of getting the chance to reset its own wage, and the
instantaneously optimal nominal wage being given by wt*=pt+ut/[1+θ(1-α)].  Households supply any
amount of labour demanded at the posted wages, and the level of employment is therefore uniquely
determined by labour demand.  Substituting labour demand within the production function, yt=αlt+ut,
we therefore get the expression for aggregate supply.  Combining aggregate demand, yt

D=mt-pt, with
aggregate supply we get the expression for the equilibrium price level, pt=αwt+(1-α)mt-ut.  It can be
easily shown that the log nominal wage obeys the following expectational difference equation:
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whose roots λ1 and λ2 (with 0<λ1<1<λ2=1/λ1) are not reported here.  Solving (B.9) we get the
expression for wt as a function of the structural shocks, wt=[Hε t-Kψ t]/[(1-L)(1-λ1L)]—where
H=[(1-α)γ2λ1]/[(1-γ)(1-λ1)], and K=Hθ/[1+θ(1-α)]—from which it is then easy to obtain the
reduced-form expressions for all of the other variables of interest, output, the price level, inflation,
etc.  Finally, reworking the model under the assumption of full flexibility—namely, wt=wt

*—it is
possible to compute for each single variable (with the only exception of the rate of inflation) the
stochastic trends, which allows us to compute the cyclical components.
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Charts

Chart 1:  Spectral densities for four covariance-stationary processes
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Chart 2:  Estimated cross-spectral statistics for the rate of capacity utilisation in the US
manufacturing sector and the rate of unemployment (overall labour force, 16 years of age
and over)
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Chart 3:  Squared gains of some popular filters, compared with the squared gain of the
ideal band-pass filter
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Chart 4:  An exact measure of ‘how authentic’ the band-pass filtered cyclical component
of GDP is in the Erceg, Henderson and Levin (1998) model, for different values of ρ , φ ,
and k (σv=kσε)
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Chart 5:  Theoretical cross-spectral statistics between the structural output gap and band-pass
filtered output for Kiley’s (1996) model, for different values of k=σu/σv
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Chart 6:  ‘True’ and ‘false’ business cycle stylised facts:  the Phillips correlation between
inflation and the output gap, based on Kiley’s (1996) model, for different values of k=σu/σv

(theoretical cross-spectral statistics)
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Chart 7:  A false business cycle stylised fact within a simple AD-AS model:  the ‘cyclical’
behaviour of productivity (theoretical cross-spectral statistics)
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Chart 8:  A false business cycle stylised fact within a simple AD-AS model:  the ‘cyclical’
behaviour of productivity (cross-correlations and 95% confidence bands)
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Chart 9:  ‘True’ and ‘false’ business cycle stylised facts within a simple sticky-wage AD-AS
model:  the cyclical behaviour of the real wage
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Chart 10:  A false business cycle stylised fact within Kiley’s (1996) model:  the ‘cyclical’
behaviour of the money supply, for different values of k=σu/σv (theoretical cross-spectral
statistics)
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Chart 11:  A false business cycle stylised fact within Kiley’s (1996) model:  the ‘cyclical’
behaviour of the money supply, for different values of k=σu/σv (cross-correlations and
95% confidence bands)
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Chart 12:  ‘True’ and ‘false’ business cycle stylised facts:  the cyclical behaviour of prices,
based on Kiley’s (1996) model, for different values of k=σu/σv (theoretical cross-spectral
statistics)
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Chart 13:  Real exchange rates and real interest rate differentials, true and false cross-spectral
statistics, based on Campbell and Clarida (1987);  (US dollar/Canadian dollar, 1979:10-1986:3)
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Chart 14:  A case in which ‘true’ and ‘false’ business cycle stylised facts coincide within
Kiley’s (1996) model:  the cyclical behaviour of real balances, for different values of k=σu/σv

(theoretical cross-spectral statistics)
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