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Abstract

This paper shows how a Merton-model approach can be used to develop measures of the
probability of failure of individual quoted UK companies. Probability estimates are then
constructed for a group of failed companies and their properties as leading indicators of
failure assessed. Probability estimates of failure for a control group of surviving
companies are also constructed. These are used in probit regressions to evaluate the
information content of the Merton-based estimates relative to information available in
company accounts and in assessing Type I and Type II errors. We also look at power
curves and accuracy ratios. The paper shows that there is much useful information in the
Merton-style estimates.

Key words: Merton models, corporate failure, implied default probabilities

JEL classification: G12, G13
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Summary

The quantitative modelling of credit risk initiated by Merton (1974) shows how the
probability of company default can be inferred from the market valuation of companies
under specific assumptions on how assets and liabilities evolve. This paper employs a
Merton-style approach to estimate default risk for public non-financial UK companies and
assesses the reliability of these estimates using a range of different techniques.

The original Merton model is based on some simplifying assumptions about the structure
of the typical firm’s finances. The event of default is determined by the market value of the
firm’s assets in conjunction with the liability structure of the firm. When the value of the
assets falls below a certain threshold (the default point), the firm is considered to be in
default.

To draw conclusions on financial stability and implement the right policy measures, the
estimated probabilities of failure need to be both reliable and efficient. This paper assesses
the reliability of the estimates by examining their success in predicting the failure or
survival of both failed companies and survivors. The efficiency of the estimates is assessed
by testing the extent to which the predictive power of the estimates could be improved by
incorporating other information publicly available in company accounts. Models that
combine a Merton approach with additional financial information are referred to in the
literature as ‘hybrid models’.

The probability of default derived from our Merton-model implementation provides a
strong signal of failure one year in advance of its occurrence. For example, the mean value
of the estimated one-year probabilities of default for our entire sample is 47.3% for those
companies that went bankrupt, and 5.4% for those that did not.

Calculation of Type I and II errors (Type I errors are defined as the percentage of actual
failures classified as non-failures, Type II errors are the percentage of non-failures
classified as failures) suggests that the estimated probabilities of default are successful in
discriminating between failing and non-failing firms. Classifying defaults as those firms
with an estimated probability of default greater than or equal to 10%, the Type I error is
relatively modest at 9.2% (with a Type II error of 15.0%).

Our implementation of the Merton approach clearly outperforms a reduced-form model
based solely on company account data. But our analysis also shows that the type of hybrid
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models implemented here, ie those combining company account information and the
Merton approach, outperform our implementation of the Merton approach, if only
marginally.
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1 Introduction

The quantitative modelling of credit risk initiated by Merton (1974) shows how the
probability of company default can be inferred from the market valuation of companies
under specific assumptions on how assets and liabilities evolve. This paper employs a
Merton-style approach to estimate default risk for public non-financial UK companies and
assesses the reliability of these estimates using a range of different techniques.

The original Merton model is based on some simplifying assumptions about the structure
of the typical firm’s finances. The event of default is determined by the market value of the
firm’s assets in conjunction with the liability structure of the firm. When the value of the
assets falls below a certain threshold (the default point), the firm is considered to be in
default. A critical assumption is that the event of default can only take place at the
maturity of the debt when the repayment is due. In order to implement the model in
practical situations, this paper shows how this assumption can be modified to allow for
default to occur at any point in time and not necessarily at maturity.

KMV Corporation(1) also uses the broad Merton approach to estimate the probability of
firm failure in a number of different countries over a range of different forecast horizons.
But the KMV approach does not rely solely on an analytical Merton model. Instead, it uses
the Merton framework to estimate the ‘distance-to-default’ of an individual company and
then uses a proprietary database of US company histories to map this into an ‘expected
default frequency’ (EDF), estimated by the proportion of companies with a given distance
to default that have failed in practice.(2) By contrast, the calculations reported here use
only publicly available information on market prices and time series estimates of
parameters to measure the probability of default.

To draw conclusions on financial stability and implement the right policy measures, the
estimated probabilities of failure need to be both reliable and efficient. This paper assesses
the reliability of the estimates by examining their success in predicting the failure or
survival of both failed companies and survivors. The efficiency of the estimates is assessed
by testing the extent to which the predictive power of the estimates could be improved by
incorporating other information publicly available in company accounts. Models that
combine a Merton approach with additional financial information are referred in the

(1) Moody’s has recently acquired KMV Corporation. The combined business of Moody’s Risk
Management Services and KMV is called Moody’s KMV. Throughout this paper we use the terms KMV
and Moody’s to refer to the KMV Corporation and Moody’s, respectively, before this acquisition took
place.
(2) For a review of the KMV approach see Kealhofer and Kurbat (2002).
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literature as ‘hybrid models’. Sobehart and Keenan (2001b) provide an excellent summary
of this class of models.

There are other market based indicators of default probability. Nevertheless, though
dependent upon certain modelling assumptions, structural models provide a cleaner and
more direct measure of implied default probability than do market prices and other
indicators from the bond market. In a frictionless, risk-neutral world, the excess return
generated by investment in a corporate bond relative to a government bond would simply
reflect compensation for the expected loss from default. In a recent empirical study by
Elton, Gruber, Agrawal and Mann (2001), however, it is shown that such compensation
constitutes less than a fifth of the observed spread, with taxation and risk premia making
up the lion’s share. Other studies, such as Collin-Dufresne, Goldstein and Martin (2001)
obtain similar findings. Thus, extracting information on expected default probability from
observed credit spreads is a non-trivial spread-decomposition exercise. Credit ratings are
also imperfect measures. First, credit ratings are ordinal, rather than cardinal, measures of
credit quality, and take into account not only default probability but also the severity of
loss given default. Second, they are designed to judge credit quality over the long term,
and may therefore be inappropriate measures of the probability of default over a relatively
short horizon.

The paper is organised as follows. Section 2 briefly reviews the literature on equity-based
models of firm default. Section 3 shows how the original Merton model may be extended
so that it can be implemented in practice. Section 4 outlines how the model may be tested.
Section 5 describes the data on UK quoted companies and the sample that is used in
constructing estimates of failure. Section 6 sets out the results. Section 7 concludes.

2 Literature review

There is a wide range of papers studying aggregate company defaults. Here we concentrate
on those papers that adopt a structural or hybrid approach. The analyses by the KMV
Corporation and Moody’s are the most well known. For a more extensive discussion of the
strengths and drawbacks of various models for valuing financial instruments that are
subject to default risk,(3) we refer the reader to Nandi (1998).

Crosbie and Bohn (2002) summarise KMV’s default probability model. KMV’s default
probability model is based on a modified version of the Black-Scholes-Merton framework
in the sense that KMV allows default to occur at any point in time and not necessarily at

(3) Default risk and default probability are interchangeable terms in this paper.
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the maturity of the debt. In this model multiple classes of liabilities are modelled. There
are essentially three steps in the determination of the default probability. The first step is to
estimate the asset value and volatility from the market value and volatility of equity and
the book value of liabilities using their Merton approach. Second, the distance-to-default is
calculated using the asset value and asset volatility. And finally, a default database of over
250,000 company-year data and over 4,700 incidents of default is used to derive an
empirical distribution relating the distance-to-default to a default probability.

Sobehart, Stein, Mikityanskaya and Li (2000) (Moody’s model) construct a hybrid default
risk model for US non-financial public firms. The sample consists of 14,447 public firms
with multiple observations for each firm (about 100,000 firm-year observations) and 923
default events. The aim of the model is its use as an early warning system to monitor
changes in the credit quality of corporate obligors. Moody’s model provides a one-year
estimated default probability using a variant of Merton’s option theoretic model, Moody’s
rating (when available), company financial statement information,(4) additional equity
market information(5) and macroeconomic variables.

As with the KMV model, the variant of the Merton model applied by Sobehartet al (2000)
is not used directly to calculate default probabilities but rather to calculate the market
value and volatility of the firm’s assets from equity prices. These inputs are used to derive
the ‘distance to default’, the number of standard deviations that the value of the firm’s
assets must drop in order to reach the default point. Moody’s combine this information
into a logistic regression to obtain some default probabilities that are further adjusted to
correct for the fact that their in-sample data set had a slightly different proportion of
defaulting-to-non-defaulting obligors from that observed in reality.(6) According to the
authors there appears to be a significant jump in performance as one moves from pure
statistical models to those that include structural information. Interestingly, there is also a
large gap between the pure structural model (Merton model) and Moody’s hybrid model.
The gap would represent the gain in accuracy derived from financial statement and rating
data.

Kealhofer and Kurbat (2002) (KMV) try to replicate Moody’s empirical results (Sobehart
et al (2000)) on the Merton approach. They obtain contrary results. They claim the Merton
approach outperforms Moody’s ratings and various accounting ratios in predicting default.
(4) Specifically, net income-assets ratio, assets, working capital-assets ratio, liability-assets ratio and net
income-equity ratio.
(5) Stock price volatility and equity growth rate.
(6) Since the authors do not have information on all public firms that default, the adjustment is made using
a subset of Moody’s default database that included over 1,400 non-financial US defaults between 1980 and
1999.
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Kealhofer and Kurbat (2002) explain this discrepancy by the fact that their implementation
of the Merton model is more accurate than Moody’s approach. This greater accuracy,
according to the authors, come from the special approaches developed to estimate asset
volatility. (7)

Leland (2002) examines the differences in the probabilities of default generated by two
alternative structural models. The first group is termed the ‘exogenous default boundary’
approach, meaning models of the type of Merton (1974) and Black and Scholes (1973). A
default boundary is a sufficiently low level of asset value so that the firm decides to default
on its debt whenever the asset value falls below this level. The second group of models
introduces an ‘endogenous default boundary’. In these models the decision to default is an
optimal decision by managers acting to maximise the value of equity. The default
boundary depends on the expected return and volatility of assets, the risk free interest rate,
leverage, debt maturity and default costs. According to the authors, it fits actual default
frequencies for longer time horizons quite well, although the predicted default frequency is
too low for short maturities. Moreover, the endogenous models predict that default
probabilities rise with default costs and fall with bond maturity, whereas default
probabilities derived from an exogenous model are invariant to these parameters.
Exogenous models are also more sensitive to asset volatility. The authors cannot test the
relative accuracy of these predictions due to the lack of publicly available data.

Huang and Huang (2002) using a range of structural models try to solve the question of
how much of the historically observed corporate-Treasury yield spread is due to credit
risk, that is, if that spread can be explained using probabilities of default derived from
those structural models. To do this they calibrate the probabilities derived from the
structural models to be consistent with data on historical default experience. For
investment grade bonds of all maturities, credit risk accounts for only a small fraction of
the spread (and even smaller for shorter maturities). For junk bonds credit risk accounts
for a larger fraction.

3 Implementation of the Merton model

The basic insight of the Merton (1974) model is that the pay offs to the shareholders of a
firm are very similar to the pay offs they would have received had they purchased a call
option on the value of the firm with a strike price given by the amount of debt outstanding.
As such, the option pricing techniques of Black and Scholes (1973) may be used to

(7) For further insights in this discussion see Keenan and Sobehart (1999), Stein (2000) and Sobehart and
Keenan (2001a).
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estimate the value of the option and the underlying probability of default.

The Merton model and the variation of the Merton model adopted in this paper assume a
simple capital structure for the firm: debt plus equity. We denote the notional amount of
debt byB, with (T − t) being the time to maturity, the value of the firm isAt, and
F (A, T, t) is the value of the debt at timet. The equity value att is denoted byf(A, t).
Then, we can write the value of the firmAt as:

At = F (A, T, t) + f(A, t) (1)

The original Merton model assumes that the firm promises to payB to the bondholders at
maturityT . If this payment is not met, that is, if the value of the firm is less thanB, the
bondholders take over the company and the shareholders receive nothing. Furthermore, the
firm is assumed not to issue any new senior claims nor pay cash dividends nor repurchase
shares prior to the maturity of the debt. Under these assumptions the shareholders
effectively hold a European call option on the value of the firm.

This paper relaxes the assumption that default (or insolvency) can only occur at the
maturity of the debt. The model developed here assumes that insolvency occurs the first
time that assets falls short of the redemption value of debt. In other words, insolvency
occurs the first time that the value of the firm falls below the default point.

To model this we use the concept of a barrier option.(8) Barrier options are options where
the pay off depends on whether the underlying asset price reaches a certain level during a
certain period of time. Barrier options can be classified as either knock-out options or
knock-in options. A knock-out option ceases to exist when the underlying asset price
reaches a certain barrier. This is the type of barrier option we are interested in here. A
down-and-out call option is one type of knock-out option. It is a regular call option that
ceases to exist if the asset price reaches a certain level, the barrier. The barrier level is
below the initial asset price.

To derive the probability of default using a barrier option we suppose that the value of the
firm’s underlying assets follows the following stochastic process:

dA = µAAdt + σAAdz (2)

wheredz = ε
√

dt andε ∼ N [0, 1]

(8) Other equity-based models of credit risk that use the concept of barrier options are Black and Cox
(1976), Longstaff and Schwartz (1995) and Briys and de Varenne (1997).
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and we assume a deterministic process for the liabilities:

dL = µLLdt (3)

Let us denote the asset-liability ratio byk:

k = A/L (4)

Default occurs whenk falls below the default trigger or default point calledk at any time
within a given period. To estimate this probability of default we need to model howk

changes over time. Differentiate(4) and use(2) and(3) to obtain

dk = (µA − µL)kdt + σAkdz (5)

and define:

µA − µL = µk and σA = σk

The values forµk andσk are needed to calculate the probabilities of default. Maximum
likelihood techniques are used to obtain estimates of those two parameters. In order to
construct the maximum likelihood function, we first need to derive an expression for the
probability density function (PDF) ofk. Given equation(5) we can derive the PDF for
ln kT

kt
(we call this PDF ‘defective density’). It can be shown that(9) the defective density

function is given byh
(
ln kT

kt

)
according to the following expression:

h

(
ln

kT

kt

)
=

1√
2πσ2

k(T − t)





exp


−

(
ln kT

kt
−

(
µk − σ2

k

2

)
(T − t)

)2

2σ2
k(T − t)




− exp




2 ln k
kt

(
µk − σ2

k

2

)

σ2
k

−

(
ln kT

kt
− 2 ln k

kt
−

(
µk − σ2

k

2

)
(T − t)

)2

2σ2
k(T − t)








(6)

Equation(6) represents the probability density of not crossing the barrier and being at the
point ln(kT

kt
) at timeT . This expression is used to construct the likelihood function that is

maximised(10) in order to obtain estimates ofµk andσk. These estimates are used to
calculate the probabilities of default as shown below.

(9) Rich (1994) offers a very complete mathematical approach to barrier options.
(10) This density function must be multiplied by a Jacobian adjustment term to correct for the fact that it is
the equity-liability ratio (y) that is observed rather than the market value of the firm-liability ratio (k). At
the end of this section we derive an expression to mapy andk.
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The probability(11) of the firm not defaulting until dateT is given by the probability of
kT > k conditional onkτ > k ∀τ t ≤ τ < T ⇒

PD = 1− {[1−N(u1)]−$ [1−N(u2)]} (7)

where:

u1 =
K −

(
µK − σ2

k

2

)
(T − t)

σk

√
T − t

(8)

u2 =
−K −

(
µK − σ2

k

2

)
(T − t)

σk

√
T − t

(9)

$ = exp


2K

(
µk − σ2

k

2

)

σ2
k


 (10)

ln
k

kt
= K (11)

Equation(7), that is, the probability of default, depends on the maximum likelihood
estimates,̂µk andσ̂k , the default point,k, here set up to equal one,(12) and the assets to
liability ratio via N(u1) andN(u2).

TheN(u1) term in(7) is equivalent to the probability of default obtained using a European
call option. In the case of a barrier option we have to correct that probability of default for
the fact that default occurs the first time the assets to liability ratio crosses the barrier and
not just atT . The term$ [1−N(u2)] corrects the probability of default derived using a
European call option (path independent) to take into account that the asset-liability ratio
can hit the barrier beforeT (path dependent).

A further observation is needed here. The value of the firm’s assets,A, is unobservable and
hence so is thek ratio. What we can observe is the equity-liability ratio,y = X

L , X being
the market capitalisation of the firm. Nickell and Perraudin (1999) derive a mapping
between the equity-liability ratio and the value of the firm’s assets-liability ratio that this
paper borrows.

Following Nickell and Perraudin (1999) we assume that the earnings flow of a firm is
defined asδ(A− L), with δ a constant dividend pay-out rate. We also assume a constant

(11) See Appendix A for a derivation of this probability.
(12) Sensitivity tests to the choice of the default point have been carried out but not reported here for the
sake of brevity.
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short-term interest rate ofr. Under these assumptions the risk adjusted drift terms for
assets and liabilities areµ∗A = µL = r − δ.

The risk neutral rate of return of a particular firm’s equity must be equal to the dividend
income plus capital gains received by equity holders, that is:

rX = δ(A− L) +
dEt(X)

dt
(12)

with X depending onL andA.

We now derive an expression fordEt(X):

dEt(X) =
∂X

∂A
dA +

∂X

∂L
dL +

1

2

∂2X

∂A2
dA2 +

1

2

∂2X

∂L2
dL2 +

∂2X

∂A∂L
dAdL (13)

Using the expressions fordA, dA2, dL and noting thatdt2 = dtdz = 0 anddz2 = dt, the
above expression reduces to:

dEt(X) =
∂X

∂A
µ∗AAdt +

∂X

∂A
σAAdz +

∂X

∂L
µLLdt +

1

2

∂2X

∂A2
σ2

AA2dt (14)

Dividing the above expression bydt and substituting into equation(12)we obtain:

rX = δ(A− L) +
∂X

∂A
µ∗AA +

∂X

∂L
µLL +

1

2

∂2X

∂A2
σ2

AA2 (15)

The above expression is a homogeneous partial differential equation in two variables,A

andL. It can be proved(13) that the solution to this differential equation is:

y(k) = k − 1− (k − 1)

(
k

k

)λ

(16)

where

λ =
1

σ2
A


σ2

A

2
−

√
σ4

A

4
+ 2σ2

Aδ


 (17)

Using some initial values fork, µk andσk we apply the Newton-Rapshon scheme to solve
expression(16) for k. We then use this estimate to maximise(6) and get the estimates for
µk andσk. Using the estimate forσk we invert(16) to obtain the finalk series.

4 Testing the model

To test the performance of the Merton approach adopted in this paper, we calculate the
probabilities of default (PDs) implied by our model for a sample of UK non-financial firms
that includes a number of defaulters.(14) We then perform three types of tests: (1) we

(13) A proof that expression(16) is a solution for equation(15)can be found in Appendix B.
(14) We describe the composition of the sample in the section below.
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evaluate our model against the actual default experience; (2) we compare our model with
other default models; and (3) we use measures of statistical power based on power curves
and accuracy ratios.

For the first type of test, we compare the PD profiles for a subsample of defaulters with the
timing of actual defaults to assess the accuracy of the model in predicting those failures.
We also calculate the Type I and II errors. Type I errors are defined as the percentage of
actual failures that the model classifies as non-failures. Type II errors are the percentage of
non-failures that the model classifies as failures. Ideally we want both type of errors to be
small, but clearly there is a trade-off between the two.

For the second type of test, we compare our model with other approaches. To compare the
performance of our Merton approach with the information content of company account
data only, we estimate a probit model. The dependent variable is a dummy that takes on
the value of unity if the company went bankrupt, and zero otherwise, and regressors are
company account indicators. To select the company account variables included in the
probit estimations we follow Geroski and Gregg (1997), one of the most comprehensive
empirical studies of the determinants of company default in the United Kingdom. To
compare the accuracy of both models we calculate Type I and II errors.

The power of the PDs in explaining company default is assessed formally against other
models by testing for their significance when added to the estimated probit model above. If
the coefficient of the PD variable is significantly different from zero, we can conclude that
the Merton approach here implemented adds value to the company account variables.

For the third type of test, following Kocagil, Escott, Glormann, Malzkom and Scott
(2002), we use power curves and accuracy ratios to assess the statistical power of the
models. Both testing tools evaluate the accuracy of a model in ranking defaulters and
non-defaulters using the estimated probabilities of default. To plot a power curve, for a
given model we rank the companies in our sample by risk score (PD) from the riskiest to
the safest (horizontal axis). For a given percentage of this sample we calculate the number
of defaulters included in that percentage as a proportion of the total number of defaulters
in our sample (vertical axis). Thus for a sample in which 1% of companies default, a
perfect model would include all the defaulters within the riskiest percentile. By contrast, in
a random model the first percentile would tend to include only 1% of the defaulters and its
power curve would be represented by a 45 degree line. The better the model at ranking
companies the more bowed towards the upper-left corner its power curve would be. The
power curve is sample dependent in that its shape is dependent on the proportion of
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companies in the sample that default.

The accuracy ratio, even if less visual, gives a single statistic that summarises the
information content of the power curve. The accuracy ratio has values that rank from 0%
(random model) to 100% (perfect model) and it is defined as the ratio of the area between
the power curves of the actual and random models to the area between the power curves of
the perfect and random models.

5 Sample and data description

The model presented in Section 3 is estimated for a sample of UK non-financial quoted(15)

companies. Specifically, we collect 7,459 financial statements from 1990 to 2001, 65 of
which correspond to firm defaults.(16) The sample of failed companies was constructed
collecting news from FT.com about companies that went into receivership.(17) The sample
constructed in this manner was checked against the ‘deaduk’ dataset in Thompson
Financial Datastream and the ‘Companies House’ web site. The default date was selected
as being the last day in which an equity price movement was observed. This may be not
the exact date of default but it is a good approximation given the discrepancy and/or
inaccuracy observed in the different sources consulted and the difficulty of defining a
default date.

Table A disaggregates the number of failures and non-failures by year for the sample we
use in the estimations (and for the sample we initially gathered for illustration purposes). It
is immediately apparent that defaults are concentrated in 1990–92 ie the recession years.

All our data are downloaded from Thompson Financial Datastream. To estimate the PDs
we use market capitalisation and liability data (current liabilities). The PDs are estimated
on a weekly basis using a five-year rolling window. That is, we estimate equation(6) using
five years(18) of weekly data to obtain the maximum likelihood estimatesµ̂k andσ̂k that are

(15) Clearly, we cannot directly apply the model to private companies given the data requirements: we need
equity market capitalisation series to estimate equation(6).
(16) Initially, we identify 76 firm defaults but due to the lack of some company account data needed for our
econometric specifications we use 65 to present comparable results across estimations and be able to
compare the power curves for the different models. Non-defaulters are all public companies alive in 2001
and from which we have the data needed for the estimations undertaken here.
(17) Note that definition of failure does not include companies that were taken over by other companies or
that went into an insolvency procedure other than receivership.
(18) Other estimation periods were used but not reported here for the sake of brevity. A five-year window is
a trade-off between too short an estimation period that might include too much noise in the estimation of
the drift parameter (̂µk) and too long an estimation period that might include information too far back to be
relevant for the calculations of current PDs.
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used to calculate the PDs. Moreover, we do not include in the maximisation procedure
those observations when a dividend pay-out was made. This is to avoid any uninformative
jump in equity prices. The dividend payments dates are also obtained from Datastream.
The equity data (market capitalisation) are weekly data,(19) but the liability data are
annual. In order to generate the necessary weekly liability data we use cubic spline
interpolation routines.(20) The PDs are calculated for different time horizons, from one
year to five years, but here we concentrate on 1-year and 2-year PDs.

In order to estimate the competing probit models we need company account data, in
particular, profit margins, the ratio of debt to total assets, the ratio of cash to liabilities, the
number of employees and sales growth. Profit margins are defined as EBITDA relative to
sales and we further construct three binary (0,1) dummy variables(21) for negative profit
margins, profit margins between 0% and 3%, and profit margins between 3% and 6%
(therefore, profit margins greater than 6% is our reference category). The debt to assets
ratio is defined as gross debt (borrowing of maturity less than a year plus capital loans with
maturity greater than one year) relative to total assets. The cash to liabilities ratio is the
‘total cash and equivalent’ variable from Datastream relative to liabilities.

Apart from the company account data, we have also included some year dummies and/or a
macroeconomic indicator(22) (GDP) in our probit estimates to account for the general
economic situation. The macroeconomic data are obtained from the electronic version of
the International Financial Statistics published by the International Monetary Fund.

6 Results

6.1 Implied probabilities of default

As an initial way of measuring the accuracy of our Merton approach, we first compare the
PDs of defaulting and non-defaulting companies. For defaulting companies, we calculate
the 1-year ahead PD in each month of the twelve months prior to default and take the
simple average of these PDs as a measure of the default probability. This is what we call
1-year PD annual average. For non-defaulting companies, we take a simple average of the
1-year ahead PDs in each month of the preceding calendar year. We investigate the

(19) Actually, it is daily data but we use Wednesdays only to avoid any day-of-the-week effect.
(20) The goal of cubic interpolation is to get an interpolation formula that is smooth in the first derivative,
and continuous in the second derivative. A linear interpolation routine is faster but the resulting curve is not
very smooth. We use a cubic spline method as a way to smoothly incorporate the liabilities built by a
company progressively along the accounting year.
(21) Following Geroski and Gregg (1997).
(22) Several macroeconomic variables were tested and finally we decided on GDP (see Section 6).
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sensitivity of our results to these definitions below. By choosing a failure threshold for the
PDs, it is possible to sort companies into those that are classified as defaulters (for whom
the PD is greater than the set threshold) and those that are classified as survivors (for
whom the PD is less than the threshold).

The usefulness of the estimated default probabilities generated by the model can be
assessed by examining the Type I and II errors for different failure thresholds (see results in
Table B). The lower the failure threshold, the smaller the Type I error (ie the proportion of
companies classified as survivors that failed), but at the expense of a greater Type II error.

The success of the model depends on what threshold is appropriate for the user. If the user
is a small investor wishing at all costs to avoid investing in failing companies, then the
threshold would be set at a low level so as to avoid Type I errors. Conversely if the user
had limited resources but wished to investigate more thoroughly the most risky companies,
the threshold would be set high to avoid Type II errors. As shown in Table B, for the entire
sample, choosing a failure threshold of 5%, we fail to classify as defaulters 4.6% of
companies that went bankrupt. At this level, the Type I error is zero for eight of the years
considered. The corresponding Type II error for the whole sample is 19.9% of
non-defaulting companies. If we increase the failure threshold to a PD greater or equal
than 10%, then 9.2% of our population of defaulters had not been classified as defaulters.
But in this case, the Type II error is lower at 15%.

We perform a test for the equality of 1-year PD means between the defaulters group and
the non-defaulters group. The 1-year PD average for the defaulter group is 47.33, for the
non-defaulter group it is 5.44. The test is undertaken without assuming equality of
variances between the two groups. The null hypothesis is that the difference of the two
means equals zero. Under the alternative of this difference being different from zero, we
reject the null at the 1% level of significance. Under the alternative of the mean for the
non-defaulter group being smaller than the mean for the defaulter group, we also reject the
null at the same level of significance.

To check further the accuracy of the model we calculate the Type I and II errors for the
2-year PD annual average (defined as the average of the 2-year PDs, —the probability of
default in two years time from now— from the twelfth month before the default month to
the24th before the default month) and for the 1-year PD for the twelfth month before the
default month. This last measure is very strict in the sense that it gathers information for
one month only, whereas the other measures compile the information content of twelve
months. The results are presented in Table C.
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As expected, for the same thresholds, the Type I errors are bigger for the latter measures.
For a 5% threshold the Type I error for the 2-year PD annual average is 6.1%, and for the
1-year PD as defined above is 24.6%. To check if the latter is a spurious result, we
calculate the Type I error for a 5% cut-off for the 1-year PD for the eleventh month before
the default month, the tenth, and so on until the seventh month before the default month.
The Type I error for these measures are 16.9%, 18.5%, 16.9%, 13.8% and 10.8%,
respectively. These figures are more in line with the results obtained for the 1-year and
2-year PD annual averages, indicating that the figure of 24.6% is spurious. One, therefore,
should always look at PDs for more than one month and relative to recent history.

We also conducted the test for the equality of means for the 1-year PD twelve months
before the default. The results are similar to the ones obtained when we use the 1-year PD
annual average measure. The mean value of the 1-year PD for twelve months before the
default date is 32.0% for defaulters and 5.2% for non-defaulters.

By way of illustration and to assess the model’s ability to reflect credit risk at the
individual firm, Chart 1 represents 1-year and 2-year PDs (monthly averages) for those
companies that failed in 1992.(23) The black line is the 1-year PD, that is, the probability
of default in one year time in a given month. The grey curve is the 2-year PD, the
probability of default in two years time in a given month. The dashed(dotted) vertical line
cuts the time axis exactly one(two) year(s) before the failure date.

To correctly classify defaults, 1-year PDs should be above the chosen threshold to define
failure when crossing the dashed vertical line. Similarly, 2-year PDs should be greater than
the threshold when crossing the dotted vertical line. All the PD curves show rising profiles
before the companies went bankrupt, and are very high in the months before the failure.
That is, we observe increasing levels of risk as the date of failure draws closer. From
twelve to six months before failure the 1-year PD is always greater than 50.8%, whereas
from 24 to twelve months before failure the average PD is 29.1%.

Charts 2 and 3 illustrate annual averages of the one and two-year probabilities of default at
the90th, 80th, 70th, 60th, 50th (median) and40th percentiles.(24) For all the percentiles the
highest values of the 1-year PD are concentrated between 1990 and 1992. This indicates a
greater risk of default forecasted for 1991–93. The probability of default decreases from
1993 onwards but increasing again at the end of the 1990s and the year 2000. This
indicates that UK non-financial companies have become riskier during that period. It is

(23) We choose this year because it is the year with the highest number of defaults (see Table A).
(24) Smaller percentiles show very low and very stable PDs for the time period considered here.
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worth noting that the PD at the90th percentile has worsened more than at the other
percentiles, that is, the riskiest companies have become even riskier in both absolute and
relative terms. The 2-year PD profiles at the different percentiles exhibit a similar pattern,
with the highest PDs for 1989–92, therefore, predicting the highest risk of default for the
years 1991–94. The increase in the PD profile at the end of the last decade is stronger than
the one observed for the 1-year PD, and again is more acute for higher percentiles.

6.2 Adding other company account information

As stated in Section 4, to compare the performance of our Merton approach with the
information content of company account data only, we estimate a probit model using
company account data as regressors. Here the dependent variable is a dummy that takes on
the value of unity if the company went bankrupt, and zero otherwise. Given the
concentration of defaulters in the recession period, we also include in this probit model a
macroeconomic indicator, GDP, as an additional regressor. We test the power of PDs to
explain company failure by adding them to the probit model. If the coefficient of the PD
variable is significantly different from zero after controlling for company account data, we
can conclude that the Merton approach adds value to the company account variables. This
result is probably due to the forward-looking nature of market value data used as one of
the inputs in calculating the PDs under the Merton approach. Accounting data are by
definition backward looking and summarise the state of a firm at a given point in time.
Market value data, on the other hand, summarise all the relevant and available information
at a precise point in time and the future expectations on a firm, therefore adding value to
the company account information.

In Table D we collect the results from these models. We use different measures of PDs for
robustness tests. When using 1-year PDs the company account data is lagged one year, that
is, it corresponds to the year before the default year —columns (1), (2) and (5). If we
include 2-year PDs in the probit estimation, we lag the company account data 2 years, ie
the values are those of two years prior to default —columns (3) and (4).(25) We always use
the GDP of the year of default.

In column (1) of Table D we use the 1-year PD annual average. The results show that the
PD variable is significant at the 1% level and that only one company account variable, the
debt to assets ratio, is significant and at a lower level (5%).(26) The number of employees

(25) That is, models (1), (3) and (5) in Table D are hybrid models.
(26) The fact that the debt to asset ratio is significant even controlling for PDs, which use a similar ratio in
their calculation, reveals a highly non-linear relationship between likelihood of default and the debt to asset
ratio.
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(included to account for size) is marginally significant. The variable accounting for the
macroeconomic environment is also significant at the 1% level.(27) The conclusion is that
the PD variable contains information over and above that included in publicly available
company accounts.

In column (2) we re-estimate the model of column (1) excluding the PD variable.
Interestingly, the profitability measures are now significant. Having negative profit margins
instead of profit margins greater than 6% significantly (at the 1% level of significance)
increase the likelihood of failure. Profit margins between 0% and 3% (instead of profit
margins greater than 6%) also increases the probability of failure (at the 1% level). The
coefficient for this last measure is, as expected, smaller than the coefficient for negative
profit margins. The coefficient of profit margins between 3% and 6% is smaller than the
two previous coefficients but it is not significant. If we compare these three coefficients
with the ones in column (1) we clearly see the effect of omitting the PD variable. In
column (1) these coefficients were not significant and did not have the correct signs or the
expected increasing-in-value pattern.

Moreover, the exclusion of the PD variable increases the significance level of the debt to
assets ratio (from the 5% to the 1% level). The size variable is still significant at the 10%
level and the macroeconomic factor at the 1% level. It is interesting to note that the
constant is not significant in the model of column (1), but becomes significant at the 5%
level once we exclude the PD variable, signalling the better fit of the model in column (1).

In the final rows of Table D we report the average log-likelihood and the pseudo-R2 to
compare models. We include two measures of pseudo-R2 based on McFadden (1974) and
Cragg and Uhler (1970).(28) The pseudo-R2 is between zero and one and is the analogue to
the R2 coefficient of determination that we calculate in the linear regression models. These
measures are constructed using a likelihood ratio statistic.

Comparing the values for the average log-likelihood we see that this is bigger for the
model of column (1), that is the model that includes PDs as regressor. Moreover, the

(27) We have also included yearly dummy variables instead of the macroeconomic variable with 2001 as
the reference year. The dummies for the years 1990–92 and 1995 were significant. If we include the yearly
dummies plus GDP, the yearly dummies are no longer significant. We also tried GDP growth, GDP
deviation from its long-run trend, Industrial Production Index and its deviation from trend. All these
variables were significant, but when included with the yearly dummies some of them were still significant.
For this reason we report the results for the model that includes GDP (GDP=100 for 1995). Different
measures of interest rates and prices were also included but failed to be significantly different from zero.
(28) For a discussion of these measures we refer the reader to Maddala (1983), pages 37–41.
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pseudo-R2 of the model of column (1) is more than twice(29) the pseudo-R2 for the model
that excludes the PDs (independently of the pseudo-R2 measure chosen). Both statistics
indicate, therefore, the superiority of the first model.

We run the model of column (1) by alternatively eliminating one defaulter at a time. The
aim of this exercise was to check if the results were driven by a possible outlier. Since the
results did not change substantially we can discard this possibility.

We estimate the models of columns (1) and (2) in Table D for the years 1990–93(30) one
year at a time. The general result(31) is that in the model of column (2) the debt to assets
ratio is still significant (except for 1993), but the other company account variables are not
significant (except negative profit margins in 1992). The same results hold true once we
include PD as a regressor, with the additional result that no accounting variable is
significant for the regression of 1992 (the year with the highest number of defaults).

Columns (3) and (4) use information on PDs and company account data two years prior to
the year when the default occurred. We do this as a robustness check and to evaluate the
statistical power of 2-year PDs. The results are very similar to the ones of columns (1) and
(2). The exception is the term sales growth, whose coefficient is now significant, and with
the omission of the PD regressor only the coefficient for negative profit margins is
significant. The statistical power of these two models is lower if we use average
log-likelihood and pseudo-R2 measures and compare with their equivalent in columns (1)
and (2).

The model of column (5) is as model (1) but with a different PD variable. Here we only
take the information of the 1-year PD of the twelfth month prior to the default month. Even
if the coefficient for the PD measure is still significant at the 1% level, the coefficients for
the accounting variables (that collect information for twelve months instead of one month
only as the PD) are significant: negative profit margins and profit margins between 0% and
3%. Please note that the 1-year PD twelve months before failure is a measure twelve
months prior to the default month, whereas the accounting variables are simply those of

(29) Strictly speaking one cannot compare R2’s across models with different number of regressors since the
higher the number of regressors the higher the R2. Notwithstanding, we have excluded one variable from
our model (1) to check if the pseudo-R2 was still of the same order of magnitude. Even excluding the GDP
variable that has been proved to be highly significant the MacFadden pseudo-R2 is 0.2785 (and higher if we
exclude one of the non-significant variables). This exercise was undertaken for the rest of the models
presented in Table D and the same result applies. Therefore we are confident in the comparison of
pseudo-R2’s across specifications.
(30) The number of defaulters is too small for the individual years from 1994 to 2001 to obtain reliable
results.
(31) We do not report the results here for brevity, but they are available upon request from the authors.
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the year before failure. If a company went bankrupt say, in January 2000, the accounting
variables are those of the fiscal year 1999, whereas this particular PD measure is the 1-year
PD for January 1999. For negative profit margins not being significant we have to include
information on 1-year PD from twelve to five months before failure.

6.3 Power curves and accuracy ratios

We now evaluate the ability of the different models to rank defaulters and non-defaulters
using power curves and accuracy ratios as described in Section 4.

Chart 4 plots the power curve for some of the models estimated in this paper. The hybrid
model is the model of column (1) in Table D. Company account data is the model of Table
D, column (2). The other three curves correspond to different PD measures as stated in the
graph. The power curves of Chart 4 have been constructed for the same proportion of
defaulters in each model, which means that we can compare each curve with the other. But
it is not possible to compare power curves produced by other models that use different data
sets (the same applies for the AR index).

Observing the different curves we see that the hybrid model as here designed outperforms
all other models. The 1-year PD annual average is almost identical to our hybrid model at
small proportions of sample excluded. Of the models here presented, the model that uses
only company account information is clearly inferior to our hybrid models or
implementation of the Merton approach.

In Table E we report the accuracy ratios for the same models of Chart 4. Sobehart and
Keenan (2001b) report the accuracy ratios for KMV’s implementation of the Merton
model (using 1-year probabilities of default) and for a hybrid model as described in
Sobehartet al (2000). These ratios are 69.0% and 72.7%, respectively. We can use these
figures as an approximate benchmark to evaluate the accuracy ratios reported in Table E.
The closest models to compare with those figures are the ones for the 1-year PD annual
average and the hybrid model, that is, 76.7% and 77.09%, respectively.

For a simple comparison across the models estimated in this paper, we represent the
contents of Table E in the form of a graph (see Chart 5). A reduced form model of the type
of Geroski and Gregg (1997) is easily outperformed by our implementation of the Merton
approach, reflecting the information incorporated into market prices. The jump in
performance from the pure structural Merton-based approach to our hybrid model is not as
acute. One can always argue that this gap may be enhanced by the inclusion of more
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accounting variables. But what is important here is the existence of some information that
is not captured by the Merton approach this paper uses.

7 Conclusions

This paper describes the derivation of default probabilities from an extended version of the
Merton model and applies this to a number of UK non-financial quoted companies over the
period 1990–2001.

The probability of default derived from our Merton-model implementation provides a
strong signal of failure one year in advance of its occurrence. The mean value of the 1-year
PD annual average measure for our entire sample is 47.3% for those companies that went
bankrupt, and 5.4% for those that did not default. A more restrictive probability of default
measure shows a similar pattern. The mean value of the 1-year PD for twelve months
before the default date is 32.0% for defaulters and 5.2% for non-defaulters.

Calculation of Type I and II errors suggests that PDs are successful in discriminating
between failing and non-failing firms. Using a threshold of 10%, that is, classifying
defaults as those firms with a 1-year PD greater or equal to 10%, the Type I error is
relatively modest at 9.2% (with a Type II error of 15.0%). For a 2-year PD measure the
Type I and II errors for the same threshold are 12.3% and 29.9%, respectively.

If we compare our model with a reduced-form model of the type of Geroski and Gregg
(1997), we can state that our implementation of the Merton approach clearly outperforms
the Geroski and Gregg (1997) reduced-form model. This is independent of the specific PD
measure, including the comparison of 2-year PDs and a statistical model that uses one-year
lagged accounting ratios. But it also shows that the type of hybrid models implemented
here, ie those combining company account information and the PDs derived from a Merton
model, outperform our implementation of the Merton approach, if only marginally.
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Tables and charts

Table A: Distribution of defaults over time

Whole sample Estimation sample
Year

Non-defaults Defaults Non-defaults Defaults

1990 412 13 410 9
1991 447 15 443 10
1992 474 13 471 13
1993 484 8 482 7
1994 498 3 495 3
1995 510 6 508 6
1996 554 3 552 3
1997 597 5 595 5
1998 667 4 664 3
1999 917 0 907 0
2000 996 2 816 2
2001 1078 4 1051 4
Total 7634 76 7394 65
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Table B: Type I & II errors: Merton model, 1-year PDs annual
average(a)

Threshold
Sample Type error

5% 10% 15% 20% 30%

Whole sample I 4.61 9.23 13.85 20.00 36.92
II 19.95 14.97 11.79 9.43 6.32

1990 I 0.00 22.22 22.22 33.33 33.33
II 20.24 14.15 10.73 8.05 5.37

1991 I 0.00 0.00 10.00 20.00 30.00
II 31.83 26.86 22.12 18.51 13.54

1992 I 0.00 0.00 0.00 7.69 23.08
II 25.90 19.11 15.29 12.31 14.29

1993 I 0.00 0.00 0.00 0.00 14.29
II 30.50 23.44 19.50 16.18 11.83

1994 I 0.00 0.00 0.00 0.00 100.00
II 17.17 11.92 9.09 6.87 4.44

1995 I 16.67 16.67 33.33 33.33 50.00
II 13.98 10.04 7.09 5.12 3.54

1996 I 0.00 0.00 0.00 33.33 33.33
II 14.13 10.51 9.06 7.25 5.80

1997 I 20.00 20.00 20.00 20.00 60.00
II 14.45 11.43 8.57 6.55 3.70

1998 I 33.33 66.67 66.67 66.67 100.00
II 15.21 10.54 7.98 6.32 4.07

1999 I
II 19.07 14.55 11.47 9.26 6.06

2000 I 0.00 0.00 0.00 0.00 0.00
II 19.73 15.20 11.89 9.31 5.64

2001 I 0.00 0.00 25.00 25.00 25.00
II 21.60 15.70 12.18 9.99 6.47

(a) 1-year PD annual average is the average of the 1-year PD —probability
of default in one year’s time from now— for the twelve months preceding the
default month.
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Table C: Type I & II errors: Merton model, 2-year PDs annual average
and 1-year PD twelve months before failure

Threshold
Sample Type error

5% 10% 15% 20% 30%

2-year PD I 6.15 12.31 21.54 27.69 41.54
annual average(a) II 3.68 29.92 25.18 21.32 15.90

1-year PD 12 months I 24.61 35.38 41.54 50.77 61.54
before failure(b) II 13.22 10.51 9.06 7.75 6.20

(a) 2-year PD annual average is the average of the 2-year PD —probability of
default in two years time from now— from the twelfth month before the default
month to the24th before the default month.
(b) 1-year PD twelve months before failure is the 1-year PD for the twelfth month
before the default month.
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Table D: Using company account data(a)

Variable (1) (2) (3) (4) (5)

Constant 0.43 1.36∗∗ 0.89 1.53∗∗ 0.93
(0.64) (2.17) (1.29) (2.28) (1.46)

1-year PD annual average(b) 0.02∗∗∗

(11.03)
2-year PD annual average(c) 0.01∗∗∗

(5.90)
1-year PD 12 months 0.01∗∗∗

before failure(d) (5.90)
Profitability< 0% 0.17 0.68∗∗∗ 0.25 0.51∗∗∗ 0.49∗∗∗

(1.11) (5.00) (1.63) (3.51) (3.40)
0% <Profitability< 3% 0.17 0.42∗∗∗ −0.09 0.11 0.30∗

(0.97) (2.81) (−0.47) (0.59) (1.91)
3% <Profitability< 6% −0.01 0.14 −0.04 0.07 0.07

(−0.03) (0.92) (−0.23) (0.48) (0.45)
Debt over assets 0.31∗∗ 0.48∗∗∗ 0.25∗∗ 0.33∗∗∗ 0.39∗∗∗

(2.52) (4.61) (2.37) (3.52) (2.99)
Cash over liabilities 0.01 −0.12 −0.04 −0.18 −0.07

(0.13) (−1.18) (−0.37) (−1.38) (−0.71)
log number of employees −0.6∗ −0.05∗ −0.04 −0.04 −0.05∗

(−1.75) (−1.66) (−1.11) (−1.45) (−1.76)
Sales growth −0.11 −0.06 −0.16∗ −0.26∗∗∗ 0.00

(−0.91) (−0.44) (−1.73) (−2.98) (2.02)
GDP −0.03∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.03∗∗∗

(−4.60) (−6.18) (−5.10) (−5.81) (−5.45)
Avg. Log-likelihood −0.034 −0.042 −0.040 −0.040 −0.041
McFadden Pseudo-R2 0.3105 0.1501 0.1787 0.1296 0.1878
Cragg & Uhler Pseudo-R2 0.2999 0.1438 0.1717 0.1246 0.1801

(a) Company Account Data is for the year before the default year for models using 1-year PDs,
columns (1), (2) and (5) and two years before the default year for models using 2-year PDs,
columns (3) and (4). In this table we present the estimated coefficients and the z-statistics in
parenthesis.∗∗∗,∗∗ and∗ mean that the coefficient is significant at the 1%, 5% and 10% level,
respectively.
(b) 1-year PD annual average is the average of the 1-year PD —probability of default in one
year’s time from now— for the twelve months preceding the default month.
(c) 2-year PD annual average is the average of the 2-year PD —probability of default in two
years time from now— from the twelfth month before the default month to the24th before the
default month.
(d) 1-year PD twelve months before failure is the 1-year PD for the twelfth month before the
default month.
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Table E: Accuracy ratios(a)

Model Accuracy ratio

Hybrid model 77.09%
Company account data 42.37%
1-year PD annual average 76.75%
1-year PD 12 months before failure 66.13%
2-year PD annual average 53.39%

(a) The hybrid model is the model of column (1), Table D.
Company account data is model (2), Table D.
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Chart 1: Implied probabilities of default (for defaulting firms)
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Chart 2: Annual averages 1-year PDs

Percentiles are, from top to bottom, 90th, 80th, 70th, 60th, 50th (median) and 40th.
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Chart 3: Annual averages 2-year PDs

Percentiles are, from top to bottom, 90th, 80th, 70th, 60th, 50th (median) and 40th.

34



Chart 4: Power curve

    Note: To plot the power curve, for a given model we rank the companies in our sample by
    risk score (PD) from the riskiest to the safest (horizontal axis). For a given percentage of this
    sample we calculate the number of defaulters included in that percentage as a proportion
    of the total number of defaulters in our sample (vertical axis).
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Chart 5: Accuracy ratio
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Appendix A: Probability of default

Derivation of equation(7): In the following lines we derive equation(7) of the main text.
Note that

∞∫

ln k
kt

h

(
ln

kT

kt

)
d

(
ln

kT

kt

)
=

∞∫

K

h(KT )dKT (A-1)

where

ln
k

kt
= K ln

kT

kt
= KT (A-2)

Therefore, the probability of default is one minus the probability of not defaulting:

PD = 1−
∞∫

K

h(KT )dKT (A-3)

We can show that:

1−
∞∫

K

h(KT )dKT = 1−



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K

f(KT )dKT −$

∞∫

K
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where
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√
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
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
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and
K∫

−∞
g2(KT )dKT = N


−K −

(
µk − σ2

k

2

)
(T − t)

σk

√
T − t


 = N(u2) (A-7)

Remember that the standard normal distribution is defined by:

N(u) =

u∫

−∞
f(u)du (A-8)

We can defineN∗(u) as the compliment ofN(u):

N∗(u) = 1−N(u) = 1−
u∫

−∞
f(u)du =

+∞∫

u

f(u)du (A-9)
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So we can write the PD as:

PD = 1− {[1−N(u1)]−$ [1−N(u2)]}
or

PD = 1− {[N∗(u1)]−$ [N∗(u2)]} (A-10)

Note that theN(u1) term is equivalent to the probability of default obtained using a
European call option. In the case of a barrier option we have to correct that probability of
default for the fact that default occurs the first time the assets to liability ratio crosses the
barrier and not just atT . The term$ [1−N(u2)] corrects the probability of default derived
using a European call option (path independent) to take into account that the asset-liability
ratio can hit the barrier beforeT (path dependent).
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Appendix B: Solution of the differential equation

Proof that expression(16) is a solution for equation(15): We first need to express(15) in
terms ofk andy. To do so we derive expressions for∂X

∂A , ∂X
∂L , and∂2X

∂A2 in terms ofy andk.

We know that

X = y(k)L = y(k)
A

k
(B-1)

Then
∂X

∂A
=

y(k)

k
(B-2)

Also

y =
X

L
=

Xk

A
(B-3)

Then
∂y

∂k
=

X

A
=

y(k)

k
(B-4)

Combining equations(B-2) and(B-4) we obtain:

∂X

∂A
=

∂y

∂k
(B-5)

In a similar way we derive
∂2X

∂A2
=

∂2y

∂k2

1

L
(B-6)

and
∂X

∂L
= y(k)− ∂y

∂k
k (B-7)

Dividing equation(15)by L and substituting(B-5), (B-6), and(B-7) into (15)we obtain

ry = δ(k − 1) + µ∗Ak
∂y

∂k
+ µL

(
y − k

∂y

∂k

)
+

σ2
A

2
k2 ∂2y

∂k2
(B-8)

Using equations(16)and(17)we derive the following expressions

∂y

∂k
= 1− (k − 1)λ

(
k

k

)λ
1

k
(B-9)

∂2y

∂k2
= −(k − 1)λ

(
k

k

)λ
1

k2
(B-10)

λ(λ− 1) =
2δ

σ2
A

(B-11)
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Substituting expressions(B-9) and(B-10) into ((B-8)) and knowing thatµ∗A = µL = r − δ

we obtain

ry = δ(k − 1) + (r − δ)y +
σ2

A

2
k2

[
−(k − 1)λ(λ− 1)

(
k

k

)λ
1

k2

]
(B-12)

Substituting expression(B-11) into the above expression and cancelling out terms we
obtain

ry = ry (B-13)

Therefore,(16) is a solution for equation(15).
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