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Abstract 
 
Contrary to theory, recent empirical work suggests that changing default expectations can explain 
only a fraction of the variability in credit spreads.  This paper takes a fresh look at this question, 
relating credit spreads for a sample of investment-grade bonds issued by UK industrial companies to 
default probabilities generated by the Bank of England’s Merton model of corporate failure.  For the 
highest quality corporate issues, where the probability of default is low, this factor explains relatively 
little of the variation in credit spreads.  For such bonds, common market factors – perhaps related to 
liquidity conditions – appear to be of greater importance.  This is consistent with previous empirical 
work.  For lower-rated investment-grade bonds, however, the probability of default is found to be a 
more important determinant of credit spreads, explaining around a third of variability in a pooled 
regression.  When coefficients are allowed to vary at the level of the individual issue, explanatory 
power rises to 50% for this group.  This is much higher than previous studies have found, reflecting 
both the more direct application of the Merton model and the recognition that idiosyncrasies in 
factors such as liquidity conditions and expected recovery rates are likely to undermine results from 
pooled estimation. 
 
 
Key words: Credit spreads, implied default probabilities, Merton models. 
 
JEL classification: G12, G13. 
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Summary 
 
Theoretically, changes in the yield spread between risky and risk-free bonds should reflect changing 
expectations about the likelihood of loss from default, which will itself be determined by variability 
in the probability of default and expected recovery.  Our principal interest in this paper is to explore 
the extent to which variability in sterling corporate credit spreads corresponds to the theory, drawing, 
in particular, upon the predictions of a structural (Merton-style) model of corporate failure.  
Although credit spreads are often cited as indicators of such expectations, the empirical literature has 
found little evidence that idiosyncratic default risk is the principal driver of variability in credit 
spreads.   
 
The recent empirical literature has generally adopted one of two approaches to examine the validity 
of structural models of default.  Researchers have either compared actual credit spreads with those 
implied by a fully calibrated structural model or else they have regressed changes in spreads upon a 
reduced form of the model.  In this study we take a different approach.  First, we adopt an  
error-correction method in order to capture both the long-run relationship between spreads and 
default probabilities, and short-run deviations from trend.  Second, while analysis of a reduced form 
of the structural model allows the key relationships to be identified, the non-linear interactions 
between the model inputs are not exploited.  Hence, some of the power of the model is lost.  In this 
paper, therefore, we apply the structural approach more directly, employing a Merton-style model, 
developed at the Bank of England, to generate a panel of implied default probabilities.  Finally, much 
of the previous work in this area has drawn upon data from the US non-government bond market.  
Our work, by contrast, employs a sample of 78 sterling bond issues by 42 UK industrial companies.  
For each, we have up to 83 monthly observations for both asset swap credit spreads and  
Merton-generated implied probabilities of default, thereby creating a diverse data set, covering a 
segment of the market that, to our knowledge, has not previously been studied in this way. 
 
The application of this approach is revealing.  In a pooled regression, we find that variability in the 
implied probability of default can explain just 8% of the probability of default in the highest quality 
credit spreads (AAA/AA), and 11% of that in A-rated credits.  With the probability of default for 
these issuers generally low, and often lacking variability, the relative importance of systematic 
factors tends to increase.  Indeed, we find that the addition of time dummies to the specification 
increases explanatory power considerably, perhaps reflecting the influence of common factors such 
as liquidity conditions not explicitly included in the specification.  Our results for lower  
investment-grade issues, those rated BBB, are more supportive of the structural model.  Here we find 
that the probability of default explains around a third of the variation in credit spreads in a pooled 
regression, which is higher than previous empirical studies have found.  
  
Comparison with a broadly equivalent specification to that employed elsewhere suggests that this is a 
reflection of the more direct application of the Merton approach; in particular, capturing the  
non-linearity inherent in the structural model, which is most important for companies that are closer 
to the default point.   
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In a further round of tests, we allow for heterogeneity in responses across individual issues in the 
ratings subgroups.  Heterogeneity does indeed appear to be an important feature of the data set, with 
explanatory power increasing to 28% for high-quality issues, and almost 50% for BBB issues.  This 
argues in favour of not only applying the Merton model directly, but also allowing for potential 
idiosyncrasies in factors such as liquidity and recovery rates.   
 
Finally, we consider whether we are losing valuable information in the annualisation process for our 
implied default probabilities.  If investors have short horizons, they may place greater weight on 
near-term default probabilities, and this will perhaps be more important for lower-grade bond issues.  
This hypothesis is supported by the data.  Returning to a pooled specification with common 
coefficients, but retaining differences across ratings, we find once again that almost half of the 
variability in BBB credit spreads is explained by the regression specification.  Explanatory power 
remains at just 12% for high-quality issues.      
 
Many of these results would appear to have an intuitive interpretation.  Previous research has 
established that the theoretical relationship between credit spreads and default expectations does not 
hold fully in practice, and this paper concurs with that finding.  Spreads would appear to be 
influenced by market factors, such as liquidity premia, and these are likely to be time varying.  Thus, 
it is intuitive that, for high-quality issuers, where both the level and variability of the probability of 
default is likely to be lower, the relative contribution of default expectations is likely to be much 
smaller. 
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1. Introduction 
 
Theoretically, changes in the yield spread between risky and risk-free bonds should reflect changing 
expectations about the likelihood of loss from default, which will itself be determined by variability 
in the probability of default and expected recovery.  Our principal interest in this paper is to explore 
the extent to which variability in sterling corporate credit spreads corresponds to the theory, drawing, 
in particular, upon the predictions of a structural model of corporate failure.(1)  This is an important 
question, not only for practitioners in the financial markets, who require a better understanding of the 
factors influencing the value of their bond portfolios, but also for banking supervisors, central 
bankers and policymakers, who seek reliable measures of default expectations.  Although credit 
spreads are often cited as indicators of such expectations, the empirical literature has found little 
evidence that idiosyncratic default risk is the principal driver of variability in credit spreads.   
 
The recent empirical literature has generally adopted one of two approaches to examine the validity 
of structural models of default.  Researchers have either compared actual credit spreads with those 
implied by a fully calibrated structural model (notably, Huang and Huang (2003)), or else they have 
regressed changes in spreads upon a reduced form of the structural model (Longstaff and Schwartz 
(1995) and Collin-Dufresne et al (2001)).  In this study we take a different approach.  First, we adopt 
an error-correction method in order to capture both the long-run relationship between spreads and 
default probabilities, and short-run deviations from trend.  Second, while analysis of a reduced form 
of the structural model allows the key relationships to be identified, the non-linear interactions 
between the model inputs are not exploited.  Hence, some of the power of the model is lost.  In this 
paper, therefore, we apply the structural approach more directly, employing a Merton-style model, 
developed at the Bank of England (described in Tudela and Young (2003a, 2003b)), to generate a 
panel of implied default probabilities.  Finally, much of the previous work in this area has drawn 
upon data from the US non-government bond market.  Our work, by contrast, employs a sample of 
78 sterling bond issues by 42 UK industrial companies.  For each, we have up to 83 monthly 
observations for both asset swap credit spreads and Merton-generated implied probabilities of 
default, thereby creating a diverse data set, covering a segment of the market that, to our knowledge, 
has not previously been studied in this way. 
 
The application of this approach is revealing.  In a pooled regression, we find that variability in the 
implied probability of default can explain just 8% of that in the highest quality (AAA/AA) credit 
spreads, and 11% of that in A-rated credits.  With the probability of default for these issuers 
generally low, and often lacking variability, the relative importance of systematic factors tends to 
increase.  Indeed we find that the addition of time dummies to the specification increases explanatory 
                                                                                                                                                                                                   
 
(1) Structural models see default as arising out of the dynamics of a firm’s value process. Such models draw upon the 
essential insight of Merton (1974), that bondholders may be seen as having bought a riskless bond and granted the 
shareholders a put option on the value of the firm, with a strike price equal to the face value of the debt.  Thus, one may 
employ option-pricing techniques to determine the value of this put option and hence evaluate the probability of default, 
requiring data only on the drift and volatility of the company’s asset/liability ratio.  The principal alternative approach to 
modelling credit risk is often referred to as the ‘reduced-form’ approach.  In the latter class of models, default is 
modelled as a stochastic process.  A good, recent review of both classes of model may be found in Giesecke (2003). 
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power considerably, perhaps reflecting the influence of common factors such as liquidity conditions, 
not explicitly included in the specification.  Our results for lower investment-grade issues, those 
rated BBB, are more supportive of the structural model.  Here we find that the probability of default 
explains around a third of the variation in credit spreads in a pooled regression, which is higher than 
has been found in previous empirical studies.  This can be attributed to the more direct application of 
the Merton model, rather than differences in the data set.  Indeed, we show that adopting an 
equivalent approach to Collin-Dufresne et al (2001), we obtain a broadly comparable R2 to that in 
the authors’ original US study.     
 
When we allow for heterogeneous responses across issues in the panel, explanatory power for the 
BBB sample rises further, to approximately 50%.  This argues in favour of, not only applying the 
Merton model directly, but also allowing for potential idiosyncrasies in factors such as liquidity and 
recovery rates.   
 
This paper proceeds, as follows.  We begin, in Section 2, with a brief introduction to the theoretical 
relationship between credit spreads and default probabilities.  In Section 3, we turn to the empirical 
literature on this topic, highlighting some of the key recent contributions.  Our own empirical work is 
presented in Section 4, with some extensions in Section 5.  Section 6 concludes. 
 
2. The theoretical relationship between credit spreads and default probabilities 
 
From a contingent claims perspective, all traded securities should have a risk-neutral expected return 
equal to the risk-free rate.  If this were not so, profitable arbitrage opportunities would exist, and the 
market could not be in equilibrium.  If we assume continuous compounding, the return on a  
default-free zero-coupon bond is given by: 
 

Trf
T

TeR ,0
,0 =   (1) 

 
where r is the spot risk-free rate at period 0, on a T-period bond, and f

TR ,0  is one plus the risk-free 
rate of return between periods 0 and T.  The promised return on a defaultable (risky) bond, is given 
by: 
 

Tsrd
T

TTeR )(
,0

,0,0 +=   (2)  
 
where s is the annualised spot credit spread at period 0, on a T-period bond.  According to the ‘no 
arbitrage’ condition, if s>0 it must be that the bondholder attaches a probability of less than one to 
receipt of the full promised return.  The credit spread thus represents compensation for expected loss, 
which itself comprises the probability of default and the extent of loss given default.  If cum

Tq is the 
risk-neutral cumulative probability of default over the life of the bond, and z is the recovery rate in 
the event of default, the no arbitrage condition can be expressed, as follows: 
 

Tsrcum
T

cum
T

Tr TTT ezqqe )( ,0,0,0 ]1[ +⋅+−=   (3) 
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Rearranging and taking logs of both sides, one can obtain an expression for the spot credit spread in 
terms of the probability of default and the recovery rate: 
 

T
zqq

T
zqqs

cum
T

cum
T

cum
T

cum
T

T
)1ln(}]1ln{[ 1

,0
+−

−=
+−

=
−

  (4) 

 
Thus, the annualised spot credit spread is equivalent to the annualised risk-neutral probability of loss.  
If z = 0 this is equivalent to the annualised probability of default:   
 

T
q

T
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T
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−
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−
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−

  (5) 

 
However, if z ≠ 0, the relationship between credit spreads and the annualised probability of default is 
more complex.  Rearranging equation (5) and substituting for cum

Tq  in equation (4),  
yields:  
 

T
zezs

Tq

T

Ann
T ])1ln[( ,0

,0
+⋅−

−=
−

  (6) 

 
Thus, we can see that, when the recovery rate is non-zero, the credit spread is a non-linear function 
of Ann

Tq ,0
, with the first derivative of (6) being: 

 
TqTq

Ann
T

T Ann
T

Ann
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∂
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  (7) 

 
This is illustrated in Chart 1, in which we assume a zero-coupon bond with a maturity of five years 
and recovery rates of 0%, 40% and 75%.(2)  With a recovery rate of zero, plotted on the left-hand 
axis, it is clear that the relationship is one-for-one.  As we move to a non-zero recovery rate, plotted 
on the right-hand axis, the relationship becomes non-linear, with the degree of non-linearity 
increasing in z.  Note both the shift of scale and the change in the shape of the function.   

                                                                                                                                                                                                   
 
(2) A recovery rate of approximately 40% is consistent with empirical observations.  In a sample of more than 700 
defaulting bond issues between 1978 and 1995, Altman and Kishore (1996) calculate an average recovery rate of $41.70 
per $100 face value.  Recovery outcomes vary significantly across industries.  Those industries in which assets tend to be 
more liquid and more tangible enjoy higher liquidation values. 
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Chart 1: The theoretical relationship between credit spreads 
and annualised default probabilities(a) 
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(a) Assumes a zero-coupon bond, with maturity of 5 years. 

 
The literature has, however, identified a host of reasons why the theoretical relationship outlined 
above might break down.  One of the most crucial is likely to be the existence of liquidity premia.  
As pointed out by Schultz (1998), corporate bond markets tend to lack liquidity, making it costly to 
trade, and often making it difficult, if not impossible, to hedge or exit positions.(3)  As a result, the 
market will impose a yield premium by way of compensation.  A related issue is that in the presence 
of short-selling constraints, prices may not immediately reflect new information, creating a further 
source of divergence of theoretical and actual prices.  This will be a particular problem if bonds are 
infrequently traded, which is often the case in the sterling market where a small number of  
buy-and-hold investors dominate.  A further potential source of deviation from the theoretical 
relationship is taxation.  Elton et al (2001) find, in a study of the US corporate bond market, that 
differential tax treatment of corporate relative to government bonds explains a significant proportion 
of the credit spread.  It should be noted, however, that while liquidity premia are likely to vary 
considerably over time, the taxation factor may be less variable.   
 
3. The empirical literature 
 
As discussed earlier, our interest is in investigating the relationship between credit spreads and 
default probabilities.  A number of authors have considered this empirical question, with the majority 
finding that only a fraction of the observed variability in credit spreads can be explained by changes 
in default expectations.  In this section, we introduce some recent contributions to this literature, and 
discuss some of the key findings. 
 
It is instructive to begin with a review of the key predictions of the structural approach to 
determining the probability of default, which are best expressed in terms of the implicit put option on 

                                                                                                                                                                                                   
 
(3) Indeed, as Blanco, Brennan and Marsh (2004) point out, if it is costly to short-sell, the true credit spread is the  
option-adjusted spread plus the repo cost. 
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the value of the firm granted by bondholders to the company’s shareholders.(4)  First, an increase in 
asset value (or a decrease in debt) will lower the probability of default; by taking the company 
further from its default point,(5) it reduces the value of the shareholders’ put option on the firm.  
Second, an increase in volatility raises the likelihood that, for a given asset/liability ratio, asset value 
will fall to the default point.  This therefore increases the value of the put option.  The option-pricing 
methodology also allows us to make predictions about changes in the sensitivity of the put value to 
these factors as the asset/liability ratio itself changes (ie the rate of change of the option delta and 
option gamma).  The key predictions here are that the option delta and the option gamma increase as 
the asset/liability ratio approaches the default point, thus yielding a non-linear relationship between 
default probability and the distance from default.  
 
Longstaff and Schwartz (1995), henceforth LS, present a version of the original Merton model in 
which the risk-free rate is stochastic and default can occur whenever asset value reaches a certain 
threshold, rather than only at maturity.  The authors also drop the assumption of strict absolute 
priority among claimants in the event of default.  LS stress the distinction between the  
‘risk-neutral’ and the ‘actual’ processes for the value of the firm.  In the former, the drift term in the 
firm’s value process is equal to r, the risk-free rate, while in the latter, it is equal to the actual mean 
equity return, µ.  Thus, in valuing a risky bond, it is not sufficient to look only at the actual risk of 
default, as this may differ from the risk-neutral measure.  The key message of LS is therefore that 
credit spreads will be positively related to actual default risk, but negatively related to the risk-free 
rate.  The intuition for the latter association is that by increasing the risk-neutral drift in the firm’s 
value process, an increase in the risk-free rate will drive the firm further away from the default 
threshold.   LS go on to test the predictions of this model using a reduced form, rather than directly 
employing the predictions of a structural model.  With a data set comprising 25 years of corporate 
bond yield averages for US industrials, utilities and railroads, LS regress spread changes on equity 
returns (for the appropriate index), and the change in the 30-year US Treasury yield.  The authors 
find strong support for their variant of the structural model, with the coefficients on both regressors 
significantly negative, and most of their regressions exhibiting a high level of explanatory power.  A 
further prediction of the model, as discussed above, is that these inverse relationships should be more 

                                                                                                                                                                                                   
 
(4) To illustrate briefly the structural approach, we draw upon the example in Giesecke (2003).  Let us assume a simple 
firm, financed by a mix of equity and a zero-coupon bond, with face value B and maturity T.  If, at T, the asset value of 
the firm, VT, is insufficient to repay B, default occurs and the bondholders acquire the residual assets of the firm.  In this 
case, the equity holders get nothing.  If, on the other hand, the asset value is greater than B, the bondholders are paid in 
full, and the equity holders get the residual value: VT -B.  The value of equity is therefore equivalent to the pay-off of a 
European call option on V, with strike price B, and maturity T.  Thus, making the assumption that Vt follows a random 
walk, with drift equal to µ, the equity value may be given by the Black-Scholes call option formula: BSc(σ,T,B,µ,V0), 
where σ is asset volatility, and the expected discounted default loss of the bondholders is then equal to the value of the 
put option: BSp(σ, T,B,µ,V0).  Once again, from a contingent claims perspective, all assets should have a risk-neutral 
expected return equal to the risk-free rate.  Thus, if µ is set to be equal to r, the risk-free rate, the resultant implied default 
loss is risk-neutral.      
(5) In the context of the Merton model, the default point is a threshold asset value, at which the company is deemed to be 
in default.  In the Bank’s Merton model (Tudela and Young (2003a, 2003b)), employed in our econometric analysis, the 
default point is equal to all the company’s short-term, and half its long-term liabilities. 
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pronounced as firms approach the default point.  This prediction also finds support in LS’s empirical 
tests: the R2 of the reduced-form model increases as credit quality declines. 
 
In a more recent study, adopting a similar approach, Huang and Kong (2003) investigate the 
explanatory power of a broader array of factors, including realised default rates, interest rate 
variables, equity market factors, liquidity indicators and macroeconomic indicators.  Regressing 
spread changes in Merrill Lynch’s corporate bond indices upon these variables, the authors find that 
the combined explanatory power is as high as two thirds for the lowest quality high-yield indices, 
declining to approximately half for the low investment-grade indices and to around a third for the 
high investment-grade indices. 
 
Collin-Dufresne, Goldstein and Martin (2001), henceforth C-DGM, employ a disaggregated data set 
to test the structural approach more explicitly.  Their key finding is that such models can explain 
only a fraction of the pricing of credit risk in the financial markets.  According to a structural model 
of the credit spread, Spreadt = f(Vt, rt, {Xt}), where Vt is the firm’s value, rt is the risk-free rate and 
{Xt} is the set of all other state variables which might affect either the risk-neutral probability of 
default or the recovery rate in the event of default.  Using a large US data set of 688 bonds, spanning 
261 issuers and up to 56 months, C-DGM consider variants of the following specification:  
 

ittiti

titititiitiiit

PSjump
VIXSloperrleverageSpread

,76

54
2

32,10,

&                      
)(

εββ
ββββββ

+∆+∆

+∆+∆+∆+∆+∆+=∆  (8) 

 
where leverage captures the relationship between firm i’s asset value and its debt obligations, VIX 
captures volatility, jump is the probability of a large equity decline, reflecting the risk of a sizable 
adverse shock to the firm’s value process, and finally the return on the S&P and the yield curve slope 
are proxies for the business climate, which might be expected to determine the recovery rate.  The 
estimated regression coefficient for each factor generally carries the expected sign, with some 
evidence of greater sensitivity for firms with higher leverage (ie closer to the default point).(6)  
However, despite adopting a more detailed specification, C-DGM find that the explanatory power is 
extremely low: only around a quarter of the variation in spreads appears to be explained by the 
determinants of a structural model.  Furthermore, the most significant factors in their specification 
are common (such as the return on the S&P index), as opposed to idiosyncratic factors.  Performing a 
principal components analysis of the residuals, C-DGM find that over 75% of the variation is due to 
the first component.  This strengthens their conclusion that the most important drivers of variability 
in credit spreads are common systematic factors.  Though the authors add proxies for time variation 
in liquidity and risk premia to their specification, a great deal remains unexplained.   
 
Blanco, Brennan and Marsh (2004), henceforth BBM, perform an empirical analysis of  

                                                                                                                                                                                                   
 
(6) This is particularly notable for the interest rate and leverage, which is consistent both with the predictions of the 
structural model and the findings of Longstaff and Schwartz (1995).  Surprisingly, however, there is no evidence of a 
systematic increase in R2 as credit quality declines. 
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higher-frequency spread changes for a small sample of investment-grade corporates.  These authors 
also find relatively low explanatory power from this specification, but interestingly do not find such 
a strong influence from changes in the broad equity index.  BBM find considerable heterogeneity in 
estimated coefficients on firm-specific equity prices and volatility and, consistent with the structural 
model, observe that their absolute magnitudes tend to increase as credit quality decreases. The 
specific focus of BBM is on the dynamic relationship between corporate bond spreads and credit 
default swap (CDS) premia, rather than on the explanatory power of structural models of credit risk 
per se.  An interesting finding in their paper is the fact that the CDS market appears to be more 
closely integrated with the equity market and tends to lead the corporate bond market in price 
discovery.  The authors find that the basis between the two markets appears with a positive and 
highly statistically-significant coefficient when added to their regression specification for corporate 
bond spread changes, and suggest that the lagged response might reflect relative illiquidity and  
short-selling constraints in the cash market. 
 
Huang and Huang (2003) calibrate a variety of structural models to match observed default loss 
experience and use these to predict the level of credit spreads.  Though this is a markedly different 
approach, the authors reach a similar conclusion.  For investment-grade bonds, credit risk accounts 
for around 20% of the observed spread, with the proportion rising to 30% for lower investment-grade 
spreads (ie Baa-rated issues).  For high-yield bonds, however, credit risk is a much more important 
determinant of the spread.  Elton, Gruber, Agrawal and Mann (2001), henceforth EGAM, also 
conclude that default risk can explain only a fraction of the credit spread.  Here the authors split the 
level of the credit spread into three component parts: (i) a default premium, (ii) a tax premium, and 
(iii) a risk premium.  Using a large US database, the authors empirically estimate how much of the 
observed credit spread can be explained by each component part, and find that, for ten-year corporate 
bonds, default risk plus taxation can account for little more than half of the observed credit spread.(7)  
Using the Fama-French (1993) 3-factor model,(8) the authors find that 85% of the remaining spread 
may be explained by the very systematic factors employed in the literature to analyse risk premia in 
the equity market.  C-DGM also find support for these risk premium terms.  Including all three in 
their specification, they find each to be statistically significantly negative, with their importance 
increasing as credit quality (as measured by absolute leverage) deteriorates.   
 
The message from the recent empirical literature is consistent: though there is some support for 
structural models, the relationship between credit spreads and default probabilities appears to deviate 
significantly from that predicted by the theory.  In particular, factors such as risk and liquidity premia 
seem to play a significant role.  

                                                                                                                                                                                                   
 
(7) Elton et al (2001) also estimate the appropriate premium for default risk by extracting marginal default probabilities 
for each ratings class from transition matrices generated by S&P and Moody’s.   
(8) The Fama-French model seeks to explain excess equity returns in terms of the excess return on the market portfolio, 
the return premium on a portfolio of small versus large stocks, and the return premium on a portfolio of high versus low 
book-to-market stocks.   
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4. Empirical analysis 
 
4.1 Introduction 
 
The objective of our empirical analysis is to determine the extent to which variability in sterling 
corporate credit spreads reflects variability in default expectations.  Our analysis draws upon implied 
default probabilities for a sample of UK companies, generated by a structural model of corporate 
credit risk developed in-house at the Bank of England (described in detail in Tudela and Young 
(2003a, 2003b)).  
 
As discussed in Section 3, the literature has previously applied the structural approach to this type of 
analysis, but generally the essential inputs (leverage and volatility) have been treated separately; 
often within a linear model specification.  In this way, the interactions between these inputs and the 
rich, non-linear structure of these models has not been fully exploited.  In contrast, the approach 
taken here allows the structural model to generate the implied default probability, and only then 
incorporates this in a linear regression, expressed in error-correction form.   
 
We begin our analysis with a discussion of the data and data sources, going on to outline the 
essential features of the Merton model employed in our econometric work.  We then undertake some 
preliminary graphical analysis, before turning to our formal econometric analysis.   
 
4.2 Data and data sources 
 
The principal source of corporate bond data is the Merrill Lynch Global Index System.  We restrict 
our attention to investment-grade issuance, given that the UK high-yield sector is very small and 
notoriously illiquid.  Merrill Lynch specifies a number of criteria for inclusion in these indices, 
which ensure that constituent bonds meet certain standards of investability.  In particular, the 
minimum issue size (for investment-grade issues) is £100m, bonds must have at least one year 
remaining to maturity and the coupon schedule must be fixed.  Prices are ‘bid’ and obtained from a 
combination of Merrill Lynch trading desks and external sources.   
 
Our focus is on sterling issuance by UK industrial companies;(9) thereby excluding financial 
companies, which are not covered by the Bank’s Merton model, and utility companies, for which the 
regulatory environment may affect investors’ perceptions of risk.  We have therefore filtered the 
Merrill Lynch Sterling Corporate Index accordingly, retaining in our data set all issues still 
outstanding on 30 November 2003, for which at least ten monthly observations for the asset swap  
 

                                                                                                                                                                                                   
 
(9) We exclude the financial and utility sectors as both are subject to ongoing regulatory and supervisory pressures that 
will affect the perceived risk associated with their issued securities.  Furthermore, financial companies are not covered by 
the Bank’s Merton model.  Our criterion for inclusion is that issuers be rated no lower than BBB- by Standard and 
Poor’s. 
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spread are available,(10) and for which implied default probabilities are available for the issuer in the 
Bank’s model.(11)  Data are available from January 1997, yielding an unbalanced panel with up to 83 
observations per issue.  In the early part of the period under review, we have observations for only a 
small number of issues.  By January 2001, however, data are available for half of the bonds in the 
data set.   
 
Our final data set contains 42 issuers, with a total of 78 individual bond issues (see Annex C for a 
full list).(12)  This compares with 64 UK-domiciled industrial issuers, with a total of 124 individual 
issues, included in the Merrill Lynch Sterling Corporate Index at end-November 2003.  Furthermore, 
the prevailing combined market value of the 78 bonds in our data set was more than £23 billion, 
constituting around two thirds of the value of this segment of the index.  In this sense, our data set 
captures some of the most important UK issuers and issues.  In Table A, we present the industrial 
breakdown of the relevant segment of the Merrill Lynch index. Comparison of this with our final 
sample reveals that we have retained a reasonably similar spread of issuers, with the only notable 
mismatch being in the real estate sector (for which data are incomplete in the Bank’s Merton model).  
 
Table A: The sectoral breakdown of sterling issuance by UK industrials  

 £ issues by UK industrials –  

Merrill Lynch index system (30/11/03)

Our sample 

 % Mkt Cap No. issuers % issuers % Mkt Cap No. issuers % issuers 

Basic industry 3.8% 4 9.5% 3.0% 3 7.1% 

Capital goods 9.3% 7 16.7% 9.3% 6 14.3% 

Consumer cyclical 12.5% 8 19.0% 8.7% 5 11.9% 

Consumer non-cyclical 24.9% 14 33.3% 32.8% 10 23.8% 

Energy 7.2% 5 11.9% 6.6% 4 9.5% 

Media 4.5% 4 9.5% 7.0% 4 9.5% 

Real estate 7.6% 9 21.4% 0% 0 0% 

Cyclical services 13.8% 8 19.0% 16.1% 6 14.3% 

Non-cyclical services 0.6% 1 2.4% 1.1% 1 2.4% 

Telecom & technology 15.8% 4 9.5% 15.5% 3 7.1% 

 100%  64 100% 100%  42 100% 
Source: Merrill Lynch. 

                                                                                                                                                                                                   
 
(10) This is defined as the option-adjusted spread over LIBOR of a match floating rate bond.  The asset swap spread is 
increasingly adopted as a measure of the credit spread, despite the fact that swap rates are not truly risk-free.  This 
reflects the fact that the yield on government bonds became an increasingly unreliable reference rate in the late 1990s, as 
liquidity in the government market diminished.    
(11) We also include data for outstanding bond issues by three formerly investment-grade companies – British Airways, 
Corus Group and Cable and Wireless – but only up until the time of their downgrade to sub-investment grade.  Data for 
issues by Reuters and BP are also included, up until the time (during 2003) that the remaining maturity of their sterling 
bonds fell below one year.  Finally, data for an outstanding bond by Six Continents has also been included up until the 
time of its withdrawal from the index, also during 2003.    
(12)Fourteen of the issues in our sample are callable.  This should not introduce any bias into our results, given that the 
spreads employed are option-adjusted.  We have checked our key results using a sample of non-callable bonds only, with 
no discernible differences.   
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4.3 The Bank of England’s structural model 
 
The other important set of data employed in our analysis is, of course, the series of implied default 
probabilities generated by an in-house Merton model developed at the Bank of England.  The model, 
presented in detail in Tudela and Young (2003a), adopts a similar philosophy to the original Merton 
approach and applies this to the generation of implied cumulative default probabilities for one to five 
years.  Importantly, however, the Bank’s model allows for default to take place at any time, once a 
certain threshold has been reached, rather than only at maturity as in the original Merton model.  As 
shown in Tudela and Young (2003a), the implied probabilities of default generated by this model are 
fairly successful in establishing the likelihood of failure.  In a study of UK quoted company defaults 
between 1990 and 2001, the authors found that the mean value of the one year ahead default 
probability for defaulting companies was 32%, and that for non-defaulting companies was 5.2%.   
 
It should be noted that the value of the firm’s assets is essentially unobservable.  The model thus 
takes the ratio of the equity value to liabilities and applies a mapping, described in Tudela and Young 
(2003a), pages 15-16.  The principal inputs to the model are then: data on stock market capitalisation 
for each company in the sample, and accounting data on each company’s long and short-term 
liabilities.(13)  The key variable, k=A/L, the asset-liability ratio, is assumed to follow a stochastic 
process, dk = (µA − µL)kdt + σAkdz, where µA and µL represent the drift in the asset and liability value 
processes respectively, σA captures asset volatility and dz= ε√dt, with  ε~N[0,1].  The authors then 
define µA − µL= µk and σA= σk. 
 
In mapping equity to asset values, the authors work with a risk-adjusted measure of drift for the asset 
process, µA

*
 = r-∂ (where r is the risk-free rate of return and ∂ is the firm’s payout ratio), and set the 

risk-neutral rate of return on a firm’s equity, X, equal to dividend income plus capital gains received 
by equity holders, dEt(X)/dt; ie  rX = ∂(A - L)+dEt(X)/dt.  The value for k, consistent with this 
expression, is ultimately employed in the model;(14) hence, implied probabilities of default generated 
by the model are risk-neutral.  Given that the theory outlined in Section 2 predicts an association 
between credit spreads and risk-neutral default probabilities, the measures generated by the model 
are appropriate for our purposes in this study. 
 
Default is deemed to occur if k falls below the default point k, which is defined as the point at which 
assets equal total short-term liabilities, plus half the company’s long-term liabilities.  Maximum 
likelihood techniques are employed to determine the values of µk and σk, with these values then 
employed in the calculation of the implied default probability.  The probability of the firm not 
defaulting until date T is the probability that kT > k, conditional on kτ > k ∀ τ   t ≤ τ<T.(15) 

                                                                                                                                                                                                   
 
(13) These data are all obtained from Thomson Financial Datastream. 
(14) The authors solve the expression:  rX = ∂(A - L)+dEt(X)/dt, for k, using the Newton-Raphson scheme. 
(15) A formal mathematical treatment may be found in Tudela and Young (2003a). 
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4.4 Graphical analysis 
 
We begin with a brief graphical analysis of the mechanics of the structural model.  In Charts 2(a) – 
(d), we present a series of plots for four of the issues in our data set.  For each, the top panel contains 
four time series, which illustrate the principal inputs to the structural model (asset value, default 
point and asset volatility) and the implied probability of default generated by the Bank’s model.(16)  
Below this, we present, for each company, a second chart showing the implied probability of default 
and the asset swap spread, and a third tracing the path of the company’s S&P issuer rating over the 
sample period.   
 
In Charts 2(a) and (b), we examine data for two of the lower-rated companies in the sample.  These 
charts suggest that default probabilities generated by the structural model explain a great deal of the 
variation in credit spreads.  In the first panel of Chart 2(a), which plots data for British Airways 
(BA), we can see quite clearly that asset value was in steady decline for much of the period, while its 
default point, which proxies the firm’s liability structure, was rising.  The spike in the implied 
probability of default in late 2001 was coincident with a sharp fall in asset value (associated with 
expectations of lower profitability post-September 11th) which brought it close to the default point.  
In the second panel, we can see that BA’s credit spread also rose dramatically at this time, and that 
there has indeed been a strong association between the implied default probability and credit spreads 
throughout the period under review.(17)  The third panel reveals that, from 1999, BA’s credit rating 
was also in decline and that the stronger association between the credit spread and default probability 
has been most evident since the company fell into low investment-grade territory.  Similar 
observations may be made for Carlton Communications, in Chart 2(b).   
 
Turning to the higher-rated companies, in Charts 2(c) – (d), the picture is quite different.  In each 
case, the top panel reveals that asset values have remained some distance from the default point 
throughout the period.  Thus, implied probabilities of default have also been low throughout (note 
the scales), and, by and large, less variable than those for the likes of BA and Carlton.  Spreads for 
the companies shown in the charts, Tesco and BAA, did not exceed 80 basis points during the period 
under review (while those for the lower-rated companies above reached several hundred basis points 
in 2002/03), and such variability as has been observed must have been driven largely by other 
factors.  
 
One qualification is that those highly-rated companies for which equity market volatility was 
particularly high during the stock market decline of 2000-03 – such as telecommunications 
companies – did experience a dramatic increase in implied default probability and a concomitant 
increase in credit spreads.  Nevertheless, for A-rated companies such as Vodafone and BT (see Chart 

                                                                                                                                                                                                   
 
(16) In these charts we present the annualised five-year implied cumulative probability of default.  The choice of this 
measure is discussed later in this section. 
(17) BA’s credit spread is shown in the chart (and included in our analysis) to July 2003 only, at which time Standard and 
Poor’s downgraded the company to sub-investment grade.  
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Charts 2(a) – 2(b)   
2(a) British Airways 2(b) Carlton Communications 
(i) Structural model inputs (i) Structural model inputs 
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Charts 2(c) – 2(d)   
2(c) Tesco 2(d) BAA 
(i) Structural model inputs (i) Structural model inputs 
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A1(a) and (b) in Annex A), credit spreads still barely breached 150 basis points, suggesting that the 
marginal response to changes in default risk was more muted than for lower-rated companies.(18)   
 
A plausible, and quite compelling, explanation for these observations is that there is some 
segmentation between the high and low-quality investment-grade markets.(19)  The high-quality tier 
of the market attracts investors with a limited appetite for credit risk, who might otherwise invest 
solely in gilts and supranational bonds.  Such investors seek only a small margin above the risk-free 
return, a reward which does not justify detailed credit analysis.  Hence, common, broad-market 
signals are more important than idiosyncratic factors.  By contrast, investors in the low  
investment-grade segment of the market are more likely to be credit specialists, probably also 
investing in the high-yield market.  By virtue of the higher returns available, these investors will be 
willing to incur the high cost of detailed credit analysis and as a result will likely be more responsive 
to idiosyncratic news.    
 
4.5 Panel estimation 
 
As we saw in Section 2, the theory predicts a positive relationship between annualised credit spreads 
and annualised default probabilities, which with non-zero recovery rates is non-linear.  We initially 
adopt a linear approximation of this relationship, although by allowing coefficients to vary, first by 
rating, and later by issue, we go on to allow for some non-linearity.    
 
As discussed above, the Bank’s in-house Merton model generates cumulative implied probabilities 
of default for periods of one to five years.  These are converted into annualised probabilities using 
the annual-compounding equivalent of equation (5).(20)  The bonds in our sample span a much 
broader range of maturities; indeed, the median maturity is 8.8 years, with the 25th and 75th 
percentile maturities being 6.0 and 13.9 years, respectively.(21)  Although the theory predicts a 
relationship only between the spot credit spread and the annualised probability associated with that 
bond’s maturity, the Bank’s model generates probability estimates only for fixed one to five-year 
horizons.  Thus, in our econometric work we take the longest of these – the annualised five-year 
probability − as a proxy (in a second round of tests, we consider the one-year probability).   
  
We saw in equation (5) that, with zero recovery, the strict theoretical relationship between the credit 
spread on a zero-coupon bond and the risk-neutral annualised probability of default is: 
 

itit IPDSpread ,, γ=  (9) 

                                                                                                                                                                                                   
 
(18) This is inconsistent with the theory, in which the non-linear relationship presented in Chart 1 suggests that the 
marginal response decreases as default probability increases. 
(19) The author would like to thank an anonymous referee for suggesting this as a plausible explanation. 
(20) This is: Tcum

T
Ann

T qq /1
,0 )1(1 −−=  

(21) Maturities are slightly longer and more variable for the higher-rated bonds in our data set: The 25th, 50th and 75th 
percentiles are 5.8, 8.9 and 14.9 years, respectively, for bonds rated A- or higher, and 6.2, 8.5 and 10.7 years for those 
rated between BBB- and BBB+.   
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With both the probability of default (IPD) and the credit spread expressed in basis points, γ=1.  This 
relationship may be rewritten: 
 

)( ,,1,,1 itititit IPDIPDSpreadSpread ∆+=∆+ −− γ  (10) 
 
which, rearranged, yields an expression in error-correction form: 
 

itititit SpreadIPDIPDSpread ,1,1,, −− −+∆=∆ γγ  (11) 
 
(11) forms the basis for the specification to be adopted in our econometric analysis.  We do, 
however, wish to introduce a little more flexibility into the specification to allow for departures from 
the strict relationship in (9).  In particular, we must allow for the fact that recovery rates will be  
non-zero, that the bonds in our sample are all coupon-bearing, and that there are likely to be 
departures from the theory due to the existence of factors such as time-varying liquidity premia and 
taxation.   Furthermore, although the theory does not predict any relationship between the spread 
change in period t and lagged changes in the implied probability of default, we include a lag to allow 
for any delay in the transmission of information on default probabilities to the bond markets.  As 
Blanco, Brennan and Marsh (2004) point out, news appears to be impounded into prices more slowly 
in the presence of short-selling constraints, though a long lag-length would seem implausible, and 
would suggest a high degree of segmentation between equity and bond markets.(22)   
   
Our base-line specification is, therefore: 
 

itititititiit IPDIPDIPDASWAPASWAP ,,14,3,12,110, 555 εβββββ +∆+∆+++=∆ −−−  (12) 
 
where ASWAP is the asset swap spread, in basis points, and 5IPD is the five-year annualised implied 
probability of default (x100).  The negative of the ratio of the coefficients on the lagged levels of 
implied probability of default and the asset swap spread, -β2/β1, will yield an estimate of the long-run 
relationship, while coefficients β3 and β4 represent estimates of the short-run effects.  
 
Our chosen estimation methodology is least squares, with panel-corrected standard errors.  Although 
our model is dynamic, the dimensions of our panel continue to argue in favour of a least-squares 
methodology.  Judson and Owen (1999) present results from a Monte Carlo study, which compares 
the biases of alternative estimators, in panels of various dimensions.  The authors show that with a 
sufficiently large T (=30), the residual mean-squared error from least-squares estimation is smaller 
than that from GMM, unless N is very large.  When T=20, performance is broadly equivalent, but 
with a small T, GMM dominates.  Here, even in our ratings sub-samples, T averages at least 25, and 
hence least-squares remains an appropriate approach.   

                                                                                                                                                                                                   
 
(22) As a robustness test, however, we do consider a specification which includes two lags of the change in default 
probability, finding that the coefficient on the second lagged term is not statistically significant at conventional levels, 
and that the inclusion of the second lag has no discernible effect on the other estimated coefficients. 
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The results in column (1) of Table B reveal that all estimated coefficients carry the expected sign and 
are statistically significant.  The long-run effect is higher than the estimated short-run effects, 
although according to the theory a coefficient of 4.2 is consistent with a much higher recovery rate 
than has been observed empirically.  Indeed, given a mean five-year annualised probability of default 
for the whole sample of the order of 10%, the implied recovery rate using the formula in (7) is close 
to 90%, which compares with an empirically observed recovery rate of close to 40%.  As we shall 
discuss later in this section, our estimated coefficients may be difficult to interpret for a number of 
reasons.  Hence, our prime emphasis will be on the overall explanatory power of our regressions and 
upon the relative magnitudes of estimated coefficients.  The R2 of our regression, at just 0.17, is 
towards the lower end of explanatory power in the US study of Collin-Dufresne et al (2001). 
 
In column (2), we report the results from least-squares estimation of the specification in (13), below 
(again, with panel-corrected standard errors).  Here we also include time dummies, to capture any 
time-varying systematic factors omitted from our original specification.  These might include 
liquidity premia and taxation factors, common to all bond issues. 
 

ititititittiit IPDIPDIPDASWAPASWAP ,,14,3,12,1100, 555 εββββββ +∆+∆++++=∆ −−−    (13) 
 
The inclusion of time dummies has a marked effect on our regression results, with all estimated 
coefficients somewhat lower in absolute magnitude than those in column (1).  This suggests that 
some of the effect attributed to the included variables was, in fact, due to correlation between the 
implied probability of default and omitted systematic factors.  The explanatory power of the 
regression rises to a third. 
 
By way of a test of the validity of our error-correction method, we carry out a Durbin test of 
autocorrelation in the residuals.  For each specification, we extract the estimated residuals and 
regress these upon two lags of themselves (thereby testing for autocorrelation up to the second order) 
and all of the regressors in the original equation.  In order to be consistent with our initial method, 
we again correct for panel-level heteroskedasticity when estimating these regressions.  In the final 
row of Table B, we present the p-values from Wald tests of joint significance of the two lagged 
residual terms, and in each case fail to reject the null of zero autocorrelation with at least a 10% level 
of significance.    
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Table B: Pooled regression results  
 

 All issues Representative issues 

 (1) (2) (3) (4) 

ASWAPt-1 -0.071 

(-4.32)*** 

-0.065 

(-3.85)*** 

-0.051 

(-2.85)*** 

-0.047 

(-2.57)*** 

5IPDt-1 0.295 

(5.15)*** 

0.233 

(4.61)*** 

0.258 

(3.95)*** 

0.223 

(3.89)*** 

∆5IPDt 1.814 

(13.20)*** 

1.233 

(9.63)*** 

1.838 

(11.43)*** 

1.238 

(8.38)*** 

∆5IPDt-1 1.135 

(8.58)*** 

0.827 

(6.77)*** 

1.181 

(7.62)*** 

0.877 

(6.18)*** 

Issue dummies Yes Yes Yes Yes 

Time dummies No Yes No Yes 

R2 0.172 0.332 0.163 0.322 

Long-run effect 4.185 3.573 5.051 4.731 

Observations 2,753 2,753 1,756 1,756 

Issues(a) 71 71 39 39 

Av. obs. per issue 38.8 38.8 45.0 45.0 

Durbin test (p-value) 0.114 0.109 0.147 0.103 
The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  The long-run relationship reported in the table is calculated as -β2/β1 in 
specification (12).  t-statistics are reported in brackets, where * = coefficient statistically significant at the 10% level; **=coefficient 
statistically significant at the 5% level; and *** = coefficient statistically significant at the 1% level.  In the final row of Table B, we 
report the results of a test of autocorrelation in the residuals.  The residuals from each regression have been regressed against two lags 
of themselves and all of the regressors in the original regression.  A Wald test of joint significance of the two lagged residual terms has 
then been carried out, with the p-value reported in the table. 
(a) Given some evidence of autocorrelation in the residuals from these regressions, several issues have been dropped from the 
analysis. 
 
There may be some concern over potential bias associated with the inclusion of multiple issues for 
several of the issuers in our data set.  Alongside our core regression, therefore, we estimate 
specifications (12) and (13) including a single representative issue for each issuer (this is generally 
the issue for which we have the largest number of observations).  Encouragingly, the results in 
columns (3) and (4) of Table B are very similar to those in columns (1) and (2) – both the 
explanatory power and the estimated short-run effects are almost identical, although the estimated 
long-run effects are slightly higher.  Given the similarity of these results, we continue to work with 
the full data set for the remainder of the paper. 
 
Clearly, a great deal remains unexplained in this pooled regression, and as mentioned above, the 
estimated long-run coefficient implies an implausibly high recovery rate.  A number of factors may 
also be at work here.  First, it is somewhat restrictive to impose a common coefficient across all 
issues.  For example, there may be considerable heterogeneity in recovery rates.  Second, our 
specification does not take account of heterogeneity in the response to factors subsumed in the time 
dummies − it would not be unreasonable, for example, to expect liquidity conditions to differ across 
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issues and this could significantly affect the equilibrating force of arbitrage in the market.  There 
may also be interactions between default probability and such omitted factors, which are not taken 
into account in our specification.(23)  
 
Some of the heterogeneity in liquidity, risk premia, or recovery rates, may be related to the issuer’s 
credit rating, and as was noted in the discussion supporting our graphical analysis, spreads appear to 
be more closely linked to default probabilities for lower-quality bond issues.  Segmentation of the 
high and low tiers of the investment-grade market, as discussed above, may also argue in favour of a 
‘structural break’ between ratings groups.  Furthermore, to the extent that implied probabilities of 
default are higher for lower-rated issuers,(24) we capture some of the non-linearity in the  
spread-default probability relationship outlined in Section 2.    
 
In Tables C(i) and (ii), we examine whether there is any evidence that coefficients vary by issuer 
rating.  We work with three ‘broad’ ratings bands, based on Standard and Poor’s credit ratings: (i) 
issuers rated AAA to AA-; (ii) issuers rated A+ to A-; and (iii) those rated BBB+ to BBB-.(25)   We 
allow for transitions between ratings, and thus the composition of our sub-samples changes over 
time.(26)  The A+ to A- sample is the largest, containing observations for a total of 56 issues, by 30 
companies, with an average of 28 observations per issue.  The highest quality sample is the smallest, 
with 20 issues across just 7 issuers, but with 35 observations, on average, for each issue.  Finally, the 
BBB+ to BBB- sample comprises 36 issues, by 25 companies, with an average of 26 observations 
per issue.   
 
Results for each group estimated separately are presented in Table C(i).  These confirm the 
impression given by our earlier graphical analysis: the explanatory power of the Merton model 
increases as credit quality declines.   
 
The model explains just 8% of the variability in AAA/AA spreads (column (1)), increasing modestly 
to 11% for single-A spreads (column (3)), and ultimately to 32% for the BBB sample (column (5)).  
Nevertheless, even for lower investment-grade credits much remains unexplained, which either 
constitutes a further challenge to the strict validity of the theoretical model, or argues in favour of 
further modification to our estimation methodology.  Furthermore, the absolute magnitude of 
estimated coefficients – both long-term and short-term – tends to increase as credit quality declines.  
This finding is contrary to the theory – in which the relationship is concave − but consistent with our 
graphical analysis and the segmented markets explanation proposed.  

                                                                                                                                                                                                   
 
(23) There may also be other issues, such as the potential bias associated with a mismatch between the term of the bond 
and that of the default probability (as noted earlier in this section), and the fact that our principal variable of interest, the 
Merton default probability, is a constructed measure.  
(24) This is indeed generally the case.  For example, in our sample, the median implied default probability for the highest 
rated credits (AAA to AA-) was 0.3%; that for A+ to A- credits was 3.5%; and that for BBB+ to BBB- credits was 5.7%. 
(25) Where Standard and Poor’s ratings are unavailable, Moody’s ratings have been used.  Where an issuer is not rated by 
either agency, we apply the first available rating from the start of the sample period.  
(26) Ratings transitions during the period under review were almost exclusively downwards, with four issuers descending 
from the AAA to AA- group to the A+ to A- group, and 15 descending from the latter to the BBB+ to BBB- group.  
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Table C(i): Regression results - ratings subgroups 
 

 AAA/AA-rated issuers A-rated issuers BBB-rated issuers 

 (1)(a) (2)(a) (3) (4)(b) (5) (6) 

ASWAPt-1,i -0.155 

(-5.39)*** 

-0.192 

(-5.29)*** 

-0.055 

(-3.43)*** 

-0.085 

(-4.12)*** 

-0. 130 

(-4.24)*** 

-0.125 

(-4.17)*** 

5IPDt-1,i 0.299 

(2.24)** 

0.296 

(2.55)** 

0.137 

(3.61)*** 

0.143 

(4.00)*** 

0.467 

(2.82)*** 

0.353 

(2.31)*** 

∆5IPDt,i 0.307 

(1.93)** 

0.268 

(1.78)* 

0.738 

(8.66)*** 

0.438 

(5.57)*** 

3.031 

(9.00)*** 

1.874 

(5.87)*** 

∆5IPDt-1,i 0.052 

(0.32) 

0.115 

(0.73) 

0.259 

(2.98)*** 

0.104 

(1.28) 

1.958 

(6.19)*** 

1.180 

(3.94)*** 

Issue dummies Yes Yes Yes Yes Yes Yes 

Time dummies No Yes No Yes No Yes 

R2 0.080 0.605 0.114 0.478 0.321 0.474 

Long-run effect 1.927 1.543 2.477 1. 689 3.595 2.818 

Observations 593 593 1,560 1,336 918 918 

Issues 17 17 56 52 36 36 

Av. obs. per issue 34.9 34.9 27.9 25.7 25.5 25.5 
Durbin test 
(p-value) 0.107 0.228 0.212 0.205 0.328 0.536 

The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  The long-run relationship reported in the table is calculated as -β2/β1 in 
specification (12).  t-statistics are reported in brackets, where * = coefficient statistically significant at the 10% level; **=coefficient 
statistically significant at the 5% level; and *** = coefficient statistically significant at the 1% level.  In the final row of Table C(i), we 
report the results of a test of autocorrelation in the residuals.  The residuals from each regression have been regressed against two lags 
of themselves and all of the regressors in the original regression.  A Wald test of joint significance of the two lagged residual terms has 
then been carried out, with the p-value reported in the table. 
(a) Three issues, by BT and GlaxoSmithkline, have been dropped from the regression with both issue and time dummies, due to 
evidence of autocorrelation in the residuals when included.  
(b) Four issues, by BAE Systems and BT, have been dropped from the regression with both issue and time dummies, due to evidence 
of autocorrelation in the residuals when included. 
 

Including time dummies, we find that explanatory power increases dramatically for the higher-rated 
groups – for the AAA/AA sample, explanatory power rises to more than 60%, while for the A-rated 
group, R2 approaches 0.50.  This suggests that systematic factors dominate spread changes for higher 
investment-grade bond issues. 
 
We also re-estimate the ‘all issues’ regression in Table B, column (1), interacting each right-hand 
side variable with a ratings dummy, to investigate how much additional explanatory power is 
afforded us by allowing coefficients to vary by ratings group.  Using this approach, we are also able 
to test formally whether statistically significant differences exist in the estimated coefficients for 
each group.  First, we find that explanatory power rises from 17% to 27% – a significant increment.  
In Table C(ii), we find that statistically significant differences in coefficients exist between the BBB 
group and each of the higher ratings groups.  The only significant difference between coefficients in 
the AAA/AA group and the single-A group, is in the short run.   
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Particularly given the relatively small size of the AAA/AA sample, this result argues in favour of 
working with just two ratings groups: (i) AAA to A-; and (ii) BBB+ to BBB-.  Re-estimating (12) for 
the broader AAA to A- sample, explanatory power is approximately 10%.   
 
Table C(ii): Wald tests of coefficient equality across issuer rating groups 
 

 ASWAPt-1,r,i 5IPDt-1,r,i ∆5IPDt,r,i ∆5IPDt-1,r,i 

AAA/AA=A (p-value) 0.97 0.55 0.00*** 0.12 

A=BBB (p-value) 0.07* 0.00*** 0.00*** 0.00*** 

AAA/AA = BBB (p-value) 0.12 0.06* 0.00*** 0.00*** 

For each independent variable included on the right-hand side of equation (12), we present the p-value from a joint Wald test of 
coefficient equality across ratings groups.   

 
4.6 Robustness tests 
 
(i) Composition over time 
 
It should be noted that most of the few issues for which data are available in the early part of the 
period under review are in the AAA-A sub-sample.  Indeed only 10% of the observations in the BBB 
sample occur prior to June 2000, while in the AAA-A sample, a third of observations occur in this 
period.  This suggests that any results for the BBB sample will be driven by observations in the latter 
half of the sample period.  We therefore wish to examine the extent to which these compositional 
issues influence our results.  In Table D, we present summary results from a re-estimation of (12) for 
the two ratings sub-samples, covering only the period June 2000 – November 2003.  The basic tenor 
of our results remains unchanged, although explanatory power rises slightly for the AAA-A group – 
from 10% to 15%.   
 
Table D: Summary regression results - ratings subgroups, sample period June 2000 – 
November 2003 

 AAA - A-rated issuers BBB-rated issuers 

 (1) (2)(a) (3) (4) 
 Issue dummies 

only 
Issue and time 

dummies 
Issue dummies 

only 
Issue and time 

dummies 

R2 0.153 0.459 0.332 0.479 

Long-run effect 1.031 0.293 3.211 2.582 

Observations 1,568 1,502 824 824 

Issues 57 55 36 36 

Av. obs. per issue 27.5 27.3 22.9 22.9 
Durbin test (p-value) 0.274 0.371 0.294 0.491 

The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  The long-run relationship reported in the table is calculated as -β2/β1 in 
specification (12).  In the final row of Table D, we report the results of a test of autocorrelation in the residuals.  The residuals from 
each regression have been regressed against two lags of themselves and all of the regressors in the original regression.  A Wald test of 
joint significance of the two lagged residual terms has then been carried out, with the p-value reported in the table.  
(a) Two issues, by BAE Systems, have been dropped from the regression with both issue and time dummies, due to evidence of 
autocorrelation in the residuals when included. 
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(ii) The spread of maturities 
 
We noted earlier that our data set includes bonds with a rather broad spread of maturities (see 
footnote 21).  According to the theory, this may have an effect on our coefficient estimates.  Drawing 
on the theory presented in Section 2, Charts 3(i) and (ii) plot the theoretical short and long-run 
responses associated with notional zero-coupon bonds of five and ten-year maturity, assuming first 
40% recovery, and then 75% recovery.   
 
First, in panel (i), we see that at low probabilities, the short-run response is higher for long-maturity 
bonds, with the difference larger, the lower the recovery rate.  At higher probabilities, the short-run 
response is greater for short-maturity bonds, although at higher recovery rates the difference between 
the two is modest.  In panel (ii), we find that the long-run response is always higher for  
short-maturity bonds, with the difference increasing in the probability of default.  Again, the 
difference is smaller at higher recovery rates. 
 
Chart 3: Maturity differences 
 
(i) The short-term response (ii) The long-term response 
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To examine the extent to which this affects our results, we re-estimate (12) and (13) for the full 
sample, and the two ratings sub-samples, but this time interact each regressor with a dummy variable 
denoting whether a bond is long (maturity is greater than ten years), or short (maturity is less than (or 
equal to) ten years).  We then test whether our coefficients are equal across maturities.  The results of 
these tests are presented in Table E below.  
 
Table E: Wald tests of coefficient equality across maturities 

 ASWAPt-1,r,i 5IPDt-1,r,i ∆5IPDt,r,i ∆5IPDt-1,r,i 

Full sample (p-value) 0.05** 0.04** 0.31 0.13 

AAA - A (p-value) 0.06* 0.08* 0.01*** 0.79 

BBB (p-value) 0.05* 0.97 0.69 0.57 

For each independent variable included on the right-hand side of (12), we present the p-value from a joint Wald test of coefficient 
equality across ratings groups.   
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Interestingly, coefficient differences across maturities are relatively small.  In the BBB sample, 
short-run differences are not statistically significant, which is consistent with the modest differences 
at higher default probabilities (for high recovery rates) observed in Chart 3, panel (i).(27)  If we 
consider these test results alongside the full results from separate regressions by rating and maturity, 
reported in Annex B, we find a slightly lower long-run coefficient in the BBB long-maturity sample.  
Once again, this is consistent with the profile in panel (ii). 
 
There are more statistically significant differences in the higher-quality sub-sample, both for  
short-run and long-run coefficients, although the magnitudes are relatively modest.  Again consistent 
with the theory, the short-run response is higher at longer maturities (given low default probabilities 
in the higher-quality sub-sample), and the long-run response is slightly higher.  Nevertheless, the 
observed differences are insufficient to alter the broad thrust of our results. 
 
4.7 Comparison with Collin-Dufresne et al (C-DGM) 
 
The results presented above are more supportive of the structural model than those of  
Collin-Dufresne et al (2001) for lower investment-grade issues.  It is therefore natural to ask whether 
this reflects the data employed or the estimation methodology.   
 
We examine this question by applying C-DGM’s linear methodology to our UK data set and then 
comparing the explanatory power with that obtained above for each ratings subgroup, using 
specification (12).  The specification we estimate is similar to that in (8).(28)  There are some subtle 
differences in the measures employed, though in essence we take suitable UK equivalents of the US 
measures adopted by C-DGM.  The most notable difference is in the measure of leverage employed, 
for which we take the default ratio employed in the Bank’s Merton model.(29)  The results are 
presented in Table F below. 
 
R2s in Table F of 0.12 and 0.21,(30) for AAA-A and BBB samples respectively, compare with 0.10 
and 0.32 using the direct Merton approach in specification (12) (as reported in Section 4.5).  Thus, 
the two approaches yield similar results for higher-quality credit spreads, while our direct Merton 
approach does much better as we move down the credit scale.   
 
This outcome is broadly intuitive, for the advantage of the Merton approach is that it exploits the 
non-linearity inherent in the structural model, which only begins to have an effect as a company’s 

                                                                                                                                                                                                   
 
(27) It should be noted, however, that the long-maturity sample for BBB issuers is relatively small (just 11 issues, and 267 
observations in total). 
(28) This is taken from C-DGM’s equation (1), page 2,184.    
(29) For firm leverage, C-DGM employ the book value of debt, divided by the sum of the book value of debt and the 
market value of equity.  In their regressions by ratings group (the authors’ Table III, page 2,188), the authors include a 
measure of individual stock returns instead of leverage. 
(30) This compares with 0.23 and 0.19 in C-DGM’s US study, for the authors’ single-A and BBB sub-samples 
respectively.  Interestingly, therefore, explanatory power in the sterling market appears to be somewhat lower for the 
highest quality issues.  This may reflect lower liquidity in the sterling market and the narrower investor base. 
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asset value approaches the default point.  Given that highly-rated companies tend to be some distance 
from default, capturing the non-linearity in the structural model would not be expected to add much 
value.   
 
Table F: Regression results – including determinants of the structural model in a linear 
specification 

 All issuers AAA - A- 

rated issuers 

BBB-rated 

issuers 

 (1) (2) (3) 

∆ DEFAULT RATIOt,i -3.711 

(-3.60)*** 

-2.571 

(-3.16)*** 

-10.607 

(-2.59)*** 

∆ R10t -10.071 

(-4.68)*** 

-3.874 

(-2.83)*** 

-22.654 

(-3.51)*** 

(∆ R10)2
t 1.303 

(0.19) 

-10.628 

(-2.35)** 

51.707 

(2.81)*** 

∆SPR 2-10t 14.697 

(5.78)*** 

6.754 

(3.95)*** 

31.395 

(4.29)*** 

∆ FTSE 100-VOLt -0.143 

(-1.26) 

-0.259 

(-3.39)*** 

0.004 

(0.01) 

∆ JUMPt 1.024 

(4.22)*** 

1.129 

(7.12)*** 

1.150 

(1.58) 

∆ LN(FTSE 100)t -72.024 

(-5.40)*** 

-48.628 

(-5.57)*** 

-112.867 

(-3.09) 

Issue dummies Yes Yes Yes 

Time dummies No No No 

R2 0.103 0.121 0.213 

Observations 3,220 2,301 919 

Issues 78 61 36 

Av. obs. per issue 41.3 37.7 25.5 

Durbin test (p-value) 0.166 0.185 0.400 
The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  Regressors are: ∆DEFAULT RATIO – change in the ratio of a company’s asset 
value to its ‘default point’, as included in the Merton model, where ‘default point’ is defined as all of a company’s short-term and half 
of its long-term liabilities; ∆R10 – change in the 10-year gilt yield;  (∆R10)2 – squared change in the 10-year gilt yield; ∆SPR 2-10 – 
change in the spread between 10 and 2-year gilt yields; ∆FTSE 100-VOL – change in the implied volatility of the option on the FTSE 
100 index futures contract; ∆JUMP- probability of a 20% decline in the FTSE 100 index, calculated from option prices; ∆LN(FSTE 
100) – the change in the natural log of the FTSE 100 price index.  t-statistics are reported in brackets, where * = coefficient statistically 
significant at the 10% level; **=coefficient statistically significant at the 5% level; and *** = coefficient statistically significant at the 
1% level.  In the final row of Table F, we report the results of a test of autocorrelation in the residuals.  The residuals from each 
regression have been regressed against two lags of themselves and all of the regressors in the original regression.  A Wald test of joint 
significance of the two lagged residual terms has then been carried out, with the p-value reported in the table. 

 
The signs and significance of our estimated coefficients in Table F are, by and large, consistent with 
the priors set out in C-DGM – in particular, the default ratio, the real interest rate, the FTSE 100 
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return and the ‘jump’ each carry the correct sign and are statistically significant across ratings 
groups.(31)  Among the other factors, the spread factor takes the wrong sign, as does the volatility 
measure (where significant).  The former may reflect distortions in the UK gilt market during the late 
1990s/early 2000s, while the latter is likely to be due to collinearity with the change in the FTSE 100 
index, with which the sample correlation is -0.71.   
 
5. Extensions to the basic model 
 
5.1  Heterogeneous responses 
 
We suggested above that there may be heterogeneous responses even at the level of the individual 
issue, perhaps reflecting idiosyncratic liquidity factors.  In particular, thin-trade effects, discussed 
briefly in Section 2, may significantly influence the observed response to changes in default 
probability.  Allowing heterogeneous responses also in part addresses the maturity differences 
identified in Section 4.6. 
 
In light of this, we perform a further round of tests, allowing both the long-run and short-run slope 
coefficients to change for each issue in the panel (though time dummies, where included, remain 
common to the whole sample).  In order to ensure sufficient degrees of freedom at the issue level, we 
reduce the data set to include only those issues with at least 25 observations over the sample period.  
Unfortunately, this leads to a marked decline in the size of the ratings sub-samples – particularly the 
BBB sample.  The specification we adopt is presented in (14) below. 
 

ititiitiitiitiiit IPDIPDIPDASWAPASWAP ,,14,3,12,110, 555 εβββββ +∆+∆+++=∆ −−−    (14) 
  
In Table G, columns (1) and (3), we present the results from our estimation of (14).  We calculate 
coefficient estimates and standard errors using the Mean Group Estimator methodology described in 
Matyas and Sevestre (1996).  The coefficient shown is thus the mean of the estimates across panel 
members,β , with the standard error calculated by: 
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where N is the number of issues in the panel.   
 
In columns (2) and (4), we add time dummies to the specification in (14).  We continue to work with 
ratings sub-samples, so as to be able to investigate explanatory power.  Mean group estimates of the 
coefficients in regressions excluding time dummies continue to carry the expected sign (columns (1) 
and (3) of Table G), and remain statistically significant at conventional levels.  Explanatory power 
increases markedly, to more than a quarter for the AAA-A sample, and to almost a half for the BBB 

                                                                                                                                                                                                   
 
(31) The ‘jump’ variable actually has a p-value of 0.11. 
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sample.  For the full sample (not reported), explanatory power rises to 41%, which is significantly 
higher than has been found in other empirical studies. 
 
Table G: Regression results – exploring heterogeneous responses: Mean Group Estimator 
 

 AAA - A-rated issuers BBB-rated issuers 

 (1) (2) (3) (4) 

ASWAPt-1,i -0.272 

(-6.55)*** 

-0.218 

(-8.17)*** 

-0.246 

(-8.94)*** 

-0.436 

(-10.61)*** 

5IPDt-1,i 0.404 

(3.57)*** 

0.247 

(2.98)*** 

1.049 

(2.19)** 

1.161 

(2.47)** 

∆5IPDt,i 0.845 

(4.18)*** 

0.213 

(1.24) 

2.914 

(4.65)*** 

1.401 

(2.05)** 

∆5IPDt-1 0.358 

(1.77)* 

0.209 

(1.09) 

1.104 

 (2.55)*** 

-0.181 

(-0.46) 

Issue dummies Yes Yes Yes Yes 

Time dummies No Yes No Yes 

R2 0.278 0.578 0.481 0.654 

Long-run effect 1.486 1.134 4.271 2.663 

Observations 1,886 1,886 590 590 

Issues 36 36 14 14 

Av. Obs. per issue 52.4 52.4 42.1 42.1 
Durbin test 
 (p-value) 0.291 0. 378 0.393 0.294 

The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  Mean group estimates of each coefficient are reported, with t-statistics based upon 
standard errors calculated by (15).  The long-run relationship reported in the table is calculated as -β2i/β1i in specification (14).   
t-statistics are reported in brackets, where * = coefficient statistically significant at the 10% level; **=coefficient statistically 
significant at the 5% level; and *** = coefficient statistically significant at the 1% level.  In the final row of Table G, we report the 
results of a test of autocorrelation in the residuals.  The residuals from each regression have been regressed against two lags of 
themselves and all of the regressors in the original regression.  A Wald test of joint significance of the two lagged residual terms has 
then been carried out, with the p-value reported in the table. 

 
Once time dummies are included, however, the sizes of the coefficients on implied default 
probability diminish in absolute magnitude and the short-run coefficients in the higher-quality  
sub-sample lose their statistical significance.  Nevertheless, explanatory power increases further, 
rising to more than a half for the high-grade sample, and to almost two thirds for the BBB group.  
This analysis suggests that heterogeneity at the level of the individual issue is indeed an important 
feature of the data set, and that recognition of this, as well as a more direct application of the Merton 
model, generates increased empirical support for structural models – at least in the case of  
lower-rated credits.  Nevertheless, a larger data set would be required to strengthen our results using 
this methodology. 
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5.2 One-year implied probabilities of default 
 
A further possibility is that investors respond more readily to changes in near-term default 
expectations.  If bondholders have short investment horizons (or holding periods),(32) one might 
argue that they will place greater weight on near-term expectations than on those spanning the life of 
a bond.  Thus, for each of the AAA-A and BBB sub-samples, we replace the five-year annualised 
probability in our pooled specifications (12) and (13) with the one year ahead probability. Results are 
presented in Table H.  
 
Table H: Regression results – one-year implied probability of default 
 

 AAA - A-rated issuers BBB-rated issuers  

 (1) (2)(a) (5) (6) 

ASWAPt-1 -0.075 

(-5.83)*** 

-0.100 

(-6.05)*** 

-0.151 

(-5.13)*** 

-0.184 

(-5.80)*** 

1IPDt-1 0.188 

(4.27)*** 

0.228 

(4.72)*** 

0.905 

(2.98)*** 

1.137 

(3.95)*** 

∆1IPDt 1.033 

(8.88)*** 

0.837 

(7.23)*** 

4.039 

(10.33)*** 

3.358 

(9.21)*** 

∆1IPDt-1 0.281 

(2.31)** 

0.080 

(0.65) 

2.049 

(5.55)*** 

1.340 

(3.87)*** 

Issue dummies Yes Yes Yes Yes 

Time dummies No Yes No Yes 

R2 0.128 0.474 0.439 0.577 

Long-run effect 2.514 2.275 5.977 6.188 

Observations 2,289 2,010 918 918 

Issues 61 57 36 36 

Av. obs. per issue 37.5 35.3 25.5 25.5 
Durbin test  
(p-value) 0.130 0.199 0.183 0.303 

The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  The long-run relationship reported in the table is calculated as -β2/β1 in the  
one-year probability equivalent of specification (12).  t-statistics are reported in brackets, where * = coefficient statistically significant 
at the 10% level; **=coefficient statistically significant at the 5% level; and *** = coefficient statistically significant at the 1% level.  
In the final row of Table H, we report the results of a test of autocorrelation in the residuals.  The residuals from each regression have 
been regressed against two lags of themselves and all of the regressors in the original regression.  A Wald test of joint significance of 
the two lagged residual terms has then been carried out, with the p-value reported in the table. 
(a) Two issues, by BAE Systems and BT, have been dropped from the regression with both issue and time dummies, due to evidence 
of autocorrelation in the residuals when included. 

 
One might expect this effect to be strongest at higher default probabilities, where investors’ 
sensitivity to downside risk is likely to be heightened.  These results suggest that this is indeed the 
case.  For this group (column (3)), the long-run coefficient rises to approximately 6, and explanatory 

                                                                                                                                                                                                   
 
(32) A full treatment of this hypothesis is beyond the scope of this paper. 
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power increases to 44%, from 32% in Table C(i).  The R2 rises further, to 0.58, with the addition of 
time dummies.   
 
For the AAA-A sample, on the other hand, the results are not markedly different from those for the 
AAA-AA and single-A samples in Table C(i), with explanatory power still only 13%.   
 
Although these results carry some intuitive appeal and provide some initial evidence in favour of the 
hypothesis that credit spreads respond more readily to changes in near-term default expectations, 
more work needs to be done to both tie down the theory behind such behaviour, and to firmly 
establish the robustness of the results. 
 
6. Concluding remarks 
 
The foregoing analysis yields some interesting results on the relationship between credit spreads and 
implied probabilities of default generated by a structural model.  In a pooled least-squares regression, 
we find that only 17% of the variability in asset swap spreads is explained by variation in the  
five-year annualised implied default probability.  We consider several explanations for such low 
explanatory power, noting that heterogeneity among panel members in factors such as liquidity 
conditions and recovery rates might undermine a pooled estimation technique.   
  
We first consider heterogeneity at the level of the issuer’s credit rating, estimating a separate pooled 
specification for each ratings subgroup.  We find that our specification explains just 10% of the 
variation in credit spreads for high-quality bond issues, rising to a third for lower-quality  
investment-grade credits.  Adding time dummies to the specification, to capture time-varying 
systematic market factors, such as liquidity premia, explanatory power rises to almost a half for both 
sub-samples.  This reveals that such factors are particularly important for higher-grade issues.   
 
The explanatory power obtained for lower investment-grade credits is higher than in other empirical 
studies.  Comparison with a broadly equivalent specification to that in Collin-Dufresne et al (2001) 
suggests that this is a reflection of the more direct application of the Merton approach; in particular, 
capturing the non-linearity inherent in the structural model, which is most important for companies 
that are closer to the default point.   
 
In a further round of tests, we allow for heterogeneity in responses across individual issues in the 
ratings subgroups.  Heterogeneity does indeed appear to be an important feature of the data set, with 
explanatory power increasing to 28% for high-quality issues, and almost 50% for BBB issues.   
 
Together, these results suggest that the principal innovations of this paper – the direct application of 
the Merton model and the investigation of heterogeneity in responses at the issue level – lead to a 
stronger empirical result for the structural model; at least for lower investment-grade credits.   
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Finally, we consider whether we are losing valuable information in the annualisation process for our 
implied default probabilities.  If investors have short horizons, they may place greater weight on 
near-term default probabilities, and this will perhaps be more important for lower-grade bond issues.  
This hypothesis is supported by the data.  Returning to a pooled specification with common 
coefficients, but retaining differences across ratings, we find once again that almost half of the 
variability in BBB credit spreads is explained by the regression specification.  Explanatory power 
remains at just 12% for high-quality issues.      
 
Many of these results would appear to have an intuitive interpretation.  It has been established 
elsewhere in the literature that the theoretical relationship between credit spreads and default 
expectations does not hold fully in practice, and this paper concurs.  Spreads would appear to be 
influenced by market factors, such as liquidity premia, and these are likely to be time varying.  Thus, 
it is intuitive that, for high-quality issuers, where both the level and variability of the probability of 
default is likely to be lower, the relative contribution of default expectations is likely to be much 
smaller. 
 
The apparent greater sensitivity of lower-grade spreads to near-term default expectations is an 
interesting result, which may warrant further attention.  This finding is suggestive of short-termism 
on the part of market participants, but a full treatment of this issue is beyond the scope of this 
analysis.  We would also agree with previous researchers that more work needs to be done to identify 
omitted common market factors related to supply/demand conditions in the corporate bond market 
and liquidity.  There may also be other idiosyncratic factors, perhaps related to recovery rates that 
have not been fully captured in our specification.  A further potential avenue for future research 
might be to examine whether one might systematically adjust spreads for non-credit factors in order 
to yield a cleaner indicator of loss expectations. 
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Annex A 
 
Chart A1: Examples from the telecommunications sector 
 
A1(a) Vodafone A1(b) British Telecom 
(i) Structural model inputs (i) Structural model inputs 
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(ii) IPD and asset swap spread (ii) IPD and asset swap spread 
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Annex B   
 
Maturity differences 

 AAA - A-rated issuers BBB-rated issuers 

 > 10 years ≤ 10 years > 10 years ≤ 10 years 

 (1) (2) (5) (6) 

ASWAPt-1,i -0.045 

(-2.47)** 

-0.122 

(-6.87)*** 

-0.372 

(-5.85)*** 

-0.107 

(-3.29)*** 

5IPDt-1,i 0.065 

(1.32) 

0.196 

(5.52)*** 

1.267 

(3.80)*** 

0.438 

(2.28)** 

∆5IPDt,i 1.000 

(6.17)*** 

0.521 

(6.90)*** 

2.932 

(6.05)*** 

3.087 

(7.46)*** 

∆5IPDt-1 0.212 

(1.35) 

0.249 

(3.12)*** 

2.049 

(4.32)*** 

1.886 

(4.93)*** 

Issue dummies Yes Yes Yes Yes 

Time dummies No No No No 

R2 0.087 0.142 0.455 0.312 

Long-run effect 1. 434 1.606 3.410 4.091 

Observations 915 1,374 267 651 

Issues 27 42 11 29 

Av. obs. per issue 33.9 32.7 24.3 22.4 
Durbin test 
 (p-value) 0.616 0. 276 0.514 0.346 

The dependent variable in our error-correction specification is the change in the asset swap spread.  The estimation methodology is 
least squares, with panel-corrected standard errors.  The long-run relationship reported in the table is calculated as -β2i/β1i in 
specification (12).  t-statistics are reported in brackets, where * = coefficient statistically significant at the 10% level; **=coefficient 
statistically significant at the 5% level; and *** = coefficient statistically significant at the 1% level.  In the final row of the table, we 
report the results of a test of autocorrelation in the residuals.  The residuals from each regression have been regressed against two lags 
of themselves and all of the regressors in the original regression.  A Wald test of joint significance of the two lagged residual terms has 
then been carried out, with the p-value reported in the table.
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Annex C   
 
Bond issues included in the econometric analysis 
   
Data from Merrill Lynch as at 30 November 2003 unless otherwise stated. 

Issuer 
Maturity 

Date S&P Rating Sector 
Par value 

(£m) 

Market 
Cap'n 
(£m) 

Asset 
Swap 

Spread 
BOC 29/04/2009 A+ Basic Industry 200 208 47 
BOC 29/01/2016 A+ Basic Industry 200 219 67 
Corus Group(a) 20/05/2008 BBB- Basic Industry 200 168 640 
ICI  15/04/2005 BBB Basic Industry 100 111 96 
   Basic Industry Total  706  
British Aerospace 29/12/2008 BBB Capital Goods 150 196 88 
British Aerospace 24/11/2014 BBB Capital Goods 100 135 111 
GKN 14/05/2012 BBB Capital Goods 325 352 93 
GKN 28/10/2019 BBB Capital Goods 350 366 102 
Rexam 27/03/2009 BBB Capital Goods 370 406 72 
Rolls Royce 14/06/2016 BBB Capital Goods 200 223 112 
Smiths Industries 30/06/2016 A- Capital Goods 150 172 57 
Smiths Industries 12/07/2010 A- Capital Goods 150 172 35 
Tomkins 20/12/2011 BBB Capital Goods 150 177 95 
   Capital Goods Total  2,200  
Boots 26/05/2009 A+ Consumer Cyclical 300 308 18 
Dixons 15/11/2012 Baa1(Moody’s) Consumer Cyclical 300 300 79 
GUS 16/07/2009 BBB+ Consumer Cyclical 350 368 45 
GUS 12/12/2013 BBB+ Consumer Cyclical 350 356 62 
Kingfisher 23/03/2010 BBB+ Consumer Cyclical 150 165 48 
M&S 23/01/2007 A Consumer Cyclical 150 162 23 
M&S 07/11/2011 A Consumer Cyclical 375 389 49 
   Consumer Cyclical Total  2,048  
Allied Domecq 18/04/2011 BBB+ Consumer Non-Cyclical 450 469 76 
Allied Domecq 12/06/2014 BBB+ Consumer Non-Cyclical 250 266 86 
Cadbury Schweppes 30/11/2006 BBB Consumer Non-Cyclical 250 252 26 
Gallaher 21/05/2009 BBB Consumer Non-Cyclical 300 318 74 
Gallaher 06/02/2013 BBB Consumer Non-Cyclical 250 253 86 
Glaxosmithkline 01/12/2005 AA Consumer Non-Cyclical 500 579 -4 
Glaxosmithkline 02/10/2008 AA Consumer Non-Cyclical 500 497 -6 
Glaxosmithkline 19/12/2033 AA Consumer Non-Cyclical 1000 1,004 31 
Diageo 31/05/2005 A Consumer Non-Cyclical 200 220 15 
Imperial Tobacco 13/06/2012 BBB Consumer Non-Cyclical 350 374 95 
Sainsbury 27/04/2005 A- Consumer Non-Cyclical 100 106 41 
Sainsbury 11/07/2012 A- Consumer Non-Cyclical 300 315 76 
Sainsbury 05/04/2017 A- Consumer Non-Cyclical 250 258 84 
Sainsbury 05/04/2032 A- Consumer Non-Cyclical 350 358 95 
Scottish & Newcastle 04/12/2006 BBB Consumer Non-Cyclical 150 159 34 
Tate & Lyle 28/06/2012 BBB Consumer Non-Cyclical 200 210 78 
Tesco 30/11/2006 A+ Consumer Non-Cyclical 150 157 16 
Tesco 30/07/2007 A+ Consumer Non-Cyclical 325 354 29 
Tesco 13/06/2008 A+ Consumer Non-Cyclical 250 262 25 
Tesco 18/12/2009 A+ Consumer Non-Cyclical 350 360 20 
Tesco 12/10/2010 A+ Consumer Non-Cyclical 150 160 24 
Tesco 13/12/2019 A+ Consumer Non-Cyclical 350 360 40 
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Tesco 14/12/2029 A+ Consumer Non-Cyclical 200 221 50 
Tesco 13/01/2033 A+ Consumer Non-Cyclical 200 207 46 
   Consumer Non-Cyclical Total  7,720  
BG Energy 20/06/2008 A- Energy 200 212 29 
BG Energy 13/11/2012 A- Energy 250 253 38 
BP 30/06/2004 AA+ Energy 150 153 5 
Centrica 14/12/2005 A Energy 125 132 15 
Centrica 02/11/2012 A Energy 400 407 34 
Shell 30/01/2006 AAA Energy 375 385 -37 
   Energy Total  1,543  
Carlton Comms 06/06/2007 BBB- Media 200 218 70 
Carlton Comms 02/03/2009 BBB- Media 250 256 66 
Daily Mail  29/03/2013 BBB Media 300 336 115 
Daily Mail  09/04/2021 BBB Media 165 233 152 
Pearson 13/06/2008 BBB+ Media 100 124 49 
Pearson 27/10/2014 BBB+ Media 250 270 71 
Reuters 26/11/2004 A Media 200 208 123 
   Media Total  1,646  
BAA 10/02/2007 A+ Services Cyclical 200 226 37 
BAA 29/03/2021 A+ Services Cyclical 250 327 66 
BAA 04/08/2028 A+ Services Cyclical 200 221 63 
BAA 10/12/2031 A+ Services Cyclical 900 928 64 
BAA 31/03/2016 A+ Services Cyclical 300 460 75 
Six Continents 21/12/2007 BBB Services Cyclical 250 262 25 
British Airways(b) 15/06/2008 BBB- Services Cyclical 100 106 511 
British Airways(b) 23/08/2016 BBB- Services Cyclical 250 247 436 
FirstGroup  15/04/2013 BBB Services Cyclical 300 326 92 
Hilton 29/07/2008 BBB Services Cyclical 175 188 79 
Hilton 11/07/2012 BBB Services Cyclical 250 269 101 
P&O Princess 25/06/2012 A- Services Cyclical 200 218 85 
   Services Cyclical Total  3,779  
Rentokil 19/11/2008 BBB+ Services Non-Cyclical 250 254 46 
   Services Non-Cyclical Total  254  
BT Group 31/03/2006 A- Telecommunications 229 267 58 
BT Group 07/12/2006 A- Telecommunications 400 450 35 
BT Group 07/12/2016 A- Telecommunications 700 847 93 
BT Group 26/03/2020 A- Telecommunications 300 398 78 
BT Group 07/12/2028 A- Telecommunications 600 617 76 
Cable & Wireless(c) 06/08/2012 BBB+ Telecommunications 200 187 717 
Vodafone 10/07/2008 A Telecommunications 400 422 21 
Vodafone 26/11/2032 A Telecommunications 450 458 63 
   Telecommunications Total  3,646  
   Grand Total  23,542  
 
(a) Standard and Poor’s downgraded Corus Group to sub-investment grade in November 2002.  Our analysis therefore 
includes data for Corus Group only up to this time and the rating shown in this table is the last recorded investment-grade 
rating for the company. 
(b) Standard and Poor’s downgraded British Airways to sub-investment grade in July 2003.  Our analysis therefore 
includes data for British Airways only up to this time and the rating shown in this table is the last recorded  
investment-grade rating for the company. 
(c) Standard and Poor’s downgraded Cable and Wireless to sub-investment grade in January 2003.  Our analysis 
therefore includes data for Cable and Wireless only up to this time and the rating shown in this table is the last recorded 
investment-grade rating for the company. 
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