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Abstract 
 
This paper revisits the issue of long-horizon equity return predictability for the United 

Kingdom in the context of the dynamic dividend discount model of Campbell and Shiller.  

This model attributes predictable variation in equity prices to predictable variation in expected 

returns.  The model is supported by the theoretical asset pricing literature, which shows how 

the variation in expected returns can be related to investors’ time-varying preferences for risk.  

The paper considers various empirical specifications that are consistent with the Campbell 

and Shiller model and finds that they are supported by UK equity data.  In particular, there is 

weak evidence that the dividend yield has predictive ability for long-horizon excess returns.  

The paper also examines some of the econometric issues brought up by recent research, in 

particular the small-sample bias, and applies appropriate statistical corrections.  It further 

shows that the model’s predictive ability depends greatly on the sample period over which the 

model is estimated.   
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Summary 

 

In this paper, we revisit the issue of long-horizon equity return predictability for the United 

Kingdom in the context of the dynamic dividend discount model of Campbell and Shiller. 

This model attributes predictable variation in equity prices to variations in expected returns.  

The model is supported by the theoretical asset pricing literature, which shows how the 

variation in expected returns can be related to investors’ time-varying preferences for risk.   

 

In the past, this model has received ample support from the data.  In particular, the dividend 

yield appeared to do a reasonably good job at predicting long-horizon excess returns.  

Moreover, predictability was found to increase with the return horizon.  But more recent 

research has questioned the statistical validity of these claims.  In particular, incorrect 

econometric treatment may have led to overrejection of the null hypothesis of  

no predictability.  Researchers have also found that simple predictability models may be 

unstable.  In some papers, it appears that simply extending the sample period by a few years, 

or altering the forecast horizons, can alter both the sign of the regression coefficients and their 

statistical significance, and that over some periods US dividend yields do not forecast  

long-horizon equity returns.   

 

Using quarterly data for the United Kingdom for the period 1965 Q1-2002 Q4, we first 

estimate a simple model of return predictability that relates observed excess returns to the 

dividend yield.  Second, we focus on the small-sample issue and consider a range of statistical 

corrections.  Third, we address the issue of robustness by estimating the dividend yield model 

across a range of sample periods and forecasting horizons.  Although the paper does not 

formally address the all-important issue of model selection, we briefly discuss the forecasting 

performance of the earnings yield, as an alternative to the dividend yield. 

 

We find evidence that standard valuation ratios such as the dividend and earnings yield help 

to forecast UK long-horizon equity returns.  This result is not stable across subsample periods.  

In particular, we find that predictability declined significantly during the period of rapidly 

rising returns of the late 1990s.  But as returns started falling in late 2000, the significance of 

the regressions was restored.  The research also confirms that the relationship between the 

dividend yield and excess returns is highly sensitive to both the chosen return horizon and the 

sample period.   
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1. Introduction   

 
Policymakers are interested in asset prices for a number of reasons.  First, asset prices form 

part of the transmission mechanism and therefore enter forecasts of future growth and 

inflation.  Second, asset prices embody forecasts of market participants about future states of 

the world, and can – at least in principle – be used to obtain information about market 

expectations.  Related, unexpected changes in asset prices can be attributed to unexpected 

changes in the key factors that determine asset prices, which may in turn be of interest to 

policymakers.  In order to carry out this type of analysis, policymakers need a model of asset 

price determination.  In this paper, we review the leading empirical model of equity price 

determination and discuss the efficacy of this model in providing long-horizon equity price 

forecasts. 

 

Up to the early 1980s, most financial economists believed that long-horizon equity returns 

could not be forecasted.  But, in the late 1980s, people like Campbell and Shiller (1988a) and 

(1988b) and Fama and French (1989) showed that long-horizon returns are highly predictable.  

Much of the empirical predictability was attributed to either the dividend yield or the earnings 

yield. Consequently, when in the late 1990s dividend yields in the United States and United 

Kingdom fell to unprecedented lows, many feared that equity prices would have to fall by 

very large amounts in order to bring the dividend yield back to its historical mean.(1) 

 

Recent developments in the theoretical asset pricing literature have deepened our 

understanding of the main drivers of equity prices.  Currently, many economists agree that 

equity prices display predictable variation over time and that this is more a reflection of 

predictable variation in expected returns than in expected cash flows.  The theoretical models 

further show how this variation in expected returns can be related to investors’ time-varying 

preferences for risk. 

 

Yet, in spite of substantial theoretical and empirical support for long-run predictability (see eg 

Campbell, Lo and MacKinlay (1997)), the empirical literature has recently become aware of 

serious statistical problems that affect tests of long-run predictability. First, some authors have 

highlighted problems of model selection.  Apart from the dividend yield, empirical studies 

have examined a range of explanatory variables, both financial and macroeconomic.  They 

have found that the explanatory power of these variables can differ markedly, thereby 

affecting the price forecasts (see eg Lamont (1998)).  

__________________________________________________________________________________ 
(1) See eg Campbell and Shiller (2001).  See also Vila Wetherilt and Weeken (2002) for a discussion of 
the behaviour of the dividend yield in the United Kingdom. 
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Researchers have also found predictability to vary over time.  For example, Ang and Bekaert 

(2003) show that simply extending the sample by a few years, or altering the forecast 

horizons, can alter both the sign of the regression coefficients and their statistical significance. 

Goyal and Welch (2002) claim that the predictive power of the US dividend yield was present 

only in two years, 1974 and 1975.  In related work, Pesaran and Timmerman (1995, 2002) 

have argued that the forecasting model is likely to change over time, as market participants 

themselves learn and develop better forecasting models.  

 

Second, in a recent paper, Ang and Bekaert (2003) argue that inaccurate econometric 

techniques may have led researchers to be overly optimistic about long-horizon predictability. 

In particular, they demonstrate that the small samples that are typically used in long-horizon 

regressions may have lead to over rejection of the null hypothesis of no-predictability in many 

papers. Using more robust estimation techniques, they find that over the period 1975-99, US 

dividend yields no longer forecast long-horizon equity returns.  Researchers have also pointed 

out that many of the explanatory variables used in predictability regressions may be  

non-stationary, meaning that estimated relations may be spurious. 

 

In this paper, we revisit the issue of long-horizon return predictability for the United 

Kingdom.  We first estimate the popular dividend yield model and show that predictability 

does indeed vary over time.  Second, we examine the small sample issue and use the 

statistical corrections proposed by Ang and Bekaert (2003).  Third, we address the issue of 

robustness by estimating the dividend yield model across a range of sample periods and 

forecasting horizons.  Although the paper does not formally address the all-important issue of 

model selection, we briefly discuss the forecasting performance of the earnings yield, as an 

alternative to the dividend yield. 

 

Using quarterly data for the period 1965 Q1-2002 Q4, we find evidence that standard 

valuation ratios such as the dividend and earnings yield help to forecast UK long-horizon 

equity returns.  But this result is not stable across subsample periods.  In particular, we find 

that predictability declined significantly during the period of rapidly rising returns of the late 

1990s.  As returns started falling in late 2000, long-run predictability returned. The results 

further suggest that, while the present value model provides us with a forecast model that is 

consistent with mainstream asset pricing theory and receives support from the UK data, we 

nevertheless face difficult practical issues that mainly stem from the lack of stability.   
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2. Understanding return predictability 

 

Predictability of equity returns can arise in a range of theoretical models.  In this section, we 

rely on a simple accounting model to explain the relationship between dividend yields and 

expected returns.  This is the most popular approach in the finance literature.  We start with 

the dynamic dividend discount model of Campbell and Shiller (1988a).  In this model, equity 

prices are determined by the present discounted value of future dividends and future expected 

returns (serving as discount factors).(2)  That expression is linearised to obtain 
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where p is the log price, d the log dividend, r the rate of return and ρ and κ are constant 

parameters coming from the linear approximation used to obtain (1).(3) (4) (5)  ρ is bounded 

between 0 and 1 (but is not a ‘discount factor’ as such), and ensures the sum is finite.  It 

follows that, in this model, equity prices are high when future dividends are expected to be 

high and/or future equity returns are expected to be low. 

 

 

Equation (1) is often rearranged in terms of the price-dividend ratio (the inverse of the 

dividend yield).  
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Equation (2) shows that any variation in the dividend yield must imply changing expectations 

of future dividend growth and/or future equity returns.  Or put differently, the dividend yield 

(dt – pt) forecasts future expected equity returns (Et rt+j) in excess of dividend growth (∆dt+j).  

 

To see more clearly why the dividend yield can forecast expected returns, it is useful to 

consider a simple example developed by Cochrane (2001).  In this example, he chooses 

__________________________________________________________________________________ 
(2) Expected returns can be thought of as the risk-free rate plus the equity risk premium.   
(3) Equation (1) is obtained in a number of steps: first, write the one-period equity return (the dividend yield plus 
capital gain).  Second, iterate this identity forward to obtain a multi-period relationship between prices, expected 
returns and expected dividends.  Third, linearise this equation using a Taylor expansion and take logs.  See 
Cochrane (2001) for more details. 
(4) If in addition one imposes the assumption of a constant discount rate r and a constant dividend growth rate, then 
equation (1) reduces to the Gordon dividend discount model. 
(5) The simple present value model is challenged in the literature that deals with bubbles (eg Froot and Obstfeld 
(1991), or dividend smoothing (eg Ackert and Hunter (2000)).  The resulting models are no longer linear, and the 
respective authors claim that they are better at reconciling observed equity prices and fundamentals. 
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specific functional forms for the right-hand side variables in equation (2).  First, he assumes 

that (de-meaned) dividend growth, ∆d, is a white noise process and therefore not predictable: 

 

1,1 ++ =∆
tdtd ε           (3) 

Second, he assumes that expected returns, Etrt+j, are slow moving:  

1,1 ++ += trtt zr ε           (4) 
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where zt is an unobservable state variable that drives expected returns, δt, εd,t and εr,t are 

shocks to expected returns, dividend growth and realised (or ex-post) returns respectively.  

Substituting equation (5) into (2) yields: 
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Using (7), realised returns and prices (using the basic definition of returns and a Taylor 

expansion) can be written as: 
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We can now explain the role of the dividend yield.  Suppose the dividend yield is below its 

mean, so that prices are high compared to their current dividend.  From (2) we know that a 

low dividend yield (or a high price dividend ratio) means that investors must expect future 

stock returns to be low (recall we assumed they could not forecast dividend growth).  In order 

for these low stock returns to materialise, prices must depreciate from the current low level.(6)  

This mechanism is summarised in equations (8) and (9), where we see that the dividend yield 

predicts positive equity returns. 

 

We need some persistence (b>0) in the dividend yield, otherwise we would have a one-to-one 

relationship between ex-post (log) returns, the (log) dividend yield, and in turn, price growth.   

__________________________________________________________________________________ 
(6) This is the argument used in Campbell (2001) and Campbell and Shiller (2001). 



 

 13

Cochrane (2001) shows that this would require implausibly large price changes for the 

dividend yield to revert to its mean.  The Cochrane model also illustrates why past returns are 

often found to be poor predictors of future returns.  This may seem puzzling at first, given the 

high predictability of the expected return component. Equation (8) shows, however, that 

returns include both dividend (εd,t) and expected returns news (δt), and as such are a poor 

proxy for expected returns alone.  Therefore, lagged returns cannot be expected to have the 

same predictive power as the dividend yield. 

 

The present value model, as formulated in equation (2), provides the motivation for setting up 

a forecasting equation that relates equity returns to the dividend yield: 

jtttjt updr ++ +−+= )(βα         (10) 

In equation (10), predictability of equity returns stems from the dividend yield only.  In the 

next section, we describe how equation (10) has performed in empirical applications.  We will 

also briefly comment on alternative predictors. 

 

To summarise the discussion so far, we have shown how in the standard present value model, 

return predictability arises if one assumes persistence in expected returns.  This assumption 

creates mean reversion in the dividend yield, providing a rationale for the latter’s observed 

role in predicting ex-post equity returns.  Moreover, the slow-moving, time-varying nature of 

expected returns that arises in the present value model is entirely consistent with more general 

asset pricing models that generate time-varying risk premia.  For example, in the habit model 

of Campbell and Cochrane (1999), risk aversion moves countercyclically, producing in turn a 

countercyclical pattern in expected returns: investors demand low risk premia (or expected 

returns) at the peak of a business cycle when their risk aversion is low, and require high 

equity risk premia at the bottom of a recession, when they are more risk-averse. 

 

In a related model, Lettau and Ludvigson (2001) show that variations in aggregate 

consumption, asset wealth and labour income can explain time variation in expected returns.  

For example, when equity returns are expected to be lower in the future, consumers in their 

model will reduce their consumption out of current asset wealth and labour income.  As a 

result, deviations of consumption from its long-run relationship to asset wealth and labour 

income can predict future expected returns.(7)   

 

__________________________________________________________________________________ 
(7) More precisely, in their model, deviations of consumption from its shared trend with asset wealth and labour 
income predict future expected returns. 
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The dividend yield regression (equation (10)) relies on a second, crucial assumption, namely 

non-predictability of dividend growth.  Recently, however, Lettau and Ludvigson (2003) have 

challenged the assumption that dividend growth is non-predictable.  Going back to the present 

value equation (2), when dividend growth is forecastable, changes in the dividend yield may 

reflect changes in expected dividend growth and/or expected returns.  This makes it more 

difficult to asses the exact forecasting contribution of the dividend yield.  In addition, 

equation (1) may be misspecified. 

 

Ang and Bekaert (2003) formally test whether the dividend yield predicts dividend growth, 

but fail to find strong evidence to support this hypothesis.  Lettau and Ludvigson (2003) 

compare the present value equation (10) with an alternative consumption based present value 

model that relates expected returns to wealth,(8) consumption growth and dividend growth. 

They find the dividend yield to have little forecasting power for long-horizon returns (one to 

six years).  In contrast, dividend growth significantly contributes to forecasting returns over 

horizons greater than one year. (9) 

 

Finally, it is worth noting that the previous discussion did not consider the possibility that 

return predictability may result from market inefficiency.  Instead, the arguments presented 

rely on rational investor behaviour in response to time variation in expected returns.  Market 

prices are assumed to fully reflect this behaviour.  This is the dominant view on return 

predictability in the finance profession at present.  

 

3. A brief discussion of model selection issues 

 

The finance profession appears in broad agreement on the use of the present value model as a 

good starting point for an empirical model of return predictability.  Specifically, equation (10) 

is routinely used as the main tool to test predictability of excess returns at long horizons.  The 

choice of equation (10) rests on the view that expected returns are time varying and are well 

proxied by the dividend yield.  This was explained in some detail in the previous section.  But 

the use of the dividend yield model also receives support from the data.  For example, it is 

well documented that the dividend yield is highly correlated with variables which are thought 

__________________________________________________________________________________ 
(8) More precisely, deviations of consumption from its shared trend with asset wealth and labour income (as in the 
earlier cited Lettau and Ludvigson (2001)). 
(9) Menzly et al (2003) provide a theoretical model to highlight the relationship between expected returns, the 
dividend yield and dividend growth.  Specifically, they show that when both risk preferences and dividend growth 
are time varying, the simple, linear relationship between expected returns and the dividend yield (as in equation 
(10)) no longer holds. As in Lettau and Ludvigson (2003), this result depends on the predictability of dividend 
growth.   
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to share the expected return’s positive co-movement with the business cycle, such as credit 

and term spreads (Fama and French (1989)). 

 

Financial economists have also explored alternative explanatory variables when estimating 

equation (10).  A popular approach is to replace the dividend yield by the earnings yield and 

the payout ratio in equation (10).(10)  This approach is used by Lamont (1998) and Nelson 

(1999) and avoids two problems related to dividends: first, changes in dividend policy are not 

necessarily captured by the dividend yield alone.  This is an important concern in the light of 

recent evidence that corporations are relying more on share purchases at the expense of 

dividend payouts.(11)  Second, many companies (especially young ones) do not pay any 

dividends at all. In estimating an earnings model, researchers also follow market practice 

more closely, since market participants tend to look at earnings more than dividends. A 

related approach is considered in Sharpe (2002) who uses survey-based expectations for 

earnings growth rather than actual earnings.  In what follows, we will estimate both dividend 

yield and earnings yield models. 

 

The literature has also considered more complex models that include variables that move 

closely together with the business cycle. In doing so, researchers aim to capture time variation 

in expected returns.  These models include financial variables that are known to track the 

business cycle, such as short-term interest rates, the term spread and the default spread (see eg 

Fama and French (1989)).  They also include macroeconomic variables, such as money 

supply, inflation, GDP, industrial production.  But the list of candidate macro and financial 

variables and their possible combinations is very large, giving rise to a model selection 

problem.  A further problem is highlighted by Pesaran and Timmerman (1995, 2002) is that 

the set of key forecasting variables is likely to change over time, as market participants 

themselves learn and develop better forecasting models.   

 

Formal selection criteria are available in the literature (see eg Pesaran and Timmerman (1995, 

2002) or Hoover and Perez (1999) and Hendry and Krolzig (1999)).  They do not form part of 

the present research, as our objective is to focus on econometric issues other than model 

selection.  These issues (to be outlined in Section 5) will be treated within the context of the  

__________________________________________________________________________________ 
(10) One can easily rewrite equations (1) and (2) using the identity D/P = (E/P)*(D/E). 
(11) See eg Nelson (1999) and Wadhwani (1999). 
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simple dividend yield model (equation (10)), and a few simple variants, including the 

earnings yield model.  

 

4. Data  

 

Equation (10) forms the basis of our empirical work and is estimated for FTSE All-Share 

excess returns.  We obtained quarterly data from Datastream for FTSE All-Share prices, 

dividends and earnings, from 1963 Q1 to 2002 Q4.  We also use a longer set of annual data 

for the period 1926-2002.  For the earlier part of that sample, the data were obtained from 

Global Financial Data. 

 

To test whether long-run predictability is affected by the return horizon (as in Ang and 

Bekaert (2003)), we estimate our models for three investment horizons: one, two and four 

years.  The nominal (log) return on equity over a given period is calculated by subtracting the 

log of the initial price from the log of the terminal price plus dividends paid through the 

period.  We next construct excess returns by subtracting the return on a portfolio of UK 

Treasury bills from the equity return index.  To calculate real dividend and earnings growth 

rates, we deflate dividends and earnings by the RPI.  As we will explain below, we also 

consider models with a short-term interest rate.  For this purpose, we use the three-month 

Treasury Bill rate.(12) Table A presents summary statistics for our key series, while Charts 1 

and 2 plot the dividend yield and real one-year dividend growth rates, respectively. 

 

Charts 1: FTSE All-Share dividend yield Chart 2: One-year real dividend growth 
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__________________________________________________________________________________ 
(12) Much of the empirical literature uses a detrended short rate (eg Campbell (1991) and Lamont 
(1998)).  For this purpose, we used the three-month Treasury bill rate relative to its twelve-month 
moving average.  We found, however, that this did not affect the regression results.  For this reason, we 
will only report the results for the raw series. 
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Table A: Univariate summary statistics (1963:01 – 2002:04) 

 Mean Maximum Minimum St.Dev. Persistence

One-year excess return 0.04 0.82 0.88 0.22 0.75
Two-year excess return 0.09 0.74 -1.17 0.28 0.86
Four-year excess return 0.18 1.01 -0.67 0.30 0.89

Real dividend growth 0.002 0.15 -0.20 0.07 0.66
Real earnings growth 0.005 0.26 -0.43 0.14 0.83

Dividend yield -3.14 -2.12 -3.86 0.29 0.93
Earnings yield -2.61 -1.39 -3.35 0.40 0.95

Pay-out ratio -0.55 -0.14 -1.01 0.17 0.91
Risk-free rate 2.04 2.79 1.30 0.38 0.93

Note: Some observations are lost when constructing the returns series.  All variables are in logs.  
Persistence is measured as the first-order autocorrrelation.   
 

While Chart 1 clearly illustrates the slow-moving nature of the dividend yield, Chart 2 shows 

that real dividend growth is a more variable and rapidly mean-reverting series.  Table A 

confirms this observation, namely that real dividend growth has lower persistence (0.66) than 

the dividend yield (0.93).  This has two implications.  First, the data confirm the assumption 

made in Section 2 of slow mean reversion in the dividend yield (the b coefficient).   

 

Second, the relatively high persistence of the dividend growth series appears at odds with 

equation (3), which assumed that dividend growth is white noise, and hence exhibits no 

persistence.  Recall that the model in Section 2 showed that the time-varying dividend yield 

could explain variations in either expected returns or expected dividend growth, or both.  By 

ruling out the latter possibility, the model allowed us to write down a simple regression 

equation associating expected returns and the dividend yield only.  So how does the apparent 

persistence in the dividend growth series affect this regression model?  Campbell, Lo and 

MacKinlay (1997) argue that even if there is some small predictable component in dividend 

growth, it is likely that the variance in expected dividend growth is substantially less than the 

variance in the expected returns.  In this case, it is reasonable to proceed under the assumption 

that all the time variation in the dividend yield reflects changes in expected returns, thereby 

validating the simple dividend-yield regression.  Cochrane (2001) supports this view by 

providing strong evidence that the dividend yield has no predictive power for dividend 

growth.  A similar result is found for UK data.(13)   

 

Table A further shows that other candidate regressors, such as the earnings yield, the pay-out 

ratio, or even the risk-free rate are all highly persistent.  How this affects the statistical 

__________________________________________________________________________________ 
(13) This is done by regressing the dividend growth on the dividend yield.  Running this regression on 
non-overlapping data for 1925-2002 yielded an R2 of 0.02, comparable to Cochrane’s 0.06.  The full set 
of results is available from the authors. 
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inference will be discussed in the next section.  Table B presents the results of unit-root tests 

for all variables of interest, using the familiar augmented Dickey-Fuller (ADF) procedure.  In 

the case of both dividend and earnings growth, we can reject the null hypothesis of a unit root 

with 90% confidence.  Stationary dividend (earnings) growth suggests that the levels of 

dividends (earnings) are a unit root process.   

 

Table B: Unit root tests (1963:01 – 2002:04) 

 ADF t-statistic ADF p-value Lags used

One-year excess return -2.71 0.07 12
Two-year excess return -3.20 0.02 11
Four-year excess return -3.07 0.03 3

Real dividend growth -2.70 0.08 8
Real earnings growth -3.82 0.003 12

Real dividends -1.04 0.74 5
Real earnings -1.15 0.69 5

Dividend yield -2.30 0.17 0
Earnings yield -2.00 0.29 4

Pay-out ratio -2.35 0.16 6
Risk-free rate -2.54 0.11 1

Note: All ADF tests use a constant.  Lags are selected with the AIC criterion. 

 

The table also shows that there is little evidence for stationarity of the dividend yield (and 

earnings yield) series.  This poses an econometric problem, as the estimation of equation (10) 

using OLS requires the stationarity of both the regressors (eg the dividend yield) and the 

regressands (the return index).  The fact that the variables we are interested in may be unit 

root or near unit root processes suggests the possibility of spurious regressions.  But the 

evidence is not conclusive.  In particular our sample size is relatively small, and ADF tests are 

well known to suffer from low power in small samples.  Hence it is possible that the series is 

indeed stationary, but that this cannot be detected in a relatively short sample.  Using the 

longer data sample (1926-2002), we find strong evidence of stationarity using ADF tests.  But 

even these tests could be misleading, as the quality of the data may deteriorate as we go back 

through time.  Bearing these warnings in mind, we proceed on the assumption that the 

dividend yield (and earnings yield) series are stationary.  In Section 5.2, we discuss in more 

detail the problem of spurious regressions as one of many econometric issues that we may 

encounter.   
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5. Econometric issues 

 

Before estimating our empirical model, we discuss a number of econometric problems that 

may affect the results and their interpretation.  More specifically, we discuss three  

inter-related problems that frequently arise in financial regressions, and are summarised in 

Chart 3.(14)  We start (in Section 5.1) by discussing the issues that arise when running 

regression models containing long-horizon returns.  We next consider the potential pitfalls of 

including persistent regressors in the model (Section 5.2).  Related to this, we then discuss the 

problem of stochastic regressors (Section 5.3).   

 

Chart 3: Common econometric problems encountered with financial regressions 

 

__________________________________________________________________________________ 
(14) Note that this list of problems is not meant to be exhaustive.  Rather, it reflects the issues that we consider most 
important for the regressions estimated in this paper.   

Problem 

Symptom 

Solution 

Financial regressions

Stochastic regressor  
problem (Stambaugh  
(1999)) 

Long-horizon 
considerations

Peristent regressor 
problem (Ferson et al 
(2003))

Non-overlapping  
returns requires very  
long time series: may  
entail loss of data  
quality

Overlapping returns 
lead to biased 
standard errors and, 
in turn, incorrect 
inference

Possibility of finding 
spurious relationship

Coefficients biased  
upward and incorrrect  
standard errors in  
finite samples

Use larger samples  
and/or appropriate  
correction 

Use appropriate 
correction

Tap available sources  
to construct long time  
series 
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5.1 Long-horizon regressions 

 

As mentioned in Section 1, finance textbooks suggest that return predictability is easier to 

detect at long horizons, which may be congruent with predictability reflecting slow-moving 

changes in investors’ risk preferences.  One possible interpretation of this finding is that it 

reflects nothing more than a compounding over time of a very small predictable component of 

one-period returns.  We can demonstrate this formally in the simple model of Section 2.  If 

the true data generating process is well approximated by equations (3) and (4), then using the 

fact that the k-period return is equal to the sum of k one-period returns, we can use repeated 

substitution to show that the k-period return is given by: 

 

tt
k

ktktttttktt ezbbbrrrr +++++=+++= +−+++++ )...1(... 2
,12,11,,   (12) 

 

So if the state variable, zt, is highly persistent (ie the persistence parameter b is close to 1), 

then from equation (12) we can see that the estimated coefficient on the dividend yield should 

increase with the return horizon, k.  A similar argument can be presented for the R2 of the 

regression.   

 

But recently some authors, notably Ang and Bekaert (2003), have challenged the result that 

equity returns are predictable, whatever the return horizon.  They propose that when 

appropriate small-sample adjustments are made, the significance of the dividend yield is 

greatly reduced.  More importantly, they find that the size, and in some cases the sign, of the 

estimated coefficient is dependent on the return horizon.   

 

Long-horizon regressions present the researcher with an awkward dilemma: either work with 

a smaller data set or with overlapping returns.  The former approach (taken by Fama and 

French (1988) among others) requires a long run of data and precludes the possibility of 

studying returns of periods longer than one year.(15)  Furthermore this approach may require 

the splicing together of data from different sources and therefore lead to a reduction in 

quality.  The more common approach is to work with overlapping returns, which complicates 

inference based on OLS regression results.   

 

These problems were addressed by Hansen and Hodrick (1980) who showed that using  

k-period overlapping returns in OLS regressions results in residuals that are autocorrelated up 

to order (k-1) even under the null hypothesis of ‘no predictability’.  Formally, 

__________________________________________________________________________________ 
(15) For example, 200 years of data would be required to obtain a series of 100 non-overlapping two-year returns.   
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kjeeE kjktkkt <∀≠−++ ,0)( ,,  
 

where et+k,k is the k-period forecast error at time t+k.   

 

In addition to serial correlation in the residuals, it is generally thought that the volatility of 

asset returns is also serially correlated (see discussion in Campbell, Lo and MacKinlay 

(1997)).  This makes an assumption of homoscedasticity inappropriate.  As is well known, 

OLS standard errors are biased in the presence of autocorrelated and heteroscedastic 

residuals.  This means that all standard errors need to be corrected and, importantly, the 

appropriate correction needs to take to account of the small sample size. 

 

We follow Ang and Bekaert (2003) and report test statistics, based on four alternative 

methods for calculating standard errors.  We first compute the usual OLS standard errors.  

Although inappropriate, we include them simply to provide a benchmark for the set of 

alternative standard errors, all of which correct for heteroscedasticity as well as for the 

autocorrelation induced by the use of overlapping returns.  These include a modified version 

of the errors proposed in Hansen and Hodrick (1980) (MHH errors), the familiar Newey-West 

(NW) estimate, and a measure proposed by Hodrick (1992) (Hodrick errors).  All are 

described in detail in the appendix.   

 

Briefly, the MHH and Hodrick standard errors are valid under the restrictive null hypothesis 

that equity returns have a constant conditional mean – ie the dividend yield (or any other 

candidate predictor) contains no information about future expected returns.  As mentioned 

previously, under the null, the residuals will be autocorrelated to order (k-1).  This 

information is used to ensure that both the MHH and Hodrick errors are appropriate under the 

null hypothesis.  Under the alternative hypothesis, where equity returns may have a variable 

conditional mean, the regressors in the model may not completely capture the predictable 

component of returns.  In this case, there may be serial correlation present in the residuals of 

order greater than (k-1) and our estimated standard errors do not correct for this.  

Consequently, we can only be certain of their validity under the null.  

 

Hodrick (1992) errors are constructed by imposing more of the null hypothesis (namely that if 

returns are not predictable, then the k-period error should equal the sum of k one-period 

errors) and exploiting the properties of covariance-stationary time series to remove the 

overlapping structure of the regression residuals.  The advantage of this approach is that it 
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avoids the need to sum a large number of estimated covariance matrices, which can cause 

poor small-sample performance of the estimated standard error.   

 

Ang and Bekaert (2003) argue that much of the literature has relied on standard errors (OLS 

or GMM) that are upwardly biased in small samples.  This has lead to frequent over rejection 

of the null hypothesis of zero predictability. They show that when using the Hodrick (1992) 

standard errors, the bias is reduced and evidence of long-run predictability is significantly 

weakened.  To illustrate this, Table C presents the coefficient estimates, t-statistics and 

corresponding p-values for a simple regression of the one-year excess equity return on the 

dividend yield.   

 

Table C: Comparison of t-statistics and p-values  

(Results for one-year excess returns, 1963-2002) 

 Constant Dividend Yield 
Coefficient 1.90 0.58
t-OLS 8.02 7.56
p-OLS 0.00 0.00
t-NW 3.53 3.16
p-NW 0.00 0.00
t-MHH 3.02 2.70
p-MHH 0.00 0.01
t-Hodrick 2.12 2.02
p-Hodrick 0.04 0.05
R2 0.30 
 

Although the null hypothesis can be confidently rejected in all cases, the table clearly shows 

how relying on the Newey-West correction could lead to over rejection of the null hypothesis 

of zero predictability, confirming Ang and Bekaert’s (2003) results.  Specifically, the low 

Hodrick t-statistic suggests that the dividend yield is only just significant at the 95% 

confidence level.  Note also that the t-statistic resulting from the Newey-West standard errors 

is higher than from the MHH errors.  This suggests that the Newey-West correction places too 

low a weight on higher order autocorrelations which are known to exist (see the appendix for 

details).   

 

Hodrick (1992) and Ang and Bekaert (2003) present Monte Carlo evidence that, in small 

samples, the Hodrick errors provide test statistics with the best size (ie one that minimises the 

probability of rejecting a true null hypothesis).  But, without a specific alternative hypothesis, 

it is not possible to compare the power of the tests (probability of not rejecting a false null 

hypothesis).   
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5.2 Spurious regressions  

 

Regardless of whether or not overlapping returns are used, we may encounter other 

econometric problems.  In particular, the model for understanding predictability outlined in 

Section 2 relies on the persistence of the state variable, z, and its relationship with the 

dividend yield.  But if the model is incorrect, and our regressor (the dividend yield) is in fact 

unrelated to the state variable, it is still possible that we can estimate a (seemingly) significant 

relationship between them, if the regressor and the state variable are similarly persistent.   

 

This phenomenon – a spurious regression – has been well documented since Granger and 

Newbold (1974), and most commonly occurs when regressing non-stationary time series.  In a 

more recent paper, Ferson et al (2003) show that spurious regressions may arise even if the 

dependent variable is not a highly persistent series, for example an index of returns on a 

financial asset.  More specifically, they use Monte Carlo simulations to show that regression 

models such as (10), in which a persistent lagged variable is used to predict stock returns, can 

produce spurious results if actual returns are driven by a persistent expected return plus a 

random shock term.  Further, their work is based on non-overlapping returns.  This suggests 

that even after correcting standard errors for the autocorrelation in the estimated residuals, 

induced by overlapping returns, we still run the risk of estimating a spurious regression.  But 

seeing as there is no way of testing for this, we do not aim to address the issue.  Rather, we 

rely on the fact that we have outlined a theoretical framework that formally links the dividend 

yield and the state variable, and acknowledge the spurious regression problem as a potential 

caveat. 

 

5.3 Stochastic regressors 

 

A related problem arises when including regressors that have a stochastic component.  Even if 

one could observe the state variable, there may be a finite sample bias if there is correlation 

between regressor and the error term (recall that a maintained assumption of the classical 

regression model is that E[ut|Xt]=0).  To understand how this relates to our aim, note that the 

dividend yield at time (t-1) depends upon the price level, pt-1.  Observing the dividend yield at 

t and t-1 therefore contains information about the evolution of the stock price through period 

t.  In turn, this means we have some information about the change in price from t-1 to t – ie 

we have some information about the return.  As a consequence, E[ut|Xt,Xt-1] may be non-zero.   

 

Stambaugh (1999) shows that, in finite samples, this violation of the classical assumption may 

introduce significant upward bias to the estimated coefficients.  And this bias is increasing in 
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the persistence of the regressor, and can be significant (up to half a standard deviation of the 

estimated coefficient) even for relatively large sample sizes.  Although Stambaugh (1999) 

provides analytical expressions for the finite-sample moments of the estimated coefficient, 

these are only valid for non-overlapping returns.  Since the focus of the current paper is on 

models with overlapping returns, we simply acknowledge the stochastic regressor problem as 

a potential caveat to our results and instead focus on making appropriate corrections to the 

OLS standard errors.   

 

6. Empirical results 

 

In this section, we present the estimation results.  We estimate both the simple dividend yield 

model of equation (10), labelled model 1, and the related earnings yield model, where the 

dividend yield is replaced by the earnings yield and the pay-out ratio (referred to as model 2).  

We also estimate variants of these models, first including the risk-free rate (models 1b and 

2b), and second adding the lagged dependent variable (models 1c and 2c).  Both variants are 

frequently encountered in empirical work of this type. 

 

In light of the previous discussion, we first estimate the models with non-overlapping returns 

for the period 1926-2002.  Because using these non-overlapping returns significantly reduces 

the number of observations, we can only do this estimation with one-year returns.  Table D 

below shows the dividend yield to be significant.  Yet the model’s explanatory power is 

limited, as indicated by the relatively low R2.  Similar results are obtained for the remainder 

models. 

 

Table D: Regression results with non-overlapping one-year returns (1926-2002) 

Model Const Div 
Yield 

Earns 
Yield 

Pay-out 
Ratio 

Short 
Rate 

Lagged 
Return 

R-
squared 

1 1.01 0.32  0.17
t-stat 4.14 3.96  

1b 1.08 0.33  -0.004 0.18
t-stat 4.18 4.03  -0.81

1c 1.07 0.33  0.07 0.18
t-stat 4.13 3.94  0.66

2 1.0  0.30 0.35 0.14
t-stat 3.30  3.31 2.34

2b 1.07  0.31 0.38 -0.004 0.14
t-stat 3.29  3.35 2.40 -0.61

2c 1.26  0.38 0.44 -0.26 0.19
t-stat 3.95  3.97 2.88 -2.17

t-statistics are unadjusted. 
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To interpret the results reported in Table D, note further that (taking model 1 as an example) a 

coefficient of 0.32 on the log dividend yield translates into a coefficient of around 7 on the 

level of the dividend yield.(16)  So for each percentage point that the level of the dividend yield 

is above its mean, the expected excess equity return increases by around 7 percentage points.  

This suggests that excess returns are highly responsive to small changes in the dividend yield.  

But note that the coefficient we estimate is only slightly higher than those found by ‘typical’ 

dividend yield regressions run on US data.   

 

A richer set of results is obtained using overlapping returns, and they form the basis of the 

estimations in the remainder of the paper.  Table E below presents the results for one-year 

excess returns.  Both MHH and Hodrick t-statistics are reported.  

 

Table E: Predictability regressions for one-year excess returns (1963-2002) 

Model Const Div 
Yield 

Earns 
Yield 

Pay-out 
Ratio 

Short 
Rate 

Lagged 
Return 

R-
squared 

1 1.13 0.35 0.22
t-MHH 4.60 4.32 

t-Hod 2.26 2.23 
1b 1.55 0.44 -0.02 0.25

t-MHH 3.72 3.87 -1.57
t-Hod 2.55 2.49 -1.56

1c 1.11 0.34 -0.03 0.22
t-MHH 4.24 3.84 -0.19

t-Hod 2.57 2.53 -0.12
2 1.35  0.39 0.58 0.24

t-MHH 4.65  4.40 3.76
t-Hod 2.94  2.62 2.88

2b 1.59  0.44 0.54 -0.01 0.26
t-MHH 3.82  3.84 3.56 -1.16

t-Hod 2.78  2.55 2.67 -1.04
2c 1.33  0.38 0.57 -0.04 0.24

t-MHH 4.61  4.17 3.77 -0.27
t-Hod         3.13  2.86 2.82 -0.17

 

The results for model 1 and its variants show that the coefficient on the dividend yield is 

positive and significant, whether using the MHH or Hodrick t-statistic.  These results are 

consistent with the earlier discussed role of the dividend yield as a proxy for expected returns.  

Replacing the dividend yield by the earnings yield and pay-out ratio (model 2 and variants)  

__________________________________________________________________________________ 
(16) This follows from taking a Taylor expansion about the mean of the log dividend yield - 4.79% - between 1926 
and 2002.   
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has a small impact on the predictive power of the regression (R2 increases from 0.20 to 0.24 in 

model 2).  The earnings yield coefficients are all positive and significant.   

 

Turning now to the other regressors, we find the coefficient for the risk-free rate to be 

negative, but never significant.  This result is in line with the empirical literature (eg Lamont 

(1998) and Campbell (1991)), but contradicts Ang and Bekaert (2003), who find the short rate 

to be the most significant variable in their predictability regressions.  We further find that the 

lagged dependent variable (models 1c and 2c) is never significant.  Recall that equation (8) 

showed actual returns to include both dividend and expected returns news.  This implies that 

lagged returns cannot be expected to have the same predictive power as the dividend yield.  

The results for models 1c and 2c confirm this prediction from the model. 

 

To understand how the above results change as the return horizon is increased, Tables F and 

G show the estimation results for two and four-year excess returns.  At the two-year horizon, 

the yield variables continue to be positive and significant.  At the four-year horizon, however, 

the Hodrick t-statistic for the dividend yield and earnings yield are no longer significant at the 

95% confidence level, even though the magnitude of the estimated β coefficient is larger.  The 

risk-free rate and the lagged dependent variable continue to be insignificant.   

 

Table F: Predictability regressions for two-year excess returns (1963-2002) 

Model Const Div 
Yield 

Earns 
Yield 

Pay-out 
Ratio 

Short 
Rate 

Lagged 
Return 

R-
squared 

1 1.93 0.59 0.36
t-MHH 4.39 3.97 

t-Hod 2.47 2.38 
1b 2.27 0.67 -0.01 0.38

t-MHH 4.28 4.12 -1.15
t-Hod 2.59 2.53 -0.75

1c        1.84 0.56 -0.09 0.38
t-MHH 4.35 3.88 -0.85

t-Hod         2.21 2.01 -0.23
2         2.49  0.69 1.13 0.43

t-MHH 4.64  4.17 4.13
t-Hod 2.89  2.69 2.44

2b 2.50  0.70 1.13 -0.001 0.43
t-MHH 4.41  4.07 4.05 -0.06

t-Hod 2.77  2.77 2.63 -0.04
2c 2.39  0.66 1.09 -0.10 0.44

t-MHH 5.04  4.45 4.32 -1.04
t-Hod 2.49  2.20 2.20 -0.25
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Table G: Predictability regressions for four-year excess returns (1965-2001) 

Model Const Div 
Yield 

Earns 
Yield 

Pay-out 
Ratio 

Short 
Rate 

Lagged 
Return 

R-
squared 

1 2.77 0.84 0.43
t-MHH 5.23 4.54 

t-Hod 1.58 1.44 
1b 2.85 0.86 -0.003 0.43

t-MHH 6.81 5.96 -0.19
t-Hod 1.46 1.39 -0.09

1c 2.78 0.84 -0.03 0.44
t-MHH 3.96 3.40 -0.25

t-Hod 1.30 1.17 -0.06
2 3.33  0.96 1.30 0.46

t-MHH 7.36  6.17 6.95
t-Hod 1.40  1.36 1.05

2b 3.20  0.93 1.34 0.01 0.47
t-MHH 7.12  6.43 10.12 0.66

t-Hod 1.39  1.35 1.04 0.27
2c 4.01  1.15 1.70 0.11 0.46

t-NW* 7.27  6.63 6.43 1.35
t-Hod 1.02  0.98 0.81 0.17

* MHH errors not available.  See the appendix for details. 

 

Taken together, Tables E-G, suggest that both the estimated coefficients on the dividend yield 

(and the earnings yield) and the R2 increase with the return horizon.  At the same time, the 

Hodrick t-statistics decline, thereby weakening the contribution of the dividend yield at the 

longer horizon.  These results are not entirely consistent with those predicted by the simple 

model outlined in Section 2 (see also equation (12)).  It is interesting to compare these results 

with the US regressions run by Ang and Bekaert (2003) for the period 1952-2001.  In their 

univariate regressions, they fail to find significance for the dividend yield or the earnings 

yield.  Furthermore, they observe that the estimated dividend (or earnings) yield coefficient 

decreases with the investment horizon until around four years and increases gradually 

thereafter.  Finally, they find strong evidence of predictive ability of the short interest rate, 

both in univariate and in bivariate regressions.(17) 

 

7. Stability checks 

 

Our results so far suggest that long-horizon returns contain a predictable component.  At the 

same time, we find that this predictability is sensitive to the chosen return horizon, and that it  

__________________________________________________________________________________ 
(17) Ang and Bekaert (2003) also run regressions on monthly UK data for the period 1975-2001.  They 
find no evidence of long-run predictability in the dividend yield model. 
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sometimes differs from that reported elsewhere in the literature.  In this section, we present 

some evidence on the time variation in predictability, described in Section 1.  This is done in 

two ways: first by estimating the predictability model over a fixed, but rolling sample period 

(Section 7.1), and second by employing an expanding sample (Section 7.2).  

 

7.1 Sensitivity to sample period 

 

We first wish to explain whether the significance of the yield variables and the R2 of the 

regression are dependent on the period of estimation.  We do so by estimating our models 

over a rolling window.(18)  Chart 4 shows the t-statistics that result from estimating model 1 

repeatedly over a 24-year rolling window.  

 

Chart 4: Model 1 t-statistics from rolling regressions (24-year window) 
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__________________________________________________________________________________ 
(18) In this section, we focus exclusively on our model 1 specification.  Similar patterns were found 
when estimating other models recursively and over a rolling window.   



 

 29

Charts 4A and 4B suggest that predictability at the one-year and two-year horizon is highly 

sensitive to the sample period considered.  Most strikingly, we observe that significance starts 

falling in late 1997, to reach an all-time low at the end of 1999.  Thereafter, the t-statistics 

pick up, so that by the end of the sample period, they are back to the levels observed in late 

1998.  A second observation is that, whereas our earlier reported one-year model reported a 

Hodrick t-statistic of 2.23 (Table E), a model estimated over the period 1976:1 – 2000:1 

yields a Hodrick t-statistic of just 0.91.(19)   

 

Taken together, Charts 4A and 4B suggest that much of the loss in predictability occurred 

during a period of rapidly rising returns, during which our regression results yielded unusually 

large standard errors. As explained in the appendix, both the MHH and Hodrick  

t-statistics employ estimated standard errors.  So it is easy to see that a sequence of very high 

errors will have a great impact on these test statistics.  This effect can persist for a long time, 

even though the estimation window moves forward, because of autocorrelation in the 

residuals.  This persistence explains why the rise in predictability after 2000 (seen in Charts 

4A and 4B) is gradual.  A similar line of argument may explain why predictability rises 

significantly between 1988 and 1992.  The rise in the t-statistics shown in Charts 4A and 4B 

corresponds to the large swings in returns of the mid-1970s dropping out of the window.   

 

The results for the rolling regressions may also help to explain why we lose significance of 

the yield variables in the four-year excess returns models.  Chart 4C shows that predictability 

both falls and recovers at a slower rate than in Charts 4A and 4B.  At the end of the sample 

period, the Hodrick t-statistics have only just regained their end-1999 values.   

 

Charts 5 and 6 below show plots of the estimated dividend yield coefficient (β) and R2 from 

the model 1 rolling regressions.  Consistent with the results in Charts 4A-C, we see that the 

size of the coefficient and the fit of the regression fall sharply around 1997, reach bottom in 

late 2000 and recover slowly thereafter.  Chart 5 may also shed light on Ang and Bekaert’s 

result that the size of the coefficient on the dividend yield initially falls with the return 

horizon up to around two years, only to start rising again at longer horizons.  Chart 5 suggests 

that this result is quite unique to the sample period they consider.  The norm is for the size of 

the coefficient to increase with horizon.   

 

__________________________________________________________________________________ 
(19) Similar results hold for the other horizons. 



 

 30

Chart 5: Model 1 β coefficients  Chart 6: Model 1 R2 

(24-year rolling window)   (24-year rolling window) 
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7.2 Sensitivity to sample size 

 

The results so far illustrate substantial variation in predictability, most clearly in the 1990s. 

The question arises whether this time variation could have been caused by either the large 

run-up in equity prices through the late 1990s entering the estimation window, or the 

turbulence of the early 1970s dropping out, or both.  To help determine which, we next 

estimate model 1 for varying sample sizes.  Chart 7 shows the t-statistics from model 1 

(dividend yield) at the one-year return horizon estimated recursively with the starting point 

held fixed at 1966:1.  Charts 8 and 9 show the estimated coefficients and R2 when using these 

same expanding windows. 

 

Chart 7:  Model 1 t-statistics from recursive regressions (expanding windows) 
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7C Four-year returns  
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The t-statistics from recursive regressions are clearly less volatile than for the rolling 

regressions.  In particular, the evidence based on the Hodrick t-statistic is remarkably stable.  

In the case of one-year returns, the Hodrick test statistic for the dividend yield hovers around 

2 for most of the period.  It lies below 1.96 between 1997 and the first half of 2001.  It is only 

in the last five quarters of our sample that it recovers above 2.  A similar story can be told for 

the two-year returns.   

 

Chart 8: Model 1 β coefficients    Chart 9: Model 1 R2 

(expanding window)     (expanding window) 
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Comparing the rolling and recursive regressions, we can learn the following.  First, the charts 

suggest that not including the less volatile period 1963-1973, when the dividend yield 

behaved more like it did in the 1980s (see Chart 1), leads one to conclude that the dividend 

yield has no predictive power for UK returns.  Second, the run-up in equity prices through the 

1990s and accompanying falls in the dividend yield affect the size of the coefficient and the 

fit of the regression; both have fallen gradually since around 1997.  The subsequent decline in 

equity prices has led to a restoration of predictability, albeit at a slow rate.  This becomes 
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clear when one compares the rate of recovery of the t-statistics in Charts 4 (rolling windows) 

and 7 (expanding windows).   

 

Taken together, the results of the rolling and the recursive regressions suggest that the 

relationship between the dividend yield and excess returns is highly sensitive to both the 

chosen return horizon and the sample period.  This result is comparable to Ang and Bekaert 

(2003), who find evidence of return predictability only in samples that exclude the 1990s. 

Moreover, in these samples, the contribution of the dividend yield was dominated by that of 

the risk-free rate.  This result does not appear to hold for the UK sample.(20) 

 

8. Conclusions  

 

In this paper, we estimate empirical models of equity return predictability for the United 

Kingdom that are motivated by the dynamic dividend discount model of Campbell and Shiller 

(1988a). We offer evidence that in the United Kingdom, long-horizon excess equity returns 

are predictable.  In line with existing US studies, we confirm that both the dividend yield and 

the earnings yield help forecast such returns.  At the same time, we highlight that these results 

could be model-dependent and that alternative models may dominate.  We provide evidence 

that the size of the regression coefficients and R2 of the regressions increase with the forecast 

horizon and that these results depend on the chosen sample period.  We further demonstrate 

that the strength of the empirical dividend yield – equity return relationship depends crucially 

on the chosen sample period, with little apparent evidence of long-horizon equity 

predictability in the early 1970s and late 1990s. We do not confirm the predictive role of the 

risk-free rate reported in Ang and Bekaert (2003). 

 

Ang and Bekaert (2003) conclude that the weak performance of the dividend yield model 

demonstrates the need for a different approach to the dynamic dividend discount model in 

empirical applications.  In particular, they suggest that most predictability may stem from the 

risk-free rate, the second component of the time-varying discount rate in the theoretical 

model, and not from the expected return (for which the dividend yield is a proxy).  As 

indicated in Section 2, some researchers are currently redirecting their focus towards the 

predictable component in cash flows (dividend and earnings growth).   

 

Others consider the possibility of discrete shifts in the empirical dividend yield – equity return 

relationship.  For example, research by Carlson, Pelz and Wohar (2001) argues that even if 

__________________________________________________________________________________ 
(20) Results available from the authors. 
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the dividend yield is mean-reverting, its mean value may have changed over the past 

decades.(21) Using structural break point tests, they find evidence of a small number of breaks 

in the US dividend yield and earnings yield series, with the latest regime producing a mean 

well below the total sample mean.(22)  In related work, Vila Wetherilt and Weeken (2002) 

discuss factors that might have contributed to a structural shift in the mean dividend (or 

earnings) yield, which in turn would have affected their relationship with expected returns.   

 

Finally, much work is being done in the area of model selection, as indicated in Section 3.  

Also worth noting is work by Pesaran and Timmerman (2002), who demonstrate that equity 

return predictability is significantly improved when using time-varying parameters.  Other 

papers suggest that equity returns might exhibit long memory (Henry and Zaffaroni (2001)).  

This means that even though they continue to exhibit mean reversion, unanticipated shocks 

have very long-lasting effects.  Another interesting issue is that of rational bubbles.  

Modelling rational bubbles would require non-linear functions of fundamentals.  The research 

presented in the present paper may highlight that the linear predictability model is not stable.   

 

__________________________________________________________________________________ 
(21) Recall that we could not reject non-stationarity of the valuation ratios, a result, which may suggest a 
non-constant mean.   
(22) They find strong evidence of breaks in the US dividend yield in 1955 and 1982 using annual data 
from 1872.  They also find tentative evidence of a break in the dividend yield and price earnings ratio 
in 1992 Q4, using quarterly data from 1945.   
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Appendix: Long-horizon regressions 

As discussed in the main text, estimating OLS regressions of long-horizon returns with a 

small data set provides an awkward dilemma for the researcher:  either work with an even 

smaller sample of non-overlapping returns, or use overlapping returns which entail 

econometric complications.   

 

Regressions involving overlapping returns can bias inference. This is because the data are 

sampled more finely than the return interval, so the estimated residuals will be serially 

correlated up to the order of return interval (as discussed in Hansen and Hodrick (1980)).  

This means that the OLS standard errors will be biased unless an appropriate adjustment is 

made.   

 

Some authors overcome the problem by using non-overlapping observations (see, among 

others, Fama and French (1988)).  This is not a viable option using our data set because a  

non-overlapping series of annual returns would leave just 36 observations.  And, given that an 

aim of the current paper is to study the predictive power of data as the return horizon is 

increased we choose to work with ‘overlapping residuals’ and investigate appropriate 

adjustments to the standard error.  

 

A further complication is that, in general, the volatility of asset returns appears to be serially 

correlated (see discussion in Campbell, Lo and MacKinlay (1997)).  This makes the 

assumption of homoscedasticity inappropriate.  Below, we describe three estimates of 

standard errors that allow for autocorrelation in the residuals and heteroscedasticity of 

unknown form.  

 

Consider the generalised linear regression model with normally distributed errors 
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where yt+k,k denotes the k-period excess return to t+k and epsilon is an error term which 

belongs to the t+k information set.  xt contains the candidate predictors so that in the simplest 

case (model 1), xt’ = [constant  dividend yield]’.  

 

Mapping the regression model into GMM provides an expression for the variance of the OLS 

estimate of beta, Tβ̂ , which is 
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Equation (A3) shows that we face the common problem of estimating S from a finite sample.  

Simply replacing the true autocovariances of wt+k with their sample autocovariances can be 

problematic.  To understand this, note that when j = -(T-1) the estimate is based on just one 

observation and for j < -(T-1) no estimate is available.  Further, estimates based on sample 

autocovariances are, in general, not guaranteed to be positive definite.  But tractable estimates 

of S are available.  We follow Ang and Bekaert (2003) and consider three alternatives to OLS 

standard errors.   

 

(Modified) Hansen-Hodrick errors 

First, we consider standard errors similar to those proposed by Hansen and Hodrick (1980).  

As mentioned above, Hansen and Hodrick (1980) show that even under the null hypothesis 

that returns are not predictable, the error terms will be autocorrelated up to the order of the 

return horizon, k.  Formally, 

 

kjwwE jktkt <∀≠−++ ,0)(  

,0=  otherwise. 

 

Incorporating this information into (A2) and (A3) and using the estimated residuals provides a 

heteroscedasticty consistent version of the Hodrick and Hansen (1980) standard errors.  We 

denote these Modified-Hansen-Hodrick (MHH) errors.   
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There are two potential problems with this estimator.  First, the null may not be correct.  If so 

then any variation in expected returns not captured by changes in the explanatory variables 

may cause the error term to be autocorrelated beyond the return horizon considered.  In this 

case, the MHH standard errors would be inconsistent, so we can only be sure of their validity 

under the null.  Second, there is nothing that guarantees the estimate of S will be positive 

definite.  
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Newey-West estimator 

One estimator that does guarantee a positive definite estimate of S is the familiar Newey-West 

(NW) estimator.  Unlike the MHH estimator, the NW estimator downweights higher order 

autocorrelations.  The NW standard errors are given by 
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As in the MHH case, setting q = (k+1) would be sufficient to remove the error autocorrelation 

under then null hypothesis.  Although this estimator is guaranteed positive definite, when 

using it we run the risk of excessively downweighting autocorrelations which we know to be 

non-zero.   

 

Hodrick errors 

Another estimator that guarantees positive definiteness of the estimated S was proposed by 

Hodrick (1992).  Under the null hypothesis, the k-horizon error is simply the sum of k  

one-period errors, 

 

)...( 1, kttkkt uu +++ ++=ε  

 

where ut+1 is the (serially uncorrelated) one-step-ahead forecast error. Hodrick (1992) shows 

that, by substituting this into (A3) and maintaining the assumption that autocovariances of a 

higher order then the return horizon k are zero, gives 
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Notice that (A6) contains the expectation of two stationary series.  Since the expectation 

between two (covariance) stationary time series depends not on the particular points in time, 

but only the lag between them, we can rewrite the expectation in (A6) as 
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The right-hand side of (A7) sums the regressors into the past instead of summing the error 

autocovariances forward, but keeps the interval between the two terms unchanged.  Applying 

this logic to each expectation in (A6), we get 
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where ut can be estimated by a simple regression of the one-period return on a constant.  

Finally, we get an expression for the Hodrick errors.   
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This method also guarantees positive definiteness of the estimated S, and avoids the 

summation of autocorrelation matrices (as in (A4) and (A5)).  Hodrick (1992) suggests that 

the latter property is potentially important, as in small samples this summation leads to poor 

properties of standard errors.  Hodrick (1992) and Ang and Bekaert (2003) find that in Monte 

Carlo simulation, test statistics based on the Hodrick errors have the best size.  That is, they 

produce a test with a lower probability of rejecting a true null hypothesis, relative to tests 

based on NW or MHH errors.  This result is intuitive.  The Hodrick and MHH errors are only 

valid under the null hypothesis, but the Hodrick errors impose more information from the null 

hypothesis.  One might expect that imposing more about the null would reduce the probability 

of rejecting it, if it is in fact true.(23)   

 

 

__________________________________________________________________________________ 
(23) See discussion in chapter 11 of Cochrane (2001).   
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