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Abstract

Using an intertemporal model of asset pricing under asymmetric information, we demonstrate

how public ratings about the quality of a risky asset could enhance information efficiency, albeit at

a cost of higher asset price volatility. The analysis also draws implications for the use of ratings

for benchmarking purposes, in particular, ratings-based capital requirements and an

investment/subinvestment grade dichotomy depending on the rating of the asset. In this situation,

allowing a class of market participants (eg pension funds) to hold an asset only if its rating

exceeds a certain threshold may lead informed traders to overreact to news about fundamentals. In

this case, ratings induce lower price efficiency and excessive asset price volatility.

Key words: Asset pricing, ratings, benchmarking.

JEL classification: D82, D84, G12, G14.
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Summary

This paper discusses an intertemporal model of asset pricing under asymmetric information,

demonstrating how noisy public ratings about the quality of a risky asset could enhance

information efficiency, albeit at a cost of higher asset price volatility. The analysis also draws

implications for the use of ratings for benchmarking purposes, with most notable example the

dichotomy between investment and subinvestment grade credits. In particular, we consider a

stylised version of benchmarking investment decisions to ratings, whereby a residual class of

(noise) traders link their net supply of a rated asset to some measure of the probability that the

rating next period will fall below a given threshold. Thus, benchmarking to ratings can be

rationalised as the result of forced sales by a class of regulated investors (eg pension funds) that

are restricted to hold securities whose ratings are above a prespecified threshold, and unload their

holdings to the market proportionally to the probability such downgrading will take place.

The main conclusion from the analysis is that, with benchmarking, price efficiency drops while

volatility increases. That is because, perceived changes in fundamentals feed into prices not only

through changes in perceptions about future income from holding the asset, but also through

beliefs about capital gains that depend on the net supply of the asset. Given that benchmarking

renders the net supply of traded assets partly forecastable, informed traders are inclined to trade

more aggressively on any item of news that could imply a change in fundamentals in order to

exploit perceived mispricings. Thus, informed traders become more prone to misinterpret any item

of news as information about fundamentals leading to less informative and more volatile prices.
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1 Introduction

Credit ratings are summary statistics that reflect a rating agency’s opinion, as of a specific date, of

the creditworthiness and financial robustness of a particular entity. Rating agencies’ assessment is

mainly based on fundamental analysis and have traditionally measured creditworthiness in the

context of a capital, asset quality, management, earnings and liquidity analysis.

Following a series of high-profile credit events (eg the Enron bankruptcy in 2001), the

Sarbanes-Oxley Act of 2002 has required the US Securities and Exchange Commission (SEC) to

conduct a study on rating agencies and their role in securities markets. (1) In the course of that

study, market representatives have suggested, among others, that ratings cause undue volatility in

securities markets and have called for more transparency regarding the information relied upon by

the rating agencies. A market participant, (2) for example, has claimed that

. . . one of the first things we wonder is what is it that they [the rating agencies] know,

and I think that adds unnecessary volatility and uncertainty to the marketplace. . .

Also the scope and application of credit ratings nowadays stretches beyond the provision of

information to market participants. Ratings, for example, have been used to facilitate monitoring

the risk of investments by regulated entities and to set capital charges for banks and securities

firms. Two notable examples that relate to the use of ratings for capital adequacy purposes are the

rules under the New Capital Accord, that have been proposed by the Basel Committee on Banking

Supervision and will apply to banks, and the US Net Capital Rule (3) that applies to broker-dealers.

Both sets of rules provide for the deduction from capital of a certain percentage of the value of

security holdings depending on the credit rating of those securities. Moreover, regulators often

restrict certain classes of market participants from investing in securities below a rating threshold,

with most notable the dichotomy between investment and subinvestment grade credits. (4) Rule

2a-7 of the US Investment Company Act, for example, restricts money market funds from

investing in commercial paper below a rating threshold. Similar rules apply to insurance

companies and pension funds.

(1) US Securities and Exchange Commission, ‘Report on the Role and Function of Credit Rating Agencies in the
Operation of the Securities Markets’, January 2003.
(2) Testimony of Cynthia L. Strauss, Director of Taxable Bond Research, Fidelity Investments Money Management
Inc., 15 November 2002.
(3) See Adoption of Alternative Net Capital Requirement for Certain Brokers and Dealers, Release No. 40 FR 29795
(16 July 1975).
(4) Namely, ratings above or below BBB grade, in Standard & Poor’s representation.

9



From a theoretical perspective, the role of information in asset pricing has been discussed both in

a competitive market context and in the presence of strategic interactions among market

participants. Kyle (1985) and its extensions, (5) for example, consider an oligopoly of imperfectly

informed investors having identical information. They show that, with identical information, there

is an intense pre-emption phase where informed investors compete very aggressively and, as a

result, information is incorporated into prices very quickly. Foster and Viswanathan (1996)

introduce heterogeneous information in a Kyle (1985) context showing that trading outcomes

depend critically on the initial correlation of private information that traders possess. They show

the lower the degree of initial correlation of traders’ information – namely the more heterogeneous

information becomes – the higher the degree of their monopoly power, with respect to their

information advantage, which then gives rise to an attrition trickle and an incentive to trade less

aggressively. Given that a public signal about fundamentals, such as a public rating, could increase

the initial correlation (ie reduce heterogeneity) of traders’ information, ratings could possibly be

viewed as inducing strategic traders to trade more aggressively and prices to incorporate

information more quickly.

This paper is in the line of literature initiated by Grossman and Stiglitz (1980) and Hellwig (1980).

In the context of a discrete-time asset pricing model of infinite horizon, we consider a competitive

asset market where market participants are asymmetrically informed and able to place their orders

with a Walrasian auctioneer conditionally on prices. (6) However, in addition to private information

that market participant may possess, we introduce a public signal (rating) in every trading round

that is produced by a non-trading and non-strategic party (rating agency). Such a public signal is

assumed to be produced on the basis of a stylised, time-invariant process (the rating process),

which is consistent with investors’ beliefs. (7) Thus, in this paper we are able to discuss possible

asset pricing implications both from the use of ratings for their information content and, in

addition, the impact that arises from benchmarking investment decisions and capital requirements

on ratings.

Our solution approach involves the calculation of a rational expectations equilibrium (REE) of a

(5) For example, Michener and Tighe (1991), Holden and Subrahmanyam (1992) and Foster and Viswanathan
(1993).
(6) See also Hellwig (1980), Diamond and Verrecchia (1981) and Allen, Morris and Shin (2003).
(7) In this paper, we adopt a reduced-form approach to ratings process, by abstracting from the information
economics of ratings (eg Diamond (1985) and Veldkamp (2003)), from the financial intermediation underpinnings of
ratings agencies (eg Millon and Thakor (1985)) and the possibility of strategic information revelation (cheap talk) by
rating agencies.
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securities market with ratings, assuming that the true state variables of the market are never

perfectly revealed neither to investors, nor to the rating agency, but they are observed with some

error. Thus, agents need to filter information from the variables that they observe. In particular, the

rating agency is assumed to apply a Kalman filter approach to update its ratings on the basis of

private information that it observes, while investors are assumed to fit linear econometric models

on observable variables. In addition, our modelling approach allows for higher order beliefs to

have a material impact on asset prices. (8) That is in line with Bacchetta and van Wincoop (2003)

and Allen, Morris and Shin (2003) who argue that under beliefs of higher order asset prices may

become biased towards the public information, regardless how sound that information might be.

Thus it would be of interest to examine whether a similar result also follows in our set-up and

whether a world without ratings would be preferable to a world with, but imprecise, ratings.

However, in discrete-time models with asymmetric information, agents’ rationality requires one to

address the inferences that agents make from observable variables, knowing that others act in a

similar fashion. Thus, higher order beliefs become hidden state variables and the dimension of the

state vector, associated with agents’ signal extraction problems, becomes unbounded. In order to

deal with the problem of infinite regress in expectations, we apply the techniques of Sargent

(1991), as applied by Hussman (1992). More specifically, we extend Hussman (1992) by allowing

rating announcements to augment investors’ information sets and introducing ratings-based

frictions, such as ratings-based capital requirements and benchmarking of investment decisions to

ratings.

In equilibrium, investors’ subjective beliefs have to be consistent with the actual law of motion that

those beliefs generate. Thus, equilibrium in our model is calculated as a fixed point in the mapping

from investors perceived laws of motion to the actual law of motion that investors’ perceptions

generate. This is by taking as given the econometric techniques that investors apply and assuming

that those techniques belong to the same class of linear models. In particular, we focus on the

situation where investors fit first-order vector autoregressive moving average (ARMA) models. As

of Sargent (1991) and Hussman (1992), the equilibrium in first-order ARMA models is consistent

with higher order beliefs and is such that investors have no incentive to increase the order of either

(8) Higher order beliefs is a basic feature of asset pricing under asymmetric information and it refers to the situation
where opinions of other investors’ opinions, and higher order than that, may have a material impact on asset prices.
That is in line with Keynes’ (1936) famous metaphor that the market is similar to a beauty contest, where an agent’s
subjective payoff from choosing the prettiest face from a list of contestants depends on how close her prediction were
to the average opinion of other agents.
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the AR or the MA component of their forecasting rules in order to improve their forecasts.

However, for purposes of comparison with the ARMA case, we also describe equilibria (with and

without ratings) when investors’ forecasting rules are restricted to be first-order vector

autoregressive (AR) processes. As we know from Townsend (1983), those first-order

autoregressions are always too short to give optimal forecasts because of the infinite regress

problem. That is, in equilibrium, the prediction errors from first-order vector autoregressions will

never be orthogonal to information that lagged two periods or more. (9) We consider the case

where investors use vector AR forecasting rules as a proxy for low market sophistication, in

contrast to high market sophistication when investors run ARMA models.

The analysis shows that, when ratings are used for price discovery alone they may increase price

volatility, but this is consistent in the model with an increase in price efficiency (ie prices become

more correlated with fundamentals). Also, the type of forecasting techniques that market

participants use to form their beliefs matters for trading outcomes. Moreover, for reasonable levels

of rating-based capital requirements, the volatility of prices drops, although at a cost of lower

price efficiency.

Yet benchmarking of asset holdings on ratings may cause both a reduction in price efficiency and

an increase in volatility. This is despite an optimistic presumption in the model that agents have

common knowledge of how the economy works, there are no structural breaks in the economy and

investors trust the rating agency in its objective to produce timely, accurate and objective

information. In fact, regulatory and other constraints that force a residual class of market players

to link their investment decisions to ratings, may generate a sequence of perceived mispricings in

the market and drive other investors to overreact to news about fundamentals. That way,

benchmarking magnifies the effect of news on prices in such a way that prices may respond to

changes in fundamentals even in excess of the full-information case. (10)

The remainder of the paper is organised as follows: Section 2 describes the model and the solution

method. Section 3 presents the results under no rating-based frictions and discusses persistence

implications and comparative statics. Section 4 introduces rating-based frictions, such as
(9) This is, the prediction errors from first-order vector autoregressions will never be orthogonal to the Hilbert space
that is generated by all past history of investors’ information.
(10)This is, the hypothetical situation where investors observe perfectly any innovation in fundamentals and they do
not need to solve filtering problems.
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rating-based capital requirements and benchmarking of asset holdings on ratings, and discusses

equilibrium implications. Section 5 concludes. Technical details and charts are included in the

appendix.

2 The model

We consider a competitive market for a risky asset that pays a risky pay-off Dt that varies over

time t . Pay-off Dt consists of two independent factors θ1t and θ2t – hereinafter called fundamental

factors – that have some persistence over time, as well as of a transitory component ut

Dt = θ1t + θ2t + ut (1)

We assume that factors where θ j t ( j = 1, 2) evolve according to the following first-order
autoregressive processes

θ j t = ρθ j t−1 + v j t j = 1, 2 (2)

with {ut},
j
v j t
k
be i.i.d. white noise innovations with mean zero and variances σ 2u and σ 2v . For

simplicity and without loss of generality of our analysis, we assume that the persistence ρ is the

same for the two fundamental factors, but equally one could consider different degrees of

persistence, where one of the factors could be thought of as long term and the other as short

term. (11) In addition, we assume that the fundamental factors are stationary, ie they do not grow

explosively for ever, by assuming that |ρ| < 1.

The market is populated by N privately informed investors that belong to classes indexed by

j = 1, 2 depending on the type of private information that they observe. Proportion α belong to
class 1 and observe private signals about factor θ1, while proportion 1− α to class 2, observing
signals about θ2. We consider an overlapping generation of those investors who live for two

periods and their preferences over future wealth demonstrate constant absolute risk aversion

(CARA) with coefficient 1
φ j
. Informed investors are able to trade conditionally on prices – ie place

limit orders – in the first period and invest their wealth in the risky asset or, alternatively, in a safe

asset yielding a return R.

There is also a residual set of traders, called noise traders, who trade both for non-fundamental

(liquidity) purposes and for benchmarking reasons, whereby they link their supply of the risky

(11)However, that would increase the computational intensity of our calculations when we would have to derive an
equilibrium of our asset market.
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asset to some public information. (12) Non-fundamental trade implies a random supply
j
ς t
k
of the

asset, which is i.i.d. normal with mean zero and variance σ 2ς , while noise trading for

benchmarking reasons is introduced in Section 4.2.

Informed investors of class j = 1, 2 are assumed to observe private signals s jt about the actual
realisation of fundamental factor θ j t , which are subject to an element of idiosyncratic noise η j t

s jt = θ j t + η j t j = 1, 2 (3)

where
j
η j t
k
are i.i.d. white noise innovations, orthogonal to

j
e jt
k
and

j
v j t
k
, with zero mean and

variance σ 2η. Thus we consider informed investors as having special price discovery skills (eg

macro versus sector funds), while such an information structure as given exogenously without

modelling explicitly the actual decision of investors to acquire information, as in Grossman and

Stiglitz (1980) for example. Instead, we focus exclusively on informed investors’ problem of

filtering information about fundamentals from observable variables, including their private signalsQ
s jt
R
.

2.1 Ratings

In addition to private signals that informed investors observe and to publicly observed prices and

asset pay-offs, we assume that in every trading period a non-trading, independent and

non-strategic party (henceforth called the rating agency) produces a public signal rt (henceforth

called the rating) about the factors that affect the pay-offs of the risky asset. (13) Consistently with

real-world features of ratings, we assume that ratings are public signals in the form of summary

statistics, ie they summarise all the information that the rating agency has received over time about

the fundamental factors that affect asset pay-offs. (14) In addition, as we discuss below, ratings in

this model are updated on the basis of a recursive process, which is in analogy to the rating

process outlined in rating policy guidelines of rating agencies. Finally, we assume that the rating

agency uses only its private signals in order to produce its ratings, ignoring any element of public

information such as prices, (15) and does not publicly announce the individual elements of its

private information.

(12)That is discussed in more detail in Section 4.2.
(13) In this paper, we abstract from the information economics that underpin the existence and functioning of rating
agencies, as well as from possible principal-agent problems in the disclosure of information to the ratings agency.
(14) In the real world, this may allow the agency to obfuscate the reason behind the rating change when this is based
on confidential information.
(15)This is consistent with the Standard & Poor’s approach to ratings, as outlined in their rating policies guidelines.
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Thus, the rating rt is assumed to be an unbiased estimator of the sum of the two fundamental

factors conditional on all private signals that the rating agency has observed up to that period. In

particular, the rating agency is assumed to be receive noisy private signals sr1t and sr2t of the form

sr1t = θ1t + e1t
sr2t = θ2t + e2t

(4)

where
j
e jt
k
are i.i.d.white noise innovations, orthogonal to {ut},

j
v j t
k
and

j
η j t
k
, with mean zero

and variance σ 2e . By assuming that the rating agency possesses information about both

fundamental factors, while individual investors are separated in two groups with each one

receiving a different signal, we aim to address possible information advantages of rating agencies

relative to individual market participants. That is supported by the adoption of Regulation Fair

Disclosure (Regulation FD) by the US Securities and Exchange Commission in October 2000,

which prohibits selective disclosure of non-public information by firms, but provides an exception

for rating agencies. Having said that, the rating process in this model is given by

rt = E
d
θ1t + θ2t | sr1s, sr2s, s < t

e
(5)

Given that the rating rt in (5) depends on all past history of signals srj , we may express it in a

recursive form as a function of the previous rating rt−1 and the signals observed in period t . That

can be achieved by using the following Kalman filter representation.

Lemma 1 The rating process {rt}, as defined by (5), exhibits positive autocorrelation and is
generated by the following on-line algorithm.

rt = ρ
d
1−� (� + 1)−1e rt−1 + ρ� (� + 1)−1 dsr1t−1 + sr2t−1e (6)

where, parameter � is given by

� = 1
2

σ 2v
σ 2e
− b1− ρ2c+

Vv
σ 2v
σ 2e
− b1− ρ2cw2 + 4σ 2v

σ 2e

 (7)

Proof. See appendix.

From (6) and (7), the degree of serial correlation in the rating process depends on the relative

precision of the rating agency’s signal errors, relative to that of fundamental innovations, rather

than on the actual levels. Although this is a standard Kalman filter result, in the context of our

ratings representation it suggests that the better the access of a rating agency to information the

more confident the agency will be to rate more aggressively and to give a rating that may
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contradict a previous one. Also, the rating process in (6) was evaluated on the basis of a

steady-state assumption, (16) assuming that the market runs for a long time. That assumption may

not fit well in a situation of a regime change (eg industry liberalisation), or an economy in

transition, but in those cases, rational expectations and common knowledge of model parameters

would not fit well either.

2.2 Timing of events and information

Within every trading round t we consider the following sequence of events:

1. Rating rt is publicly announced, based on information up to t − 1.
2. Fundamentals are updated, investors observe private signals about fundamentals, as well as

public information, including prices pt , ratings rt and pay-offs Dt . This information affects

investors’ optimal demands and the market clearing price pt in equilibrium.

3. The rating agency receives information about the current level of fundamentals and, once

again, makes a rating in period t + 1.
The above sequence of events aims to capture the conventional wisdom that ratings lag the market,

in the sense that rating agencies respond later than the market to changes in fundamentals. That is,

new information about fundamentals is reflected first into prices and then into ratings because

market participants can trade on new information instantly, while the rating agency follows by a

natural time lag because it does not trade, but rather sets ratings at discrete-time intervals.

2.3 Definition of rational expectations equilibrium

Informed investors of class j = 1, 2 are characterised by the information set
I jt =

j
ps, Ds, rs, s js ; s ≤ t

k
, which is a record of data z jt of the form

z)j t =
K
pt, Dt, rt , s jt

L
(8)

Let also ζ j ( j = 1, 2) be conditional forecast errors, conditional on investors’ information sets
and on the type of forecasting techniques that investors use to form their beliefs. Let also ς t be the

net supply of the risky asset in period t , where
j
ς t
k
are assumed to be i.i.d. white noise

innovations. Then, the state vector zt that describes the market for the risky asset in period t is

z)t =
K
pt Dt rt s1t s2t θ1t θ2t ς t ζ 1t ζ 2t

L
(9)

(16)That is, we use the unconditional variance of the rating forecast error. More details are discussed in the appendix.
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State vector zt includes all variables that are directly and collectively observed by investors, as

well as the two latent factors θ1 and θ2, the random supply ς of the risky asset and investors’

forecast errors ζ j , j = 1, 2. Also, the noise of the model at t is specified by a vector εt which
includes all the white noise innovations

ε)t =
K
ut η1t η2t v1t v2t e1t−1 e2t−1 ς t

L
(10)

where, the white noise innovations {u}, jv jk, jη jk and je jk are defined by (1), (2), (3), (4) and {ς}
are shocks to the aggregate supply of the risky asset.

The fundamental requirement that a REE must satisfy is that equilibrium prices have to be

consistent with the presumption that investors know the actual law of motion of the securities

market and choose their demands schedules accordingly. Within a given class of linear forecasting

rules (eg ARMA), a competitive REE for our securities market is defined as follows:

Definition 1

1. Investors make conjectures about the law of motion of the variables they observe. (17) Given

their information sets, investors use statistically optimal predictors to derive the perceived law of

motion for their observable variables.

2. Investors select their demand schedules q jt so as to maximise their expected utilities. In order

to calculate expected utilities, investors use their perceived laws of motion of the variables they

observe. (18)

3. Given investors’ demand schedules, the price pt of the risky asset clears the market.

4. Investors’ perceived laws of motion are correct. That is, there is a fixed point in the

correspondence that maps investors’ perceived laws of motion to the actual law of motion that

those perceptions generate.

In general, the properties of a REE of our securities market will depend on the type of linear

forecasting models that investors are assumed to run. Following Sargent (1991), if an equilibrium

is such that investors find it optimal to form their beliefs by fitting more complicated (linear)

models on their observable variables, that equilibrium would be defined as a reduced-order

equilibrium. In contrast, a full-order equilibrium would be one where investors have no incentive

(17)As we discuss below, conjecturing a law of motion about observable variables is equivalent to assume that
investors conjecture an actual law of motion for the state vector zt .
(18) In other words, conditional on their perceived laws of motion, investors form subjective beliefs about the
variables they observe and the variance of their forecast errors.
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to increase the order of either the AR or the MA part of their forecasting rules. Given the structure

of information that is stipulated in this model, Sargent (1991) and Hussman (1992) have shown

that an equilibrium that is calculated on the assumption of investors fitting ARMA(1,1) models on

observable variables is of full-order and we focus on that type of equilibrium. Thus, conditioning

investors’ forecasts on an infinite history of data is equivalent to conditioning those forecasts only

on first-order lags and the information sets I jt ( j = 1, 2) can be restated as:
I jt =

Q
pt, Dt, rt, s jt

R
.

2.4 Beliefs

Following Sargent (1991) and Hussman (1992), informed investors’ perceptions about the law of

motion of their observable variables are assumed to be of the general ARMA(1,1) form

z jt+1 = A j z j t + ζ j t+1 +C jζ j t j = 1, 2 (11)

where z)j t ≡
K
pt, Dt, rt, s jt

L
, ζ j t+1 is the vector of conditional forecast errors and A j , C j

are matrices of ARMA coefficients that can be recasted such that (11) becomes

x jt+1 = B j x jt + v j t+1 j = 1, 2 (12)

with x jt ≡
 z jt
ζ j t

 be the vector of variables that privately informed investors observe in every
period, including their realised forecast errors ζ j t , v j t+1 =

 ζ j t+1
ζ j t+1

, B j ≡
 A j C j

04 04

 and
04 be 4× 4 matrices of zeros. Given (12), informed investors can forecast x jt+1 on the basis of
observable x jt

E
d
x jt+1 | x jt

e = B j x jt (13)

Beliefs (13) affect investors’ optimal demands for the risky asset and, as a result, prices in

equilibrium. In Sections 2.5 and 2.6 we discuss the solution to investors’ optimal portfolio choice

problem and we solve for equilibrium prices.

2.5 Investor optimisation

We assume that investors of class j = 1, 2 demonstrate CARA preferences over future wealth w j

with coefficient of constant absolute risk aversion 1
φ j
. We also assume that ratings may influence

investment decisions not only through the information they convey to market participants, but also

18



through ratings-based capital requirements. Such capital requirements are assumed to imply an

opportunity cost of funds that investors need to set aside as capital, which is proportional to the

risky-asset holdings of each individual investor.

Thus, in this model, we examine the possibility that ratings-based capital requirements may have

an impact on investment decisions by focusing on the opportunity cost of funds that such

requirements would imply for market participants. In particular, we adopt a reduced-form

approach to ratings-based capital charges whereby investors face an opportunity cost (gain) due to

capital requirements at a given period, which is proportional to the extent of deterioration

(improvement) in the rating quality of the risky asset over that period. For example, if the rating of

the risky asset decreases, then an investor with positive asset holdings would face an opportunity

cost of funds due to capital charges, proportional to the quantity of his risky-asset holdings. (19) In

particular, we assume that investors of class j = 1, 2 choose their optimal demands q jt for the
risky asset in order to maximise their expected utility over next period’s wealth w j

q jt = Argmax
q∗t

E
K
− exp

r
−w j

t+1/φ j
s
| I jt

L
j = 1, 2 (14a)

subject to

w
j
t+1 = R

r
w
j
t − q∗t pt

s
+ q∗t (pt+1 + Dt+1)+ kq∗t (rt+1 − rt) (14b)

where R is the constant gross interest rate on an alternative risk-free investment and, as said

before, parameter k is aimed to capture the opportunity cost of funds that investors have to set

aside as capital. (20) The above maximisation problem gives the following optimal demands

q jt = φ j
E
d
pt+1 + Dt+1 + krt+1 | I jt

e− Rpt − krt
V ar

d
ζ
p
t+1 + ζ Dt+1 + kζ rt+1 | I jt

e j = 1, 2 (15)

2.6 Market clearing

We assume that investors’ optimal demands are aggregated by a central auctioneer who finds, if

possible, a market-clearing price. (21) At a rational expectations equilibrium the price pt must clear
(19) In order to preserve the linearity of our model, we are going to assume that a rating increase would imply the
release of some capital and, as a result, the investor would face a negative opportunity cost (ie a gain).
(20)Given that the alternative investment that we consider is the risk-free asset, the opportunity cost k must be
inversely related to the level of risk-free interest rates R. Moreover, the opportunity cost parameter k has to take into
account the slope in the risk-weights scale that is specified by regulators. For example, the Standardised Approach,
under the proposed New Basel Capital Accord, stipulates the following (discrete) scale of risk weights: 0% for assets
that are rated between AAA and AA-, 20% for A+ to A-, 50% for BBB+ to BBB-, 100% for BB+ to B- and 150% for
assets with a rating below B-.
(21)That formulation differs from Kyle (1985) and its extensions, where prices are set by a market-maker on the basis
of a semistrong market efficiency rule.
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the market

αNq1t + (1− α) Nq2t = ς t (16)

where q1t and q2t are agents’ optimal demands for the risky asset, as given by (15), and
j
ς t
k
are

i.i.d. white noises with mean zero, variance σ 2ς and mutually orthogonal in all lags to any other

noise term in the model. From (15) and (16) the price process pt becomes

pt = �−1
d
ασ 22Nφ1E1 [·]+ (1− α) σ 21Nφ2E2 [·]− Mrt − σ 21σ 22ς t

e
(17)

where E j [·] ≡ E
d
pt+1 + Dt+1 + krt+1 | I jt

e
, σ 2j ≡ Var

d
ζ
p
t+1 + ζ Dt+1 + kζ rt+1 | I jt

e
, for

j = 1, 2, and parameters �,M are given by
� ≡ RN dσ 22αφ1 + σ 21 (1− α) φ2e
M ≡ kN dσ 22αφ1 + σ 21 (1− α) φ2e

Both, subjective beliefs E j [·] and subjective measures of riskiness σ 2j are determined in
equilibrium on the basis of investors’ perceived laws of motion, as discussed in Section 2.4.

2.7 Solving for a REE

We assume that investors conjecture that the state vector zt evolves according to the following law

of motion

zt = T (B) zt−1 + V (B) εt (18)

where B ≡ [B1 B2] and T (B), V (B) are matrices of actual coefficients. If all eigenvalues of T (B)
lie inside the unit circle, (22) then equation (18) determines a covariance-stationary distribution for

the state vector zt , whose moment matrixMz solves

Mz = T (B)MzT (B)) + V (B)PV (B)) (19)

where P is the moment matrix of the vector εt of white noise innovations and B ≡ [B1 B2]. Given
that matrix V (B)PV (B)) is symmetric, equation (19) defines a discrete-time Lyapunov equation.

Then, with all eigenvalues of T (B) less than unity in modulus, there is a unique (23) symmetric

matrix Mz that solves equation (19). WithMz in hand we can derive the variance covariance

matricesMx j of investors’ observable variables x jt and the covariance matrixMzx j of the state

vector zt with the vector of observable variables x jt , j = 1, 2. Using an appropriate selector
(22) It can be easily verified that in our model all eigenvalues of matrix T (B) lie inside the unit circle. This is because
of the assumption that the autoregressive parameters are such that

nnρ j nn < 1 ( j = 1, 2).
(23)From standard theory, there is a unique symmetric matrixMz (B) that solves (19) i.f.f. no eigenvalue of T (B) is
the reciprocal of any other eigenvalue of T (B). This is, i.f.f. eig [T (B)] eig [T (B)]) − 1 /= 0. Given that all
eigenvalues of T (B) lie inside the unit circle, none of them can be the reciprocal of another eigenvalue of T (B).
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matrix u j , matricesMx j andMzx j are given by

Mx j = u jMzu)j
Mzx j =Mzu)j

(20)

Let us now consider the linear projection of vector x jt+1, of investor’s jobservable variables, on its

previous realisation x jt

E
d
x jt+1 | x jt

e = S j (B) x jt j = 1, 2 (21)

Using matricesMx j andMzx j , we are able to evaluate the matrix S j (B) of statistically optimal

estimators as follows

S j (B) = u j T (B)Mzx jM
−1
x j (22)

whereMx j andMzx j are given by (20) and u j is a matrix that selects the subvector of observable

variables x jt from the state-space vector zt .

Let S (B) ≡ [S1 (B) S2 (B)], then, a rational expectations equilibrium is a fixed point in the
correspondence that maps investors’ perceptions – as defined by the VAR coefficients B in (13) –

into statistically optimal projections S (B), given the actual law of motion (18) that investors’

perceptions generate. It is worth emphasising that, in this model, conjectures about the coefficient

matrix B are equivalent to conjectures about the actual law of motion (18) of the state vector zt .

Such an equivalence stems from the fact that, for a given coefficient matrix B, equation (19)

defines a unique moment matrixMz for the state vector zt , which in turn, defines matrices T (B)

and V (B) of the actual coefficients. In other words, there is a one-to-one relationship between

conjectures about coefficient matrix B and matrices T (B), V (B). That becomes evident in

Section 6.2 where we outline the fixed-point solution algorithm and how matrices T (B) and V (B)

are evaluated.

3 Ratings and price discovery

In this section we examine the effect of ratings on price volatility and efficiency under the

presumption that they are used solely for price discovery and not for any other purpose, such as to

benchmark investment decisions or to set capital requirements. The equilibrium coefficients of

investors’ forecasting models were calculated using Matlab programs under the following basic
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parameterisation

Risk tolerance φ1=φ2=1

Investor proportions a=0.5

Gross interest rate R=1.02

Constants N=1, σ 2u=1

Persistence of fundamentals ρ=0.8

Variance of fundamental innovations σ 2v=0.1

Variance of errors in investors’ private signals σ 2η=1

Variance of errors in rating agency’s signal σ 2e=0.1

Variance of noise in the supply of the risky asset σ 2ς=0.01

The above parameterisation was chosen mainly to illustrate the potential impact of rating

announcements on asset prices, but has not been calibrated to match any actual data. Moreover, it

allows us to search for a symmetric equilibrium, whereby the coefficients in the forecasting

models of each class of investors are equal. In Section 3.3, we present a comparative statics

analysis where we examine the sensitivity of our results to different levels of risk aversion and

precision of rating information.

In order to gauge the impact of ratings on asset prices, we consider two benchmark cases, namely,

the case with asymmetric information, but without ratings, and the case of full information. (24)

Given the linearity of the model and the assumption that all innovations in the model are normally

distributed, correlations are considered in terms of the coefficient of linear correlation. Market

efficiency is then considered with respect to the informativeness of prices and the extent to which

prices correlate with fundamentals.

(24)Under the full information benchmark, investors are assumed to observe perfectly the realisation of both
fundamental factors, but they still remain uncertain about future realisations of these factors. As in Hussman (1992),
one can show that for fundamental shocks v j t , j = 1, 2, the price process (pt ) under full information is given by:

pt = ρ

(R − ρ) (1− ρL) (v1t + v2t )− Constant
which implies the following expression for the unconditional variance of prices:

Var (pt ) = 2
t

ρ

R − ρ
u2 t 1

1− ρ2
u
σ 2v

and the covariance of prices with fundamentals θ j t , j = 1, 2:
Cov

b
pt , θ j t

c = ρ

(R − ρ) b1− ρ2cσ 2v
Using the above expressions and the fact that the unconditional variance of fundamentals is Var

b
θ j t
c = σ 2v

1−ρ2 , we
can derive the coefficient of linear correlation of prices with fundamentals under full information.
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Section 6.3 in the appendix presents the equilibrium coefficients of investors’ forecasting

techniques and second moments of prices when investors are assumed to run vector ARMA(1,1)

models. The ARMA(1,1) case is called the high-sophistication case, in the sense that investors

cannot improve further their predictions by incorporating more lags in their forecasting models. (25)

Also in the appendix we present the equilibrium when investors’ forecasting techniques are

restricted to a first-order vector AR(1) process. This allows for an examination of the extent to

which our results might be sensitive to the assumption of the type of forecasting techniques that

investors are using at the REE. The case where investors run simple AR(1) models is called the

low-sophistication case, in a sense that investors could further improve their forecasts by adding

more lags in their time-series models.

Based on the results that we derive under both the high and low-sophistication case, we discuss

how the use of ratings for price discovery may impact on market efficiency and price volatility.

3.1 Results

Tables I and II below, compare the equilibrium results when there is incomplete information under

both the highly sophisticated (ARMA) and less sophisticated (AR) forecasting rules, both with

and without ratings. Table I reports the equilibrium variance of asset prices in the different cases,

while Table II shows the impact on price efficiency (ie how much prices correlate with

fundamentals). The benchmark case of full information is also shown in the following tables.

Table I: Price volatility

Full-information benchmark

7.3462

Incomplete information without ratings

High sophistication Low sophistication

4.3608 0.3988

Incomplete information with ratings

High sophistication Low sophistication

5.0634 4.5017

Table II: Price efficiency

Full-information benchmark

0.7071

Incomplete information without ratings

High sophistication Low sophistication

0.4914 0.3927

Incomplete information with ratings

High sophistication Low sophistication

0.5429 0.5400

We observe that, in the incomplete information equilibrium, and regardless of the forecasting

(25)See, for example, Sargent (1991) and Hussman (1992).
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techniques used, the introduction of ratings increases the volatility of prices but they also enhance

price informativeness. In particular, Table II shows that, under both the ARMA and the AR case,

the introduction of ratings increases the correlation of prices with fundamentals θ j ( j = 1, 2)
albeit at a cost of higher price volatility. The increase in price volatility is much stronger under the

low-sophistication case where the introduction of ratings results in an increase in volatility from,

approximately, 0.4 to 4.5. However, under the high-sophistication case, the increase is less striking

from approximately 4.4 to 5.1.

In the following section we examine how non-fundamental shocks
b
ς t
c
impact on prices under

both the ratings and no-ratings case. We also consider the impact of a one-off shock in

fundamentals νt – ie the impact of a single shock in fundamentals that is isolated from the impact

of any other shock in the model – as well as the impulse response of prices to pay-off innovations

ut and private signal errors ηt .

3.2 Persistence

Under the full-information benchmark, non-fundamental shocks have no persistence on prices

because non-fundamental shocks themselves have no persistence. However, when the full

information assumption is relaxed, non-fundamental shocks may have a persistent effect on prices.

That is because fundamentals are latent variables and investors rely on past values of observable

variables to filter information about fundamentals and form their beliefs. Given that prices are

affected, through market clearing, by one-off non-fundamental shocks, those shocks may continue

to affect prices in future periods through investors’ filtering problems. In other words, persistence

of non-fundamental shocks on prices is driven by, what Bacchetta and van Wincoop call,

persistence of investors’ rational confusion that eventually dissipates as investors gradually learn

about the realisation of fundamentals in previous periods.

Similarly, rational confusion may inhibit investors from responding effectively to fundamental

shocks ν t and it may also drive them to misinterpret non-fundamental noise ut in asset pay-offs as

being fundamental information. The extent to which ratings ameliorate investors’ rational

confusion and facilitate the incorporation of fundamental information into prices will determine to

what extent rating agencies provide a useful service to the market. Finally, errors in investors’

private signals may have a different impact on prices under the ratings and the no-ratings case.
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Private signal errors are expected to affect prices through channels of both subjective beliefs and

subjective measures of riskiness. As with all other types of shocks that we consider, the impulse

response of prices to private signal errors will be determined by the sign and relative importance

of elements in the VAR matrix T (B), as defined by equation (18).

The impulse response of prices to various shocks in the model will be determined by the sign and

relative importance of elements in the VAR matrix T (B), as defined by equation (18). From (18),

the impulse response of prices to a one standard deviation shock in the i th element of innovations

vector εt , as defined in (10), is given by the following function:

f (t) = dT (B)t−1 V (B)e(1,i) σ i (23)

where T (B) and V (B) are defined by (18), σ i is the standard deviation of the i th element of

vector εt , superscript (1, i) refers to the i th element in the first row of the matrix in brackets and

t = 1, 2, ...∞.

Chart 1 illustrates the impulse response of prices to a one standard deviation shock in

non-fundamental trade. Under the no-ratings case, the rational confusion that follows the shock

induces a price overreaction almost three times larger than the case with ratings. It then takes

around 13 trading rounds for most of the rational confusion to unwind, compared to eight trading

periods under the ratings case. Similarly, Chart 2 shows how prices respond to an idiosyncratic

shock u in asset pay-offs. We observe that ratings mitigate any undue price impact of a one-off

shock in asset pay-offs that is not related to fundamentals.

Chart 3 shows the price response to a shock of one standard deviation in fundamentals. Although,

initially, the price responds to the shock in the same fashion under both the ratings and the

no-ratings case, over the next couple of trading rounds prices tend to move closer towards the

full-information benchmark under the ratings case, compared with the no-ratings case. This

confirms our earlier finding – by using the equilibrium variance/covariance matrix of our state

variables – that ratings improve the informativeness of prices. Finally, in Chart 4, we report the

impact on prices of a one standard deviation shock in private signal errors. The non-monotonicity

in the impulse response is due to a particular combination of positive and negative elements in the

VAR coefficient matrix T (B), the endogenous nature of prices and forecast errors and the fact that

private signals may play a more pronounced role in affecting investors’ forecast errors than any

other state variable.
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3.3 Comparative statics

In this section we present a comparative statics of different degrees in risk aversion and of the

precision of rating information relative to that of privately informed investors.

Risk aversion:

According to financial economics, agents trade securities for two different motives: (i) to share

risk when they are endowed with different quantities of the risky asset and (ii), to exploit

information when they have access to different information sources and possess different

assessments of risky-asset pay-offs. The two motives for trading may combine together and affect

prices in various ways depending on the model parameters. In particular, as with Hellwig’s (1980)

static model, as risk aversion increases in the market the risk-sharing motive dominates that of

exploiting information. As a result, risk aversion results in less informative prices, which is

consistent with the results that our dynamic model produces and are shown in Chart 5.

As far as price volatility is concerned, it depends both on the degree of price informativeness and

serial correlation. On the one hand, we have seen already that price informativeness increases with

ratings towards that of the full-information benchmark and this is mainly because prices, by

becoming more informative, respond better to fundamental innovations. On the other hand, the

higher the serial correlation (in absolute terms) of prices the higher the unconditional variance of

the price process. Prices, however, may become serially correlated as a result of serially correlated

fundamentals, strong risk-sharing motives, filtering problems, or other externalities that may

induce investors to trade with less confidence on private information and place more weight on

publicly observed signals, such as prices.

Chart 6 reports the impact of risk aversion on price volatility and Chart 7 the relationship between

risk aversion and investors’ modelled risk-perceptions. Charts 6 and 7 illustrate that, ceteris

paribus, in a market with high risk aversion rational investors are aware that risk-sharing motives

dominate those of information exploitation and prices become less informative. (26) As a result, the

accuracy of investors’ optimal forecasts, which depend among other things on how informative

prices are, diminishes. Given that the long-run (unconditional) mean of prices is common

(26)This is consistent with Hellwig (1980).
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knowledge among investors and prices are competitive, less accurate forecasts induce investments

to weigh more on the fact that any price deviations from its unconditional mean will be reversed

afterwards. (27) Consequently, prices are characterised by strong mean reversion and, as a result,

high serial correlation and price volatility.

Rating precision:

As far as the effect of the precision of ratings on prices is concerned, Chart 8 shows that the lower

the precision of rating information the less precise investors’ optimal forecasts become, but they

still remain more precise than in the no-ratings case. Consequently, as the precision of rating

information diminishes relative to that of investors’ private signals, investors trade less

aggressively for information reasons and the informativeness of prices drops towards the

no-ratings case benchmark. The relationship between price informativeness and the precision of

rating information is illustrated in Chart 9.

Moreover, as the precision of ratings decreases, relative to that of investors’ private information,

the market turns out to ignore ratings and the volatility of prices drops towards the level under the

no-ratings case. This effect is quite distinct from the impact of risk aversion on prices; while risk

aversion induces higher serial correlation in prices and, as a result, higher unconditional volatility

of prices, the lower the precision of ratings, relative to that of investors’ private signals, the more

rational investors tend to ignore ratings and focus more on their private information. This point is

illustrated in Chart 10.

4 Ratings and benchmarking

We now turn to examine how prices may be affected by frictions that relate to the use of ratings

not only for pure information discovery purposes, but also for rating-based capital requirements

and benchmarking of investment decisions on ratings.

(27)We could argue that the less accurate investors’ forecasts become, the price tends to become a focal point around
which investors co-ordinate their beliefs. As a result, long-run (unconditional) mean reversion of prices becomes
self-fulfilled at earlier trading rounds and it becomes more likely to affect the decisions of currently lived investors.
This is consistent with the results of Allen, Morris and Shin (2003) who solve a similar type of equilibrium but with
three trading rounds, totally uninformative prices and a public signal about fundamentals that acts as a focal point and
skews agents beliefs towards it. In our case, however, the focal point is still the price signal itself.
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4.1 Rating-based capital requirements

Regulatory rules often allow regulated entities, such as banks and securities houses, to use credit

ratings for capital adequacy purposes. The usual requirement that those entities have to meet is to

deduct from capital a certain percentage of the value of their security holdings, depending on the

rating that those securities receive from recognised rating agencies. In addition, regulated entities

are required by law to maintain a minimum level of capital to withstand potential future losses

and, should their capital fall towards that level, they have either to reduce their exposures to risky

investments, or to recapitalise.

But setting capital aside for prudential regulation purposes entails an opportunity cost of foregone

interest from investing in more profitable risky assets rather than in risk-free securities. This is

especially the case when an investor’s internal assessment of the fundamental value of traded

securities conflicts with that of a rating agency. Consequently, via rating-based capital

requirements, ratings could impose a constraint on investment decisions, forcing investors to

respond to rating changes in a way that is possibly contrary to their private assessments. That, in

turn, could have a material impact on both price efficiency and volatility. What such an impact

could be is an open question that we attempt to address through our stylised model in this section.

From Section 2.5, parameter k captures the opportunity cost of funds due to rating-based capital

charges. So far, k has been set equal to zero, but now turn to examine the case with rating-based

capital requirements, that is when k > 0, and their impact on the informativeness and volatility of

prices. Chart 11 shows that the informativeness of prices decreases the higher the parameter k,

namely, the higher the incentives that capital adequacy rules offer to investors to forecast next

period’s rating. At the same time, the volatility of prices drops for an initial range of parameter k

and then increases as investors’ incentives to forecast the rating process increase further. This is

illustrated in Chart 12.

However, high levels of parameter k would be far from relevant to existing rating-based capital

adequacy rules. In particular, the risk-weighting scale of asset holdings under the proposed New

Basel Accord, along with the 8% Basel ratio, and low levels of world interest rates would imply a

relatively modest level of incentives to forecast ratings for capital adequacy purposes. Thus, any

realistic set of rating-based capital rules would be expected to imply a low k, under which both
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price efficiency and volatility would possibly drop. Moreover, in the real world, the dispersion of

information across investors would possibly be higher than in our model, where only two classes

of informed investors have been assumed. Higher dispersion of beliefs across investors would lead

to greater heterogeneity in asset holdings across portfolios and, as a result, the impact of

rating-based capital requirements on the informativeness of prices at an aggregate level would be

less pronounced than what our model implies.

4.2 Benchmarking noise trades to ratings

An increasing number of policymakers and market participants, including the rating agencies

themselves, have pointed to the fact that the use of ratings for reasons other than their information

content may impose a negative externality on the efficient functioning of securities markets. In

particular, linking investment decisions to ratings, with the most notable example the dichotomy

between investment and subinvestment grade credits, may distort financial markets from pooling

information and allocating financial resources in an efficient way.

Such a distortion could arise as a result of both regulatory rules and market practices. In particular,

many institutional investors are forced by law, or their own charter, to sell bonds whose credit

rating has crossed some critical threshold level. In the United States, for example, regulators place

restrictions on the quality of assets pension funds and insurance companies can invest in and those

restrictions are explicitly linked to the credit ratings produced by the Nationally Recognised

Statistical Rating Organisations (NRSROs). Although these rating-linked constraints may not be

necessarily hard – in a sense of prescribing immediate liquidation of affected assets – they may

adversely interfere with investment decisions and drive investors’ interest away from assets whose

economic value would, otherwise, warrant a better treatment by the market.

In this section we attempt to touch upon the issue of linking investment decisions to ratings and to

examine the efficiency implications of such practices. However, the idea of having to liquidate a

position in an asset, whose rating has fallen below a certain threshold, implies an optimal

investment strategy that allows for the possibility of downgrade-and-sell scenarios. (28) In a

multi-period context that would require us to track individual investors’ asset holdings over time

and to incorporate them into the state-space representation of our securities market.

(28) In that case, evaluating optimal holdings in the risky asset would require techniques similar to those for pricing
barrier contracts.
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To avoid such a complication, we consider the situation where both fundamental and

non-fundamental trade takes place on the basis of a one-period horizon. Then, we relate the

non-fundamental trade to ratings by assuming that there is a set of residual market participants

who supply the risky asset proportionately to the probability the rating next period will fall below

a certain threshold r . Threshold r is assumed common knowledge among investors. For

simplicity, we also assume that the residual investors do not learn from prices or asset pay-offs,

but they only consider ratings. (29) Thus, the empirical ratings distribution of those investors is

conditional only on past rating information. Given the Kalman filter representation of the rating

process in lemma 1, the above conditionality can be stated simply in terms of the currently

observed rating rt and not on the basis of the whole history of ratings up to period t .

Noise traders are assumed to benchmark their supply of the risky asset to some measure of the

probability the rating next period will fall below a given threshold r . Benchmarking, in this way,

can be rationalised as the result of forced sales by a class of regulated investors that are restricted

to hold the asset only if its rating is above r and unload their holdings to the market proportionally

to the probability such downgrading will take place. For computational convenience and without

loss of generality we assume that noise traders consider only ratings for computing such a

probability and do not filter information from prices and asset pay-offs. Thus, the total net supply

St of the risky asset in period t is assumed to be of the form:

St  A Pr (rt+1 ≤ r | rt)+ ς t (24)

where A is a constant that captures the extent of benchmarking of noise trades to ratings.

Normality is preserved by conditional expectations, thus, by taking the first-order Taylor

expansion of the probability term in (24) we may express St as

St = A
t
1
2
+ 1√

2πVar (rt+1| rt)
d
r − E (rt+1| rt)

eu+ ς t (25)

where by application of the Projection Theorem and from (6)

E (rt+1| rt) =
�
ρ
d
1−� (� + 1)−1e+ 2ρ� (� + 1)−1 Cov br, θ jc

Var (r)

�
rt (26)

and

Var (rt+1| rt) = 2
d
ρ� (� + 1)−1e2 �Var bθ jc− Cov br, θ jc2Var (r)

�
(27)

(29)This assumption is without loss of generality and is imposed in order to avoid the complication of having to
consider non-fundamental investors running econometric models. In a real-world context, one could think of a
competitive intra-dealer market and institutional investors with limited price discovery capabilities and restricted
access to competitive prices. This would be possibly not far from the realities of corporate bond markets.
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where parameter � is given by (7) and all unconditional second moments in (26) and (27) can be

derived from the equilibrium moment matrix Mz of state vector zt . By substituting (25) into the

price equation (17) we can derive an expression for the state-space representation of the new price

process. We can then compute the price dynamics in the new REE and consider the efficiency

implications of benchmarking investment decisions to ratings.

It is worth reiterating that both the benchmarking parameter A and the rating threshold r are

assumed common knowledge among investors. Thus, the supply of the risky asset that is due to

benchmarking of asset holdings on ratings is also common knowledge in every period. That

allows us to avoid any further complication of having to consider higher order beliefs about the

extent of ratings benchmarking in the market and investors’ individual threshold levels. Moreover,

regarding the supply of the risky asset, no more noise was added in the model and, as a result, the

extent of noise trading ς t in our securities market remains unaltered. Despite that, however, we

will see next that the effect of benchmarking on the second moments of asset prices, and

consequently on efficiency, is non trivial.

Assuming a relative precision of 0.9 between private and rating information (30) and by varying the

level of benchmarking parameter A, we show that price efficiency drops with the extent of

benchmarking (A) in the market while volatility increases, as illustrated in Charts 13 and 14. That

occurs despite informed investors being fully rational and no extra source of noise was added in

the model. In fact, given the timing of events that we discussed in Section 2.2, investors observe

the realisation of the rating at the beginning of each period and, by the time investment decisions

are made, everyone knows exactly the amount of concurrent residual supply that is due to

benchmarking. (31) But, instead of that having a trivial levels-impact on prices, benchmarking on

ratings has a material impact on the second moments of prices.

Such an impact of benchmarking on asset prices can be justified on the grounds that perceived

changes in fundamentals feed into prices not only through changes in perceptions about future

income from holding the asset, but also through beliefs about capital gains that depend on the net

supply of the asset. Given that benchmarking renders the net supply of the risky asset partly

forecastable, informed investors are inclined to trade more aggressively on any item of

(30)We have repeated the analysis using different levels of relative information precision and the results look
qualitatively the same.
(31) In reality, uncertainty about the extent of benchmarking on ratings may further amplify the loss of efficiency.
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information in order to exploit perceived mispricings and become more prone to misinterpret any

item of news as information about fundamentals.

More formally, Charts 15 to 18 report the impulse response of prices to a one standard deviation

shock in various noise terms in the model, demonstrating how rational confusion due to

asymmetric information could impact on prices. Charts 15 to 17 show that benchmarking

magnifies any undue price response to non-fundamental shocks in pay-offs and errors in private

signals and ratings. (32) Chart 18 shows that, in the presence of benchmarking of noise trades to

ratings, prices overreact to innovations in fundamentals. That is by overshooting even the full

information case, which captures the basic accounting identity between prices and asset pay-offs

and is represented by a dotted, downward-sloping line in Chart 18.

The chart below presents a simulation of REE prices with and without benchmarking (solid line),

illustrating the magnifying impact of benchmarking on price variations.

REE prices with benchmarking of noise trades to ratings

(32)Notice that it is only informed traders who observe pay-offs and private signals. As a result, any price
overreaction at least to non-fundamental pay-off shocks and private signal errors is due to trading by informed traders
rather than stemming directly from noise trading.

32



Consequently, benchmarking of noise trades to ratings could induce informed traders to trade

aggressively on any item of news in order to exploit perceived mispricings in the traded asset. In

that case, even relatively unimportant news – ie news that is unrelated to fundamentals – could

lead to large price swings, resulting in excess asset price volatility and low price efficiency.

5 Conclusions

The role and importance of rating agencies in capital markets has been criticised in recent years

because agencies have failed to foresee a number of high-profile credit events, such as the Asian

crisis in 1997, the Russian default in 1998 and the Enron bankruptcy in 2001. Agencies have also

been criticised for increasing volatility in financial markets, while there have also been voices

arguing that ratings are of marginal value to financial markets because the information they

provide is stale and has already been reflected into share prices. (33)

The model presented in this paper demonstrated that, even if ratings lag the market, they may

enhance price efficiency when they are used solely for price discovery by market participants and

not for other purposes, such as benchmarking of asset holdings on ratings or rating-based capital

requirements. On the other hand, the introduction of ratings could add to asset price volatility, but

this was found to be consistent with improved market efficiency. This is under the presumption

that investors believe that what the rating agency announces is its best guess about fundamentals,

and investors, despite having different information, have common knowledge of how the economy

works.

We also showed that the quantitative impact resulting from the use of ratings for price discovery

purposes may depend on the way that rating information is rationally processed by investors. The

lower the sophistication of the forecasting techniques used, the more pronounced the impact of

ratings on market outcomes. Qualitatively, however, our results remain robust to the type of

forecasting techniques that are used by investors.

Regarding the use of ratings for reasons other than price discovery, we distinguished between two

types of ratings-related frictions: (i) rating-based capital requirements that apply to investors on

the basis of their individual holdings of a rated asset, (ii) benchmarking of asset holdings to ratings

(33)See, for example, J. DuPratt White Professor of Law at Cornell Law School, testimony in front of the US
Senate’s Committee on Governmental Affairs, 21 March 2002.
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from a residual set of investors (eg pension funds, insurance companies) whose sole concern is to

sell assets whose rating is likely to fall below a certain threshold.

As far as rating-based capital requirements are concerned, our analysis indicated that if investors’

incentives to track ratings for capital adequacy purposes are relatively modest then, rating-based

capital requirements may reduce price volatility, yet at the cost of lower price efficiency. However,

if incentives to track ratings are sufficiently strong then, rating-based capital requirements could,

under certain conditions, add to asset price volatility.

In order to analyse the impact of benchmarking asset holdings to ratings, we considered a residual

class of (noise) traders that link their net supply of the risky asset to some measure of the

probability that the rating next period will fall below a certain threshold. Benchmarking, in this

way, was rationalised as the result of forced sales by a class of regulated market participants who

face restrictions on the rating quality of assets they hold.

Our results showed that benchmarking of asset holdings to ratings by certain classes of market

participants could induce informed investors to overreact to any item of news about fundamentals,

leading to lower price efficiency and higher asset price volatility. We argued that this is because

perceived changes in fundamentals feed into prices not only through changes in perceptions about

future income from holding the asset, but also through beliefs about capital gains that depend on

the net supply of the asset. Given that benchmarking renders the net supply of the risky asset

partly forecastable, informed traders are inclined to trade more aggressively on any item of news

that could imply a change in fundamentals, even if they face no restrictions on the rating quality of

assets they hold. As a result, informed investors become more prone to misinterpret any item of

news as information about fundamentals leading to less informative and more volatile prices.

At this point, it is worth drawing a parallel between our results, in case of benchmarking asset

holdings to ratings, and the UK market experience in the second half of 2002. Market

commentators at the time attributed the rapid swings in market sentiment partly to a regulatory

resilience test that applies to life insurance companies. According to that test, firms have to

demonstrate solvency in the face of a further 25% decline in their asset holdings. In view of a

rapid decline in stock prices that period, the resilience test was suspended for several weeks in
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order to mitigate forced sales of stocks by major market players. (34)

In a sense, the resilience test that applies to life insurers is a form of benchmarking similar in

nature to the rating-based benchmarking that we discussed in this paper. That is, in both cases, a

class of market participants benchmarks its investment decisions on a public signal which also

conveys information about fundamentals. In our model that public signal was the rating; regarding

the resilience-test case, that signal was the price. Similar parallels one could draw with respect to

the1987 stock market crash and the role of portfolio insurance, as another form of benchmarking

on prices, in exacerbating market turbulence.

Looking forward, the model could be extended to incorporate an explicit objective, by the rating

agency, to smooth the rating process (eg to avoid rating reversals) and to examine how that might

impact on market outcomes. That, of course, would require us to introduce an adjustment cost in

the rating process and the rating agency, in the model, to solve a dynamic programming problem

rather than running a simple Kalman filter to assign its ratings. Moreover, a different, though still

time invariant, rating process could be adopted that would share more similarities with the actual

way that ratings are announced in the marketplace, namely, not in every trading round. A good

candidate could be a Markov arrival of rating information under which a rating would be

announced in randomly selected periods according to a Markov process. From a modelling

perspective, an appealing feature of a Markov formulation would be that, as with the Kalman

filter, it has a state-space representation and can be easily incorporated into our framework.

Finally, it would be worth exploring how the results would be affected by an increase in the

information dispersion among investors about fundamentals and consider more than two classes of

privately informed investors. That would possibly allow us to compare our results with earlier

findings on the impact of public information on asset prices, such as in Allen, Morris and Shin

(2003).

(34)See, FSA Guidance Note 4 (2002), ‘Resilience test for insurers’.
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6 Appendix

6.1 Proof of Lemma 1

Let srj t−1be the vector of signals that the rating agency receives up to t − 1 about factor θ j ,
j = 1, 2. Given normality of θ j t and signal vector srj t−1, the conditional distribution of θ j t ,
conditional on signal vector srj t−1, is also normal with conditional mean and variance

θ j t |t−1 ≡ E
b
θ j t | srj t−1

c
(28)

�t |t−1 ≡ Var
b
θ j t | srj t−1

c
(29)

Let us suppose that the conditional mean θ j t |t−1 and variance �t|t−1 have been calculated and with

those in hand we are able to evaluate θ j t+1|t and �t+1|t . From (4) we easily derive the conditional

expectation of the signals that the rating agency receives in period t , conditional on the agency’s

signal information up to period t − 1
E
b
srjt | srj t−1

c = E bθ j t | srj t−1c = θ j t |t−1 (30)

Moreover, the forecast error srjt − E
b
srjt | srj t−1

c
is

srjt − E
b
srjt | srj t−1

c = bθ j t − θ j t |t−1c+ e jt (31)

Since e jt are independent over time and orthogonal to θ j t , they are also independent of θ j t |t−1.

This implies that the conditional variance of the forecast error (31) is

Var
db
srjt − E

b
srjt | srj t−1

cce = �t |t−1 + σ 2e (32)

where σ 2e ≡ Var
d
e jt
e
. Similarly, the conditional covariance between the forecast errors

srjt − E
b
srjt | srj t−1

c
and θ j t − E

b
θ j t | srj t−1

c
is

Cov
d
srjt, θ j t | srj t−1

e
= E

db
θ j t − θ j t |t−1 + e jt

c b
θ j t − θ j t |t−1

ce
= �t |t−1 (33)

From (28), (29), (30), (32) and (33) we get the conditional joint distribution of signal srjt and

fundamental factor θ j t , conditional on signal information srj t−1 up to period t − 1 srjt | srj t−1
θ j t | srj t−1

 ∼ N
 θ j t |t−1

θ j t |t−1

 ,
 �t |t−1 + σ 2e �t |t−1

�t |t−1 �t |t−1

 (34)
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Let us now define θ j t |t as the conditional expectation of factor θ j t conditional on signal vector srjt ,

namely, all signals srj up to period t

θ j t |t ≡ E
b
θ j t | srj t

c
= E

b
θ j t | srjt

nn srj t−1c (35)

The conditional expectation θ j t |t and the conditional variance �t |t of the forecast error can be

evaluated by applying the Projection Theorem, using the join distribution in (34)

θ j t |t = θ j t|t−1 +�t |t−1
b
�t |t−1 + σ 2e

c−1 bsrjt − θ j t |t−1c (36)

�t |t = �t |t−1 −�2t |t−1
b
�t |t−1 + σ 2e

c−1 (37)

Moreover, from (2) and also the fact that v j t are orthogonal to every element of the signal vector

srj t , we get

θ j t+1|t ≡ E
b
θ j t+1 | srj t

c
= E

b
ρθ j t + v j t | srj t

c
(38)

= ρθ j t |t

�t+1|t ≡ Var
b
θ j t+1 | srj t

c
= Var

b
ρθ j t + v j t | srj t

c
(39)

= ρ2�t |t + σ 2v

Combining (36) with (38), and (37) with (39) we derive the following Kalman filter representation

that gives the one-period forecast θ j t+1|t as a function of θ j t|t−1

θ j t+1|t = ρθ j t |t−1 + ρ�t |t−1
b
�t|t−1 + σ 2e

c−1 bsrjt − θ j t|t−1c
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or

θ j t+1|t = ρ
K
1−�t |t−1

b
�t |t−1 + σ 2e

c−1L
θ j t |t−1 + ρ�t |t−1

b
�t |t−1 + σ 2e

c−1 srjt (40)

where �t+1|t solves

�t+1|t = ρ2�t |t−1 − ρ2�2t |t−1
b
�t |t−1 + σ 2e

c−1 + σ 2v (41)

Given that |ρ| < 1, σ 2e > 0 and σ 2v > 0, the conditional variance �t |t−1 converges to a unique
(positive) steady-state constant �∗ that solves (35)

�∗ = ρ2�∗
K
1−�∗ b�∗ + σ 2ec−1L+ σ 2v (42)

It is easy to show that the solution to (42) is

�∗ = 1
2
σ 2e

σ 2v
σ 2e
− b1− ρ2c+

Vv
σ 2v
σ 2e
− b1− ρ2cw2 + 4σ 2v

σ 2e

 (43)

Independence between θ1 and θ2, sr1 and sr2 implies that the rating process rt is given by

rt = E
d
θ1t + θ2t | sr1s, sr2s, s < t

e
= θ1t|t−1 + θ2t |t−1

or, from (40)

rt = ρ
d
1−� (� + 1)−1e rt−1 + ρ� (� + 1)−1 dsr1t−1 + sr2t−1e (44)

where � = 1
2

�
σ 2v
σ 2e
− b1− ρ2c+UKσ 2v

σ 2e
− b1− ρ2cL2 + 4σ 2v

σ 2e

�
.

Q.E.D.

6.2 Fixed-point solution algorithm

Following Hussman (1992), we outline here the main steps we need to follow in order to calculate

a linear REE equilibrium of our securities market. To derive such an equilibrium we need to

evaluate matrices T (B) and V (B) of the actual law of motion (18). We start by choosing arbitrary

values for their first row, which corresponds to the price process, and for the conditional variances

σ 2j and coefficient matrices B j , j = 1, 2. We also define selector matrices e1, e2, u1, u2 that satisfy
(35)See, for example, Hamilton (1994), Proposition 13.1, page 390.
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the following set of equations
z1t = e1zt x1t = u1zt
z2t = e2zt x2t = u2zt
rt = er zt ς t = esεt

(45)

Let also matrix c be such that pt+1 + Dt+1 + krt+1 = cx jt+1. Given (45), we can easily see that
E
d
pt+1 + Dt+1 + krt+1 | I jt

e = cB ju j zt ( j = 1, 2) and the equilibrium price (17) can be restated
as

pt = �−1
d
ασ 22Nφ1cB1u1 + (1− α) σ 21Nφ2cB2u2 − Mer

e
zt −�−1σ 21σ 22esεt (46)

Substituting zt from (18) into the price equation (46) we derive the following expression for the

price process

pt = dpzt−1 + ²pεt
where row matrices dp and ²p define the first row of T (B) and V (B), respectively, and they are

given by

dp ≡ �−1
d
ασ 22Nφ1cB1u1 + (1− α) σ 21Nφ2cB2u2 − Mer

e
T (B)

²p ≡ �−1
d
ασ 22Nφ1cB1u1 + (1− α) σ 21Nφ2cB2u2 − Mer

e
V (B)−�−1σ 21σ 22es

The second row of T (B) and V (B), which corresponds to the pay-off process Dt , is implied by

(1), while the third row, which corresponds to the rating process, is implied by lemma 1. The

fourth and fifth row of T (B) and V (B), which correspond to investors’ private signals s jt
( j = 1, 2) are implied by (3), and the sixth and seventh row by (2). Row eight of V (B)
corresponds to supply of the risky asset and is set equal toK

0 0 0 0 0 0 0 1
L

With respect to investors’ forecast errors ζ j t ( j = 1, 2) we define selector matrices ez j such that
ζ j t = ez j zt

From the actual law of motion (18), from investors’ perceptions (11) and from selector matrices

ez j and e j , the forecast errors ζ j t can be written as

ζ 1t =
d
e1T (B)−A1e1 −C1ez1

e
zt−1 + e1V (B) εt

ζ 2t =
d
e2T (B)−A2e2 −C2ez2

e
zt−1 + e2V (B) εt

(47)

Equations in (47) define the following matrices dζ and eζ

dζ ≡
 e1T (B)−A1e1 −C1ez1
e2T (B)−A2e2 −Cbez2


eζ ≡

 e1V (B)
e2V (B)


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Matrix dζ defines rows 9 to 16 of T (B), while matrix eζ defines rows 9 to 16 of V (B). It is worth

noting that in equations (47) selector matrices e1 and e2 select elements only from the first five

rows of matrices T (B) and V (B). However, the rows of matrices T (B) and V (B) that are

relevant to ζ 1t are rows 9 to 12, while for ζ 2t rows 13 to 16. Consequently, e1 and e2 do not select

any of the coefficients of matrices T (B) and V (B) that are relevant to the evaluation of forecast

errors ζ 1t and ζ 2t . Thus, there is no need to evaluate a fixed point for the rows of T (B) and V (B)

that correspond to investors’ forecast errors.

6.3 Equilibrium in the high-sophistication case

Under the benchmark case without ratings, the equilibrium ARMA(1,1) coefficients of the

observable variables
K
pt Dt s jt ζ

j
t

L
are calculated to be

B j =



0.5527 0.9359 -0.0734 -0.3720 -0.3491 0.2081

-0.0000 0.8000 -0.0000 0.0356 -0.6326 0.0793

0.0000 -0.0000 0.8000 -0.0120 0.0952 -0.6797

0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000

-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000


The last three rows of B j give the coefficients in the projection of forecast errors ζ jt on pt−1, Dt−1,

s jt−1 and ζ
j
t−1. That these coefficients are zero is a necessary condition for ζ

j
t to be conditional

vector white noise, conditional on observable information of investors of type j = 1, 2. At the
REE, from the moment matrixMz, we derive the following variance-covariance matrixM for the

variables
K
pt Dt s1t s2t θ1t θ2t ς t

L

M =



4.3608 2.0202 0.6740 0.6740 0.5409 0.5409 -0.0736

2.0202 1.5556 0.2778 0.2778 0.2778 0.2778 -0.0000

0.6740 0.2778 1.2778 0.0000 0.2778 0.0000 0.0000

0.6740 0.2778 -0.0000 1.2778 0.0000 0.2778 -0.0000

0.5409 0.2778 0.2778 0.0000 0.2778 0.0000 0.0000

0.5409 0.2778 -0.0000 0.2778 0.0000 0.2778 -0.0000

-0.0736 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0100


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By introducing ratings in the information sets of investors, the equilibrium ARMA(1,1)

coefficients of the observable variables
K
pt Dt rt s jt ζ

j
t

L
are calculated to be

B j =



0.3364 1.7162 -0.0002 -0.0601 -0.2136 -1.2186 1.6445 0.2319

0.0000 0.8000 -0.0000 -0.0000 0.0277 -0.6607 0.4579 0.0659

0.0000 0.4624 0.3376 -0.0000 0.0160 -0.3819 0.2647 0.0381

0.0000 -0.0000 0.0000 0.8000 -0.0138 0.0798 0.2331 -0.6844

0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

-0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

-0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000


From the moment matrixMz we derive the following variance-covariance matrixM for the

variables
K
pt Dt rt s1t s2t θ1t θ2t ς t

L

M =



5.0634 2.0202 1.0239 0.7806 0.7806 0.6439 0.6439 -0.0668

2.0202 1.5556 0.2816 0.2778 0.2778 0.2778 0.2778 0.0000

1.0239 0.2816 0.2816 0.1408 0.1408 0.1408 0.1408 -0.0000

0.7806 0.2778 0.1408 1.2778 0.0000 0.2778 0.0000 -0.0000

0.7806 0.2778 0.1408 1.2778 1.2778 0.0000 0.2778 0.0000

0.6439 0.2778 0.1408 0.2778 0.0000 0.2778 0.0000 0.0000

0.6439 0.2778 0.1408 0.0000 0.2778 -0.0000 0.2778 0.0000

-0.0668 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0100


We now briefly present the equilibrium forecasting techniques under the low-sophistication case

where investors are restricted to run vector AR(1) models. (36)

6.4 Equilibrium in the low-sophistication case

Under the benchmark case of asymmetric information without ratings, the equilibrium AR(1)

coefficients of the observable variables
K
pt Dt s jt

L
are calculated to be

B j =


0.0510 0.1044 0.0503

0.1081 0.2221 0.1068

-0.0235 0.1258 0.1508


(36)As with the ARMA case, the NREE when the market is using vector AR techniques is calculated using Matlab
programs.

41



At the REE, from the moment matrixMz we derive the following variance-covariance matrixM

for the variables
K
pt Dt s1t s2t θ1t θ2t ς t

L

M =



0.3988 0.6408 0.2220 0.2220 0.1307 0.1307 -0.0339

0.6408 1.5556 0.2778 0.2778 0.2778 0.2778 -0.0000

0.2220 0.2778 1.2778 0.0000 0.2778 -0.0000 -0.0000

0.2220 0.2778 -0.0000 1.2778 -0.0000 0.2778 0.0000

0.1307 0.2778 0.2778 -0.0000 0.2778 -0.0000 -0.0000

0.1307 0.2778 -0.0000 0.2778 -0.0000 0.2778 -0.0000

-0.0339 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0100


We consider now the case with ratings that are used by investors for information discovery

purposes only. In this case, the equilibrium AR(1) coefficients of the observable variablesK
pt Dt rt s jt

L
are calculated to be

B j =


0.0808 0.3467 2.1872 0.1625

0.0339 0.1454 0.4974 0.0681

0.0196 0.0840 0.6251 0.0394

-0.0210 0.0838 0.3266 0.1317


From the moment matrixMz we derive the following variance-covariance matrixM of the

variables
K
pt Dt rt s1t s2t θ1t θ2t ς t

L

M =



4.5017 1.7513 1.0239 0.7312 0.7312 0.6039 0.6039 -0.0572

1.7513 1.5556 0.2816 0.2778 0.2778 0.2778 0.2778 0.0000

1.0239 0.2816 0.2816 0.1408 0.1408 0.1408 0.1408 0.0000

0.7312 0.2778 0.1408 1.2778 -0.0000 0.2778 -0.0000 -0.0000

0.7312 0.2778 0.1408 -0.0000 1.2778 -0.0000 0.2778 -0.0000

0.6039 0.2778 0.1408 0.2778 -0.0000 0.2778 -0.0000 0.0000

0.6039 0.2778 0.1408 -0.0000 0.2778 -0.0000 0.2778 0.0000

-0.0572 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0100


As expected, the moment matrices of vector

K
pt Dt rt s1t s2t θ1t θ2t ς t

L
under the

ARMA and AR equilibrium differ only with respect to their first row and column that correspond

to the second moments of prices. This is because the price process is the only endogenously

determined process in the vector, while all other variables are assumed to be exogenous and

remain unaffected by the equilibrium allocations of asset holdings among investors.
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Chart 1: Non-fundamental supply shock (ς)

Chart 2: Non-fundamental pay-off shock (u)
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Chart 3: Fundamental shock (v j )

Chart 4: Private signal error (η j )
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Chart 5: Risk aversion and price efficiency

Chart 6: Risk aversion and price volatility
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Chart 7: Risk aversion and modelled risk perceptions

Chart 8: Rating precision and modelled risk perceptions

46



Chart 9: Rating precision and price efficiency

Chart 10: Rating precision and price volatility
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Chart 11: Capital requirements and price efficiency

Chart 12: Capital requirements and price volatility
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Chart 13: Investment benchmarking (A) and price efficiency

Chart 14: Investment benchmarking (A) and price volatility
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Chart 15: Non-fundamental pay-off shock (u)

Chart 16: Private signal error (η j )
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Chart 17: Rating error (e j )

Chart 18: Fundamental shock (v j )
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