
Bank of England

Working Paper no. 284

December 2005

Modelling manufacturing inventories

John D Tsoukalas



Modelling manufacturing inventories

John D Tsoukalas∗

Working Paper no. 284

∗ Structural Economic Analysis Division, Bank of England, Threadneedle Street, London,
EC2R 8AH. Email: john.tsoukalas@bankofengland.co.uk

The views in this paper are my own and should not be interpreted as those of the Bank of
England. I would like to thank Richard Barwell, Ronnie Driver and Mike Goldby for
providing valuable help with data sources. I have also received valuable comments from
Jenni Greenslade and Neal Hatch and have benefited from discussions with Scott Schuh on
comparing US and UK results and Richard Dennis on technical issues. This paper was
finalised on 25 October 2005.

The Bank of England’s working paper series is externally refereed.

Information on the Bank’s working paper series can be found at
www.bankofengland.co.uk/publications/workingpapers/index.htm.

Publications Group, Bank of England, Threadneedle Street, London, EC2R 8AH;
telephone +44 (0)20 7601 4030, fax +44 (0)20 7601 3298, email
mapublications@bankofengland.co.uk.

c©Bank of England 2005
ISSN 1368-5562

www.bankofengland.co.uk/publications/workingpapers/index.html


Contents

Abstract 3

Summary 4

1 Introduction 6

2 Stylised facts and key interactions 8

3 The stage-of-fabrication model 10

4 Econometric results 21

5 Impulse response functions 25

6 Conclusions 28

Appendix A: Variables and data sources 29

Appendix B: Stationarity tests for exogenous variables 30

Appendix C: A different treatment of work-in-process inventories 31

References 33

2



Abstract

This paper presents and applies a stage-of-fabrication inventory model to the UK
manufacturing sector. The model emphasises the interaction between input (raw materials
and work-in-process) and output (finished goods) inventories. This interaction is an
important empirical regularity and proves critical for the ability of the model to fit the data.
Decisions about input and output inventory investment cannot be considered in isolation
from each other, but must be analysed jointly. Overall, the stage-of-fabrication model
receives considerable support. Maximum likelihood estimation of the model’s decision
rules yields correctly signed and significant parameter estimates. In terms of producer
behaviour, the results imply rising marginal costs of production and significant costs of
adjusting production.

Key words: Inventories, maximum likelihood, manufacturing.

JEL classification: E22.
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Summary

Changes in the stock of firms’ inventories are an important component of the business
cycle. In fact, discussion about the timing of a recovery following economic recessions
often focuses on inventories. But there is no consistent explanation for their behaviour.
Most modelling work focuses on the so-called production smoothing model–where the
firm maintains a smooth production plan and uses inventories to satisfy unforeseen
changes in demand. Moreover, this model has generally only been applied to
manufacturers’ finished goods inventories.

This paper offers an extended stage-of-fabrication inventory model that considers not only
finished goods inventories, but also input inventories–the sum of raw materials and
work-in-process inventories. Stylised facts for UK manufacturing reveal that input
inventories are empirically more important than finished goods inventories. This is true not
only in terms of their size but also in terms of their volatility.

One of the key facts of the UK manufacturing sector is the significant interaction between
finished goods and input inventories. The covariance between input and finished goods (or
output) inventories can explain over one quarter of the variance in manufacturing inventory
investment. This is an important finding because it points to linkages between different
aspects of production. More importantly, it implies that finished goods inventories cannot
be considered in isolation from input inventories. Intuitively, an optimising firm that
decides to draw down finished goods inventories (as often happens following an
unexpected demand shock) will typically increase production in the future to correct this
imbalance. This correction will affect input inventories as well because the firm has to
draw down input inventories in order to increase production.

The paper demonstrates that ignoring input inventories yields misleading results. In
particular, the precision and plausibility (relative magnitudes) of the estimated parameters
in the joint model differs from those when input inventories are ignored. To estimate the
model, a maximum likelihood approach is used that is shown to be superior to the
often-used generalised method of moments estimators (GMM). The sizable interaction
between input and finished goods inventories yields very precise estimates. One of the key
findings of the model is the familiar production-smoothing result. The estimation results
suggest that firms satisfy unexpectedly strong demand from finished goods inventories,
resulting in the latter falling below companies’ desired levels. Given that estimated costs
of changing production are large relative to stockout costs (of deviations of inventories
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from their desired level), this imbalance corrects rather slowly, implying that inventories
deviate from target for long periods. On the cost side of the model, when materials become
more expensive companies prefer to cut production temporarily: cutting production
implies that companies save on the expensive materials. With sales unchanged, this
shortfall is satisfied out of finished goods inventories causing them to fall from their
desired level. Moreover, despite the presence of input inventories–where fixed costs of
ordering may be substantial–the estimated aggregate marginal cost function is a rising
function of output, thus implying decreasing returns to scale in manufacturing.
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1 Introduction

Inventories—ie, the stocks of finished goods, raw materials, and work-in-process—have
been the subject of extensive economic analysis on many fronts.(1) The importance of and
subsequent interest in inventory behaviour was stimulated by Metzler (1941) who
demonstrated that an inventory accelerator mechanism can produce cycles in simple
Keynesian models. The introduction of the production-smoothing inventory model of Holt,
Modigliani, Muth and Simon (1960), has spurred a considerable theoretical and empirical
literature that has used different versions to explain and test the microeconomic inventory
behaviour of the firm. The literature, as summarised by Blinder and Maccini (1991) has
almost entirely focused on the analysis of manufacturers’ finished goods (output)
inventories. As Blinder and Maccini (1991) put it ‘Much of the research is thus applying a
model that fits the data only with difficulty to a component of inventories that is relatively
unimportant.’ The attention to output inventories has ‘crowded out’ consideration of the
empirically dominant component of input inventories.(2) Recently however, input
inventories—defined as the sum of raw materials and work-in-process—have generated
some interest. Ramey (1989) developed an optimising model of inventories at different
stages of the production process, but treated the stocks of materials, work-in-process and
finished goods as factors of production in order to derive demand functions for different
types of inventories. Conceptually this approach is not consistent with the micro-theory of
the firm unless one is willing to accept that the flow out of inventories into production is
proportional to the stock of inventories. In other words the stock-flow aspect of inventory
holding behaviour must be carefully distinguished in an optimising inventory model. At
the firm level the decision to order and use materials in production is inherently different
from the benefits and costs of holding stocks of inventories. In a recent paper that
addresses this important issue, Humphreys, Maccini, and Schuh (2001) analyse and
estimate an inventory model for the US manufacturing sector incorporating the empirically
important stock of input inventories. Their results suggest that a model of joint
determination of input and output inventories is critical for fitting the data.

There are theoretical and empirical arguments against ignoring input inventories.
Humphreys, Maccini and Schuh (2001) describe a theoretical consideration. ‘Input
inventories are the linchpin of the stage-of-fabrication production process. Input
inventories arise whenever the delivery and usage of materials differ; in other words, firms
do not instantaneously obtain and use materials in production. Furthermore, since the
usage of input materials is a factor of production, decisions about production smoothing

(1) The terms inventories and stocks will be used interchangeably.
(2) In manufacturing, input inventories are larger and more volatile than output inventories.
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and output inventory investment are inherently related to decisions about drawing down
input inventories. In turn, the ability of the firm to draw down input inventories depends on
supplier relationships, materials prices, and factor substitutability–ie the spectrum of
production decision making.’ Also, input inventories are empirically more important than
output inventories. Stylised facts for the United Kingdom indicate that input inventories
are larger and more volatile than output inventories in manufacturing.(3)

This paper attempts to shed light on the inventory behaviour of the UK manufacturing
sector. The focus is on manufacturing because the data indicate that this sector is a large
contributor to inventory movements over the business cycle. In addition, input inventories
arise exclusively in this sector. For the reasons outlined above the paper utilises an
approach that emphasises the joint treatment of input and output inventories. The idea is
not novel. The methodology for this paper is similar to Humphreyset al (2001),
henceforth referred to as HMS (2001). Their study recognises the serious limitation of the
applied inventory literature and develops a stage-of-fabrication (SOF) model that includes
separate decisions to order and use input inventories. The stage-of-fabrication (SOF)
model extends the linear quadratic model of output inventories by adding the joint
determination of input inventories.(4)

By and large, the most striking feature of the UK manufacturing inventory data is the
strong co-movement between input and output stocks. As much as 26.7% of the total
inventory volatility can be accounted for by the covariance between input and output
inventories. This finding points to considerable interaction between the two types of
inventory stocks and proves to be critical to the success of the model fitting the data. By
comparison to the HMS (2001) study, the extent of the inventory interaction found in UK
data is considerably larger than that found in US data. The strength of the co-movement is
reflected in very precise estimates of the SOF model.

The econometric results provide substantial support for the SOF model. First, the data
clearly reveal evidence of stage-of-fabrication interactions between inventory stocks, and
among inventory stocks and other facets of production. Second, the data indicate that the
aggregate cost function in manufacturing is convex; ie marginal cost slopes upward. Third,
the data show evidence of inventory saving technology.

The rest of the paper proceeds as follows. Section 2 presents UK inventory stylised facts.

(3) A finding that is consistent with US studies.
(4) The linear quadratic output inventory model was developed by Holtet al (1960). It has since served as
the workhorse for empirical inventory work. Stylised versions can be found in West (1993) and Ramey and
West (1999).
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Section 3 describes the model. Section 4 reports and discusses the econometric estimates.
Section 5 examines dynamic properties and Section 6 concludes.

2 Stylised facts and key interactions

This section lays out basic UK inventory facts. There are three key empirical regularities
one can identify in UK inventory data.

1. UK inventories are procyclical.
2. Manufacturing inventories account for a large share of total inventory volatility.
3. Within manufacturing, input inventories are more volatile and interact considerably with

output inventories.

One important reason to study inventories is their crucial role in the business cycle. Table
A below illustrates the importance of inventories in UK recessions. Table A columns 2 and
3 report contributions of inventory investment (for whole-economy and manufacturing
stocks respectively) as a percentage of the decline in GDP during post-war UK recessions.

Table A: Arithmetical importance of inventory changes in UK recessions

Peak quarter Trough quarter∗ Total Manufacturing

1973:2–1974:1 46† 37
1975:1–1975:3 -29 -120
1979:4–1981:1 39 7
1990:2–1991:3 67 13

∗ Recessions are defined as periods accounting for at least two consecutive quarters of real GDP decline.

†The numerator of the ratio is defined as the inventory investment contribution while the denominator is defined as GDP in trough quarter minus

GDP in peak quarter and is by definition negative. A negative entry means that the change in the inventory change is positive.

Table A establishes that inventory liquidation is an important feature of the UK business
cycle. Excluding the 1975 recession (where inventories moved countercyclically), all other
episodes are associated with stock liquidation. For example, in the recession of the early
1990s (1990:2–1991:3) inventory investment accounts for a tiny 0.7 of a per cent of
GDP,(5) but its contribution to the decline in GDP is orders of magnitude higher (67%) and

(5) It is worth emphasising that whereas inventory investment enters the GDP flow accounting identity, the
size of inventories as a stock relative to GDP is much higher, around 60% of GDP.

8



even higher than the contribution of any other expenditure component.(6) Moreover, in
other G-7 countries the corresponding contribution of inventories is of similar
magnitude.(7) Hence inventories are an important feature of cyclical fluctuations and a
potential useful resource in business cycle analysis.

In what follows I present evidence to support the three facts outlined above based on
quarterly UK data from 1959 to 2003. Procyclicality of inventory movements can be
documented in several ways. A simple indication that inventories move procyclically is a
positive correlation between inventory investment and final sales. The correlation between
inventory investment and sales is related to the relative variances of production and
sales.(8)

Table B: Variance of inventory investment across sectors

Time period Wholesale Retail Manufacturing Totalvar(c)
var(d)

(a) (b) (c) (d) (e)∗

1959:2–2003:4 0.09 0.06 1.04 1.43 0.72
1975:1–2003:4 0.13 0.07 0.69 1.11 0.62
1994:1–2003:4 0.19 0.04 0.35 0.47 0.72

In column (d), total is the sum of distribution (wholesale and retail) and manufacturing.

Entries in Table B are share weighted.

Table B presents a variance decomposition exercise for the sectors of the economy that
hold the majority of inventories. Arithmetically, manufacturing stocks account for 36%,
distribution (retail and wholesale trade) for 34% and ‘other’ industries for 27% of total
stocks in the United Kingdom.(9) As can be seen from Table B, manufacturing accounts
for a large portion of the total inventory volatility, ranging from 62% to 72% depending on
the time period, and this ratio does not seem to be falling despite the reduction in total
inventory volatility observed in recent time periods (last row of Table B).

(6) Repeating the same calculation we find that fixed investment contributes positively to the GDP decline
by 62%, consumption by 52%, while net exports contribute negatively (ie, countercyclically) by 59%, and
government consumption by 33%.
(7) For example, using annual data, we can calculate a contribution of 12% for the United States, 50% for
Canada, 71% for France, 19% for Germany, and 30% for Italy, in the recession of the early 1990s.
(8) The correlation between inventory investment and final sales in UK data is0.05. LettingY denote
production,X sales andN inventories and using the identityvar(Y ) = var(X) + var(∆N)
+2cov(X, ∆N), the positive correlation impliesvar(Y ) > var(X). Thus inventories seem to amplify
rather than mute movements in production. This finding is consistent with evidence from a cross-section of
countries. See Ramey and West (1999) for an excellent survey.
(9) As of end-2003. ‘Other’ include industries such as energy, construction, motor trades.
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Finally, Table C presents a stage-of-fabrication variance decomposition within UK and US
manufacturing that documents the importance of input inventories. This exercise
highlights the extent of inventory interaction and motivates the joint treatment of input and
output inventories. In particular, Table C shows that almost 27% of the variance in UK
manufacturing inventory investment can be accounted for by the covariance between input
and output inventories. When the inventory stocks are disaggregated by stage of
processing, ie, finished goods, work-in-process, and materials and supplies, the covariance
terms increase significantly to 44.7% of the total variance. In other words the data
indicates a strong interaction between input and output stocks. By contrast the
corresponding US numbers are significantly lower (21% and 35.7% respectively). As is
explained in detail in Section 4 this strong interaction is reflected in the ability of the SOF
model to fit the data. As it turns out when applied to UK data, the SOF model produces
more precise parameter estimates relative to the estimates that HMS (2001) obtain using
US manufacturing data. This difference can easily be explained in terms of the likelihood
function of the model given the data. Because the SOF model relies on stock interaction,
the higher covariance terms in UK manufacturing sharpens the likelihood surface, thereby
producing more precise estimates.

Table C: Variance decomposition of manufacturing inventory investment

UK US
Mfg. (%) Mfg. (%)

Total 2 100 0.889 100
Finished goods 0.42 21.3 0.148 16.7

Input 1.04 52 0.554 62.3
Covariance 0.53 26.7 0.185 21

Finished goods 0.42 21.3 0.148 16.7
Work-in-process 0.283 14 0.213 24

Materials and supplies 0.40 20 0.206 23.3
Covariance terms 0.884 44.7 0.318 35.7

*Quarterly 2000 data over the period 1967:2 to 1997:4.

The stylised facts presented in this section suggest that complete analysis of manufacturing
inventory behaviour requires the modelling of input inventories.

3 The stage-of-fabrication model

The SOF model developed by HMS (2001), is an extension of the linear-quadratic model
of output inventories. The key idea behind this model is to introduce stage-of-fabrication
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linkages in production; that is, firms produce goods in stages. A typical firm will acquire
materials from an outside supplier, and then combine them with capital and labour to
produce finished output. Often during the production process the firm generates its own
intermediate output as well. In addition, many firms sell their finished output to other
firms, which view the output as input material. These stage-of-fabrication
linkages—within and between firms—imply that optimising firms will be characterised by
joint interaction among all aspects of production, including inventories. The SOF model is
fully structural with intertemporal cost minimisation under rational expectations, and the
total cost function employs several quadratic approximations similar to those employed in
conventional output inventory models.(10)

The rest of this section presents the SOF model in depth.

3.1 Economic environment

The basic set up of the model features a representative firm that minimises costs
intertemporally under rational expectations. More specifically, each period, the firm
combines labour (L), materials used in production (U), and capital (K) to produce finished
goods. Materials used in production are obtained from the on-hand stock of input
inventories (M), which is continually replenished by deliveries (D) of materials.
Production (Y) of final goods is added to the stock of output inventories (N), which are
used to meet final demand (X). The firm takes final demand, the wage rate (W), and the
price of material deliveries (V) as exogenous. There are two simplifying assumptions that
need to be mentioned at the outset. First, because inventory investment is a short-run
decision, it is assumed that the capital stock is fixed.(11) This assumption allows us to
suppress capital in the production function. Second, the firm purchases intermediate inputs
and materials from outside suppliers.(12) Thus intermediate goods are analogous to raw
materials so work-in-process can be lumped together with materials inventories. It has to
be emphasised that the latter assumption is perfectly sensible from the point of view of the
representative firm and the model’s stage of fabrication implications. Whereas in certain
‘production to order’ industries work-in-process may help smooth production relative to
sales fluctuations, ‘production to stock’ industries mostly rely on finished goods. However,
the model is estimated with aggregate manufacturing data which do not allow for a

(10) The main reason for employing quadratic approximations is to obtain linear decision rules that can be
estimated by maximum likelihood.
(11) This assumption is clearly invalid in the long run, but for short-run analysis it is a reasonable
conditioning assumption.
(12) One can imagine firms producing intermediate output—and thus work-in-process inventories—but that
requires us to model production of both intermediate and finished goods, a serious extension of the SOF
model.
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different treatment of work-in-process inventories. More importantly, the SOF model does
not limit production smoothing to finished goods inventories. Due to the existence of
strong stage of fabrication linkages input, and hence work-in-process inventories, can act
in much the same way; ie, smooth production relative to sales.(13)

The firm optimises in a dynamic stochastic environment. In the short run, with capital
fixed, the firm choosesU, M, andN to minimise the present value of total costs, givenV, W

andX. Six random shocks (εi)—one for each equation in the model—buffet the firm’s
production environment. One shock is a demand shock (εx). The other shocks comprise a
disaggregation of the traditional ‘supply’ shock: a technology shock (εy) affects the
production function; inventory holding cost shocks (εhm, εhn) affect the costs of carrying
inventory stocks; a real wage shock (εw) affects labour costs; and a real raw materials price
shock (εv) affects material costs.

The model generalises the traditional linear-quadratic model of output inventories. The
central extension in the stage-of-fabrication model is the explicit introduction of input
inventories, which must be chosen simultaneously with output inventories. Input inventory
investment is controlled by varying the usage of materials in production and the deliveries
of materials. Total costs which consist of labour costs, inventory holding costs, and
delivery costs are approximated with a generalised quadratic form.

3.2 Model equations

3.2.1 Production function

The short-run production function is

Yt = F (Lt, Ut, εyt) (1)

whereUt is the flow of materials used in the production process, not the stock of materials
inventories. BecauseYt is gross output, equation(1) is referred to as the gross production
function. Furthermore, we assume that capital is a fixed factor of production with no
short-run variation in utilisation.(14) Given this assumption, materials usage and labour

(13) In Appendix C the sensitivity of the model’s estimates to this assumption is tested. The results in
Table H clearly demonstrate the validity of this assumption.
(14) Larsen, Neiss and Shortall (2002) have examined relaxing this assumption in a productivity
measurement study.
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possess positive and non-increasing marginal products, and the short-run production
function exhibits decreasing returns to scale. An important specification issue for the
production function is whetherUt is additively separable from the other factors of
production. IfUt is separable, then the production function can be written as

Yt − Ut = G(Lt, εyt) (2)

whereYt − Ut is value added. Note that equation(2) is a special case of(1) with the
restrictionsFU = 1 andFLU = FεyU = 0. This form is referred to as the value-added
production function.

3.2.2 Cost structure

The firm’s total cost consists of three major components: labour costs, inventory holding
costs, and materials costs.

Labour costs are

LCt = WtLt + A(∆Lt) (3)

where∆Lt = Lt − Lt−1. The first component is the standard wage bill. The second
component,A(∆Lt), is a standard adjustment cost function intended to capture the hiring
and firing costs associated with changes in labour inputs. To focus on inventory decisions,
we eliminate labour input. Inverting the production function yields the labour
requirements function

Lt = L(Yt, Ut, εyt) (4)
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Substituting equation(4) into (3) yields

LCt = WtLt + A(L(Yt, Ut, εy,t)− L(Yt−1, Ut−1, εy,t−1)) (5)

Finally, using a generalised quadratic function approximation yields the following
equation for the labour cost function(15)

LCt = (
γ1

2
)Y 2

t + (
γ2

2
)U2

t + γ3YtUt + Wt[γ4Yt + γ5Ut]+

(
ϕ

2
)[γ6∆Yt + γ7∆Ut]

2 + εyt(γ8Yt + γ9Ut) (6)

The properties of the production function and the labour adjustment function imply
parametric restrictions onγs . (16) Nevertheless, the cost function is extensively over
parameterised, and it would be useful to impose some restrictions in order to be able to
estimate parameters precisely. The value-added production function specification provides
one such set of restrictions.

Value added:To obtain the value-added specification, let

γ1 = γ2 = −γ3 = γ > 0, γ4 = −γ5 > 0

γ6 = −γ7 = −γ8 = γ9 = 1

These restrictions make value added,Yt − Ut, a factor in the inverted production function,
rather thanYt andUt separately. Then the value-added (v) cost function is

LCv
t = (

γ

2
)(Yt − Ut)

2 + γ4Wt(Yt − Ut) + (
ϕ

2
)(∆Yt −∆Ut)

2 − εyt(Yt − Ut) (7)

(15) For example, a quadratic approximation similar to the one used in this paper can be found in Ramey
and West (1999).
(16) The restrictions follow from the strict concavity of the production function, and the strict concavity of
the labour adjustment function.
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Note that the value-added specification imposes adjustment costs on the change in value
added, which implies that adjustment costs depend on the change in materials usage (∆Ut)
as well as on the change in gross output (∆Yt).

The rationale for imposing those restrictions is to achieve a more parsimonious
econometric model, while being able to encompass the standard output inventory model as
a special case.

3.2.3 Inventory holding costs

The holding costs for output inventories are a quadratic approximation of the form

HCN
t = (δ0 + εhnt)Nt + (

δ

2
)(Nt −N∗

t )2 (8)

whereεhnt is the white noise innovation to output inventory holding costs,N∗
t is the target

level of output inventories that minimises output inventory holding costs, andδ > 0. An
analogous formulation is adopted for input inventories

HCM
t = (τ0 + εhmt)Mt + (

τ

2
)(Mt −M∗

t )2 (9)

whereεhmt is the white noise innovation to input inventory holding costs,M∗
t is the target

level of input inventories that minimises input inventory holding costs, andτ > 0. The
quadratic inventory holding cost structure balances two forces. Holding costs rise with the
level of inventories,Mt andNt, due to increased storage costs, insurance costs, etc. But
holding costs fall withMt andNt because—given expectedM∗

t andN∗
t —higherMt andNt

reduce the likelihood that the firm will ‘stock out’ of inventories.

Finally, it remains to specify the inventory target stocks. Following Ramey and West
(1999) the output inventory target stock is

N∗
t = αXt + θnt (10)

whereα > 0 andt is a linear time trend. The output inventory target depends on sales
because the firm incurs costs due to lost sales when it stocks out of output inventories. In
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addition the parameterθn serves as a proxy for the introduction of technologies that affect
the cost minimising level of inventories, ie, inventory saving technologies such as the
just-in-time production technique.(17) Similarly, the input inventory target stock is

M∗
t = θYt + θmt (11)

whereθ > 0. The input inventory target depends on production (Yt = Xt + ∆Nt) because
stocking out of input inventories entails costs associated with production disruptions.
Similarly, this optimal stock is also affected by a time trend through the parameterθm that
intends to proxy inventory saving technology.

3.2.4 Input materials costs

Input materials costs consist of purchase and adjustment costs. Specifically input materials
costs are

MCt = VtDt + (
φ

2
)D2

t (12)

The first term on the right-hand side of equation(12) is the cost of ordering and purchasing
input materials at the ‘base’ price each period. The second term is a quadratic
approximation for adjustment costs on purchases of materials and supplies.(18)

3.2.5 The firm’s problem

Given demand(Xt) and factor prices (Vt,Wt) the firm chooses{Ut,Mt, Nt} to minimise the
present discounted value of total costs

E0

∞∑

t=0

βt(LCt + HCN
t + HCM

t + MCt)

(17) The data show a trend decline until 1994 for both types of stocks.
(18) For example, forφ > 0 the firm faces increasing marginal costs of acquiring materials. This for
example can arise if the firm must pay a premium for faster delivery of materials.
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The two laws of motion governing inventory stocks,

∆Nt = Yt −Xt

∆Mt = Dt − Ut

will be used to substitute for production (Yt) and deliveries (Dt).

3.2.6 Euler equations

The model yields Euler equations forUt,Mt, andNt. However, we are going to utilise only
the Euler equations for input (Mt) and output (Nt) inventory stocks,(19) since usage (Ut) is
unobservable at high frequencies.

To present the Euler equations concisely, define the lag operator asP, which works as a
lead operator when inverted (P−1Yt = Yt+1), and a variableZij that denotes
quasi-differences (1− βP−1) of model variables. Subscripti indicates the variable being
quasi-differenced, subscriptj indicates the number of quasi-differences,(1− βP−1)j, and
∆ = (1− P ) is the standard difference operator. For example,ZY 1 = (1− βP−1)Yt is the
quasi-first difference ofYt, andZY 2 = (1− βP−1)2Yt is the quasi-second difference ofYt.
∆ZY 2 = (1− P )(1− βP−1)2Yt = (1− βP−1)2∆Yt is the change in the quasi-second
difference.

The Euler equations for the value-added specification follow.

Input inventories

Et{γφZ∆M1 + φϕZ∆M2 + γZV 1 + φγ4ZW1 + ϕ∆ZV 2

+γφZY 1 + φϕ∆ZY 2 + τ(γ + φ)[Mt − θYt − θmt]

+τϕ[(∆Mt − θ∆Yt − θm∆t)− β(∆Mt+1 − θ∆Yt+1 − θm∆(t + 1))]

+τ0 − φZεy1 + (γ + φ)εhmt + ϕ∆Zεhm1} = 0 (13)

(19) Usage will be eliminated by solving its Euler equation in terms of the rest of the variables.
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Output inventories

Et{δ(γ + φ)[Nt − αXt − θnt] + δϕ[∆Nt − α∆Xt − θn∆t]

−τ(γ + φ)[(1 + θ)(Mt − θYt − θmt)− θβ(Mt+1 − θYt+1 − θm(t + 1))]

−τϕ[(1 + θ)(∆Mt − θ∆Yt − θm∆t)− θβ(∆Mt+1 − θ∆Yt+1 − θm∆(t + 1)]

+δ0 + (γ + φ)εhnt + ϕ∆Zεhn1 − (γ + φ)εhmt − ϕ∆Zεhm1} = 0 (14)

To gain some insight consider the input (Mt) Euler equation. This optimality condition
states that the firm balances the marginal cost of ordering and holding input inventories
this period against the cost of ordering input inventories next period. The firm attempts to
set the input inventory stock equal to its target subject to several dynamic frictions. First,
the adjustment costs associated with purchases and deliveries of materials, as captured by
φ, prevent the firm from instantaneously eliminating input inventory gaps,Mt −M∗

t .
Second, time variation in expected materials prices gives the firm an incentive to
intertemporally substitute deliveries of input materials. However, bargains on input
materials must be large enough to offset adjustment and stockout costs. Finally, higher
output inventory stocks induce the firm to raise gross production (Yt), which in turn
requires higher materials usage and thus leads to drawing down materials inventory stocks.

The output (Nt) inventory Euler equation states that the firm balances the marginal cost of
producing a good and storing it as output inventory this period against the cost of
producing the good in the future. The equation incorporates input inventories (Mt) that
affect the output inventory investment decision through the gap terms,
Mt+i − θYt+i − θm(t + i), ∆Mt+i − θ∆Yt+i − θm∆(t + i). The firm is attempting to
eliminate deviations from the cost minimising level of stocks,M∗

t , N∗
t . The Euler equation

makes clear that this goal is being achieved by balancing input and output inventory gaps.
The parametersδ, ϕ, α, θ, φ indicate the relative frictions that these actions entail. For
instance, all else being equal, an increase in the input inventory gap (Mt −M∗

t ) will affect
the output inventory gap (Nt −N∗

t ), and hence the output inventory decision, because
being away from the cost minimising level,N∗

t entails a stockout cost. An increase in the
input inventory gap entails a stockout cost as well. Because the stockout costs for both
types of inventories are quadratic it is cost minimising to spread the stockout costs
between inventory stocks. It is also evident from the Euler equation that stock adjustment
will not be instantaneous. Depending on the relative magnitude of the structural
parameters that multiply the gap terms, stocks will exhibit some degree of persistence, ie,
the speed by which deviations from target stocks,M∗ or N∗ are corrected.
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In sum, input and output inventory stocks interact directly and indirectly in the
stage-of-fabrication model. As can be seen from equation(14), input inventoriesdirectly

affect output inventories through the input inventory gap terms in the output Euler
equation. All else being equal, an increase in the input inventory gap raises current and,
due to adjustment costs, future output inventories. On the other hand, output inventories
indirectlyaffect input inventories through the input inventory target stock,M∗

t in equation
(13). All else being equal, an increase in output inventories raises production,Yt, and thus
M∗

t by a factor ofθ, thereby affecting the input inventory gap,(Mt −M∗
t ). The firm’s

optimal response to this change is to increase input inventories, though less than
completely due to adjustment cost frictions.

3.2.7 The complete model

The stage-of-fabrication (SOF) model consists of five equations: two Euler equations for
the inventory stocks,Mt andNt, and three auxiliary equations for the exogenous variables,
Vt,Wt andXt. Each exogenous variable is assumed to follow a general autoregressive
(AR(p)) process.

The SOF model can be written in matrix difference equation form as

Et{
leads∑

i=−lags

HiSt+i −Gεt|Ωt} (15)

where
St = [Mt, Nt, Vt,Wt, Xt] (16)

is the vector of system variables;(20) theHi are conformable square matrices containing
model parameters;

εt = [εmt, εnt, εxt, εvt, εwt]′

is the vector of structural disturbances;G is a conformable square matrix that may contain
model parameters and/or the lag operator; andΩt is the information set available at timet.
The fundamental random shockεt is distributediid N(0,Σ). In order to estimate equation

(20) A constant and a trend are included in matrix equation(15).
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(15)we need to replace the terms involving expectations of future variables. The
numerical procedure that achieves this has been developed by Anderson and Moore
(1985).(21) This procedure solves the model by replacing unobserved expectations with
model consistent expectations—which are functions of observables— and derives a set of
decision rules containing only current and lagged variables. Applying this procedure to
equation(15)yields theobservablestructure of the SOF model

0∑

i=−lags

AiSt+i = εt (17)

Equation(16) is a structural representation of the model because it is driven by the
structural disturbance,εt; the coefficient matrixA0 contains the contemporaneous
relationships among the elements ofSt+i. Notice that equation(16)only contains current
and lagged model variables. Equation(16) is then used to form the concentrated log
likelihood function

L = T (log || − 0.5 log |Σ̂|) (18)

whereΣ̂ is the estimated covariance matrix ofεt, and is the Jacobian linkinĝεt to the
portion of theSt+i data pertaining to stochastic equations. The likelihood function is
maximised with a sequential quadratic programming algorithm using numerical
derivatives, and the covariance matrix,Σ̂ is obtained by numerically evaluating the Hessian
at the final parameter estimates. Standard errors are the roots of the diagonal elements of
the inverted Hessian.

The estimation method employed is a two-step approximation to full information
maximum likelihood following Fuhrer, Moore and Schuh (1995). In the first step,
parameters of theAR(p) auxiliary equations—that isXt, Vt,Wt—are estimated with OLS.
In the second step, the structural parameters are estimated with maximum likelihood,
conditional on the OLS estimates of theAR(p) processes. The two-step estimator is
asymptotically equivalent to full-information estimation but less efficient.

More importantly, the choice of maximum likelihood estimation for the SOF model is
motivated by several studies that demonstrate the superiority of maximum likelihood (ML)

(21) The Anderson and Moore (1985) technique is a generalisation of Blanchard and Kahn (1980).
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compared to the generalised method of moments (GMM) estimator. The most compelling
evidence is presented in Fuhreret al (1995). As Fuhreret al (1995) demonstrate, GMM
applied to a linear quadratic inventory model (similar to the one studied in this paper) is
dominated along every dimension by ML.(22)

4 Econometric results

This section presents and discusses estimation results for the SOF model. Section 4.1
presents estimates of theAR(p) processes for the exogenous variables that are imposed on
the ML estimation of the SOF model. Section 4.2 then presents the econometric estimates
for the full SOF model and two additional simplified specifications that are nested in the
full model. These simplified models are an output model derived from the full model after
all parameters and data associated with the input stock are equal to zero, and an input
model derived from the full model after all parameters and data associated with the output
stock are equal to zero.

All three models are estimated from 1975:1 to 2003:4 using aggregate manufacturing
data.(23)

4.1 Auxiliary equation estimates

Table D contains regression results for the first-step estimates of the auxiliary equations for
the exogenous variables.(24) Each exogenous variable has been estimated as a general
AR(p) process and a lag lengthp has been chosen, such that residual serial correlation is
eliminated. This can be inspected by the Q(12) statistics at the bottom of Table D. This
procedure suggests estimating sales as anAR(4) process,(25) real materials price as an
AR(6), and the real wage as anAR(4) process. The estimates in Table D are imposed on
the maximum likelihood estimation of the SOF models.(26)

(22) ‘In small samples, ML estimates generally are unbiased, correctly signed, and statistically precise.
However, GMM estimates are imprecise and biased—often sufficiently biased that the median parameter
estimates have the incorrect sign. Even when the model is misspecified in certain respects, ML dominates
GMM. Asymptotically, ML is orders of magnitude more efficient than GMM.’(page 150).
(23) Appendix A describes the data used in this paper.
(24) Appendix B presents stationarity tests for the exogenous variables.
(25) Note that this specification allows for the presence of a unit root in sales as the ADF test in Appendix
B indicates.
(26) The parameter estimates of the SOF model presented in Section 4.2 are to some degree insensitive to
the lag length of theAR models for the exogenous variables. In an earlier version of this paperAR(1)
models for the exogenous variables are estimated; even though the fit of the model is worse, the estimates
do not differ significantly in order to alter the economic interpretation.
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Table D: Equation estimates for exogenous variables

Sales(X) Wage(W) Materials price(V)
Xt−1 0.73∗

(0.09)
Xt−2 0.3∗

(0.11)

Xt−3 0.18†
(0.11)

Xt−4 −0.28∗

(0.08)
Wt−1 0.92∗

(0.092)
Wt−2 0.15

(0.12)
Wt−3 −0.21∗

(0.088)
Vt−1 1.26∗

(0.089)
Vt−2 −0.5∗

(0.14)

Vt−3 0.29†
(0.15)

Vt−4 −0.12∗

(0.143)
Vt−5 −0.33∗

(0.12)
Vt−6 0.26∗

(0.07)
trend 0.001∗ −0.0007∗

(0.00028) (0.0002)
R2 0.96 0.99 0.98

Q(12) 12.5 15.55 16.54
(0.4) (0.212) (0.167)

Asymptotic std. errors and p-values in parenthesis.∗ Significant at the 5% level.
† Significant at the 10% level.
Q(p) is the Ljung-Box statistic for serial correlation with p lags.

4.2 Model estimates

This section presents econometric estimates for the three different models; that is, the
full-blown SOF model (ie, joint input-output determination); the input model; and the
output model.

For convenience Table E below lists the structural parameters to be estimated.(27)

(27) The discount factorβ is preset at 0.995 rather than estimated.
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Table E: Structural parameters

Labour costs γ, γ4, ϕ
Holding costs δ, τ
Target stock θ, α, θm, θn

Delivery cost φ

The labour cost parameters,γ, γ4, andϕ capture the slope of the marginal production cost
(holding adjustment costs constant), the sensitivity of the marginal cost with respect to real
wage, and marginal adjustment cost associated with changes in labour respectively (see
equation(7)). The holding costs parameters,δ, τ capture the marginal stockout costs for
output and input inventories respectively. The target stock parameters,θ, θm, α, θn relate
optimal inventory stocks with sales (for output inventories,α), and production (for input
inventories,θ). Moreover two additional parameters are specified,θm, θn that aim to
capture inventory saving technology in input and output stocks respectively.(28) Finally, φ
governs the slope of the marginal delivery cost associated with purchases and deliveries of
materials. Table F below presents the estimates obtained from the three models. As a first
pass of the SOF model note that all estimates agree with the signs predicted by theory.
Every parameter for the full (joint) model is estimated significantly at the 1% level. By
contrast, the estimates for the input or output single equation models (Columns 3 and 4) in
general differ in magnitude from the joint model. Two points are worth noting. First,
single equation estimates may suffer from misspecification bias because they fail to
account for stock interaction. This can be most easily seen if we recall the output Euler
equation in Section 3.2.6. The output Euler equation is essentially an equation that
balances input and output inventory gaps. Without this source of interaction we are likely
to obtain biased estimates for the rest of the parameters. Second, the estimates obtained
under the joint model are estimated considerably more precisely. Therefore, the joint
estimates provide strong econometric support for the importance of interaction between
input and output inventories.

The estimates from the joint model appear reasonable and comparable to similar
studies.(29) The target stock parameters imply that firms aim to hold around four months’
worth of sales in finished goods inventories (α), and three months’ worth of production

(28) In the estimation a broken trend assumption has been imposed that ends in 1994 Q4 as the data
indicate that any time dependent saving factors are not important for the remainder of the sample.
(29) The two studies that present comparable estimates are Fuhreret al (1995) and HMS (2001). Both
estimate inventory models for the US manufacturing sector.
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Table F: SOF model estimates

Parameters Predicted Sign Joint Input Output
α + +1.37∗∗ n/a +1.02∗∗

(0.04) (0.049)
θ + +1.04∗∗ +0.20∗∗ n/a

(0.012) (0.087)
θm - −0.0028∗∗ −0.00059∗∗ n/a

(0.0002) (0.0002)
θn - −0.02∗∗ n/a −0.002∗∗

(0.004) (0.0004)
γ + +0.47∗∗ +0.42∗∗ +0.05∗∗

(0.018) (0.06) (0.005)
γ4 + +0.74∗∗ +0.41 n/a

(0.22) (0.53)
δ + +0.08∗∗ n/a +1.91∗∗

(0.01) (0.38)
τ + +0.072∗∗ +0.20∗∗ n/a

(0.012) (0.02)
ϕ + +2.02∗∗ +2.7∗∗ +0.35∗∗

(0.14) (0.49) (0.08)
φ + +2.00∗∗ +1.81∗∗ n/a

(0.13) (0.34)
∂2TC/∂Y 2 4.50∗∗

(0.0839)
Q(12) εm 18.64 15.73 n/a

(0.11) (0.2) n/a
Q(12) εn 9.94 n/a 14.5

(0.62) n/a (0.26)
L 2303 1777 845

2(L − LR) 397.9
(0.00)

Asymptotic std. errors in parenthesis.∗∗ and∗ indicate significance at the 1% and 5% level respectively.
Q(p) is the Ljung-box statistic for serial correlation with p lags. p-values forQ(p) and2(L − LR).

in input inventories (θ). (30) Moreover theθm, θn estimates suggest that inventory saving
technology is present for both types of inventories and it is affecting more input
inventories, even though the rate at which this is taking place seems to be slow (the value
of θm implies that the target input stock drops by nearly 0.03 of a per cent each quarter).
Turning to other aspects of producers’ behaviour there is a key qualitative similarity
between the results of this study and the results obtained by Fuhreret al (1995) and HMS
(2001). Specifically, as in Fuhreret al (1995) and HMS (2001) the results of Table F imply
that stockout costs (δ, τ ) are smaller and adjustment costs (ϕ,φ) are greater than production

(30) Note that these parameter estimates may suffer from an identification problem. The reason is that
production and sales do not differ enough at the quarterly frequency. That is, the model attempts to identify
two parameters using essentially a single source of variation. The mean inventories to sales ratios in the
data are 0.95 for output and 1.01 for input inventories. Only the estimated input target parameter is
reasonably close to the value in the data.
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costs (γ). That is, in the UK manufacturing sector marginal adjustment costs as captured
by ϕ are around four times higher than marginal production costs (γ), which is similar to
the relative values that Fuhreret al (1995) obtain, although significantly higher than those
HMS (2001) obtain.(31) On the other hand marginal stockout costs for both types of
inventories are estimated to be around 15% of marginal production costs, whereas HMS
(2001) find them in the 25%-35% range.(32) In addition, Table F reports an estimate of the
slope of the aggregate marginal cost function,∂2TC/∂Y 2. This value is positive and
significant indicating that marginal costs are convex.(33) Moreover, the Q(12) Ljung-Box
statistic cannot reject the null of no serial correlation, providing some indication that the
model is well specified (see p-values in Table F). A finding weighting against the model,
however, is the fact that the likelihood ratio test rejects the overidentifying restrictions of
the SOF model, suggesting that future work should relax some of the simplifying
assumptions.(34)

5 Impulse response functions

This section explores dynamic properties of the SOF model. Chart 1 plots the impulse
responses of input and output inventories to a 1% unit sales and materials price shocks. As
can be seen from the top panel of Chart 1 both input and output inventories ultimately rise
in response to a positive sales shock. With higher expected sales the target stocks rise
temporarily.(35) Hence the firm would attempt to bring actual stocks as close as possible to
their new targets. Initially however, both stocks decline. This implies that the firm does not
increase production as much as sales, and instead satisfies some of the extra demand out of
output inventories. This is the familiar production smoothing result: inventories are used to
smooth production relative to sales. This is a result that models without a joint treatment of
input and output inventories have trouble capturing (see Ramey and West (1999)). A
negative output inventory gap arises because the adjustment costs on output—captured by
ϕ—are high relative to stockout costs (governed byδ). Input inventories also fall, because

(31) HMS (2001) estimates are in the 1-2 times higher interval.
(32) A point to note is that the HMS (2001) estimate durable and non-durable industries separately, whereas
the results here apply to aggregate manufacturing, so strictly speaking the estimates are not directly
comparable.
(33) This finding is important especially in the presence of input inventories, where non-convexities are
more likely to arise and spill over to the production process through the stage of fabrication linkages.
Non-convexities can arise if for example ordering materials follows(S,s)type rules.
(34) Schuh (1996) finds that firm-level and detailed industry-level data do not reject the overidentifying
restrictions of a benchmark output inventory model. This suggests the problem may be attributable to
aggregation. Aggregation also bears in the discussion of the dynamic properties of the model in Section 5
below.
(35) This follows from equations(10)and(11) that define the target stocksN∗,M∗. Notice that even
though this is a temporary shock its effects on sales are expected to persist, as is obvious from the dominant
root of around 0.93 for the sales equation in Table D.
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in order to increase production the firm must increase usage and this requires it to draw
down input inventories. The firm does not replenish with new deliveries immediately
because the adjustment costs on orders—as captured byφ— are high relative to stockout
costs (governed byτ ). Given a negative output inventory gap and convexity of the cost
function it becomes optimal for the firm to spread the stockout costs across both types of
stocks. This explains why the firm tolerates a negative input gap at the same time. Input
inventories fall slightly more than output inventories on impact because stockouts are more
costly for output relative to input inventories (δ̂ ∗ α̂ > τ̂ ∗ θ̂), and stocks rise slowly over
time towards their target level because adjustment costs are very high relative to stockout
costs as can be seen from the parameter estimates of Table F.

High adjustment costs of changing production imply a strong smoothing motive; a demand
(sales) shock as the one analysed in Chart 1 raises the target stock and so the firm adjusts
production in order to bring output inventories in line with the new target. Without a strong
stockout effect, the firm is reluctant to quickly eliminate the gap between actual and target
stock. In sum, the slow speed of adjustment follows as an implication from the high
adjustment production costs relative to stockout costs (ϕ̂ >> δ̂ andφ̂ >> τ̂ ).

Chart 1: Dynamic simulations
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Input and output inventories decline in response to a positive materials shock. The
temporary price increase causes the firm to substitute deliveries intertemporally
(postponing deliveries) and reduce input inventories. A negative input inventory gap
emerges, which the firm wants to eliminate. With deliveries expensive at the time of the
shock the firm cuts materials usage and hence production. With sales unchanged, output
inventories decline too. This behaviour essentially follows from the specification of the
stockout costs. As explained in more detail in Section 3.2.6, with convex stockout costs the
firm prefers to endure two moderate gaps rather than a zero output and a larger positive
input gap.

A broad picture that emerges from the impulse response plots is that both inventory stocks
are very persistent or equivalently exhibit slow adjustment speeds toward their targets. For
example, in response to a positive sales shock, stocks take around two and a half years to
reach their peak response. This is because marginal adjustment costs are substantially
higher than marginal stockout costs. While consistent with the aggregate data,(36) such
behaviour requires sluggish adjustment at the firm level which is difficult to rationalise
from a theoretical perspective.(37)

Finally, this analysis suggests some broad implications for monetary policy. Using the
dynamic simulations of this section we can highlight just a few. First, it is important to
note that the extent to which manufacturing inventories react to changes in the policy
environment depends on where actual stocks are relative to their targets. The impulse
response plots are conditional on actual stocks being equal to target stocks at the time of
the shock. Conditional on this, and broadly interpreting the demand shock analysed in
Chart 1 as a monetary policy shock we can infer that manufacturing inventories decline in
response to a positive demand shock, ie, a ‘monetary easing’. In addition, the strength by
which different types of stocks (input or output inventories) react to shocks depends on the
relationship between input and output inventory gaps at the time of the shock. The joint
interaction that the model emphasises implies that larger gaps in one stock will be met by
stronger adjustment in the other stock because firms try to minimise costs by spreading
imbalances more evenly across stocks. But, if for example actual stocks are far away from
their targets it is not easy to draw out the implications. Firms may hold excessively low
stocks at the time of the shock, and we could equally observe stocks rising instead of
falling because the need to minimise imbalances will dominate the production smoothing

(36) As Ramey and West (1999) point out, one of the stylised facts of inventories is the highly persistent
nature of the inventory to sales ratio, or, alternatively, a slow speed of adjustment.
(37) A noteworthy finding by Schuh (1996) suggests that firm-level inventory adjustment speeds are an
order of magnitude higher than aggregate adjustment speeds. He points to aggregation bias as the most
plausible source of this difference. Aggregation bias arises because the ‘true’ aggregate adjustment speed
parameter is time variant, while a fixed aggregate parameter is imposed on the data.
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motive.

6 Conclusions

This paper has applied a new stage-of-fabrication inventory model to the UK
manufacturing sector. The model, a generalisation of the linear quadratic model of Holt
et al (1960), was introduced in the inventory literature by HMS (2001). It makes an
important step toward addressing the neglect of input inventories which, empirically, are
more important than output inventories in the United Kingdom. The key finding of the
paper is that stock interaction between input and output inventories is quantitatively
significant, and crucial for the model to fit the UK data.

It is worth considering several extensions and/or refinements to this study. First, and most
importantly, further disaggregated data will be of great help in drawing out differences
between different industries. The HMS (2001) study, considers a durable, non-durable
goods industry breakdown. This is important because in US data input inventories are
larger and more variable in durable goods industries, and we would anticipate a similar
pattern in UK data.(38) Further insights into producer behaviour, may be gained by
applying this model to more disaggregated—at the industry level—data in order to gain
more insights into producer behaviour. Another important extension of this model is to
explicitly include work-in-process inventories rather than combine everything under input
inventories. This would require the modelling of the production process to yield
production of intermediate output. But if the linear quadratic approach is used, estimation
of a more heavily parameterised model may be problematic. A more direct approach in
specifying production and cost functions is needed. However, this could be a worthwhile
extension in light of the strength of the covariance terms of input and output inventories
resulting with a finer breakdown of inventories.

Another potentially fruitful area for further work would be to explore the inventory
behaviour of the wholesale and retail sectors. These sectors have gained in significance
over the last decade relative to manufacturing and the inventory volatility of the wholesale
sector has increased relative to the past.(39) An interesting question is to examine how
supplier-user relationships between manufacturers and wholesalers and/or retailers play a
role in shaping inventory dynamics.

(38) For example in US data a mere three manufacturing industries hold the majority of input inventories;
Primary Metals, Fabricated Metals, and Non-electrical Machinery.
(39) See Table B.
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Appendix A: Variables and data sources

The data used for this paper are published by the Office for National Statistics and cover
the period 1975:1 to 2003:4. Details are as follows. Manufacturing sales data are
constructed using the identity,X = Y −∆N , whereY is manufacturing production and
∆N is the change in finished goods inventories. The input inventories seriesM is obtained
as the sum of raw materials and supplies and work-in-process inventories. The output
inventories series,N , is simply finished goods inventories.(40) The raw materials price is
the price index for materials and fuels purchased by all manufacturing industries. The
nominal wage data are constructed as the product of unit wage cost and output per job to
arrive at an index of wage per head. The resulting index is converted to a nominal figure
using the Annual Survey Hours Earnings figure (2003 Q2) for average weekly earnings.

The nominal wage data and raw materials price data are deflated by the aggregate producer
price output index. The index reflects manufacturing output prices excluding duty. All data
are in logs, seasonally adjusted and in 2000 prices.(41) The ONS codes are:

Manufacturing output index—CKYY

Manufacturing output(finished goods) inventories—FBNH

Manufacturing work-in-process inventories—FBNG

Manufacturing materials and fuels inventories—FBNF

Manufacturing price index of materials and fuels—RNPE

Manufacturing output price index—PVNQ

Manufacturing output per job—LNNX

Manufacturing unit wage cost—LNNQ

(40) The raw inventory data form the ONS refer to changes in stocks. The levels for stocks are derived by
cumulating the corresponding series.
(41) The latest data vintage (2004 Q1) following methodological revisions (reference year changed from
2000 to 2001) would differ from that used for this paper.
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Appendix B: Stationarity tests for exogenous variables

Table G below presents ADF unit root and Johansen cointegration tests for the variables of
the SOF model. The ADF test statistics for the real wage (Wt) and the real materials price
(Vt) suggest treating these two variables as trend stationary processes (null of unit root is
rejected at the5% significance level), whereas, for sales (Xt) one cannot reject the null of
unit root at conventional levels. Similarly, the Johansen test indicates one co-integrating
relationship at the 5% level among inventories and production (for input inventories) or
sales (for output inventories). Note however that the time series properties of the
exogenous variables does not pose a problem for estimation of the SOF model since the
equations to be estimated ((13)and(14)) are composed of terms that are stationary. For
example, equation(13), the input Euler equation includes terms that are combinations of
data that are first or higher order differenced and hence stationary.

Table G: Unit root and cointegration tests

ADF statistic Johansen test[

Trace statistic Max eigenvalue statistic
Xt −2.20

Vt −3.84∗

Wt −3.76∗

∆Xt −4.91∗∗

∆Vt −6.81∗∗

∆Wt −10.47∗∗

(Xt, Nt) 25.2∗ 24.11∗

(Yt,Mt) 20.54∗ 20.34∗

For the ADF tests∗,∗∗ indicates rejection of null of unit root at the 5% and 1% level respectively.
Linear trends and intercepts included in the ADF tests.
For the Johansen cointegration test∗ indicates one cointegrating relationship.
[Johansen cointegration tests are performed with linear trends.
Johansen cointegration test 5% critical values: 15.41(trace statistic), 14.07(Max Eigen. statistic).
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Appendix C: A different treatment of work-in-process inventories

This section presents estimation results that deviate from the conventional definition of
output and input inventories adopted in this paper as well as in the inventory literature. The
results of Table F are based on the assumption that work-in-process inventories can be
lumped together with materials to define input inventories. This assumption implies a
symmetrical treatment of work-in-process with raw materials. Nevertheless one can think
of industries where work-in-process inventories are neither ‘true’ input nor output
inventories. For example, it is more natural to think of ‘production to order manufacturing
industries’ as industries that rely less on finished goods inventories to achieve production
smoothing (given that they maintain a backlog of unfilled orders that can manipulate to
achieve this objective). By contrast, in manufacturing industries that ‘produce to stock’
finished goods inventories assume the traditional role of production smoothing.(42) One
can then take the extra step in arguing that work-in-process inventories would take the
characteristics of output as well as input inventories in the ‘production to order’ industries;
the implication is that it is perhaps more appropriate to exclude work-in-process from both
categories.

Excluding work-in-process from the analysis also implies an indirect test of the maintained
assumption of symmetrical treatment of work-in-process and raw materials. This
assumption can be tested by repeating the analysis without work-in-process. Finished
goods inventories continue to be defined as output inventories, but now only raw materials
constitute input inventories. Comparison between the estimation results from two SOF
models should highlight whether including work-in-process in input inventories is a
reasonable assumption for the UK aggregate manufacturing sector. The first impression
from the results in Table H below is that excluding work-in-process is not inconsistent
with the data. Parameters are precisely estimated (and all butγ4 significantly different
from zero) and very similar in magnitude to the parameters of the full SOF model. For
ease of comparison the results presented in Table F employ the conventional definition.

Nevertheless, the SOF model is clearly at better grips with the data, when work-in-process
is part of input inventories. Table H demonstrates that the full-SOF model yields more
precise estimates–as can be seen from the lower standard errors–compared to the SOF
model that excludes work-in-process and attains a higher value for the likelihood function.

(42) In general, industries in the durable goods sector produce to order, while industries in the non-durable
sector produce to stock. Regrettably, UK data are not available for this durable/non-durable sector
classification.
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Table H: SOF model estimates

Parameters Predicted Sign full-SOF SOF-exl. w-in-p
α + +1.37∗∗ +1.03∗∗

(0.04) (0.12)
θ + +1.04∗∗ +1.02∗∗

(0.012) (0.13)
θm - −0.0028∗∗ −0.0014∗∗

(0.0002) (0.0003)
θn - −0.02∗∗ −0.007∗∗

(0.004) (0.002)
γ + +0.47∗∗ +0.58∗∗

(0.02) (0.07)
γ4 + +0.74∗∗ +0.77

(0.22) (0.43)
δ + +0.08∗∗ +0.14∗∗

(0.01) (0.03)
τ + +0.072∗∗ +0.10∗

(0.012) (0.04)
ϕ + +2.02∗∗ +2∗∗

(0.14) (0.73)
φ + +2.00∗∗ +2.00∗∗

(0.13) (0.79)
∂2TC/∂Y 2 4.50∗∗ 4.57∗∗

(0.0839) (1.96)
Q(12) εm 18.64 18.34

(0.11) (0.10)
Q(12) εn 9.94 7.85

(0.62) (0.79)
L 2303 2278

2(L − LR) 397.9 446
(0.00) (0.00)

Asymptotic std. errors in parenthesis.∗∗ and∗ indicate significance at the 1% and 5% level respectively.
Q(p) is the Ljung-box statistic for serial correlation with p lags. p-values forQ(p) and2(L − LR).

Including work-in-process inventories provides additional information over that contained
in raw materials that helps explain the interaction between input and output inventories.
Therefore, unless we know the precise role of work-in-process inventories in disaggregated
manufacturing data we would not be able to disentangle their contribution in aggregate
manufacturing data, and the most reasonable assumption is to define them as input
inventories.
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