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Abstract 
 
This study considers how the probability of exceeding central counterparty (CCP) initial margin 
levels can be estimated, in order to provide a timely and informative measure of risk coverage. 
Previous studies of CCP margining have largely focused on the unconditional distribution of 
returns, estimating margin coverage on a long-term average basis. The present study extends 
previous work by estimating conditional margin coverage using a GARCH (1,1) model, so that 
variations in coverage can be tracked over a much shorter time frame. The model is applied to 
estimating non-coverage probabilities for two heavily traded derivatives contracts, the Brent and 
FTSE 100 futures. To account for the well-documented fat-tailed characteristics of distributions 
of futures returns, several variants of the GARCH model are estimated. These assume that 
innovations are distributed according to either normal, Student t, extreme value or historical 
distributions. Backtesting is used to select the best performing distribution. During the sample 
period, margins are found to provide a coverage level generally in excess of 99%, over a one-day 
time horizon. It is noted, however, that the coverage probability implied by the model is likely to 
fall under more volatile market conditions; under these circumstances central counterparties will 
reset initial margin more frequently and call for margin intraday.  
 
 

Key words:  EVT, GARCH, margin, futures, central counterparty clearing house. 

 

JEL classification: G28, C53. 
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Summary 

 

Financial markets benefit from a sound and stable environment.  For this reason, central banks 
follow developments in the financial markets and their associated infrastructure closely.  Central 
counterparties (CCPs), which help to protect market participants against counterparty default 
have become an increasingly important part of this infrastructure, as they have expanded into new 
markets, and undergone both vertical and horizontal consolidation. Many regulators and central 
banks concerned with systemic stability have, as a result, increased their focus on how CCPs 
manage their risks. The present paper examines some key aspects of risk control in these 
institutions. 
 
In order to reduce counterparty credit risk for market participants, exchange-traded and some non 
exchange traded derivatives contracts are guaranteed against counterparty failure by a CCP. In 
providing this service, however, CCPs themselves become exposed to the risk of counterparty 
default.  To protect themselves, they have developed a system of collateralisation, or margining, 
by which members of the CCP are required to place a sum of initial margin in a CCP account 
when they register positions. The initial margin is designed to provide protection against potential 
changes in the market value of a member’s positions over a time horizon of one or more days.  
 
CCPs typically select the appropriate level of initial margin by inspecting the historical 
distribution of price movements, focusing particularly on recent price changes. After being set, 
however, initial margin levels will often remain unchanged for some time. During this period, the 
coverage they provide can change substantially, varying according to market conditions.   
 
This paper describes a model that can be used to assess the coverage provided by initial margins. 
Previous studies have largely concentrated on assessing long-run average coverage levels. The 
present study shows how coverage can be assessed on a day-by-day basis. In order to measure 
variations in coverage, we use a model of returns which assumes a time-varying volatility (a  
so-called GARCH process). This is used to model the returns of two heavily traded derivatives 
contracts, the Brent oil and the FTSE 100 futures contracts. Different variants of the GARCH 
process are estimated,  which assume that the changes in volatility are distributed according to 
either Student t, extreme value or historical distributions.  To select the best-performing variant, a 
backtesting procedure is applied in which the models’ forecasts of returns are compared against 
actual outcomes.  Overall, across all coverage levels, we find that the Student t and historical 
distribution variants offer the best fit to actual returns. 
 
The modelling approach described allows us to estimate the probability that initial margin will be 
used up, as that probability changes from day to day.  Although we find that the average 
probability of exhaustion for initial margins is low, we note that the probability can increase in 
volatile markets. That suggests a need to reset the initial margin more often in such 
circumstances, as most CCPs do in practice. 
 
Regulators and central banks are also interested in understanding what the impact on the market, 
or the CCP’s post-margin resources, would be of more extreme price moves.  In particular, they 
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would like to know what the additional liquidity demands might be if a margin-exhausting price 
change were to occur.  To illustrate how the model could be applied to this question, we calculate 
the conditional expected loss for the FTSE 100 and Brent futures contracts, ie the expected loss 
the CCP would suffer when the initial margin is used up completely. This is then used to generate 
an estimate of the additional liquidity demands that each market would experience. We find that, 
if the initial margin for the Brent contract were to be exceeded, it would require a greater 
percentage increase in margin, compared to the FTSE 100, largely due to the higher tail-thickness 
of the Brent return distribution. We note that, for the sample window chosen, the additional 
liquidity demands are relatively modest compared to typical intraday margin calling mechanisms. 
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1 Introduction 
 
1.1  Margining and CCP risk management 
 
Central counterparties (CCPs) play an important role in mitigating credit risk for market 
participants. For exchange-traded derivatives transactions, they typically form a core part of the 
market infrastructure, and in over-the-counter (OTC) markets, they now play an increasingly 
significant role.  
 
CCPs interpose themselves in transactions, such that the original bilateral contracts between 
market participants are extinguished and replaced by new contracts with the CCP. As a result, 
bilateral counterparty risks of variable quality are replaced with a high-quality counterparty risk 
against the CCP. This has benefits both for individual traders and for markets as a whole. Since 
CCP members need no longer be concerned about the creditworthiness of their counterparties, 
they need to hold less capital against the risk of default. As a wider spectrum of counterparties 
now becomes available for each market participant, markets also become more liquid. 
 
In assuming responsibility for contract performance, however, CCPs themselves become exposed 
to counterparty risk. Moreover the funnelling of market activity through one institution 
concentrates this risk and the responsibility for its management in the CCP. Many CCPs clear 
cash and derivatives markets. If such a CCP were to fail, activities in a wide range of markets 
might face disruption, with the CCP acting as a possible channel of contagion. For these reasons, 
central banks and regulators who are concerned with systemic stability require CCPs to maintain 
high standards of risk management. 
 
To reduce the risk of counterparty default, and ensure that if a default does occur it can be 
absorbed with the minimum loss, CCPs have evolved a variety of risk management safeguards. 
Primary protection against counterparty default is provided by initial margin. When traders 
register positions with the CCP, they are required to place a sum of initial margin with the CCP, 
to cover the latent market risk of the positions. To prevent margin from becoming gradually 
eroded by market movements, positions are marked to market on a daily basis, and members are 
periodically ‘called’ to replenish their accounts. 
 
Should a trader become financially distressed, and be unable to meet margin calls, the CCP has 
the legal right to use the margin in the CCP account to settle the trader’s outstanding obligations. 
Margin therefore acts as a performance bond making good the trader’s promise to meet any  
losses, and provided the initial margin level is set at a sufficiently high level, a default which 
results in losses for the CCP becomes effectively impossible.(1) 

                                                                                                                                                              
 
(1) As a further layer of protection, CCPs usually require clearing members to hold a minimum level of capital and 
satisfy specific credit-quality requirements. The CCP may also have access to additional post-margin, default 
resources, which may be used if margin proves insufficient to meet losses, and may maintain a mutual guarantee, or 
default fund to which members make a contribution when joining the CCP. Insurance policies may provide further 
cover, and some CCPs have the power to assess members for funds if other default resources prove insufficient. 
Margin however, provides the first layer of protection for most CCPs. Other default resources would only be used as 
a last resort, when margin is exhausted. 
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CCPs usually set initial margins at a level that will provide them with coverage against market 
movements over a time horizon of one or two days. Under normal market conditions, these 
margin levels are quite adequate.  In stressed markets, however, margins can become rapidly 
eroded, potentially leading to uncovered losses for the CCP. Post-mortem analyses of the 1987 
stock market crash have suggested that initial margins immediately prior to the crash period may 
have been too low to provide some US CCPs with adequate protection (Warshawsky and Dietrich 
(1989); Bates and Craine (1999); Dewachter and Gielens (1999)). Certainly the immediate  
post-crash response of some US CCPs was to raise initial margin levels. Several CCPs had also 
experienced acute liquidity problems, which may have been exacerbated by margin levels which, 
in hindsight, provided insufficient protection.  
 
1.2 Previous studies of CCP margin coverage  
 
Studies which have attempted to estimate CCP margin coverage have broadly adopted three types 
of approach, (a) statistical, (b) optimisation, and (c) option-based.  
 

• Statistical approaches usually assume that initial margin should be set at a level that 
produces a pre-specified and acceptably small probability of exhaustion, over a time 
horizon that reflects the period of potential exposure for the CCP. The coverage level is 
set exogenously in these approaches (see Figlewski (1984), or Gay, Hunter and Kolb 
(1986) for example). 

 
• Optimisation models, by contrast, attempt to minimise the total sum of margin, settlement, 

default and other costs to which the clearing house and its members are potentially 
exposed. Unlike the statistical models which pre-specify acceptable coverage levels, an 
appropriate coverage level emerges endogenously in optimisation approaches (see for 
example, Fenn and Kupiec (1993)).  

 
• Option-pricing models take a strategic approach, assuming that, at least in theory, clearing 

members may choose to default if the reduction in value of their positions is greater than 
their posted margin. Since the CCP does not charge counterparties for this default option, 
initial margins should be set high enough to ensure that it is valueless (Kupiec (1997)).  

 
The approach taken in the present paper is most closely related to the statistical models. See 
Knott and Mills (2002) for a more general review of other modelling approaches. 
 
A variety of statistical studies have tried to quantify the market risks faced by CCPs. Figlewski 
(1984) estimated the degree of coverage provided by typical initial margins on stock and stock 
index futures, assuming that returns could be modelled as a geometric Brownian motion process. 
Gay, Hunter and Kolb (1986) constructed a similar model. These studies made the assumption 
that either returns or price changes were normally distributed.  There is compelling evidence, 
however, that return distributions, particularly in futures markets, are leptokurtic (ie exhibit fatter 
tails than the normal distribution) indicating a greater probability of extreme price moves 
(Cornew, Town and Crowson (1984); Cotter and McKillop (2000); Venkateswaran, Brorsen and 
Hall (1993)). The potential inaccuracy of assuming a normal distribution, when evaluating 
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margins, is illustrated by a study of Warshawsky and Dietrich (1989) which showed that for 
margin coverage levels of 99%, normality assumptions consistently underestimated the required 
margin level.(2) 
 
Recent studies of CCP margining have given greater attention to the fat-tailed characteristics of 
financial return distributions and have applied extreme value theory (EVT) to estimating margin 
levels for futures contracts (eg Booth, Broussard, Martikainen and Puttonen (1997); Broussard 
(2001); Cotter (2001); Dewachter and Gielens (1999); and Longin (1999)) concluding that EVT 
provides a useful tool for informing margining decisions. Generally, however, these studies have 
concentrated on modelling the unconditional distribution of returns.(3)  
 
The present study adds to the existing literature by taking a conditional approach to evaluate the 
statistical coverage provided by margin, while recognising the well-known stylised facts about 
futures returns, namely the presence of fat-tails and volatility clustering. This approach offers a 
way of assessing the margining behaviour of CCPs on a dynamic basis, which will be of interest 
to central banks and supervisors, as well as CCPs and their users. 
 
1.3 Conditional versus unconditional estimates of margin coverage 
 
In calculating margins, two different return distributions can be considered ─ the unconditional 
distribution or the distribution conditioned on current market information. Although the majority 
of research studies that have applied EVT to estimating margin levels have based their analysis 
on the unconditional distribution of returns, in practice, CCPs recognise the importance of giving 
additional weight to recent price history, especially current market volatility.  McNeil and Frey 
(2000) note that conditional and unconditional analyses provide different but complementary 
information. Unconditional analyses ‘attempt to assign a magnitude to a specified rare adverse 
event, such as a five or ten-year loss’. Modelling the tail of the unconditional distribution can 
therefore be likened to stress testing. By contrast, conditional analyses ask what is the possible 
loss over the next day given current market conditions.(4)  
 
One way to incorporate conditionality into margining is to apply a stochastic volatility model.  As 
Danielsson and Morimoto (2000) and McNeil and Frey (2000) note, however, there are 
difficulties in applying standard stochastic volatility models to modelling the tails of the return 
distribution. Such models typically assume conditional normality of returns, which is not usually 

                                                                                                                                                              
 
(2) In setting margins for individual futures positions, CCPs typically make an estimate of the appropriate margin 
level by inspecting the historical distribution of price movements over recent months, and select the quantile that 
provides the desired level of coverage. CCPs will often use a two-day horizon, anticipating that a default event will 
usually mean that margin has already not been paid on that day. But this method may not always provide an adequate 
estimate of the margin required to protect against unusually large price movements, particularly if the sample 
window is small. CCPs will therefore adjust their empirical quantile estimates with subjective judgements on 
whether previously observed extreme moves (from outside the sample window) are likely to be repeated, and on 
whether anticipated future events (eg interest rate decisions) are likely to have an unusually large impact. 
(3) Fenn and Kupiec (1993) is a notable exception; it employs a conditional approach and derives implied  
non-coverage probabilities for historical margin levels.  
(4) Although margins set to ‘cover once every ten-year’ events would probably provide a comfortable level of 
coverage for CCPs, they would almost certainly be rejected by members who have to bear the opportunity cost of 
posting margin. Such events might, however, be considered appropriate for stressing post-margin backing. 
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well supported by the data. Whereas the central portion of the return distribution can be 
satisfactorily modelled assuming conditional normality, the tails generally cannot. Danielsson and 
Morimoto (2000) explain this by observing that a standard AR-GARCH process with normally 
distributed innovations gives the same weight to observations in the centre and in the tails of the 
distribution, so that the common events (which represent the middle 95% of the distribution) 
drive the estimation. To counter this problem, innovations can be modelled using a fat-tailed 
distribution such as a Student t, or one of the family of extreme value theory distributions.(5) 
 
In the present study, four different alternatives for the distribution of innovations are considered: 
(1) historical, (2) normal, (3) Student t, and (4) extreme-value. To establish the best fit, a 
backtesting approach is applied, similar to that described in McNeil and Frey (2000).   
 
1.4 Conditional expected losses as a complementary measure of CCP exposure 
 
In addition to setting margins at an appropriate level, CCPs also need to make an estimate of the 
resources they need to hold in reserve to meet a potential default. Typically this is done by stress 
testing. Most stress tests, however, suffer from a problem of subjectivity, as it is usually hard to 
associate a given scenario with a probability of occurrence. An alternative way to estimate the 
resources potentially required is to calculate the conditional expected losses on a contract – ie the 
expected loss to the CCP conditional on the initial margin level being exceeded – a risk measure 
also known as the tail loss.   
 
In the same way that conditional margin levels change on a day-by-day basis, conditional 
expected losses will also vary.  Bates and Craine (1999) offered a graphic illustration of this by 
examining conditional expected losses on Chicago Mercantile Exchange (CME) contracts before 
and during the Crash of 1987. They found that, post-Crash increases in margin reduced the 
probability of a margin exceedance back to pre-Crash levels, but the expected losses faced if a 
margin-exhausting price move were to have occurred were still an order of magnitude higher. 
This result highlights the importance of calculating other measures of clearing-house exposure, 
and suggests that, when considered alone, margin coverage probabilities may in fact provide a 
misleading picture of CCP exposure. 
 
To summarise, estimates of conditional expected losses can provide an informative supplement to 
margin exceedance probabilities by providing a forward-looking measure of the economic impact 

                                                                                                                                                              
 
(5) A conditional approach to incorporating EVT also provides an additional benefit. The main asymptotic results of 
EVT require that sample observations be independent and identically distributed (iid). Typically, however, futures 
returns show volatility clustering. While this is often ignored in EVT studies of margin, it can potentially lead to 
inaccurate tail estimates. In order to remove volatility clustering and produce an iid series suitable for EVT analysis, 
Kiesel, Perraudin and Taylor (2001) recommend filtering data using an AR-GARCH process and then fitting the 
residuals with the EVT distribution. Fitting a stochastic volatility model to the data prior to applying EVT therefore 
provides the additional benefit of filtering or pre-whitening the data. Despite these benefits, a reviewer of this article 
notes that the pre-whitening approach is not universally accepted. Some authors, for example, have expressed 
concern that it can introduce spurious structure into the residuals (see for example, Danielsson and Morimoto 
(2000)). 
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of a margin-exhausting price move.(6) As such, they can be used to estimate the liquid capital 
resources that CCP members’ might need to meet losses on their positions, or what the CCP itself 
might require as back-up resources to meet a potential default.  
 
The main goal of this study is to measure the risk coverage provided by margins set on futures 
contracts.  To provide a way of assessing day-by-day changes in risk coverage, we employ a 
GARCH (1,1) model. To incorporate the well-documented fat-tailed characteristics of futures 
return distributions, conditional Student t and extreme value theory distributions are integrated 
into the modelling framework. Variants of the basic model are assessed which assume that 
residuals from the GARCH model are distributed according to conditional normal, historical, 
Student t or extreme value distributions, respectively, and backtesting is used to select the  
best-performing model, following a method described by McNeil and Frey (2000). The model is 
applied to calculating conditional margins for the Brent and FTSE 100 futures that provide a  
pre-specified level of statistical coverage similar to that used in practice by CCPs. 
 
The application of the model is illustrated by calculating the conditional exceedance probabilities 
for initial margins set historically by the London Clearing House (LCH, now LCH.Clearnet), ie 
the implied probability that, on any given day, the margin level set by LCH would have been 
exceeded by market movements. As an additional measure of CCP exposure, market liquidity 
requirements are also estimated with the model, assuming a scenario where these historic margin 
levels were, in fact, exhausted.  
 
2 Method 
 
This section summarises the econometric approach. A model which is designed to capture the 
volatility structure of futures returns is first described. Quantiles of the return distribution are 
estimated from this model, and hence margin levels that provide a pre-specified level of 
coverage. One of a number of contrasting distributional assumptions can be selected when 
formulating the model. The implications of these different distributional assumptions are 
compared, and the model is selected which provides the best fit to the empirical return 
distribution, using the backtesting method outlined by McNeil and Frey (2000). Finally, the 
model is applied to estimating conditional expected losses for individual futures contracts, and 
hence to calculating the aggregate market liquidity required to meet a margin-exhausting price 
move. 
 
2.1 Modelling the returns process 
 
When modelling futures price returns, two main empirical regularities need to be accounted for: 
the presence of fat-tails, and volatility clustering. To incorporate these features, we adopt the 
following model in which futures returns can be described by a strictly stationary process { } 0≥ttX  
with the following dynamic structure:  

                                                                                                                                                              
 
(6) Compared to simple quantile measures, conditional expected losses (CEL) also show a number of desirable 
theoretical properties, in particular sub-additivity ie CEL (A + B) ≤ CEL (A) + CEL (B) (see Artzner, Delbaen and 
Heath (1997)). 
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The innovations {Zt}t≥0 are assumed to have zero mean, unit variance and to be independently 
and identically distributed (ie IID(0,1)) according to a distribution function FZ(z).   
 
With this structure, returns have a simple AR(1) recursive dependency, and volatility follows a 
GARCH (1,1) process such that the volatility at time t is dependent on shocks and volatility at 
time t-1. This model provides a simple and parsimonious way to take into account volatility 
clustering.(7)   
 
From (1), the time t quantile, xq, can be derived for a given probability level q∈(0,1) and 
conditional on the information set available at time t-1.  First, the quantile, xq, is defined such that 
 

( ) 1 qtt xXPq ≤= −  
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If the quantile associated with the distribution function FZ(z) is denoted as zq, the quantile xq can 
be rewritten as, 
 

 1 qttq zbXax σ++= −        (3) 

 
Equation (3) says that given the information set available at time t-1, the quantile xq for the 
returns is a linear function of the innovation quantile and is proportional to the volatility level, 
implying that the quantile xq, and the margin estimates derived from it, will inherit fluctuations in 
the estimate of σt.(8) 
 
This model can be used to derive the next-day conditional distribution and the non-coverage (or 
tail) probability implied by a pre-specified margin level. The probability that Xt will be less than a 
pre-specified level xmar is equal to 
 

                                                                                                                                                              
 
(7) A more complicated volatility structure could be assumed, but it is not clear this would significantly improve the 
model’s forecasting ability. Hansen and Lunde (2001), for example, estimate more than 300 volatility models 
concluding that there is no model that provides a clearly superior forecast to the GARCH(1,1) framework. Recent 
studies by Barone-Adesi, Giannopoulos and Vosper (2002), Kiesel, Perraudin and Taylor (2000) and McNeil and 
Frey (2000) adopt a similar model. 
 
(8) See Danielsson and Morimoto (2000). 
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xmar can be taken as the maximum return permitted by initial margin. With this interpretation, (4) 
gives the coverage level, on a specific date, provided by margin, xmar .(9) 
 
To compute actual exceedence probabilities, a functional form must be provided for FZ(z). 
GARCH models typically assume the distribution of innovations to be normal. McNeil and Frey 
(2000), however, note that when modelling a fat-tailed return distribution it may be appropriate to 
choose a different innovation distribution. Here, four different alternatives are considered: (i) 
historical, (ii) normal, (iii) Student t and (iv) extreme value distributions. The historical 
distribution is derived from the standardised residuals of an AR(1)-GARCH(1,1) process with a 
normal distribution. 
 
When the innovations are normally distributed, the quantile is defined by solving q=FN(xq) where 
q is the amount of probability in the left tail, FN is the Gaussian distribution function and xq is the 
desired quantile. In the case of the historical distribution, the quantile is determined by selecting 
the observation that leaves to its left (ie in the tail) the required percentage of observations.   
 
For the Student t case, suppose T is a Student t distributed random variable with ν degrees of 
freedom, then E[T]=0 and V[T] =ν/(ν-2), ν>2. Standard assumptions require that innovations 
have unit variance, so the process for Z in (1) is scaled as ( ) *T/ννZ 2−= .  The quantile, zq, can 
then be expressed in terms of the quantile of the Student t random variable as 

( ) ( )qFz Tq
1*/2 −−= νν  where FT

-1(q) is the q-quantile of T.   
 
Finally, innovations can be assumed to follow an extreme value theory (EVT) distribution. The 
reader is referred to Appendix A for technical details on EVT.  Here we simply note that if the 
distribution function can be assumed to be in the domain of attraction of a Frechet distribution, 
F∈MDA(Φα), then the desired quantile can be estimated by xq=(n/k(1-q))-1/αXn-k:n , where α is the 
tail parameter and Xn-k:n is the kth order statistic.  
 
2.2 Computing conditional expected losses 
 
In addition to non-coverage probabilities, measures of conditional expected loss, ie the expected 
losses conditional on margin being exceeded, can provide important information on CCP 
exposure. Using the model described in the previous section, it is possible to derive the 
conditional expected return, CERt, defined as the expected value of the return, Xt, given that it has 
exceeded a certain level u.  
 

[ ]uXXECER tttt >≡ − |1  
   

                                                                                                                                                              
 
(9) Note that these expressions are valid only one-step ahead. 
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Substituting for Xt  from (1) gives,   
  

[ zZZEbXaCER ttt >++≡ − |1 ]σ                                                                                  (5) 
 
where z = (u-a-bXt-1)/σt and E[Z|Z>z] depend on the chosen distribution for the innovations and 
can be summarised in the following way,  
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φ and Φ are, respectively, the density and the distribution for a standardised normal random 
variable.  
 
Equation (5) gives the expected return given that a certain threshold level return has been 
exceeded. A more conventional measure of conditional expected loss can be derived from this. 
Suppose a conditional distribution is obtained for date t+1. Knowing the maximum return 
permitted by initial margin at date t+1, , the expected price variation, given that this margin 
level has been exceeded, can be computed. Given the futures closing price Pt at time t, the 
additional expected financial resources required per unit of contract, conditional on margin being 
exceeded is |exp(CERt+1) – exp(rt+1

mar)|Pt. Multiplying this expression by the contract size and 
the open interest figure then provides an estimate of the total liquidity that would be required in 
the market, in the event that initial margin is exceeded. 

mar
tr 1+
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2.3 Estimation of the tails under EVT 
 
Estimation of the AR(1)-GARCH(1,1) model shown in (1) is relatively straightforward for both 
normal, student t and historical innovations. The estimation for EVT distributed innovations is 
more complex, but essentially involves two steps: (i) estimate the model with normal innovations, 
and (ii) apply EVT to the standardised residuals. It can be shown (see Gouriéroux (1997)) that 
step (i) yields asymptotically consistent estimates of the model parameters. The intuition is that 
the AR and the GARCH parts of the model fit the central part of the distribution (ie the 
conditional mean and variance) leaving the tails unaffected. The tails can then be estimated in 
step (ii) using a non-parametric estimation technique. In the present paper, a version of the Hill 
estimator (Hill (1975)), which is suitable for small samples, is applied. We describe this below. 
 
If the innovation distribution can be assumed to be fat-tailed, EVT tells us that the distribution of 
the sample maxima can be modelled as a Fréchet distribution. More specifically, the (unknown) 
distribution function, F, belongs to the domain of attraction of the Fréchet distribution, 
F∈MDA(Φα). If this is the case, the complementary distribution function ( ) )(1 xFxF −≡  can be 
approximated as ( ) α−= CxxF , where C = uα, x≥u>0.  The maximum likelihood estimator for α 
can be shown to be, 
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where Xn-j+1:n is the (j+1)th upper order statistic.(10) In the general case, the threshold u is 
unknown, but can be approximated by the kth order statistics. Then, conditional on the number k 
of exceedances of the threshold, the maximum likelihood estimator (MLE) becomes 
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The MLE for the constant, C,  is 
n
kXC nk

nknnk
,
:,

α))
−=  

Equation (6) is called the Hill estimator (see Hill (1975)). The quality of the estimate depends 
upon the choice of kth order statistics.  
 
Several recent papers have discussed how to select an optimal value for k. Drees and Kaufmann 
(1998) find k(n) using an iterative procedure. Beirlant, Vynckier and Teugels (1996) use a 
regression approach based on a Pareto quantile plot. Danielsson, de Haan, Peng and de Vries 
(2001) use a two-step subsample bootstrap method. A drawback of these methods is the very 
large sample size required which makes them unsuitable for many applications. 
 
A somewhat simpler alternative, appropriate for small samples, has been recently suggested by 
Huisman, Koedijk, Kool and Palm (2001). A weighted average of a set of Hill estimators is 
calculated, with weights obtained by using simple least square methods. Huisman et al (2001) 
                                                                                                                                                              
 
(10) See Appendix B for a definition of upper order statistics. 
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show that this approach produces unbiased estimates for the tail-index in small samples.(11) We 
adopt this approach for three reasons, (i) it removes the need to choose the optimal threshold, (ii) 
it yields acceptable estimates even for small samples (ca. 250), and (iii) it provides a clear 
criterion for selecting the best Hill estimate. (12) 
 
2.4 Backtesting to select the best-performing innovation distribution 
 
The previous section, described how to estimate the AR(1)-GARCH(1,1) model under different 
distributional assumptions, but left unresolved the question of which distribution should be 
selected as the best model. To choose among the four possible alternatives, a backtesting 
procedure was applied, in which the model was estimated for a large number of subsamples, so 
the predictive ability of each alternative distribution could be assessed, and the best-performing 
distribution selected. This procedure is described in more detail below.  
 
Suppose the sample size is equal to N and a subsample size is fixed equal to n < N. The model is 
estimated using the first n observations. Parameter estimates are then used to compute the 
next-day quantile at a confidence level 1- q  which can be compared with the actual 

observed return for day n+1, xn+1. If , an exceedance is said to have occurred. The 
sample window is then shifted forward by one observation, and the model is re-estimated using 
the subsample from t=2 to t=n+1. In parallel fashion, the predicted quantile  for date n+2 
is compared with the actual realisation xn+2 and it is noted whether or not an exceedance has 
occurred. The process continues in this way until all the subsamples are exhausted. 

q
nnx |1+

|||| |11
q

nnn xx ++ >

q
nnx 1|2 ++

 
If the non-coverage probability has been fixed at q, qN exceedances would be expected on 
average. For a specific distribution, if there are fewer exceedances than the expected number, the 
predicted quantiles  of the distribution may be too large. If there are more exceedances than 
expected, the quantiles may be too small. The distribution is selected that gives a number of 
exceedances closest to the expected number. 

q
nnx |1+

 
To implement the backtesting procedure, a subsample size of 500 observations was employed  
(ie n = 500). This is sufficiently small to be comparable to the data windows often used by CCPs 
for margining, yet sufficiently large to permit empirical quantiles to be derived for very small 
probabilities (up to 0.2%) and the small-sample EVT estimation techniques (described in 
Appendix B) to be applied. 
 
The model can also be applied to estimating the coverage provided by historical initial margin 
levels. If the initial margin for date n+1 is known, equation (4) can be used to estimate coverage 

                                                                                                                                                              
 
(11) See Appendix B for details. 
(12) An alternative approach for estimating the tails of an EVT distribution is the so-called peaks over threshold 
method (POT), which assumes that the tail of the distribution can be approximated by a generalised Pareto 
distribution (GPD). To apply the model it is necessary to fix a threshold above which it is assumed that the GPD 
provides a good approximation to the data generation process. McNeil and Frey (2000) and Kiesel et al (2001) both 
regard the GPD approach as a superior method for estimating tails. In the backtesting exercise, however, this would 
require us to fix the number of order statistics to be the same in each subsample. This would not always produce an 
optimal fit. 
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probabilities. To illustrate the approach, implied coverage probabilities for initial margins set 
historically by LCH on the Brent and FTSE 100 contracts are reported in Section 5.  
 
3 Data and preliminary analysis  
 
The data set consists of daily closing prices for the Brent and FTSE 100 futures contracts. Both 
are high volume contracts of considerable importance to the exchanges on which they are traded 
(the London International Financial Futures and Options Exchange, and the International 
Petroleum Exchange, respectively). Closing prices were used because the obligations of the CCP 
are based on close of day positions.  
 
(i) Time series of futures prices 
 
To create a time series of futures prices sufficiently long for analysis, individual contracts must 
be rolled over as they approach maturity. In order to link individual contract prices, two choices 
must be made: (1) when to switch from one contract to the next (ie how to choose the rollover 
date) and (2) how to correct for any discrete change in price (ie any price adjustment on the 
rollover date). A variety of approaches have been taken in the research literature. Longin (1999) 
uses futures prices but does not amend the time series on the rollover dates. Cornew, Town and 
Crowson (1984) roll over futures contracts by selecting a date two weeks before the first notice 
day. Cotter and McKillop (2000) change contracts on the last trading day before the delivery 
month making no correction, but recognising the possibility of artificial jumps.  
 
In order to prevent artificial jumps from arising, the following procedure was adopted here. The 
front contract was rolled to the next on the first day of the delivery month. Both contracts are 
liquid at this point and by switching on the first day, a spot-month charge levied by the CCP at 
the start of the delivery month can be ignored.  Nevertheless, switching contracts on the first day 
of the delivery month can introduce an artificial jump into the time series of futures prices 
because of differences in the individual contract prices. Since these jumps are artefacts of the 
method used to construct the time series, which are not economically relevant, the rollover dates, 
and so any jumps associated with them, have been omitted. Table A presents descriptive statistics 
for returns on the two contracts, which are discussed further in (iii). 
 
(ii) Times series of initial margins 
 
Two time series of initial margins for the Brent and FTSE 100 futures contracts were obtained 
from LCH covering the periods 4/1/99 to 11/2/02 and 6/1/98 to 11/2/02, respectively.(13) Initial 
margins for long and short positions are set equally. Charts 1 and 2 show that initial margins 
                                                                                                                                                              
 
(13) Like many other CCPs, LCH uses the SPAN system (Standard Portfolio Analysis of Risk) to calculate initial 
margins for portfolios of futures and other exchange-traded derivatives contracts, and some OTC contracts. Initial 
margin for a single unhedged futures contract is represented by a SPAN parameter known as the scanning range 
which is periodically updated by CCPs as market conditions change. Although a single contract usually consists of a 
fixed number of units of the underlying commodity, for simplicity, the analysis here considers the margin required 
for each individual unit. For example, each Brent futures contract is for 1,000 barrels. The margin per lot set on 
30/9/02 was $2,000, equivalent to $2 per barrel.  
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remained constant for significant portions of each period. The temporary increases visible for the 
Brent contract usually coincide with UK public holidays where protection would be required over 
a longer time horizon than normal. For example, a temporary increase in initial margin occurs at 
the end of 1999, to provide additional protection during the Millennium period.  
 
The charts also show close-to-close prices superimposed on initial margin levels. A visual 
comparison shows that during the sample period there were no initial margin exceedances for the 
FTSE 100 contract, compared with nine for the Brent contract (see Table B). 
 
(iii) Descriptive statistics 
 
From the time series of closing prices, log returns for each contract were computed. Descriptive 
statistics (Table A) show that for both contracts the return distributions were approximately 
symmetric. Jarque-Bera and the Kolmogorov-Smirnov tests, however, indicate deviations from 
normality. QQ plots, illustrated in Chart 3B and Chart 4B, confirm fat-tailed behaviour. Return 
plots (Chart 3A and Chart 4A) suggest the presence of heteroscedasticity (ie time-varying 
volatility), which is confirmed by the autocorrelation function for the squared returns (Chart 3D 
and 4D). Finally, there is little evidence of correlation in the return levels (Charts 3C and 4C), 
and the standard augmented Dickey-Fuller and the Phillips-Perron tests indicate that both series 
are stationary.  
 
Overall, the descriptive analysis indicates heteroscedasticity and leptokurtosis (ie fat-tails) to be 
the two main empirical regularities which need to be taken into account. 
 
4 Results 
 
4.1 Unconditional analysis 
 
Charts 5A-D show unconditional margins at a succession of coverage levels, for each of the four 
distributions. Inspection shows that there is generally a fairly consistent rank ordering of margin 
levels with EVT > Historical > Student t > Normal. EVT margins are clearly greater than margins 
calculated under other distributional assumptions at all coverage levels, with this pattern being 
most marked for the Brent contract, and particularly for its left tail which represents large price 
falls. The large EVT margins can be explained by the fact that, unlike the other distributional 
approaches, the EVT analysis only considers extremes (ie observations actually in the tail). These 
margins therefore tend to be more sensitive to large tail observations. Even at the lowest coverage 
level of 95%, the EVT analysis still leads to the highest margins, a finding which differs from 
some previous studies, which have only observed reliable differences between EVT and the 
historical distribution at coverage levels greater than 99%. In the present data set, it is differences 
between margins based on the normal, historical and Student t distributions, which only begin to 
emerge at the 99% level. 
 
The most significant feature of Charts 5A-D is the distribution by coverage level interaction. As 
higher coverage levels are approached, there is a proportionate increase in the EVT margins 
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compared with other distributions. Compared with the normal distribution margins, the historical 
distribution and Student t margins show a similar but less marked interaction.  
 
To assess the coverage that would have been provided by these theoretically derived margins they 
can be compared against historical daily price movements. Table C reports the number of margin 
exceedances observed. For the Brent contract, there are a total of 3,034 observations. At a 
coverage level of 99%, 30 violations would therefore be expected. The historical margins are set 
in order to produce this expected number. Results from the three other distributions are compared 
in Table C. The Student t distribution produces a number of exceedances closest to the expected 
number. The third and fourth columns of the table show that the dollar margin derived from the 
Student t distribution is almost identical to the historical distribution. 
 
4.2 Conditional analysis 
 
Charts 6A and 6B depict conditional margins derived from the four distributions as a function of 
time. Margins are calculated for the right tail of the returns distribution assuming a required 
coverage level of 99.5% (99%, two-tailed). The main features to note are that for both the Brent 
and the FTSE 100 contracts, the conditional margins show considerable variability over time, 
largely because the model is driven by market volatility. For the Brent contract, there is 
nevertheless a fairly consistent rank ordering of the margin levels which mirrors the results of the 
unconditional analysis ie EVT > historical  > Student t > normal. This ordering breaks down, 
however, after October 2000.  
 
For the FTSE 100 contract, there is no consistent rank ordering of conditional margins, and in 
general the margins calculated on the basis of the four distributions are similar. The absence of a 
rank ordering seems most likely attributable to the fact that, compared with the Brent contract, 
the FTSE 100 contract is less fat-tailed, as indicated by the QQ-plot in Chart 4B. The FTSE 100 
distribution shows fewer extreme values, and as a result, the impact of the choice of innovation 
distribution is less marked.  
 
Charts 7A and 7B show the Student t and normal distribution models applied to calculating  
non-coverage probabilities for the initial margin levels set historically by LCH. The model 
suggests that the initial margins on the FTSE contract provided an average coverage level of 
99.86% during the sample period. The average coverage level for the Brent contract is similar at 
98.96%. These levels are consistent with overall number of exceedances of initial margin for each 
contract reported in Table B. Despite the high average levels, both charts show that coverage can 
fall when more volatile market conditions are encountered. 
 
 
4.2.1 Backtesting results 
 
Tables D and E display the number of margin exceedances observed in backtesting for the four 
conditional distributions at four different non-coverage levels. The expected number of 
exceedances at each non-coverage level is shown in the bottom line of each table.  
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Consider the Brent contract first (Table D). In seven out of eight cases, margins based on the 
thin-tailed normal distribution lead to too many margin exceedances. The one exception occurs, 
as might be expected, at the highest non-coverage level of 5%, where the error introduced by 
assuming a normal distribution is least. At the other extreme, EVT margins are observed to be 
much too conservative at the 5% level, leading to far too few exceptions. At the higher coverage 
levels, however, performance of the EVT distribution improves significantly. Overall, and taking 
into account performance at all coverage levels, the historical and Student t distributions provide 
the best fit. 
 
FTSE 100 backtest results offer a broadly similar picture. At the 5% non-coverage level, the EVT 
margins are too stringent, though performance improves substantially at higher coverage levels. 
For this contract, the normal distribution leads to margins that are too low in five out of eight 
cases, but the margin levels are generally closer to those predicted by other distributions. This 
result might be expected given that the FTSE 100 distribution is less fat-tailed than the Brent 
distribution (compare Charts 3B and 4B). 
 
4.3  Conditional expected losses 
 
This section reports conditional expected losses for the Brent and FTSE 100 contracts, in order to 
assess the potential liquidity demands on market participants of margins becoming exhausted.  
 
Section 2.2 introduced the notion of conditional expected return, ie the expected return given that 
the maximum (or minimum) return permitted by margin has been exceeded. Using conditional 
expected returns, a measure of the extra liquidity required to meet outstanding obligations can be 
derived. The procedure is as follows. Using the returns up to date t, the conditional distribution of 
returns for date t+1 is estimated. Given the maximum return permitted by margin for date t+1, 
rt+1

mar, the conditional expected return, CERt+1, is calculated. If Pt is the closing price at date t, 
then |exp(CERt+1) – exp(rt+1

mar)|Pt  represents the conditional expected loss, or equivalently, the 
extra liquidity needed to cover the margin exceedance. 
 
As an illustration, Tables F and G estimate the expected extra liquidity required to meet a margin 
exceedance, based on the sample window. The Student t model was used to estimate the 
conditional distribution of returns, and prices were averaged across the sample. To calculate a 
figure for required market liquidity the contract size was multiplied by the average open interest.   
 
Table F shows that, for the Brent contract, an extra $80-$90 million would be required on 
average, and the maximum additional liquidity demand, based on the sample period, would be 
$177 million. For the FTSE 100 contract, overall liquidity requirements are more variable. The 
maximum extra liquidity is £361 million, and the average around £80 million. 
 
To put these figures into perspective, Table G recasts them as a percentage of the margin already 
posted. A 7% minimum additional margin would have been required to meet a margin 
exceedance on the Brent contract, compared with only 1% for the FTSE 100 contract. On average 
the Brent contract would have required 8%-9% additional margin, compared to 2%-3% for the 
FTSE 100. Thus, although a margin exceedance on the FTSE 100 contract would have required, 
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under some circumstances, more additional margin, in dollar terms, than the Brent contract, a 
margin exceedance on the latter would generally have required a higher percentage increase in 
margin. This can be largely attributed to the fatter tails of the Brent return distribution. It is worth 
noting that these illustrative liquidity requirements are relatively modest compared to the stress-
testing moves which would be used for determining post-margin backing for a CCP, or indeed 
compared to typical intraday calling mechanisms, where calls are based on a half, or a whole, 
margin deposit. 
 
5 Discussion and conclusions 
 
This study has described a method for assessing the conditional coverage provided by CCP initial 
margins, illustrating its application to two heavily traded futures, the Brent and FTSE 100 
contracts. Previous work on margining has largely focused on assessing margin coverage 
unconditionally. This study suggests that estimating the conditional distribution of returns using a 
GARCH model can potentially provide more timely, price-sensitive information on the risk 
coverage offered by CCP margins.  
 
We have extended previous work on margining by constructing a model of margin coverage that 
integrates fat-tailed characteristics and conditional volatility within the same framework. By 
exploiting the additional information present in the structure of returns, this model permits the 
calculation of estimates of the probability of margin exceedance, on a day-by-day basis. 
 
The model was applied to estimating the coverage provided by initial margins set by LCH on the 
Brent and FTSE 100 contracts. During the sample period, margins were found to provide a 
coverage level generally in excess of 99%, over a one-day time horizon. Long-run coverage 
levels were also independently assessed using the observed frequency of initial margin 
exceedances, with the two analyses producing similar results. It was noted, however, that the 
coverage probability implied by the model could fall in more volatile markets, underlining the 
need for CCPs to carefully monitor margin levels and adjust them as necessary to take account of 
changing market conditions, as they do in practice. 
 
Backtesting indicated that an AR(1)-GARCH(1,1) process provided a simple but effective model 
for the conditional mean and volatility of futures returns. Danielsson and Morimoto (2000) have 
previously argued that pre-whitening the data using this approach removes only volatility 
clustering and not extreme dependence, ie there is no guarantee that GARCH filtering will 
remove all the structure in the data. Our backtesting results, however, suggest that, at least in this 
instance, an AR(1)-GARCH(1,1) model with innovations based on the historical or t distributions 
produced a reasonably good fit to the tails of the return distribution. This is a potential avenue for 
future research. 
 
The choice of innovation distribution did make a marked difference to the quality of the fit. 
Normally distributed innovations generally led to margin levels that were too low to provide the 
required level of coverage. At high confidence levels (greater than 99%), it might have been 
expected that the extreme value distribution, which explicitly models only the extremes, would 
provide the best fit. Even for the fat-tailed Brent return distribution, however, the EVT fit was not 
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significantly better than one based on the t distribution, and across all coverage levels (including 
95%), the historical and t distributions produced superior performance.(14) 
 
One reason why the EVT approach may have failed to outperform other models is that when the 
tail parameter α on the residuals of each filtered subsample is estimated, it is implicitly assumed 
that the true distribution of the innovation belongs to the domain of attraction of the Fréchet 
distribution. Although the tail parameter α changes for each subsample, it remains a fat-tailed 
distribution. When estimating the AR(1)-GARCH(1,1) model with Student t distributed 
innovations, however, it was observed that the degrees of freedom changed frequently, reaching 
values greater than 20, indicating that the tails of the sample distribution were not always  
fat-tailed. In contrast to the EVT approach, the historical and Student t models have the flexibility 
to accommodate these variations in tail-thickness. 
 
Overall, it can be concluded that: (1) a thin-tailed distribution, such as the normal, does not 
provide an adequate fit to the innovation distribution. (2) In a conditional context, a fat-tailed 
EVT distribution performs better than the normal distribution but does not necessarily outperform 
other simpler models, (3) for the coverage levels considered here, the historical and Student t 
distributions generally provide satisfactory estimates of the appropriate margin. If very high 
coverage levels are sought, however, or estimates of conditional expected losses, it is probably 
preferable to use an EVT or a Student t distribution. (4) When all non-coverage levels are 
considered, the Student t distributions probably provide the most flexible all-round model.  
 
The modelling approach described has allowed us to estimate the probability that initial margin 
will be exhausted, as that probability changes dynamically day to day.  Although we have found 
that average probability of exhaustion for actual initial margins is reassuringly low, we note that 
the probability can increase in volatile markets, again underlining why CCPs carefully monitor 
margin levels and adjust them as necessary to take account of changing market conditions. 
 
Regulators and central banks are also interested in understanding what the impact on the market, 
or indeed the CCP, would be of more extreme price moves.  In particular, they would like to 
gauge the additional liquidity demands on the market, if a margin-exhausting price move were to 
occur.  Our analysis indicated that the tail shape of the return distribution is an important 
determinant of this extra liquidity requirement. For the sample window used, however, the 
increase in liquidity was found to be relatively modest compared to typical intraday calling 
mechanisms, which require an additional half, or whole, margin deposit. 
 
 
 
 
 
                                                                                                                                                              
 
(14) In some circumstances, the relatively small sample size employed (500 observations) might be considered a 
problem in applying EVT estimation techniques. In the present study, however, we have addressed this issue by 
using a variant of the Hill estimator which produces unbiased estimates for the tail index, without loss of efficiency, 
for samples as small as 250 observations (see Huisman et al (2001) for further details). 
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Tables 
 
Table A: Descriptive statistics for the Brent and the FTSE 100 
 FTSE 100 Brent 
Mean 1.51 6.55 
St.Dev 113 215 
Min -608 -1451 
Max 637 1315 
Skewness -0.03 -0.08 
Excess Kurtosis 2.20 5.52 
Kolmogorov-Smirnov 0.04 0.07 
Jarque-Bera 633 3860 
Ljung-Box 53.9 62.2 
#Observations 3147 3034 
Dates 2/1/90-13/08/02 2/1/90-13/08/02 
Descriptive statistics for log returns are expressed in basis points. The 5% 
critical values for the Kolmogorov-Smirnov statistic, the Ljung-Box with 
30 lags and the Jarque-Bera test are 0.02, 43.77 and 5.99, respectively. 
 
 
Table B: Initial margin changes and exceedances for the Brent and 
the FTSE 100 contracts 
 Start End # obs. # changes # exceed. 
Brent 4-01-99 11-02-02 749 24 9 
FTSE 6-01-98 11-02-02 1026 5 0 
An initial margin exceedance is said to occur if the absolute value of the price 
change between two consecutive days is greater than the initial margin, ie 
|ΔPt|>Mt, where Mt is the margin level for day t and ΔPt= Pt-Pt-1. 
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Table C: Unconditional margins and exceedances for the Brent contract 
 Right (%) Left (%) Margin (right) Margin (left) # exceed. # exceed. 
   (USD) (USD) Right Left 
Hist. 6.06 -5.51 1.25 1.07 30 29 
Normal 5.08 -4.95 1.04 0.96 50 48 
Stud-t 5.56 -5.43 1.14 1.06 39 32 
EVT 8.71 -11.49 1.82 2.43 7 4 
Theoretical initial margins are reported for both long and short positions. For the EVT case, left and right 
tails are estimated separately. The tail-shape parameter, ξ, is equal to 0.29 for the left tail and 0.16 for the 
right tail. Initial margins are estimated to provide a 2% non-coverage probability (1% probability in each 
tail).  At this coverage level, the expected number of exceedances is 30. 
 
 
Table D: Backtesting performance of the four distributions for the Brent contract 
 Left tail Right tail 
 5% 1% 0.5% 0.135% 5% 1% 0.5% 0.135% 
Hist. 137 35 18 9 129 29 15 8 
Normal 116 43 31 21 140 50 30 10 
Stud-t 125 27 20 2 155 27 10 5 
EVT 79 26 16 3 83 30 17 9 
Expected 127 25 13 3 127 25 13 3 
Margin exceedances are shown for the Brent contract assuming theoretical margins based on each of the 
four distributions. Four non-coverage probabilities are assumed: 5%, 1%, 0.5% and 0.135%. The sample 
size is n = 2534. 
 
 
Table E: Backtesting performance of the four distributions for the FTSE 100 contract 

 Left tail Right tail 
 5% 1% 0.5% 0.135% 5% 1% 0.5% 0.135% 
Hist. 132 28 15 7 141 26 14 7 
Normal 109 24 15 7 141 34 25 13 
Stud-t 118 18 10 3 142 29 18 8 
EVT 54 21 12 7 81 24 15 8 
Expected 132 26 13 4 132 26 13 4 
Margin exceedances are shown for the FTSE 100 contract assuming theoretical margins based on each of 
the four distributions. Four non-coverage probabilities are assumed: 5%, 1%, 0.5% and 0.135%. The 
sample size, n = 2646. 
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Table F: Estimated additional liquidity required by market, conditional on  
margin being exceeded 
 FTSE 100 (£mn) Brent ($mn) 
 Left Right Left Right 
Min 20 19 66 74 
Max 320 361 145 177 
Average 78 86 82 91 
   
Average open interest 02/02 464,600 254,400 
Initial margin rate £350 US$2 
Average index price £5960 US$24 
 

 
 
 
Table G: Estimated additional liquidity required as a  
proportion of margin already posted 
 FTSE 100 Brent 
 Left Right Left Right 
Min (%) 1 1 6 7 
Max (%) 10 11 14 17 
Average (%) 2 3 8 9 
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Charts 
 
         Chart 1: Brent margin and price variation (4-1-99 to 11-2-02) 
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        Chart 2: FTSE 100 margins and price variation (6-1-98 to 11-2-02) 
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Chart 3: The Brent contract 
A: Daily ln returns  B: QQ plot 
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Chart 4: The FTSE 100 contract 
A: Daily ln returns  B: QQ plot 
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Chart 5: Unconditional margins 
A: Brent - left tail B: Brent - right tail 
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Chart 6: Theoretical conditional margin at 99.5% for positive changes in return 
A: Brent contract B: FTSE 100 contract 
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Chart 7: Non-coverage probabilities 
A: Brent contract B: FTSE 100 contract 

0

1

2

3

4

5

6

99 00 01 02
0

2

4

6

8

10

12

14

16

Student t

Normal

Margin

Per cent Probability (Per cent)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

98 99 00 01 02
4

4.5

5

5.5

6

6.5

7

Margin

Student t

Probability (Per cent)Per cent

Normal

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 29



                                                                                                                                                        

Appendix A: Relevant results from EVT 
 
Suppose (15) we have a sequence of iid random variables {X1, X2, X3,…} with common 
distribution function F.  Define the sample maxima as M1≡X1, Mn≡max{X1, X2, X3,…. Xn} for n≥2. 
The distribution function of Mn is given by, 
 
( ) ( ) ( ) .n ,     x,,...,1 NxFxXxXPxMP n

nn ∈ℜ∈=≤≤=≤  
 
It is usually the case that the distribution function F is unknown. The Fisher-Tippet theorem, 
however, shows that approximate families for Fn(x) can be derived by examining extremes. 
 
Theorem (Fisher-Tippet): 
 
Let {Xn} be a sequence of iid random variables. If there exist norming constants cn>0 and dn∈ℜ 
and some non-degenerate distribution function H such that 

,H
c

dM d

n

nn ⎯→⎯
−

 

then H belongs to the type of one of the following three distribution functions:  
 

Fréchet:  ( ) { }⎩
⎨
⎧

>
>−
≤

=Φ − ,0
0exp
00

        α
xx
x

x αα

Weibull: ( ) ( ){ }
⎩
⎨
⎧

>
>
≤−−

=Ψ
−

0,        
01
0exp α

α

α x
xxx  

Gumbel: ( ) { } .exp ℜ∈−=Λ − xex x  
 
Proof: see Embrechts et al (1997, page 122). 
 
This results says that the rescaled sample maxima, (Mn-dn)/cn, converge in distribution to one of 
three types ─ Fréchet, Weibull or Gumbel ─ known as extreme value distributions. Moreover, the 
result is obtained irrespective of the population distribution function, F.  
 
Each of the three distributions has a characteristic tail shape. The Weibull distribution has a short, 
truncated tail. The Gumbel distribution has a thin tail. The Fréchet has fat tails, and is generally 
found to be most appropriate for modelling financial distributions. 
 
All the three underlying extreme value distributions can be summarised in a simple functional 
form Hξ(x), known as the generalised extreme value (GEV) distribution. 
 

( ) ( )
{ }⎪⎩
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≠
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⎬
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⎩
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⎧ +−

=
−

−

0, exp

0, 1exp
1

ξ

ξξ ξ
ξ

ife

ifxxH
x

 

 
where 1+ξx>0 and ξ≡1/α. The parameter ξ is called the tail index. 

                                                                                                                                                              
 
(15) We follow Embrechts, Klüppelberg and Mikosch (1997). 
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If the distribution function F is such that (Mn-dn)/cn converges to Φα(x), it is said to be in the 
domain of attraction of the Fréchet distribution, that is, F∈MDA(Φα). For example, the Pareto, 
the Cauchy and the Burr distributions all belong to the domain of attraction of the Fréchet 
distribution. The distributions belonging to F∈MDA(Φα) all have fat tails and hence are deemed 
suitable to model financial time series. 
 
Similar domains of attraction are defined for the short-tailed Weibull distribution and the  
thin-tailed Gumbel distribution.(16) In the Fréchet case, the complementary distribution function 
( ) )(1 xFxF −≡  can be expressed as a simple asymptotic form, ( ) ( ) α−≈ xxLxF , where L(x) is a 

slowly varying function.(17) Importantly, this result shows that, for x large enough, the tail of the 
distribution function can be approximated by a power function. In the case of the Gumbel 
distribution, the asymptotic form has an exponential type behaviour. 
 
In the case F∈MDA(Φα), we can set L(x) = uα and write ( ) α−≈ CxxF and  
 

( ) ( ) 1' −−== ααCxxfxF .  
 
Given the above, for F∈MDA(Φα), the expected loss conditional on X exceeding xq can be 
calculated as: 
 

[ ] αξ
ξ

α
α

α

1/    ,
1

1
1

=
−

==> −

∞ −−∫
q

q

x
q x

Cx

dxCxx
xXXE q  

α is calculated from maximum likelihood estimation (the Hill’s estimate).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                              
 
(16) See Embrechts, Klüppelberg and Mikosch (1997) Section 3.3 for the MDA conditions. 
(17) A positive function L defined on (0, ∞) is slowly varying if limx→∞L(tx)/L(x)=1, t>0. 
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Appendix B: Hill’s estimator small-sample properties 
 
Suppose we are given n observations {X1,…,Xn} and we denote order statistics by 

 that is, the nth
 order statistic is simply the largest element in the sample, the n-1th, 

the second largest element, and so on. The Hill estimator based on n observations and the first k 
order statistics is, 

,... ::1 nnn XX ≤≤

 

nkn

k

j
njn

H
nk XX

k :
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)(

, loglog1ˆˆ
−

=
+− −== ∑ξξ  

 
Dacorogna, Muller and Pictet (2000) show that the asymptotic expected value and variance of the 
Hill estimator are given by, 
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where α,β>0, a,b∈ℜ and are such that distribution function F(x) can be approximated by 
 

( )βα −+−≈ bxaxxF 11)(  
 
Note that according to (1), the bias increases with k, suggesting that a small value should be 
chosen for k. (2), however, shows that the variance of the estimator increases for low values of k. 
 
Huisman et al (2001) suggest linearising (1) with respect to k, obtaining,  
 

( ) kkkkH
nk 1,...,     ,ˆ

10
)(

, =++= εββξ        (3) 
 
for an appropriate value of k <n. We can rewrite (3) in matrix form as εβξ += Z  where Z is a 
( k x2) matrix with ones in the first column and the vector [1,2,..., k ]’ in the second. Using (3), 
we can apply a weighted least square method (WLS) with weighting matrix W with the vector 
[√1,…, √ k ]’ in the main diagonal and zeros elsewhere. The WLS estimator will then be  
 

( ) ξξ WW'Z'WZW'Z' 1ˆ −=WLS  
 
and the estimated tail-index ξ is equal to the first element of the vector . Kiesel et al (2001) 
extend this approach by deriving an approximation of the variance/covariance matrix of the 
vector of innovations ε, so that they can apply a generalised least square estimator for the  

WLSξ̂

tail-index ξ. See Appendix A in Kiesel et al (2001) for details. 
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