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Abstract

This paper examines the trade-offs that a central bank faces when the exchange rate can

experience sustained deviations from fundamentals and occasionally collapse. The economy is

modelled as switching randomly between different regimes according to time-invariant transition

probabilities. We compute both the optimal regime-switching control rule for this economy and

optimised linear Taylor rules, in the two cases where the transition probabilities are known with

certainty and where they are uncertain. The simple algorithms used in the computation are also of

independent interest as tools for the study of monetary policy under general forms of (asymmetric)

additive and multiplicative uncertainty. An interesting finding is that policies based on robust

(minmax) values of the transition probabilities are usually more conservative.

Key words: Monetary policy; regime-switching; uncertain probabilities

JEL classification: C6, E5
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Summary

A common concern among central bankers is that the true or perceived existence of financial

imbalances or asset price misalignments could at some point in time lead to sudden and large

adjustments in asset prices, with potentially adverse consequences for inflation and output. For

instance, one of the major risks that has worried some members of the Bank of England’s

Monetary Policy Committee (MPC) in the past has been the possibility that sterling could

suddenly fall by a material amount. Other risks routinely debated by actual policymakers,

including oil price hikes or abrupt changes in key econometric relationships, may also be

asymmetric – that is, a given change may be more likely to occur in one direction than in the

opposite. Nevertheless, modelling of asymmetric risks is not very common in the monetary policy

literature, possibly because of the lack of readily-applicable technical tools.

In this paper we examine the trade-offs that the policymaker faces when the exchange rate can

experience sustained deviations from its fundamental value (ie the value implied by interest rates

absent any economic shock) and occasionally collapse. To do so we use a simple method which

has rarely been applied in the economics literature. The method allows us to solve for the optimal

monetary policy in an economy subject to regime shifts, while retaining the flexibility and

simplicity of more commonly applied methods. The method could be applied in other ways that

are not considered in this paper and can be considered as a general tool for studying uncertainty in

monetary policy. In particular, it provides an example of how policymakers can incorporate

judgemental information about a potential misalignment (and the uncertainties associated with it)

into their macroeconomic model, and work out the best policy response based on that judgement.

Our analysis is based on a small open economy model, comprising a demand equation, a Phillips

curve which determines prices, and an equation linking the real exchange rate to the domestic real

interest rate. We modify this model to incorporate regime switching in the exchange rate. In one

regime, which we call the bubble regime, any shock can lead the exchange rate to increasingly

deviate from its fundamental value. Depending on the sign of the shock, the exchange rate can

continue to rise above its fundamental value, or it can continue to fall below it. In the other

regime, which we call the no-bubble regime, the exchange rate displays transitory fluctuations

around its fundamental value. The times at which the bubble begins and ends are uncertain to the

policymaker. Moreover, the size of the correction in the exchange rate, which occurs when the
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economy switches from the bubble to the no-bubble regime, will vary over time as it depends on

the past behaviour of the exchange rate as well as the interest rate.

Analysis of the optimal regime-switching policy rule shows the existence of an intuitive link in the

bubble regime between the optimal response of the interest rate to the exchange rate and the

expected duration of a bubble. When the bubble is expected to last for at least two years, the

optimal interest rate is negatively related to movements in the real exchange rate and becomes

more responsive as the expected duration of the bubble lengthens (an increase in the exchange rate

being an appreciation). Similarly, in the no-bubble regime there is an intuitive link between the

response to the exchange rate and the probability of the bubble emerging: for lower probabilities

of bubbles the interest rate is positively correlated with exchange rate fluctuations (reflecting the

likely transitory nature of exchange rate movements) but becomes less responsive as the

probability of a bubble increases. For high probabilities of the bubble the interest rate responds

negatively and becomes more reactive to exchange rate fluctuations as the probability rises further

(reflecting the likely onset of a bubble). Another characteristic of the optimal regime-switching

interest rate rule is that in both regimes the interest rate is for the most part less responsive to

inflation and output fluctuations than in the absence of regime uncertainty, with the degree of

caution increasing as both transition probabilities approach a half.

A key result of the paper concerns the assumptions that the policymaker makes about the

(unknown) probabilities of moving between bubble and no-bubble regimes. These probabilities

could be highly uncertain since historical experience might provide little or no help in quantifying

them. We find that there are ‘robust’ values of the probabilities corresponding to more muted

policy responses, where by ‘robust’ we mean values of the probabilities which can be assumed by

the policymaker without fear of causing unnecessary volatility in output and inflation, were they to

prove wrong in hindsight. This result is interesting as in the robust control literature uncertainty is

often found to lead to more reactive policy responses than in the absence of uncertainty.
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1 Introduction

A common concern among central bankers is that the true or perceived existence of financial

imbalances or asset price misalignments could at some point in time lead to sudden and large

adjustments in asset prices, with potentially adverse consequences for inflation and output

stability. For instance, one of the major risks that has worried some members of the Bank of

England’s Monetary Policy Committee (MPC) in the past has been the possibility that sterling

could suddenly fall by a material amount. (1) Other risks routinely debated by actual policymakers,

including oil price hikes or abrupt changes in key econometric relationships, may also be

asymmetric. (2) Nevertheless, modelling of asymmetric risks is not very common in the monetary

policy literature, possibly because of the lack of readily-applicable technical tools. (3)

In this paper we examine the trade-offs that the policymaker faces when the exchange rate can

experience sustained deviations from fundamentals and occasionally collapse. To do so we use a

simple algorithm which has rarely been applied in the economics literature. Our analysis is based

on the small open economy model of Ball (1999), which comprises a demand equation, a Phillips

curve and an equation linking the real exchange to the real interest rate. We modify this model to

incorporate regime switching in the exchange rate. In one regime, which we call the bubble

regime, any shock can lead the exchange rate to deviate increasingly from fundamentals. In the

other regime, which we call the no-bubble regime, the exchange rate displays transitory

fluctuations around its fundamental value. The evolution over time of these two regimes is

described by a Markov chain so that the times at which the boom begins and ends are stochastic.

(1) See eg the Minutes of the February 2002 MPC meeting: “(...) Some members placed weight on upside risks to
the inflation outlook. Two main risks to inflation were emphasised: from the possibility of a depreciation of sterling’s
exchange rate and from the possibility that consumption would not slow as much as projected” (page 10). At the
same meeting some members were also worried about potential financial imbalances: “Persistently rising debt levels
potentially increased the probability that any adjustment to household balance sheets would be abrupt rather than
smooth, with an attendant risk of a fall in asset prices and, thus, in the value of collateral. (...) In the view of some
members, therefore, rising debt levels risked increasing the volatility of output and so of inflation in the medium term,
potentially making future inflation outturns more uncertain. Other members placed little or no weight on this.” (page
5). On the risks posed by financial imbalances see also Borio and Lowe (2002).
(2) See eg the discussion of skews and asset prices in Goodhart (2001), pages 178-80. A proper account of
asymmetric risks could also help explain part of the (large) deviations often observed between the actual policy rate
and that implied by various versions of estimated simple rules. As pointed out by Svensson (2003a), estimated Taylor
rules for a closed economy like the US leave approximately one third of the variance unexplained.
(3) The literature on monetary policy has produced a number of papers on whether simple rules should include asset
prices or asset price misalignments but has unfortunately been relatively silent on the more general question of how
policy should optimally react to asymmetric or one-sided risk. Skewed risks and policymakers’ cognitive biases are
discussed by Al Nowaihi and Stracca (2003). Svensson (2003b) investigates, in a simple model, the optimal response
to low-probability extreme events under various types of loss functions.
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Moreover, the size of the correction in the exchange rate, which occurs when the economy

switches from the bubble to the no-bubble regime, is endogenous for it depends on the lagged

exchange rate as well as the policy instrument (plus any additive shocks). We compute the

optimal control rule for such a regime-switching economy, which is itself regime switching, and

compare it to the responses implied by an optimised linear Taylor rule. Optimal monetary policy

in any given regime, whether implemented through the optimal regime-switching rule or through a

(suboptimal) optimised regime-invariant rule, crucially depends on the probabilities of moving

from one regime to the other. (4)

The algorithm for computing the optimal regime-switching policy is a modification of the standard

linear quadratic regulator problem, in which the constraint is given by a Markov regime-switching

vector autoregression (with any finite number of observable regimes) rather than a stationary

vector autoregression. The regime-switching model belongs to a class of models that have been

studied in the engineering literature at least since Aoki’s contribution (1967). (5) This formulation

is sufficiently general to allow the modelling of a large range of different asymmetric (and

symmetric) risks, either concerning changes in the economy’s dynamics or additive disturbances,

and to accommodate different models. The solution algorithm is also sufficiently simple to be

amenable to further interesting developments. For these reasons the algorithm’s applicability

extends beyond the particular application considered in this paper and can be considered as a

general tool for the study of multiplicative and additive uncertainty in monetary policy. (6)

The small open economy model used in the analysis is meant to capture the main effects of

monetary policy in the simplest possible way. In particular, it does not incorporate rational or

other forms of forward-looking expectations. Nevertheless, this simple model is close in spirit to

(4) There are some interesting papers which introduce regime switching in monetary policy. Andolfatto and Gomme
(2003) assume that the growth rate of money switches periodically between high and low growth regimes.
Schorfheide (2005) assumes that monetary policy follows an interest rate rule that is subject to regime switches in the
target inflation rate. Both papers study the macroeconomic implications of these assumptions in environments where
private agents cannot observe policy but have to learn about it. Our work differs from these studies because the
regime-switching monetary policy rule is not assumed but derived optimally from a model in which regime switches
characterise the behaviour of the exchange rate. In other words, here we focus on the decision problem faced by the
policymaker, whereas the cited papers deal with the decision problems faced by private agents.
(5) In the engineering control literature models with regime shifts are currently referred to as Markov Jump Linear
Systems (MJLS). Several results on the control of MJLS can be found in Mariton (1990) and, more recently, in Costa,
Fragoso and Marques (2005).
(6) To the best of the author’s knowledge, the only application to macroeconomics of MJLS is do Val and Başar
(1999), who extend the macroeconometric model of Pindyck (1973) to allow time-variant parameters and apply
receding horizon control problems to the resulting MJLS. Within the engineering literature, see also Blair and
Sworder (1975) for an application to an econometric model in continous time.
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the larger macroeconometric models that recently were or are still in use at several central banks.

It is not unusual that in versions of these models the uncovered parity condition is, due to its

empirical failure, replaced by reduced forms which are good empirical approximations of actual

exchange rate behaviour. (7) The introduction of regime switching in the exchange rate equation in

our model is meant to capture the complex behaviour of financial market agents, which arguably it

would not be possible to characterise explicitly in current state-of-the-art fully microfounded

general equilibrium models. (8) Thus, the application in this paper can also be thought of as an

example of how a policymaker can incorporate judgemental information about a potential

misalignment and the uncertainties associated with it into her macro model and work out the best

policy response based on that judgement. Most importantly, there are clear advantages in terms of

intuition and transparency of working with a backward-looking model. The trade-offs which a

policymaker faces can often be more clearly analysed without the additional layer of complexity

represented by any expectation-formation mechanism. (9) Besides, we believe that the main

insights and conclusions in this paper are likely to carry over to a forward-looking model. (10)

The recent literature on monetary policy and asset prices – eg Bernanke and Gertler (2000, 2001),

Cecchetti et al (2000, 2003), Batini and Nelson (2000), Filardo (2001), Tetlow (2003) – looks at

whether simple rules should give weight to asset prices, usually over and above their predictive

power for inflation and output. These papers derive their conclusions mainly from simulating

some model under different time-invariant linear reaction functions (optimised or not) and ranking

them according to the computed losses. However, the presence of a non-linearity (eg a bubble or

misalignment) makes an otherwise linear model non-linear and calls in principle for a non-linear

reaction function. In this paper we compute a regime-dependent (and hence time-variant) policy

rule as the solution of an optimal control problem. Bordo and Jeanne (2002) have also pointed out

(7) See also the discussion in Section 3 below.
(8) Popular linear rational expectation models used for monetary policy analysis are usually derived from general
equilibrium models based on representative infinitely-lived agents (see eg Woodford (2003)). We believe that these
models are hardly the appropriate vehicles for studying the role of non-fundamental deviations of asset prices.
General equilibrium models featuring overlapping generations and aggregate uncertainty would be more appropriate
but are currently difficult to solve. Hence, ad hoc modelling of asset price misalignments or bubbles in linear macro
models seems difficult to avoid.
(9) Extending the solution algorithm to solve for rational expectations models of private sector’s behaviour involves
non-trivial technical issues, which are the object of current research.
(10) An essential ingredient of the model is the endogeneity of the exchange rate misalignment to the interest rate
which, among other things, creates a trade-off between the need to offset the current and expected future
consequences of a booming exchange rate on one side, and the need to offset the consequences of a potential sizable
correction on the other side. The inclusion of rational expectations or other forms of forward-looking behaviour on the
part of private agents would not eliminate such a trade-off. In a forward-looking model the exchange rate risk
premium featuring in the uncovered interest parity equation could, for instance, be modified to include regime
switching and a dependency on the interest rate (as well as other state variables).
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that in reality the optimal monetary rule is unlikely to take the form of a linear time-invariant rule,

even if augmented by a linear term in asset prices. (11) To prove their point, they consider a stylised

New Keynesian model of the economy in which monetary policy can affect the probability of a

credit crunch. This model is assumed to have only three periods and is solved by backward

induction. The optimal interest rate is shown to be a function of the probability that private agents

attach to being in a ‘new economy’. In our application we compute optimal policy for an infinite

horizon and show how the optimal rule’s feedback coefficients depend on the regime-switching

transition probabilities. Unlike Bordo and Jeanne, however, while policy affects the size of the

misalignment, it does not affect the probabilities. Assuming that the probabilities are exogenous is

not an unreasonable assumption if one considers the high degree of uncertainty concerning both

the knowledge of the stochastic properties of an asset price and their relationship with monetary

policy. (12) Given such uncertainty, we also complement the computation of optimal policy with the

welfare analysis of the incorrect assumptions about the transition probabilities. (13)

It is important to note that the optimal regime-switching rule is computed in this paper under the

assumption that the regime (bubble or no-bubble) is observable by the policymaker, albeit with a

delay. Ex-post identification of a regime is not implausible in several situations but more generally

it might be regarded as a limitation. If the regime is not identifiable, even with a delay, then one

obvious alternative for the policymaker is to adopt a regime-invariant policy rule optimised to take

into account the regime-switching nature of the economy. For this reason, we also include an

analysis of optimised regime-invariant rules and see how they compare with the optimal

regime-switching rule. In particular, we consider a Taylor rule which includes a response to the

(11) For a critique of the simple rule approach also see Bean (2003).
(12) Assuming the wrong relationship between the probabilities of a regime shift and monetary policy is not
necessarily better than assuming the probabilities to be exogenous. Clearly, endogenising the probabilities is in
principle possible, but even for relatively small models the solution algorithms may in practice encounter the curse of
dimensionality. Therefore, an additional advantage of the proposed method is that it can be applied to models with a
relatively large number of state variables such as those in use at several central banks.
(13) Another closely related paper is Gruen et al (2003). Gruen et al considers the optimal response to a bubble in a
two-equation closed economy model. Their bubble affects aggregate demand only, unlike in our paper in which the
misalignment in the exchange rate directly affects both output and inflation. Most importantly, their method of
computation differs from ours. In their paper optimal policy is computed by backward induction, assuming that the
bubble must burst within 14 periods and will never form again. In our paper optimal policy is computed for an infinite
horizon and it is therefore the solution to a fixed point problem. Our algorithm, therefore, enables us to analyse the
optimal feedback coefficients across different scenarios. Another difference is that we also provide an analysis of the
losses which the policymaker would incur when basing her policy on the incorrect probabilities governing the
evolution of the bubble. A judgement over such probabilities is clearly a key, albeit highly uncertain, input in her
policy decision.
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exchange rate as well as a simple Taylor rule which does not. (14)

We briefly anticipate the main results which emerge from our application. The analysis of the

optimal regime-switching control rule shows an intuitive link in the bubble regime between the

response coefficient associated with the exchange rate and the (unconditional) expected duration

of a bubble: when the bubble is expected to last for at least two years, the optimal interest rate is

negatively correlated with real exchange rate fluctuations and becomes more responsive as the

expected duration of the bubble lengthens (an increase in the exchange rate being an appreciation).

In the no-bubble regime there is an intuitive link between the response to the exchange rate and

the probability of the bubble emerging: for lower probabilities the interest rate is positively

correlated with exchange rate fluctuations (reflecting the likely transitory nature of exchange rate

movements) and becomes less responsive as the probability of a bubble increases; for higher

probabilities the interest rate responds negatively and becomes more reactive to exchange rate

fluctuations as the probability rises further (reflecting the likely onset of a bubble). Another

characteristic of the optimal regime-switching interest rate rule is that in both regimes the interest

rate is for the most part less responsive to inflation and output fluctuations than in the absence of

regime uncertainty, with the degree of caution increasing as both transition probabilities approach

their intermediate values of a half.

As stressed above, the difficulty or impossibility in identifying the regime might in practice lead

the policymaker to follow a regime-invariant rule. A natural question then is how costly the latter

rule would be relative to the optimal one or, equivalently, how costly it would be not to be able to

observe the regime. In this regard, we find that the losses from adopting the latter rule are small

relative to the optimal regime-switching rule except when the bubble has both a low probability

and a long expected duration. Indeed, as both transition probabilities approach 1/2 the optimal

regime-switching rule becomes ever more similar and eventually converge to the optimised

(14) Bullard and Schaling (2001) and Filardo (2001) are previous studies that have analysed optimal linear Taylor
rules in a regime-switching economy. Bullard and Schaling (2001) consider a closed economy where there are
unobserved regime shifts in productivity. They provide an analytical derivation of the optimal linear policy rule and
find that the optimal Taylor rule includes additional terms which are leading indicators of future supply shocks. Apart
from these additional terms the rule is unchanged: the feedback coefficients on inflation and current output deviations
are not affected by regime uncertainty. In our paper regime uncertainty affects one of the model’s parameters instead
of an exogenous driving process such as productivity. As a result, all the feedback coefficients in the optimised linear
rules are affected by regime uncertainty. Filardo (2001) uses a Markov process to model an asset price bubble but in a
closed-economy model. His paper differs from the current one for two reasons. First, the non-fundamental component
of the asset price does not depend on the interest rate or other shocks, whereas in the present paper the interest rate
can affect the deviation from fundamentals. Second, the evaluation of policy rules is obtained through a Monte Carlo
simulation, whereas we evaluate the interest rate rules by solving a system of Lyapunov equations.
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regime-invariant rule. The differences between the two rules tends to be large when both transition

probabilities are low.

The optimised regime-invariant rule (which includes the exchange rate) also shows intuitive links

between the response to the exchange rate and the transition probabilities, with the obvious

difference that in this case the optimal responses are heavily affected by both probabilities. In

addition, policy is also found to be for the most part less responsive to output and inflation

fluctuations. By contrast, an optimised simple Taylor rule (without the exchange rate) entails

stronger responses to inflation and output fluctuations than in the absence of regime uncertainty.

For bubbles of high expected duration the responses increase with the probability of the bubble

arising. These stronger responses possibly compensate for the lack of a negatively correlated

response to the exchange rate which is found to be appropriate in the unconstrained

regime-invariant rule.

Finally, a key result of the paper concerns the assumptions that the policymaker makes about the

(unknown) transition probabilities. These probabilities could be highly uncertain since historical

experience might provide little or no help in quantifying them. We find that there are robust

(minmax) values of the probabilities not falling on the boundaries of the feasible set of values.

These robust values generally correspond to more muted policy responses. This result is

interesting as in the robust control literature uncertainty is often found to lead to more reactive

policy responses than under certainty equivalence. (15)

The paper is organised as follows. Section 2 describes the quadratic optimal control problem with

regime shifts and its solution. It also explains how to evaluate regime-invariant and simple rules in

a regime-switching economy. Section 3 describes the model used in the application. Section 4

analyses the responses of monetary policy to movements in output, inflation, and the lagged

exchange rate. Section 5 examines the choice of the optimal assumptions about the uncertain

transition probabilities. Section 6 concludes indicating possible future avenues for research.

(15) It is important to notice that the application provides some useful insights, but abstracts from the possible
existence of more than one asset price misalignment, which in practice considerably complicates actual policymaking.
For instance, while, according to some commentators, the United Kingdom apparently had an overvalued exchange
rate in the late 1990s, suggesting lower interest rates to lean against it, it has also had rapidly rising house prices,
which might have suggested the opposite response.
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2 The quadratic optimal control problem with regime shifts

2.1 Formulation

The policymaker’s problem is to choose a decision rule for the control ut to minimise the expected

value of the intertemporal loss function: (16)

∞;
t=0

β tr (xt , ut) β ∈ (0, 1) (1)

subject to x0, s−1 given, and the following model of the economy

xt+1 = A (st) xt + B (st) ut + εt+1 t ≥ 0 (2)

where r (x, u) is the period loss, β is the discount factor, x is the n × 1 vector of state variables, u

is the m × 1 vector of control variables and ε is the n × 1 vector of mean-zero shocks with

variance-covariance matrix �ε. We assume that the period loss is a quadratic form:

r (xt , ut) = x )t Rxt + u)t Qut (3)

where R is a n × n positive definite matrix and Q is m ×m positive semi-definite matrix. The

matrices A and B are stochastic and take on different values depending on the regime or state of

the world st ∈ {1, ..., N}. The regime st is assumed to be a Markov chain with probability

transition matrix

P = dpi j

e
i, j=1,..,N

(4)

in which pi j = prob {st = j |st−1 = i} is the probability of moving from state i to state j at t; and3N
j=1 pi j = 1, i = 1, ..., N . (17) These probabilities are assumed to be time-invariant and

exogenous. The policymaker’s information set is assumed to be

It =
j
xt , εt , st−1, P, A, B,�ε

k
where t ≥ 1; A = (A1, ..., AN), B = (B1, ..., BN) are set of values that the stochastic matrices A

and B can take; xt = {xr}tk=0, εt = {εk}tk=0 and st−1 = {sk}t−1
k=0 are the ‘histories’ of the variables.

Therefore, at t the policymaker knows the realisation of st−1, but not the realisation of the current

regime st . This means that the uncertainty faced by the policymaker is about where the system is

at time t and where it will be at t + 1, t + 2, and so forth. Note the difference with the stochastic

specification in Hamilton (1989). In the latter the regime is a latent variable.

(16) An introduction to dynamic programming and the optimal linear regulator problem can be found in Ljungqvist
and Sargent (2000), Chapters 2-4. Kendrick (2002) provides a more comprehensive and advanced treatment.
(17) For an introduction to Markov chain and regime-switching vector autoregressive models see eg Hamilton (1994).
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The above control problem boils down to N separate optimal control problems (with generic

period loss r (·)) when P = IN (N -dimensional identity matrix), each corresponding to a different

regime. Obviously, the above problem also reduces to a unique one in the case in which the

matrices Ai and Bi (i = 1, ..., N) are identical, regardless of P .

2.2 Solution

Solving the problem means finding a state-contingent decision rule, that is a rule which tells how

to set the control ut as a function of the current vector of state variables, xt , and the time-(t − 1)

regime, st−1 (henceforth, regime or state of the world will be used interchangeably). Associated

with each state of the world is a Bellman equation. Therefore, solving the model requires jointly

solving the following set of intertwined N Bellman equations:

v (xt , i) = max
ut

�
r (xt, ut)+ β

N;
j=1

pi j Eεt
d
v (xt+1, j)

e�
i = 1, ..., N (5)

where v (xt , i) is the continuation value of the optimal dynamic programming problem at t written

as a function of the state variables xt as well as the state of the world at t − 1, st−1 = i ; Eεt is the

expectation operator with respect to the martingale ε, conditioned on information available at t ,

such that Eεt
d
εt+1

e = 0. The policymaker has to find a sequence {ut}∞t=0 which maximises her

current pay-off r (·) as well as the discounted sum of all future pay-offs. The latter is the expected

continuation value of the dynamic programming problem and is obtained as the average of all

possible continuation values at time t weighted by the transition probabilities (4). Given the

infinite horizon of the problem, the continuation values (conditioned on a particular regime) have

the same functional forms.

Given the linear-quadratic nature of the problem, let us assume that

v (xt , i) = x )t Vi xt + di (6)

(i = 1, .., N), where Vi is a n × n symmetric positive-semidefinite matrix, and di is a scalar. Both

are undetermined. To find them, we substitute (6) into the Bellman equations (5) (after using (3)

and (6)) and compute the first-order conditions, which give the following set of decision rules:

u (xt , i) = −Fi · xt (7)

(i = 1, .., N), where the set of Fi depend on the unknown matrices Vi , i = 1, .., N . By

substituting these decision rules back into the Bellman equations (5), and equating the terms in the

quadratic forms, we find a set of interrelated Riccati equations, which can be solved for Vi
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(i = 1, .., N) by iterating jointly on them, that is

[V1...VN ] = T ([V1... VN ]) (8)

The set of interrelated Riccati equations defines a contraction T over V1, ..., VN , the fixed point of

which, T (·), is the solution being sought. After lengthy matrix algebra, the resulting system of

Riccati equations can be written in compact form as:

Vi = R + βG
d
A)V A|s=i

e− β2G
d
A)V B|s=i

e b
Q + βG

d
B )V B|s=i

ec−1
G
d
B )V A|s=i

e
(9)

where i = 1, .., N , and G (·) is a conditional operator defined as follows:

G
d
X )V Y |s=i

e = N;
j=1

X )
j

b
pi j Vj

c
Yj

where X ≡ A, B; Y ≡ A, B. Written in this form the Riccati equations contain ‘averages’ of

different ‘matrix composites’ conditional on a given state i .

Having found the set of Vi which solves (9), the matrices Fi in the closed-loop decision rules (7)

are given by:

Fi =
b
Q + βG

d
B )V B|s=i

ec−1 b
βG

d
B )V A|s=i

ec
(10)

(i = 1, .., N). Solving for the constant terms in the Bellman equations (5) – after substitution of

(7) – gives (IN − βP) d = βP�. The vector of scalars d = [d]i=1,...,N (N × 1 vector) in the value

functions (6) is given by (18)

d = (IN − βP)−1 βP� (11)

where � = [tr (Vi�ε)]i=1,...,N (N × 1 vector). (19)

The decision rules (7) depend on the uncertainty about which state of the world will prevail in the

future, as reflected in the transition probabilities (4). Yet, the response coefficients do not depend

on the variance-covariance matrix �ε of the zero-mean shock ε in (2) or the initial conditions

(x0, s0). Thus, certainty equivalence holds with respect to the additive shock ε. The noise

statistics, as is clear from (11), affect the objective function. (20)

(18) We assume that (IN − βP) is invertible. Given that P is a stochastic matrix, a necessary condition for its
invertibility is that β < 1. If (IN − βP) is not invertible, other methods can be used to find the solution d.
(19) The law of transition (2) can be generalised to make the variance of the noise statistics vary across states of the
world, ie xt+1 = A (st ) xt + B (st )ut + C(st )εt+1. Assuming Eε

b
εtε

)
t
c = I , then the covariance matrix of the

white-noise additive shocks would be � (st) = C (st )C (st )
) or, to simplify notation, �i = Ci C )i (i = 1, .., N). The

introduction of a state-contingent variance for the noise process does not affect the decision rules ut = −Fi xt but
affects the value functions through � in (11): � = [tr (Vi�i )]i=1,...,N .
(20) The solution method described above also applies, mutatis mutandis, to one problem in which the timing of
uncertainty is slightly different than assumed in Section 2. This problem differs from the original one in that the
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The above solutions incorporate the standard linear regulator solutions as two special cases. First,

by setting the transition matrix P = IN , one obtains the solution of N separate linear regulator

problems, each corresponding to a different regime on the assumption that each regime will last

forever (and no switching to other regimes occurs). This case could be useful as a benchmark to

see how the uncertainty about moving from one regime to another impacts on the state-contingent

rule. In other words, by setting P = IN , we are computing a set of rules which will differ from

ones computed with P /= IN , in that the latter will be affected by the chance of switching to

another regime. Second, by choosing identical matrices Ai and Bi , the solution obtained is

trivially that of a standard linear regulator problem with a time-invariant law of transition. In this

case (10) boils down to

F = bQ + βB )V B
c−1
βB )V A

where V is the solution to the single Riccati equation

V = R + βA)V A − β2 A)V B
b
Q + βB )V B

c−1
B )V A

and (11) boils down to the constant

d = (1− β)−1 β · tr (V�ε)

The above algorithm can be derived having in mind the dynamic programming solution to a

simple precautionary savings model (see eg Chapter 3 in Ljungqvist and Sargent (2000)), which

includes both continuous and discrete value state variables, and imposing the assumption of a

quadratic loss function common in the optimal monetary policy literature. Similar solutions exist

in the engineering literature. The algorithm in fact can be regarded as a variation of those

introduced by Aoki (1967). His general approach can be adapted to include the use of a Markov

chain over an infinite horizon. More recent work by Costa et al (2005) has provided several

results on the control of models such as (2), which in the engineering literature have been given

the name of Markov Jump Linear Systems (MJLS). Despite its simplicity and potential usefulness

in the analysis of symmetric and asymmetric uncertainty, the above algorithm or similar ones have

apparently not been applied to optimal monetary policy problems, with the exception of do Val

and Başar (1999). (21) Beside the application considered in this paper, there is a couple of other

stochastic matrices A and B in (2) are assumed to be contingent on st+1 instead of st . Accordingly, the information
set is assumed to include st (whereas in the original formulation the information set includes st−1 but not st ). The
solution procedure goes through the same steps as described above yielding solutions of the same form. The only
difference is that the value functions and the closed-loop decision rules (7) are now contingent on the latest realisation
of the regime variable: that is v (xt , st) replaces v

b
xt , st−1

c
in (5) and (6); F (st) replaces F

b
st−1

c
in (7); and the

initial conditions (x0, s0) replace
b
x0, s−1

c
.

(21) Another related paper is Shupp (1972). It applies general dynamic programming techniques to solve a macro
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relevant applications that come to mind. One is to use the above algorithm in conjunction with

quadrature methods. The latter would allow to discretise various types of continuous distributions

imposed over the model’s parameters to reflect eg the judgemental information possessed by the

policymaker. Another application involves using mixture models to approximate non-normal

distributions (eg t-distribution), which could be accommodated within the current framework with

few modifications. (22)

2.3 Evaluation and optimisation of regime-invariant rules and simple rules

There may be situations in which implementing the optimal regime-switching (ORSC) control

rule is not appropriate or feasible. Therefore we consider the case in which the policymaker wants

to restrict the policy rule to respond to a subset of the state variables. In what follows such a

suboptimal (or simple) rule can be written as:

ut = −Fi xt (12)

where i indicates the regime at t − 1 (ie st−1 = i ) and where F may or may not have zero entries.

One important special case is a rule whereby the control variable responds to all variables in the

state vector x but not to the regime s. In this case, Fi = F (i = 1, ..., N) in (12). Such

regime-invariant rule can be further simplified by imposing zero restrictions on F .

The first step in finding the matrix of coefficients F which minimise the expected value of the loss

function (1) is to evaluate the performance of a generic policy rule. To this purpose, we replace

(12) into the set of Bellman equations (5) and equate the coefficients of the resulting quadratic

forms to obtain a system of interrelated Lyapunov equations:

Vi = R + F )i Q Fi + βH
d
D)V D|s=i

e
(13)

with i = 1, ..., N , and H [·] is a conditional operator defined as follows:

H
d
D)V D|s=i

e ≡ N;
j=1

D)
i j

b
pi j Vj

c
Di j

Di j ≡ A j − Bj Fi

with i, j = 1, ..., N . Note that i indicates the state of the world at t − 1 (ie st−1 = i) and j the

state of the world at t (ie st = j ). Equating the constant terms yields the same expression for

model in which the autonomous components of aggregate consumption and investment are modelled as Markov
processes and where the welfare function is assumed to be non-quadratic. This paper, however, does not consider
multiplicative uncertainty.
(22) Good introductions to numerical quadrature methods can be found in Judd (1998) and Miranda and Fackler
(2002). On mixture models see eg Kim et al (1998).
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d = (d1, .., dN)
) as in (11). (23) The system of Lyapunov equations can be solved by value iteration,

in the same fashion as the system of Riccati equations. When all matrices are identical or N = 1,

the system boils down to a single equation in V :

V = R + F )Q F + βD)V D

Having found the set of matrices (V1, ..., VN) that solve (13), one can compute the vector of

scalars d and the conditional losses associated with (12):

v (x0, i) = x )0Vi x0 + di (14)

(i = 1, ..., N). These losses are conditioned on an initial condition for the continuous-value state

variables x0 and a particular regime i . (24) Note that in general, these losses depend not only on the

matrix of transition probabilities P and the initial conditions, but also on the variance-covariance

matrix �ε. Hence, certainty equivalence with respect to the additive shocks ε is a special case

which holds for the optimal unrestricted control rule. (25) Once a routine for computing (14) has

been created an appropriate numerical optimiser can be employed to find F .

3 Exchange rate regime switching in a stylised small open economy model

In this section we consider Ball’s model (1999) of a small open economy. The model is meant to

capture the main effects of monetary policy in the simplest possible way. It consists of three

equations:

yt+1 = αyt − β (it − π t)− χat + ηt+1 (15)

π t+1 = δπ t + γ yt − f (at − at−1)+ εt+1 (16)

at = θ (it − π t)+ vt (17)

(23) The vector of scalars d is algebraically identical to (11). Numerically, however, its value will generally be
different, for � depends on the set (V1, ..,VN ) computed from the system of Lyapunov equations rather than from the
set of Riccati equations. Of course, if the set of feedback matrices (F1, ..., FN ) characterises the optimal
(unconstrained) solution, then iterating on (13) gives the same solution as the system of Riccati equations.
(24) To obtain the average loss not conditioned on the initial regime s0, we need the unconditional probabilities π i ,
which can be computed as the eigenvector of P corresponding to the unit eigenvalue. The average loss is then
E (v (x0)) =3N

i=0 π i · vi (x0). In some exercises it is appropriate to judge different policies not on the basis of how
well they perform across regimes, or on average, but how well the policy performs given the initial regime the
economy is in and an initial condition for x , x0. For example, if the economy is in a world without a bubble but the
policymaker believes one may well develop in the future, then policies are probably better assessed conditional on the
current regime, which is the one in which a policy action needs to be taken.
(25) For a proof in the context of a linear time-invariant model see also Currie and Levine (1987).
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(15) is an open-economy IS equation in which the real interest rate i − π and the real exchange

rate a affects the output gap y with one period delay. (26) An increase in a is an appreciation of the

domestic currency and, therefore, tends to depress spending on domestic goods. η is a white-noise

shock with variance σ 2
η. (16) is an open-economy Phillips curve, in which the output gap as well

as the change in the real exchange rate affects inflation with one period lag. With δ = 1, the

Phillips curve is an accelerationist one, the assumption we make throughout. ε is a white-noise

shock with variance σ 2
ε. (17) is a reduced-form equation that relates the real exchange rate to the

current level of the real interest rate and a transitory shock v . The positive sign of θ (θ > 0)

captures the idea that a rise in the real interest rate makes domestic assets more attractive relative

to foreign ones, leading, other things equal, to an appreciation. The white-noise shock v , with

variance σ 2
v , reflects all other factors (future expectations, foreign interest rate, etc) that can

influence the exchange rate.

The use of the reduced-form (17) in place of the uncovered interest parity (UIP) condition can be

realistically justified with the empirical failure of the latter. As stressed in eg Batini and Nelson

(2000) (see also references cited therein), there are two responses to this failure. One is to assume

that deviations from UIP takes the form of a structural shock, which can be thought of as a

time-varying risk premium. The other is to replace the UIP with a reduced-form equation which

is a good empirical approximation of the actual exchange rate behaviour. (27) In this sense,

assuming a reduced form linking the exchange rate to interest rates is not unrealistic or

unreasonable, especially if one makes the assumption – as we will do below – that this

relationship is not stable but can change over time or across regimes.

As illustrated by Ball (1999), a key feature of the above model is the fact that the exchange rate

affects inflation directly through the costs of imported inputs, and indirectly through the effect on

demand. The import price channel operates with one period lag, while the output channel takes

two periods: one period to affect output, and an additional period for output to affect inflation

through the Phillips curve. Ball shows how the existence of an exchange rate channel requires

policy to respond not only to output and inflation, as prescribed by the simple version of the

Taylor rule (Taylor (1993)) but also to the lagged level of the real exchange rate. More precisely,

the optimal response is positive, requiring a rise in the real interest rate when the lagged real

(26) All variables are in logs except i and π , and are expressed as deviations from its long-run equilibria.
(27) Wadhwani (1999) discusses an empirical model of the exchange rate for the UK. Beechey et al (2000) provides a
model for Australia. Both models are similar to the reduced form adopted in Ball (1999).
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exchange rate has appreciated. A simple Taylor rule, not augmented with the exchange rate, is

generally suboptimal.

In our application we replace (17) with:

at = ρ (st) at−1 + θ (it − π t)+ vt (18)

where the term ρa is an ad hoc, but not unrealistic way, of capturing bubble-like behaviour, that is

the fact that the exchange rate can grow out of line with its long-run equilibrium, whatever the

underlying factors. More precisely, (18) is modelled as a regime-switching autoregression, in

which the autoregressive coefficient ρ (st) takes on different values depending on the regime in

which the system is:

ρ (st) > 1 if st = 1

= 0 if st = 2

We assume there are two regimes: in one regime (indicated with s = 1) ρ (1) > 1, that is the

exchange rate tends to grow away from its fundamental value (assuming an unchanged real

interest rate and no shock); in the other regime (indicated with s = 2), ρ (2) = 0, that is the

exchange rate abruptly collapses towards its fundamental value (again assuming that the real

interest rate is also at its neutral level and that there is no shock). The variable s is assumed to

evolve as a Markov chain with the following transition probability matrix:

P =
⎡⎣1− p p

q 1− q

⎤⎦
where p = Pr {st = 2|st−1 = 1} and q = Pr {st = 1|st−1 = 2}, (t = 0, 1, 2, .....). Hence, p is the

probability that the bubble crashes when one exists and q is the probability that a new bubble

starts.

Note the timing of uncertainty and of the policy decision. At the time policy is chosen the

policymaker knows st−1, but not st . That is, the policymaker only knows the past regime but not

the current one. Consistently with this assumption, the shock vt is also assumed to be observed

with a period delay. (28) Thus, the policymaker cannot tell whether a given exchange rate

movement is due to a temporary shock or is instead the start of a boom. These assumptions are

meant to capture, realistically, the uncertainty that the policymaker faces about the nature of any

movements in the exchange rate.

(28) This represents an additional departure from the model of Ball (1999) in that Ball assumes that the shock is
observable at the time policy is chosen.
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The above specification captures the existence of a bubble or misalignment and should be thought

of as reflecting the existence of various phenomena that can cause the exchange rate to grow out of

line from its long-run equilibrium. In other words, it does not reflect any particular definition of

bubble or theory, but the bubble-like behaviour common to several theories or models. (29) Indeed,

there is no consensus in the literature on the definition of a bubble and its underlying causes. (30)

Bubbles may be rational and unrelated to fundamentals (eg Blanchard and Watson (1982)). A

reason for holding an asset even if the price is above that suggested by fundamentals is that there

is a chance that it will continue to rise, generating an expected capital gain that compensates the

asset holder for the risk of a price collapse. Froot and Obstfeld (1991) argue that rational bubbles

may be intrinsic, that is reflecting the excessive reaction of market participants to fundamentals.

Thus, persistent changes in fundamentals could lead an asset price to be persistently over or

undervalued. However, bubbles do not have to rely only on self-fulfilling expectations: they may

arise from manias or irrational exuberance (Kindleberger (1978), Minsky (1982) and Shiller

(2000)). They may reflect expectations of future higher productivity or earnings, often associated

with important technological innovations; when these expectations are subsequently disappointed,

asset prices collapse. (31) For example, models of learning with endogenous information, in which

public information varies with the level of economic activity, may explain the alternation of slow

booms and sudden crashes exhibited by several asset markets (Veldkamp (2004)). Bubbles may

also emerge and persist because of a co-ordination failure among rational arbitrageurs. Recent

work by Abreu and Brunnermeier (2003) show that a synchronisation problem, together with the

individual incentive to time the market, results in persistence of a bubble over a sustained period

of time. In their set-up news events can have a disproportionate impact relative to their intrinsic

information content by enabling synchronisation. (32) More recently, de Grauwe and Grimaldi

(2003a, b) have shown that, when market participants use different trading rules and transaction

costs are important, exchange rates can alternate between periods in which they tightly follow

fundamentals and periods in which they appear to be ‘disconnected’ and more related to their own

(29) The ‘bubble interpretation’ is not the only possible one. An alternative could be to assume 0 < ρ (1) < 1 and
ρ (2) = 0. Accordingly, the uncertainty faced by the policymaker would be about whether any observed shock to the
exchange rate is going to persist for some time or to vanish after just one period.
(30) See Filardo (2003) for an interesting discussion of macroeconomic bubbles and their implications for monetary
policy.
(31) As suggested eg by Meltzer (2003), alternative explanations to rational and irrational bubbles can be formulated
by assuming that agents have only imperfect knowledge of the underlying fundamentals and face Knightian
uncertainty rather than ‘well-behaved’ probability distributions.
(32) For an excellent survey of models of asset price behaviour under asymmetric information see Brunnermeier
(2001).
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past values, a feature confirmed by the empirical evidence cited by the authors. (33)

The rest of the model is standard. The policymaker is assumed to minimise the following

standard quadratic loss function:
∞;

t=0

φt
b
π2

t + λy2
t + ς i2

t

c
(19)

where φ ∈ (0, 1) is the discount factor, and λ and ς are the penalties on output and the interest rate

stabilisation (relative to inflation stabilisation), respectively. In the benchmark case we will

assume that ς = 0, but we will consider ς > 0 in our sensitivity exercises. (34) It is important to

notice that the policymaker does not target the exchange rate. As stressed by eg Bean (2003),

there is no need to specify a target for asset prices when the targeting rule is a statement about the

loss function. (35) However, the instrument rule – as will be shown below – is a function of all state

variables, including the exchange rate, for the policymaker uses all available information to

forecast inflation and output. From the point of view of optimal control theory, the crucial

question then is not whether or not an instrument rule should include an asset price but what

weight the policymaker should put on it. We will see that such weight could be not sufficiently

‘robust’.

Given the simple dynamic structure of the model, a period is interpreted as a year. The chosen

parameterisation is summarised in Table A. The parameters α, β and γ are calibrated using the

values estimated for the UK economy in Bean (1998). The equations are estimated individually

using GLS over the sample 1950-96 (δ is kept fixed in the estimation). The estimates are similar

to those obtained with annual data for the euro area and the United States in similar papers (eg

Orphanides and Wieland (1999)). The standard deviations of the demand and inflation shocks, σ η

and σ ε are taken from the February Inflation Report of the Bank of England (2005). These are the

standard deviations used in the construction of the fan charts and constitute the subjective

assessment of the Monetary Policy Committee. They are, however, based on forecast errors of the

past ten years and hence reflect more closely the uncertainty faced by the policymaker in more

(33) de Grauwe and Grimaldi’s model is based on high-frequency behaviour.
(34) Several arguments have been put forward in the literature to rationalise a concern for interest rate stabilisation: eg
reducing the risks to the financial sector posed by maturity mismatch (Cukierman (1996)); exerting greater influence
on long-term bond rates and thus over future economic activity and inflation (Goodfriend (1991)); reducing
transaction frictions and the frequency with which a linear policy rule would violate the zero bound on the nominal
interest rate (Woodford (2003)). The reason we add a concern for interest rate stabilisation is purely for comparison
purposes with the existing literature.
(35) In the terminology of Svensson (2003a) the loss function (19) is a general targeting rule. For a definition of
instrument rule, see ibidem.
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Table A: Parameters for the small open economy

Economy Loss
α .72 φ .96
β .47 λ 1
γ .49 ς 0
δ 1
χ .2
f .2
θ 2
ρ(1) 1.3
ρ(2) 0
σε .0076
ση .0040
σv .0250

recent times. The parameters describing the existence of a foreign exchange rate channel, χ , f

and θ , are taken from Ball (1999). We calibrate the existence of a bubble by assuming that the

exchange grows by 30 % a year (in the absence of any shock and any offsetting policy action).

Together with ρ (1), the standard deviation of the real exchange rate σv is chosen so as to provide

responses of plausible magnitude. We have chosen a discount factor φ =.96 in accordance with

annual data, and we assume that the policymaker cares equally about inflation and output

stabilisation. Even though some of the calibrated values are taken from a model of the UK

economy, it is not intended that the line of work set out in this paper applies particularly to the

United Kingdom: the analysis is meant to be of general relevance.

In Ball (1999) optimal policy is analysed with reference to a time-invariant model in which there

is no parameter uncertainty. A criticism levelled against Ball’s analysis is that the policymaker

fails to take into account (at least) some of the uncertainties that real-world policymakers face, and

even though the model can be currently regarded by the policymaker as a good approximation, it

may turn out to be inadequate in some aspects in the future (eg Sargent (1999)). In particular, in

Ball’s model the shock to the real exchange rate is known by the policymaker to be transitory.

This is probably critical to the finding that a modified Taylor rule should incorporate a role for the

real exchange rate and that the sign of the response should be positive. By contrast, in the model

considered here, there is uncertainty about the nature of a given change in the real exchange rate:

this can be either a transitory shock or the inception of a bubble. How does this uncertainty alter
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the above conclusions about the optimal response to the exchange rate? Below we set out to

investigate how policy should respond in the presence of a bubble like the one in (18).

4 Analysis of optimal policy responses

Optimal policy is computed using the algorithm described in Section 2. (36) The solution gives the

following optimal decision rule:

it = fy (st−1) yt + fπ (st−1) π t + fa (st−1) at−1 (20)

There are two notable aspects. First, the optimal control rule depends on all state variables.

Second, the optimal response coefficients generally take different values in different regimes.

Therefore, a regime-invariant rule, or a rule in which the interest rate responds only to a subset of

the state variables x , is generally suboptimal. (37) Below we will examine the properties of the

optimal regime-switching control rule (ORSC) and of a (regime-invariant) Taylor rule with and

without the exchange rate. We want to understand, in particular, how optimal policy depends on

the probabilities governing the dynamics of the real exchange rate.

4.1 Optimal regime-switching policy

Table B reports the optimal response coefficients in (20) for the benchmark parameterisation

(Table A). The left-upper part shows the optimal response coefficients when the probability of

moving in the bubble regime is zero. This corresponds to the standard optimal control rule

computed in the model without regime switching or regime uncertainty. These responses can be

compared with those implied by the existence of regime uncertainty. We report the coefficients

for different values of the transition probabilities p and q and different values of the

autoregressive coefficient ρ (2). The reader is reminded that p is the probability of moving from

the bubble regime into the no-bubble regime, while q is the probability of moving into the bubble

regime from the no-bubble regime. The parameter ρ (2) characterises the growth rate of the real

exchange rate in the absence of any disturbances or changes in policy and hence indicates the

‘strength’ of the bubble. For each pair of probabilities (q, p), we report the responses in both

regimes: the ‘bubble’ regime (s=1) and the ‘no-bubble’ regime (s=2). For example, (.25,.5)

(36) To use the algorithm, the model equations (15), (16) and (18) are cast in matrix form. This requires setting
β ≡ φ (discount factor in (19)), x = [y, π, a−1]), u = [i], and ε = [η, ε, v−1]) in (2) and (3), and constructing the
matrices A, B, Q and R accordingly.
(37) To compute the optimised coefficients of the (regime-invariant) Taylor rule we use the algorithm described in
Section 2.3.
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indicates that there is a 25% probability that a bubble with an expected duration of two periods can

emerge (the expected duration of a bubble being 1/p). Given the great number of coefficients in

the table, graphical illustrations are probably the most effective tools for analysing the relationship

between transition probabilities and feedback coefficients. Chart 1 plots the contour lines for the

optimal response coefficients against the transition probabilities. The columns refer to different

feedback coefficients (in order fy, fπ , fa). The upper panel corresponds to the bubble regime

while the lower panel corresponds to the no-bubble regime.

There are a number of interesting features that emerge from the inspection of Table B and Chart 1.

We begin by examining the response coefficients associated with the lagged real exchange rate

separately from those to output and inflation. Its sign and magnitude varies with the transition

probabilities and with the observed regime. To understand how the response coefficient varies

according to the transition probabilities, it is helpful first to consider what would be the dilemmas

faced by the policymaker if she did not know such probabilities. If the economy happened to be in

the bubble regime in the previous period, the dilemma for the policymaker today would be

between offsetting the effects of the bubble bursting and leaning against the bubble. For example,

if the bubble bursts (causing the exchange rate to depreciate), the optimal choice is to raise interest

rates (other things equal) to counteract the effects on output and inflation of the depreciation. On

the contrary, if the (appreciating) bubble persists, the optimal choice for the policymaker is to

lower interest rates (other things equal) to limit the appreciation. This action has two effects: it

offsets the negative effects that the (appreciating) exchange rate currently has (other things equal)

on output and inflation, and reduces the detrimental impact that a larger bubble might cause when

bursting in some future period. If the economy happened to be in the no-bubble regime in the

previous period, the dilemma today would be between restraining an incipient bubble and a less

active policy. For example, if a bubble arises, the optimal choice for the policymaker is to restrain

the movement in the lagged real exchange rate (other things equal) by moving interest rates in the

opposite direction. This action, loosely speaking, prevents the bubble from gaining momentum

(absent any additive shock) and limits its effects on inflation and output. On the contrary, if the

economy remains in the no-bubble regime, the optimal choice for the policymaker is to move

interest rates positively with any lagged exchange rate fluctuation. For example, an appreciation

of the lagged exchange rate causes a fall in inflation and output prompting the policymaker to

lower interest rates. However, in the no-bubble regime such an appreciation is temporary, being

reversed at the time policy is chosen. A positive response to the lagged exchange rate, therefore,
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Table B: Optimal response coefficients

q p y π a−1 y π a−1 y π a−1

0 0 s=2 1.16 1.88 .18

ρ (1)=1.1 ρ (1)=1.3 ρ (1)=1.5
.1 .50 s=1 1.10 1.85 .01 s=1 1.06 1.82 -.04 s=1 1.02 1.79 -.09

s=2 1.12 1.85 .14 s=2 1.10 1.83 .13 s=2 1.07 1.81 .11
.25 .50 s=1 1.07 1.82 0 s=1 1.03 1.79 -.04 s=1 .97 1.74 -.09

s=2 1.08 1.82 .08 s=2 1.03 1.79 .06 s=2 .98 1.74 .03
.50 .50 s=1 1.05 1.81 0 s=1 1.00 1.77 -.04 s=1 .93 1.71 -.09

s=2 1.05 1.81 0 s=2 1.00 1.77 -.04 s=2 .93 1.71 -.09
.75 .50 s=1 1.07 1.83 .01 s=1 1.03 1.80 -.04 s=1 .97 1.75 -.09

s=2 1.06 1.82 -.08 s=2 1.02 1.78 -.14 s=2 .96 1.73 -.21
1 .50 s=1 1.12 1.88 .02 s=1 1.10 1.87 -.02 s=1 1.08 1.85 -.07

s=2 1.05 1.80 -.16 s=2 1.01 1.77 -.23 s=2 .97 1.72 -.31
.1 .20 s=1 1.09 1.86 -.08 s=1 1.06 1.85 -.14 s=1 1.02 1.82 -.21

s=2 1.12 1.85 .14 s=2 1.10 1.84 .13 s=2 1.07 1.82 .12
.25 .20 s=1 1.08 1.85 -.08 s=1 1.04 1.83 -.14 s=1 .99 1.79 -.21

s=2 1.07 1.83 .09 s=2 1.04 1.80 .07 s=2 .99 1.76 .04
.50 .20 s=1 1.07 1.84 -.09 s=1 1.02 1.81 -.15 s=1 .96 1.76 -.21

s=2 1.05 1.82 .01 s=2 1.01 1.79 -.03 s=2 .94 1.74 -.07
.75 .20 s=1 1.07 1.85 -.09 s=1 1.03 1.82 -.15 s=1 .98 1.78 -.21

s=2 1.07 1.85 -.07 s=2 1.03 1.82 -.13 s=2 .98 1.78 -.19
1 .20 s=1 1.09 1.87 -.08 s=1 1.07 1.85 -.14 s=1 1.03 1.83 -.21

s=2 1.08 1.85 -.15 s=2 1.05 1.83 -.22 s=2 1.01 1.80 -.30
.1 .10 s=1 1.10 1.88 -.11 s=1 1.07 1.87 -.17 s=1 1.03 1.85 -.24

s=2 1.12 1.85 .14 s=2 1.10 1.84 .13 s=2 1.07 1.82 .12
.25 .10 s=1 1.09 1.87 -.11 s=1 1.06 1.85 -.17 s=1 1.01 1.83 -.24

s=2 1.07 1.83 .09 s=2 1.04 1.80 .07 s=2 .99 1.77 .05
.50 .10 s=1 1.08 1.86 -.11 s=1 1.04 1.84 -.18 s=1 1.00 1.81 -.25

s=2 1.05 1.83 .01 s=2 1.01 1.80 -.02 s=2 .95 1.76 -.06
.75 .10 s=1 1.08 1.87 -.11 s=1 1.05 1.85 -.18 s=1 1.00 1.82 -.25

s=2 1.08 1.86 -.06 s=2 1.04 1.84 -.12 s=2 .99 1.81 -.17
1 .10 s=1 1.09 1.88 -.11 s=1 1.07 1.86 -.17 s=1 1.03 1.85 -.24

s=2 1.09 1.87 -.14 s=2 1.06 1.86 -.21 s=2 1.03 1.84 -.29
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ensures that the overall response of policy is small.

Chart 1 provides a quantitative resolution of the above policy dilemmas by showing how the

transition probabilities map into the optimal policy response to the lagged exchange rate.

Consider first the response in the bubble regime (top-right corner of the chart). The first thing to

notice is that there is a threshold value of the probability p of the bubble bursting which implies

no response to the lagged exchange rate. The policymaker chooses not to respond to the lagged

exchange rate for a value of the probability of roughly 60%. As the transition probability of a

bubble bursting deviates from roughly 60%, the optimal monetary policy becomes more

responsive to exchange rate fluctuations. For higher probabilities, the response coefficient is

positively correlated with the exchange rate fluctuations, and for lower probabilities it is

negatively correlated. Loosely speaking, for higher probabilities the motive for offsetting the

effects of the bubble bursting is stronger than the motive for leaning against it and offsetting its

effects. The probability q of moving into the bubble regime has little or no impact on the

responses. This is due to the fact that the optimal policy is anticipated to adjust to the no-bubble

regime after a switch occurs.

Consider now the response coefficients associated with the exchange rate in the no-bubble regime.

Again, there is a threshold value for the transition probability q of a bubble emerging such that the

policymaker does not respond to the exchange rate fluctuations. As the transition probability of a

bubble emerging deviates from roughly 50%, the optimal monetary policy becomes more

responsive to the exchange rate fluctuations. For higher probabilities, the response is negatively

correlated with the exchange rate fluctuations, and for lower probabilities it is positively

correlated. Thus, for lower probabilities, the possibility of any fluctuation being transitory has

more weight than the possibility of a bubble emerging. For higher probabilities, the opposite is

true.

We now examine the responses to output and inflation. First, the responses to output and inflation

do not differ much across regimes. Second, the responses to output and inflation are for the most

part smaller relative to the case in which there is no bubble uncertainty. In Chart 1 the exception is

given by some small regions corresponding to high values of either p and q in which policy is

more active. High values of p and q mean that the regime is almost certain to switch. So it is not
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surprising that more aggressive responses are optimal. (38) The differences in the coefficients are

however rather small.

Regime switching in a model’s parameters – as in the model analysed here – is a particular form of

parameter uncertainty. As shown by Brainard (1967), parameter uncertainty causes policy to be

more cautious (under certain conditions). (39) In other terms, attempting to hit the target

immediately is generally not optimal if there is uncertainty about the policy multiplier, because

with a quadratic loss function a policymaker cares about not only the deviation of a variable from

its target level but also about its volatility. The existence of a trade-off between closing the gap

and the volatility induced by policy makes it optimal to do less than under certainty equivalence.

Unlike in Brainard’s static model, however, the policy multiplier in the present model does not

change when a regime change occurs. But the basic insights of Brainard’s analysis about the

trade-off between closing the gap and volatility carries over to the current model. The point is that

here a policy which is appropriate in one regime might not be appropriate in the other regime.

Hence fluctuations in inflation and output might be exacerbated by a more active policy if

switching between regimes occurs relatively frequently, as is the case when p and q approach

their intermediate values.

The probability intervals 0 ≤ p ≤ 1/2 and 0 ≤ q ≤ 1/2 correspond to a world of persistent

regimes, in which bubbles are expected to arise with an interval of at least two years and once

started they are expected to last a minimum of two or more years. It is interesting to notice that

within these intervals optimal monetary policy has two relevant characteristics. First, the optimal

policy in the bubble regime requires responding negatively to fluctuations in the lagged real

exchange rate, whereas it requires responding positively, albeit less than in a no-uncertainty world,

to the lagged exchange rate in the no-bubble regime. Second, looking at the entire set of feedback

coefficients, optimal monetary policy is generally less responsive in both regimes as the transition

probabilities p and q move away from zero towards intermediate values (ie p = q = 1/2). (40)

(38) In the limit case in which p = q = 1 the economy will undergo entirely predictable fluctuations in inflation and
output. In this case it is obvious that a policy reacting strongly will reduce the volatility of both variables.
(39) In Brainard’s analysis a sufficient condition is that the policy instrument is uncorrelated with the additive
disturbance. Craine (1979) and Söderström (2002) have shown that in a dynamic context the standard result of
Brainard uncertainty can be overturned. In the context of minmax analysis Giannoni (2001, 2002) and Tetlow and von
zur Muehlen (2001), among others, have also found that parameter uncertainty may lead to more aggressive policy.
(40) Note, however, that while the intervals 0 ≤ p ≤ 1/2 and 0 ≤ q ≤ 1/2 are presumably the most relevant for
policymaking, one cannot rule out the possibility that q > 1/2. This is an environment in which the real exchange rate
undergoes sustained deviations from fundamentals most of the time and in which once a crash occurs a new boom
might begin soon after. Because of the uncertainty about these probabilities we have decided not to confine our
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An important feature of the optimal regime-switching control rule is that the responses in the two

regimes become more and more similar as both p and q approach 1/2. In the limit case in which

p = q = 1/2 the responses are identical across regimes. In other words, the optimal policy

converges to a regime-invariant rule, (41) as can be clearly seen from Table B. This suggests that

the farther away the probabilities are from their intermediate values, the greater are the losses from

adopting a (suboptimal) regime-invariant rule relative to the optimal regime-switching control rule

(ORSC). In the special case in which p = q = 1/2 the losses are indeed identical as the optimal

regime-invariant rule is identical to the ORSC rule. (42) It follows that the regime-switching nature

of the policy is crucial when one or both regimes are persistent. We will return to this below.

Does the degree of flexibility in inflation targeting matter? Charts 2 and 3 show the optimal

monetary policy reaction for λ = 0 and λ = 5, respectively. It can be seen that a stronger

preference for output stabilisation (relative to inflation stabilisation) raises the threshold value of

the probability p that determines whether, in the bubble regime, the optimal policy response is

positively or negatively correlated with a given exchange rate fluctuation. A stronger preference

for output stabilisation also lowers the threshold value of the probability q that determines

whether, in the no-bubble regime, the optimal policy response is positively or negatively

correlated with a given exchange rate fluctuation. (43) In a small open economy, the quickest

channel from policy to inflation is the exchange rate. Stabilising inflation requires larger

fluctuations in interest rates and the exchange rate, and ultimately in output compared with a

closed economy (in a closed economy a one-off change in output is sufficient). Note that for this

reason all response coefficients become smaller as λ increases in the absence of the bubble regime

(ie q = 0); the same holds true for any given positive value of q. Similarly, in the bubble regime

for a given probability p of the bubble bursting the response coefficients become smaller.

Before moving to the analysis of the Taylor rules in the next section, we examine the sensitivity of

analysis above to subintervals of the probabilities.
(41) As noted above, this is also the point at which optimal policy is generally less active.
(42) This result resembles that obtained by Bullard and Schaling (2001) in a closed economy subject to random
productivity shifts. In their model the optimal linear rule is a Taylor rule augmented with terms whose role is to offset
the potential impact of future supply shocks. When the transition probabilities governing the productivity shifts are
both equal to 1/2, the optimal rule collapses to the one which is optimal in the absence of productivity shifts. By
contrast, in our model, when p = q = 1/2 uncertainty continues to matter, so that the rule is different from the one
that is optimal when eg q = 0.
(43) Equivalently, for lower probabilities, a stronger preference for output stabilisation makes policy more responsive
for any given p in the bubble regime. Likewise, for lower probabilities, a stronger preference for output stabilisation
makes policy less responsive for any given q in the no-bubble regime.
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the above results to changes in the benchmark parameter. Table B and Chart 1 report the optimal

response coefficients for the benchmark economy in which we assume that the autoregressive

coefficient of the bubble ρ (2) = 1.3. This means that any initial fluctuation in the real exchange

rate will grow on average at 30% a year absent any change in the real interest rate. What happens

if this growth rate is different? Table B shows that as ρ (2) increases the responses to output and

inflation, for the most part, become smaller relative to an economy in which bubble uncertainty is

absent (this can be seen for any given pair (p, q) by moving along the rows from left to right).

Furthermore, as ρ (2) increases the response to lagged exchange rate gets smaller, and if negative,

policy becomes more reactive to the lagged exchange rate. Intuitively, a stronger bubble growth

makes the motive for leaning against the bubble even stronger for any given pair of the transition

probabilities. (44)

One important caveat of the above analysis is the assumption that the regime is observable by the

policymaker, albeit with a delay of one year. Ex-post identification of a regime is not implausible

in several situations, but it can arguably be considered a limitation more generally. If we think

that the policymaker cannot observe the regime, even with a delay, the analysis of regime-invariant

Taylor rules in the next section acquires greater importance. The optimal regime-switching control

rule remains helpful in two ways. First, it helps develop intuition about the appropriate policy

response and offers a useful benchmark for assessing other types of rules. Second, it is a starting

point for building more sophisticated models of the policymaker’s choice under regime

uncertainty.

4.2 Optimised Taylor rules

Here we analyse optimal monetary policy under the assumption that policy does not change as the

economy switches between regimes. The optimal feedback coefficients are selected by

minimising the loss function conditional on the economy being in the no-bubble regime.

(44) We also checked the sensitivity of the results to changes in other relevant parameters. To economise on space we
briefly summarise the findings (details are available from the author on request). A reduction in χ (the elasticity of
demand with respect to the real exchange rate) lowers the threshold value for p and raises the threshold value for q.
Policy is also generally more responsive to output and inflation fluctuations. A reduction in the degree f of exchange
rate pass-through raises the threshold for p and lowers the threshold for q, with similar effects to an increase in the
preference for output stabilisation λ. It also makes policy more responsive to output and inflation. A fall in θ (the
sensitivity of the real exchange rate to the real interest rate) leaves the threshold values for p and q roughly unchanged
but makes policy more responsive as the probability p and q deviate from their respective thresholds. The
responsiveness of policy to output and inflation increases. Finally, including the nominal interest rate in the
policymaker’s loss function (eg ς = .5) causes policy to be less responsive to output and inflation as one would
expect, but does not significantly alter its responsiveness to the exchange rate.
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Optimised response coefficients are plotted in Chart 4. On the upper panel is a Taylor rule which

features the lagged real exchange rate, (45) while on the lower panel is the more familiar Taylor rule

in which no response to the lagged exchange rate is allowed.

We first comment on the Taylor rule with the exchange rate. The response to the lagged exchange

rate displays an intuitive link with the probability of a bubble’s onset and with its expected

duration (given by 1/p). Unlike the optimal regime-switching control rule, both transition

probabilities have now a significant impact on the optimal response. This means, for instance, that

the threshold value that ‘divides’ positive from negative responses to the lagged exchange rate cuts

the probability space obliquely. However, the behaviour of optimal policy in response to the

lagged exchange rate has the same intuitive explanations discussed in the previous section. (46)

There a couple of features which are worth noticing. First, the response coefficients are quite

sensitive to small changes in q close to the origin. This is interesting because it means that even a

small probability of a costly event (ie the high-duration bubble) can have significant implications

for policy. (47) Second, the responses to output and inflation are generally more muted than in the

absence of regime uncertainty. In particular, policy is less responsive to output and especially to

inflation in the bottom-left corner, which corresponds roughly to low-probability high-duration

bubbles. (48) The pronounced weakening of the optimal responses is presumably related to the fact

that a regime-invariant policy is much more inefficient for low-probability high-duration bubbles

than for bubbles characterised by higher values of q and p. Low-probability high-duration

bubbles requires the optimal unconstrained policy to respond very differently to the lagged

exchange rate in the bubble and no-bubble regimes (recall the discussion in the previous

section). (49) For other values of the transition probabilities, this problem does not arise in that the

regime-invariant rule is much more similar to the ORSC rule. As noticed in the previous section,

(45) Note that in the absence of regime switching the optimal interest rate rule takes the form of a time-invariant
Taylor rule augmented with the exchange rate.
(46) For a given probability p, policy becomes less responsive to positive exchange rate fluctuations as q rises. It then
becomes more responsive to negative fluctuations as q rises above the threshold, reflecting the greater importance the
policymaker gives to either leaning against a bubble (bubble regime) or to offset any movements that can cause a
bubble to gain momentum (no-bubble regime). The time-invariant response must be, so to speak, a ‘good’
compromise between what would have been the appropriate responses in each regime, were policy allowed to switch.
Similar considerations hold for the effects of the probability p.
(47) Note, however, that there is also a tiny region of the probability space corresponding to low values of p and q
where the feedback coefficient associated with inflation is a bit larger than the one prevailing in the absence of regime
uncertainy.
(48) The response coefficient associated with inflation displays a trough also in the upper-right corner, in
correspondence of high values of both transition probabilities.
(49) Because of the low probability of a bubble’s onset, the optimal response should be positive in the no-bubble
regime; but due to the high expected duration, it should turn negative in the bubble regime.
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the latter becomes ever closer to the optimal regime-invariant rule as the probabilities approach

1/2. When the probabilities are close to 1/2, there is greater expected volatility caused by the

more frequent switches of regimes. In this case policy becomes less responsive to all variables

than in the absence of regime uncertainty.

How does a simple Taylor rule without the exchange rate compare? The contrast is quite striking.

Monetary policy’s responsiveness increases with the expected duration of the bubble as well as

with the probability of it arising. Presumably, policy needs to be more active for a given p as q

rises in order to compensate for the lack of a negatively correlated response to exchange rate

fluctuations. (50)

How inefficient is it to adopt a Taylor rule in our regime-switching small open economy? Charts

5a-5b show the percentage difference between the losses implied by the Taylor rules with and

without the exchange rate and the losses implied by the ORSC rule. The common feature

displayed by the two rules is that the relative losses are mainly concentrated where the transition

probabilities are both low or high. As stressed above, this is where a regime-switching rule is

most useful as the optimal policy responses in the two regimes differ the most. By contrast,

intermediate values of the transition probabilities are where the losses are the smallest. The Taylor

rule with the exchange rate is identical to the ORSC rule when p = q = 1/2. This is obviously

not true in general for the Taylor rule without the exchange rate, although the difference in the

losses are tiny for intermediate values of the probabilities. Another common feature, perhaps

surprising, is that in the corners the simple Taylor rule entails loss differences which are only

slightly larger than the regime-invariant rule. For a large duration bubble, however, the Taylor rule

without exchange rate fares less well as the probability of such a bubble arising increases. (51)

(50) Note that the coefficients of the simple Taylor rule in the absence of regime uncertainty (ie q = 0) are smaller.
They are clearly of similar magnitude in correspondence of the loci of p and q where the response to exchange rate is
zero.
(51) We have also computed the optimised coefficients of the Taylor rules for λ = 0 and λ = 5 (these are not reported
here but are available on request). Under strict inflation targeting monetary policy is much more responsive to
inflation fluctuations, as one would expect, and to a minor extent, is also more responsive to output fluctuations
relative to the benchmark case. The qualitative pattern is, however, unchanged for the most part. The losses implied
by the Taylor rules relative to the ORSC rule are now much larger than in the benchmark case, reflecting the fact that
the responses to the exchange rate are much bigger. For λ = 5, policy with both Taylor rules is generally less
responsive to output and inflation fluctuations relative to the benchmark case, though showing a similar pattern with
respect to changes in the transition probabilities. Moreover, in the Taylor rule that includes the exchange rate the area
of the probabilities over which it is optimal to respond negatively to exchange rate movements is now much larger,
which is unsurprising given the findings about the ORSC rule. A simple Taylor rule which does not include the
exchange rate does much worse than the unrestricted regime-invariant rule for most values of the probabilities,
reflecting the crucial importance that responding to exchange rate fluctuations have in stabilising output. The relative
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Given the crucial importance of the transition probabilities, the analysis in the next section takes

into full account the consequences of assuming the incorrect probabilities and the beliefs the

policymakers might hold on them.

5 Optimal assumptions about uncertain transition probabilities

Historical experience might provide little or no guidance as to how to calibrate the transition

probabilities p and q, thus effectively putting the policymaker in a world of Knightian uncertainty.

The policymaker is more likely to specify intervals for p and q, in which case the tools outlined in

the previous sections cannot directly be applied to achieve a policy decision. In this section we

will examine the losses incurred by the policymaker in making the incorrect assumptions about

the transition probabilities as well as the selection of the best assumptions using the most common

criteria for choice under uncertainty: the minmax and Bayesian averaging.

To start with, it is useful to define the notation that we will use. Let us indicate the policymaker’s

assumptions about the true probabilities (p, q) with
b

p̂, q̂
c
. Note that making an assumption

about (p, q) is equivalent to selecting the policy that minimises the loss function (19) under that

assumption. (52) The performance of this policy, or equivalently the validity of the assumption, can

be assessed across different realisations of the true but unknown probabilities. Each pair (p, q)

indeed corresponds to a different model. So, in what follows it is easier to think of a pair
b

p̂, q̂
c

as

a ‘policy’ and of a pair (p, q) as a ‘model’. To evaluate how a given policy
b

p̂, q̂
c

fares in a given

model (p, q) we compute the loss using the algorithms outlined in Section 2.3. Let us indicate

with L
b

p, q, p̂, q̂
c

the value of the loss function (19) under policy
b

p̂, q̂
c

and model (p, q). (53)

Using this function we can select the optimal policy (or optimal probability assumptions) under

uncertainty using two different criteria. The first is the minmax, which amounts to choosing the

policy (or assumption) which delivers the best performance among all possible worst-case

scenarios. In other words, for each policy there is a worst-case scenario represented by a pair

(p, q) which maximises the loss. Policy is then selected by solving the following problem:

min
( p̂,q̂)

max
(p,q)

L
b

p, q, p̂, q̂
c

(21)

loss differences are, however, of similar size compared with those in the benchmark case.
(52) We will consider optimal unconstrained policies or constrained policies such as a time-invariant Taylor rule. By
optimal policy here we mean the optimal policy based on the probability assumption

b
p̂, q̂
c
. It is not in general the

optimal policy under uncertain probabilities.
(53) In the computations this is a four-dimensional matrix.
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This criterion for choice under uncertainty may be appropriate when the policymaker has no priors

on p and q other than an interval. (54) The second criterion which we consider is the minimisation

of the Bayesian aggregate loss, which takes into account the policymaker’s priors over p and q. (55)

Formally, the policymaker’s problem is:

min
( p̂,q̂)

L B

b
p̂,q̂
c

(22)

where

L B

b
p̂, q̂

c = 1=
0

1=
0

L
b

p, q, p̂, q̂
c

f (q) g (p) dpdq

f (·) and g (·) are distinct density functions which represent the policymaker’s beliefs over q and

p respectively (assumed to be independent from each other). Without loss of generality we will

characterise such beliefs with two Beta distributions, ie p ∼ B
b
ap, bp

c
, q ∼ B

b
aq, bq

c
. The Beta

distribution is continuous over the interval [0, 1] and encompasses a very ample set of beliefs (as

will be seen below). To compute the Bayesian loss we employ Gaussian quadrature methods. (56)

Before embarking on the analysis of the optimal policy under uncertainty, a useful exercise

consists in assessing the asymmetry of the losses implied by assuming the incorrect probabilities.

This will help the interpretation of the results of the optimisation exercises spelled out above. We

do this in the simplest possible way: we keep one of the probabilities fixed (which we also assume

to be true), and look at how ‘bad’ policy does when the value assumed for the other probability

deviates from the true one. (57) This exercise is similar in spirit to the analysis of models’ ‘fault

tolerance’ in Levin and Williams (2003) and Jääskelä (2005). Charts 6-11 report the outcome of

this exercise for different types of policy rules and different assumptions about which probability

is kept fixed. All losses are computed using the benchmark values in Table A and are conditioned

on the economy being in the no-bubble regime.

Let us start with examining Chart 6, which shows the losses associated with the ORSC rule. Each

plot in this chart refers to a bubble of different expected duration (1/ p̄). All losses are normalised

(54) Gilboa and Schmeidler (1989) provide the axiomatic foundation for the minmax as a criterion for choice under
uncertainty (dating back at least to the statistician Wald (1945)). Applications of the minmax criterion in economics
include: von zur Muehlen (1982), Rustem (1994), Hansen and Sargent (2003), Giannoni (2001, 2002), Onatski and
Stock (2002), Tetlow and von zur Muehlen (2001, 2004).
(55) Recent examples of Bayesian aggregation of the losses implied by competing reference models are Levin and
Williams (2003) and Levin, Wieland and Williams (2003).
(56) See eg Judd (1998) and Miranda and Fackler (2002).
(57) More precisely, when we fix p = p̂ = p̄, L collapses to a two-dimensional matrix L p̄

b
q, q̂

c ≡ L
b

p̄, q, p̄, q̂
c
.

Likewise, when we fix q = q̂ = q̄, L collapses to Lq̄
b

p, p̂
c ≡ L

b
p, q̄, p̂, q̄

c
.
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so that the loss corresponding to q̂ = q = 0 in each plot equals one. Each line in a plot

corresponds to a true value of the probability q, plotted against q̂, the value assumed by the

policymaker. Clearly, each line has a minimum at q̂ = q . Three features are immediately apparent

from this chart. (58) First, there are values of q̂ such that the losses are insensitive or robust to

realisations of the true value of q. (59) These are also the minmax values of q (given p̄), as it is easy

to see. It is interesting to note that the ‘robust’ values of q̂ correspond to less activist policies in

the no-bubble regime. Indeed, Chart 1 shows that the optimal responses to the real exchange rate

are close to zero. This is not so in the bubble regime. Optimal policy corresponding to the

selected q̂ displays different degrees of responsiveness to the exchange rate. However, this is to

expect as we are fixing and assuming to know the true values of p with certainty, which is the

mostly relevant transition probability in the bubble regime. Besides, policy is less responsive to

output and inflation fluctuations in both regimes. A second feature of Chart 6 is that the losses are

asymmetric: they tend to get larger as q̂ rises above the cross point. To put it differently,

overestimating the probability that the economy moves into a bubble can lead to worse outcomes

than underestimating such probability. Note that a missing value on the chart indicates an infinite

loss. (60) Hence, assuming that the economy moves into a bubble regime with a high probability q̂

when in fact there is no such regime (ie q = 0) can lead to a catastrophic outcome. Finally, as the

expected duration of the bubble increases the losses flatten (especially to the left-hand side)

although they remain asymmetric.

Chart 7 shows the outcome of a similar experiment as in Chart 6 for the ORSC rule. The

difference now is that the probability being fixed and assumed to be known is q, rather than p.

Hence, each plot in this chart refers to a bubble which can arise with different probabilities q (or,

equivalently, at intervals of expected length 2, 4 or 10 periods, respectively). Chart 7 displays the

same qualitative features, mutatis mutandis, of Chart 6. There is a robust value of the assumed

probability p̂ which makes the loss insensitive to the realisations of the true values of p. (61) As

shown in Chart 1, for robust values of p, policy is not very responsive in both regimes, unless q is

known to be low: eg for q = .10 policy is more responsive, although it is negatively correlated in

(58) Note that for readability the charts are produced using a coarse grid of probability values and that the graphical
tools automatically interpolate the values inbetween. Using a finer grid would produce similar graphs. In particular,
the cross points obtained using a coarse grid are roughly identical to the ones obtained using a finer grid.
(59) For bubble regimes expected to last 2 and 3 periods, this value is 50%; for bubble regimes expected to last 5
periods it is slightly less than 50%; and for bubbles expected to last for 10 periods it is roughly 37.5%.
(60) In this case the algorithm that solves for the value function for a given policy produces an infinite norm.
(61) This value is 50% for bubbles arising with a 50% and 25% probability, and falls just below 40% for bubbles of
10% probability.
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the bubble regime and positively correlated in the no-bubble regime. Furthermore, the losses show

similar asymmetry and flattening as in Chart 6.

Charts 8 and 9 report the results of similar experiments as reported in Charts 6 and 7 but for a

Taylor rule which includes the exchange rate. Again, the losses are asymmetric with very large

values generally located to the right of the loci where the lines cross. In Chart 8 the robust value of

q̂ becomes smaller as the expected duration of the bubble regimes increases. Likewise, in Chart 9

the robust value of p̂ tends to become smaller as the expected interval at which bubbles arise

lengthens. The interesting thing to notice here is that the robust values of q̂ (together with the fixed

values of p) and p̂ (together with the fixed values q) correspond to policies which are very similar

to each other. These policies involve a very small response to the real exchange rate (see upper

panel of Chart 4). (62) They are also among the least responsive to output and inflation fluctuations.

Charts 10 and 11 finally report the results of the same type of experiments as above for a Taylor

rule which does not include a response to the exchange rate. The robust values of q̂ (given p) and

p̂ (given q) decrease as q and p, respectively, fall. The optimal response coefficients

corresponding to such robust values of q̂ and p̂ are, however, very similar to each other. In this

case policy is more responsive in general than in the case in which there is no regime uncertainty

(ie q = 0), but less responsive than under higher values of q or lower values of p.

So far we have examined the consequences of making incorrect assumptions about the transition

probabilities by looking at one probability at a time. To complete the analysis we need to look

jointly at both probabilities, assuming that we know none of them. The top of Table C reports the

minmax values of both probabilities (the solution to problem (21) above) for different policy rules

using the benchmark parameterisation of Table A. (63) For the ORSC rule it is optimal to assume

that p and q are 50%. It is easy to see from Chart 1 that these probabilities correspond to a policy

which is the least responsive to output and inflation fluctuations and respond very little to the

exchange rate in both the bubble and no-bubble regimes. Considering the findings in Chart 6 and 7

this result is not surprising. For the Taylor rule which includes the exchange rate (Taylor 1 in

Table C), it is optimal to assume that p and q are both 70%. This result might seem a bit odd at a

first glance. However, a careful examination of the worst-case losses associated with all possible

(62) These policies lie very close to the oblique contour line corresponding to -0.04 in Chart 4.
(63) We compute the minmax values

b
p̂, q̂
c

by performing a search over a grid of step 0.1. A finer grid would give
more accurate results at the cost of much larger computational time but would not give any new insights.
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policies (ie the matrix of losses Lwc

b
p̂, q̂

c ≡ max
(p,q)

L
b

p, q, p̂, q̂
c
, not reported here) reveals that for

policies along the main diagonal p̂ = q̂ the differences are small, (64) and indeed the feedback

coefficients of the corresponding optimal policies are very similar. This can be seen clearly in

Chart 4. In other words, policies based on the assumption that p = q are generally quite robust

for all values bar those on or close to the boundaries. Moreover, such policies are generally more

conservative than for other values of the probabilities and relative to certainty equivalence.

Finally, for the Taylor rule which does not include the exchange rate (Taylor rule 2 in Table C) it is

optimal to assume that p is 20% and q is 30%. Again, when the assumed values of p and q are

similar (as when moving obliquely in the matrix of losses Lwc) policies are also very similar as

can be seen in the lower panel of Chart 4.

The above results about the minmax choice of probability assumptions can be compared to those

normally found in the robust control literature. As stressed by Svensson (2000), a preference for

robustness often leads to the choice of a parameter which is on the boundary of the feasible set of

models. By contrast, a desire for robustness in the present context, interestingly, leads the

policymaker to pick an intermediate value of the probability. Furthermore, in the literature a

robust policy is normally found to be more activist. By contrast, here both the regime-switching

and the regime-invariant policies based on their respective minmax probability assumptions are

found to be less responsive than in the case of no uncertainty. The exception is given by the simple

Taylor rule which does not include a response to the exchange rate. Minmax assumptions about

the probabilities correspond to policies which are in general more activist than in the absence of

uncertainty. (65)

What are the optimal assumptions about the transition probabilities if the policymaker does not

rely on the minmax criterion? Table C shows the solution to problem (22) under different sets of

relevant priors. We consider first the case in which the policymaker has uniform priors over both p

(64) Excluding the extreme cases p̂ = q̂ = 0 and p̂ = q̂ = 1, the differences in the losses along the main diagonal of
Lwc range from 0 to 5.5% relative to p̂ = q̂ = .70. The difference of p̂ = q̂ = .50 is only 1%. The matrix Lwc is not
reported here for reasons of space but is available from the author.
(65) The preference for output stabilisation (versus inflation stabilisation) does not change the results for minmax p̂
and q̂ in the case of the ORSC rule (for λ = 0 and λ = 5 they are both p̂ = q̂ = .5). Note for the case of strict
inflation targeting (not reported here) there is a greater number of policies

b
p̂, q̂
c

associated with an infinite loss,
normally concentrated near the boundary values of the probabilities. The weight on output stabilisation somewhat
affects the results for the optimised linear rules. For the unrestricted regime-invariant rule, we obtain p̂ = q̂ = .4 for
λ = 0, and p̂ = q̂ = 1 for λ = 5. Again, it is important to notice that the feedback coefficients of different policy
rules for which p = q are extremely similar to each other, and therefore entail tiny loss differences. For the simple
Taylor rule the results are p̂ = q̂ = .1 for λ = 0, and p̂ = .4, q̂ = .7. The general conclusions about the degree of
responsiveness remain valid.
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Table C: Optimal assumptions about transition probabilities

ORSC Taylor 1 Taylor 2

p̂ q̂ p̂ q̂ p̂ q̂

Minmax 0.5 0.5 0.7 0.7 0.2 0.3

Priors:
p : a = b = 1
q : a = b = 1 0.43 0.45 0.42 0.42 0.44 0.44

p : a = 2, b = 8
q : a = 2, b = 8 0.19 0.19 0.17 0.16 0.18 0.17

p : a = b = 1
q : a = 2, b = 8 0.42 0.21 0.34 0.17 0.36 0.18

Note: ORSC is the optimal regime-switching control rule.
Taylor 1 is a Taylor rule which includes the exchange rate.
Taylor 2 is a Taylor rule which does not. Minmax probabilities were
obtained performing a grid search over [0 : .1 : 1]. Bayesian probabilities
were obtained by combining a grid search and optimisation by the Nelder-Mead
algorithm. Policymaker’s beliefs over p and q: p ∼ Beta (a, b), q ∼ Beta (a, b) .
All parameters set to their benchmark values unless stated otherwise.
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and q. For a = b = 1 the density function of the Beta distribution corresponds to that of the

uniform distribution, thus putting the same weight on all values between 0 and 1 (see Chart 12).

Both p̂ and q̂ turn out to be approximately equal to 40% across all types of policy rules. This

result is perhaps not surprising given the asymmetry of the losses shown in Charts 6-11. Next we

consider the case in which the policymaker has a ‘strong’ belief that bubbles arise with a small

probability q but have high expected duration (low p). In particular, we set a = 2 and b = 8

which implies an average value of p and q of 20% and a mode of around 13% (see Chart 12). The

optimal assumptions p̂ and q̂ turn out to be quite close to the the priors’ mean values. (66) Finally,

we consider the case in which the policymaker has a strong belief that the bubble regime emerges

with a low probability but no strong prior about its expected duration. The optimal assumptions

about p and q turn out to be very close to the values computed under previously considered priors.

The only notable difference is perhaps the lower values of p̂ in the Taylor rules. This aspect is

presumably related to the fact – which we have previously noticed examining Charts 8-11 – that

the variability of the losses is generally very small when p and q are not too distant from each

other.

6 Conclusion

The current paper has discussed a method for analysing how policy should respond when the

exchange rate experiences sustained booms followed by occasional corrections towards

fundamentals. It would be interesting to extend the analysis to models with richer dynamics than

the one used in this paper. Furthermore, the algorithm used to compute the optimal

regime-switching control rule has some limitations. One limitation is that it applies to

backward-looking models. Extending it to models that allow for forward-looking agents involves

non-trivial technical issues and is clearly desirable. (67) Another limitation is the assumption that

the policymaker is able – unlike in the Bayesian model averaging approach (68) – to identify the

regime, albeit with a delay. So the policymaker’s uncertainty is always about how the model will

evolve in subsequent periods. This is a plausible assumption in some circumstances (eg an asset

price collapse can be observed) but not in all (eg permanent improvement in productivity is not

(66) Varying the preference for output stabilisation (versus inflation stabilisation) does not alter the conclusions of the
analysis. The differences in the results are tiny. Details are available from the author.
(67) This is the object of current research by the author.
(68) For recent applications of Bayesian model averaging see Brock et al. (2003), Cogley and Sargent (2003), and
Milani (2003). Cogley and Sargent (2003) considers a policymaker that is uncertain about a number of models
equally valid from an empirical point of view. Such a policymaker continuously updates the probabilities of these
models in a Bayesian fashion, but such uncertainty does not enter her optimisation problem.
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visible except with several years’ delay). For this reason we also looked at the performance of

regime-invariant rules whose implementation does not require the policymaker to classify the

regime. A further possible extension is to make the state of the world a latent variable as well as

to require the policymaker to learn about the transition probabilities. A policymaker who does not

know the regime could learn about it and estimate the transition probability matrix of the Markov

chain by application of the Bayes rule. Optimal policy would then be computed taking into

account the uncertainty about the current regime as well as the uncertainty of a future switch to a

different regime. The type of learning we envisage is passive because in each period the

policymaker would assume that the transition probabilities would not change in all subsequent

periods, while in fact they will be changing.
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Chart  1:  Op timal  regime-s witching  control  rule:  ben chm  ark  parameterisat ion
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Chart 2:  O ptimal  regime-s witching  control  rule:  str ict inflation targeting  λ  = 0  

                      (ot her p ar ameter s set to their benchmark values)
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Chart 3:  O ptimal  r egime-sw itch in g  contr ol  ru le:  λ  = 5  

     (other paramet er s set t o  t heir b ench mark values)
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Chart 5: Taylor rules vs optimal regime-switching control rule (ORSC)
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Chart 7
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Chart 8
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Chart 10
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Benchmark parameterisation. Note: Missing values indicate 1. Losses conditioned

on no-bubble regime
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Chart 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

phat - probability assumed by the policymaker

R
el

at
iv

e 
lo

ss
es

a: Relative losses for bubble regimes of probability q = 0.5

p=0
p=.25
p=.50
p=.75
p=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

phat - probability assumed by the policymaker

R
el

at
iv

e 
lo

ss
es

b: Relative losses for bubble regimes of probability q = 0.25

p=0
p=.25
p=.50
p=.75
p=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

phat - probability assumed by the policymaker

R
el

at
iv

e 
lo

ss
es

c: Relative losses for bubble regimes of probability q = 0.1

p=0
p=.25
p=.50
p=.75
p=1

Relative losses of Taylor rules without exchange rate as a function of p̂ and p, given q.

Benchmark parameterisation. Note: Losses conditioned on no-bubble regime.
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