
Bank of England

Working Paper no. 298

June 2006

Optimal monetary policy in Markov-switching 
models with rational expectations agents

Andrew P Blake and Fabrizio Zampolli



Optimal monetary policy in Markov-switching models with rational
expectations agents

Andrew P Blake∗

and

Fabrizio Zampolli∗∗

Working Paper no. 298

∗ Centre for Central Banking Studies, Bank of England.
Email: andrew.blake@bankofengland.co.uk

∗∗ Monetary Assessment and Strategy Division, Bank of England.
Email: fabrizio.zampolli@bankofengland.co.uk

The views expressed in this paper are those of the authors, and not necessarily those of the Bank
of England. Earlier versions of this paper were presented at the Selected Economists’ Workshop,
Centre for Central Banking Studies, Bank of England, September 2004, the Society for
Computational Economics Conference, Washington, D.C., May 2005, and the Money Macro and
Finance Research Group Conference, Rethymno (Crete), September 2005, with the title
‘Time-consistent policy in Markov switching model’. The new title better reflects the content of
the original version. The authors wish to thank Peter Andrews, Mark Astley, Marco Del Negro,
Emilio Fernandez-Corugedo, Richard Harrison, Jarkko Jaaskela, Hashem Pesaran, Simon Price,
Tim Taylor, participants at the above-mentioned workshop and conferences, seminar participants
at the Bank of England and the Catholic University of Milan (March 2005), and two referees for
many useful comments. All errors are our own. This paper was finalised on 8 February 2006.

The Bank of England’s working paper series is externally refereed.

Information on the Bank’s working paper series can be found at
www.bankofengland.co.uk/publications/workingpapers/index.htm.

Publications Group, Bank of England, Threadneedle Street, London, EC2R 8AH; telephone
+44 (0)20 7601 4030, fax +44 (0)20 7601 3298, email mapublications@bankofengland.co.uk.

chBank of England 2006
ISSN 1749-9135 (on-line)



Contents

Abstract 3

Summary 4

1 Introduction 6

2 The solution of a linear rational expectations model with regime shifts 8

2.1 The method of undetermined coefficients 8

2.2 Arbitrary rules and commitment 11

3 Optimal control 12

3.1 The quadratic control problem with regime shifts 14

3.2 Complete solution 17

4 Application 19

4.1 A small open-economy model 19

4.2 Experiments 21

5 Simulating the model under asymmetric beliefs 26

5.1 A number of cases 26

5.2 Learning 29

5.3 Simulation results 29

6 Conclusions 33

Appendix A: State-space solutions for the time-consistent policy 34

A.1 A generalised rational expectations solution 34

A.2 Control 36

A.3 Iterative schemes 41

Appendix B: Commitment 46

B.1 Commitment to an (arbitrary) optimised policy rule 46

B.2 Optimal policy under commitment 47

Appendix C: Model in semi-structural form 50

C.1 Loss function 51

References 52

2



Abstract

In this paper we consider the optimal control problem of models with Markov regime shifts and

forward-looking agents. These models are very general and flexible tools for modelling model

uncertainty. An algorithm is devised to compute the solution of a linear rational expectations

model with random parameters or regime shifts. This algorithm can also be applied in the

optimisation of any arbitrary instrument rule. A second algorithm computes the time-consistent

policy and the resulting Nash-Stackelberg equilibrium. Similar methods can be easily employed to

compute the optimal policy under commitment. Furthermore, the algorithms can also handle the

case in which the policymaker and the private sector hold different beliefs. We apply these

methods to compute the optimal (non-linear) monetary policy in a small open economy subject to

random structural breaks in some of its key parameters.

Key words: Monetary policy, structural breaks, regime switching, rational expectations,

heterogeneous beliefs, time consistency, commitment.

JEL classification: C6, E5.

3



Summary

Uncertainty is one of the major problems faced by policymakers. Economic models are simple

representations of how the economy works, and might turn out to be wrong. For example, the way

the economy works might change over time in an unanticipated manner which would not be

captured by normal economic models. This paper focuses particularly on this type of uncertainty.

As interest rates normally affect output and inflation with a lag, rates must therefore be set while

bearing in mind how the economy might change by the time that the interest rates exert influence

on inflation and aggregate output. Unfortunately, the normal way of modelling the economy is to

assume that it does not change over time and that the only uncertainty faced by the policymaker is

about the type and duration of the shocks that hit the economy – for example, changes in foreign

demand. To put it differently, the normal way of modelling the economy is to assume that the

policymaker knows how economic shocks affect inflation and output (ie the transmission

mechanism), and also to assume that this mechanism will not change. In this paper, instead, we

consider an economy in which the transmission mechanism can change over time in an uncertain

manner. For example, aggregate demand may become more sensitive to changes in interest rates,

or the degree to which the exchange rate affects consumer prices can become larger. This implies

that the shocks hitting the economy might not have always the same impact on the variables

targeted by policymakers. By ignoring these potential changes, policymakers might be in danger

of missing the inflation target more often than otherwise, or to cause inflation and output to be

more volatile than is really necessary.

The main contribution of this paper is to develop simple methods for working out the best interest

rate response to shocks in such an evolving economy. More specifically, the economy is modelled

as a so-called Markov-switching framework. That is, the economy is assumed to alternate over

time between a number of regimes (eg high and low exchange rate pass-through regimes)

according to some given probabilities. It is also assumed that in this economy the private sector

forms so-called rational expectations. That is, in forming their views about the future they

understand what the transmission mechanism is in the different regimes and they also understand

how policymakers set the interest rate in response to shocks. The paper also shows how the

methods for calculating the best interest response can be applied to the case in which

policymakers and the private sector differ in their views as to the probability of the regime change.

Another important feature we consider in this paper is the possibility of assuming that uncertainty
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is asymmetric – that is, a given change is more likely to occur in one direction than in the opposite

(eg an increase in the sensitivity of aggregate demand to interest rates is more likely than a fall of

the same size).

We apply our procedure to a small open economy model in which some of its key features can

suddenly change. In this application we are considering so-called time-consistent policies, ie

policies which continue to be the best possible as time passes. With such policies the monetary

authority is unable to affect the private sector’s expectations. In our results, which should be

thought of as first steps, we find that for the most part interest rates are set more cautiously when

uncertainty about changes in the economy is symmetric. That is, in response to shocks the interest

rate is varied by less than when such uncertainty is absent or ignored. Being less cautious would

make the economy more volatile without the benefit of an improved tradeoff between output and

inflation, which would result from the ability of policymakers to affect the private sector’s

expectations. We also find that the optimal policy can be significantly affected by differences

between the policymaker and the private sector in their views about the probabilities of parameter

changes. When changes in the economy are asymmetric, the findings about the optimal policy

response cannot be easily generalised.
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1 Introduction

Uncertainty is one of the major problems faced by policymakers. It surrounds observed data,

unobserved expectations and potential equilibria as well as both the structure and parameters of

the economy. Even if uncertainty is quantifiable, it can have a substantial impact on the

formulation of optimal monetary policies. A considerable amount of recent research has therefore

been directed at countering these and other sources of uncertainty. (1)

In this paper we focus on one such quantifiable risk, in which the economy is subject to regime

shifts with the particular regime determined by a Markov process. This set-up can be thought of as

encompassing a number of possible representations of the world. It can be viewed as a model with

stochastic parameters, or perhaps a model in which agent’s learning is characterised as a jump

process. (2)

The economic policy problem is pervasive in such a world. For any model, particularly a

stochastic one, we need to decide what form of policy rule we should implement and together with

rational, forward-looking agents we need to consider the appropriate treatment of expectations in

the optimal policy problem. In this paper we adopt a game-theoretic framework for the design of

optimal policy. In particular we seek policies which are both time consistent and subgame perfect,

following Fershtman (1989): policies need both to be consistent and to take into account the

stochastic nature of the problem. The time-consistency restriction rules out policymakers adopting

policies which are ex ante likely to become suboptimal simply because time passes, and are

therefore unsustainable as a description of credible policy. Both considerations require us to

consider solutions derived by dynamic programming rather than Lagrange multipliers: we need a

‘rule’ for agents’ expectations, not a time path for future actions (Başar and Olsder (1999)).

This is particularly appropriate in our case. We adopt a recursive approach to optimal policy

formulation with Markov-switching parameters. Such an approach necessarily imposes time

consistency via the principle of optimality. If the model itself is subject to change, why should

policymakers’ actions be immune? We therefore rule out potentially time-inconsistent behaviour

through our recursive formulation.

(1) See, in a partial but recent list, Kozicki (2004); Swanson (2004); Planas and Rossi (2004).
(2) This latter set-up can be particularly useful for models in which bubble-like behaviour is observed. A collapsed
bubble is one where sufficient agents feel it is unsustainable. For an application using standard linear quadratic
techniques see eg Batini and Nelson (2000).

6



To do this we develop algorithms both for the solution of linear rational expectations models with

probabalistically driven regime changes and for the optimal time-consistent subgame-perfect

control of such models. In the latter case the control solution adopted in Zampolli (2006) is

adapted to provide the best policy. In the engineering literature, Aoki (1967) had already studied

the control of discrete-time regime-shifting models or models with jumps in parameters, which are

currently referred to as Markov Jump Linear System (MJLS). (3) We also show how these

algorithms can be modified to allow the policymakers and private agents to hold different beliefs

over the probability of a regime shift. These methods are then applied to a small open economy

model developed by eg Batini and Nelson (2000) and Leitemo and Söderström (2004) to

investigate structural changes in agent behaviour. In Appendix A we develop the same methods in

a form consistent with Oudiz and Sachs (1985) rather than the semi-structural form used in the

main part of the paper (see Dennis and Söderström (2002)).

While our focus is on time consistency, it should be noted that the rational expectations solution

we develop could be used for any arbitrary policy rule, such as a Taylor rule, and the optimal

time-inconsistent policy could be obtained using very similar methods. (4) There are difficulties

with time-inconsistent policy in this context, however, as any change in policy must be in response

only to news about changes in regime rather than potential welfare improvements from reneging.

This means that the implications of any inherited part of policy for a new regime could be bad

enough that the policymakers would never want to carry them out. We focus on time consistency

to remove this possibility.

The paper is organised as follows. Section 2 provides the undetermined coefficient model solution

(3) For recent contributions on the control of MJLS in the engineering literature, see Costa, Fragoso and Marques
(2005). Applications to macroeconomics of quadratic control of MJLS include Blair and Sworder (1975), do Val and
Başar (1999), and more recently, Zampolli (2006) and Rodriguez, Gonzalez-Garcia and Gonzalez (2005). The latter
paper, in particular, applies unstructured robust control in a Markov-switching small open economy model.
(4) After the earlier versions of this paper were presented in 2004, Svensson and Williams (2005) have produced
algorithms for the analysis of monetary policy under commitment and arbitrary rules in Markov-switching models.
Here we stress that the first algorithm in the original paper is not limited to time consistency but it is of more general
use, as a careful reading reveals. In particular, it can be applied in a straightforward manner to the optimisation of an
arbitrary (fixed or time-varying coefficients) policy rule. Solving for an arbitrary rule is indeed an essential building
block of the discretionary solution. In addition, the quadratic control problem with regime shifts used for the
time-consistent solution can also be employed for finding the optimal policy under commitment. In this latest version
we have therefore added an appendix which spells out, first, how the first algorithm in (the original version of) the
paper can be applied to the optimisation of an arbitrary instrument rule, and second, shows how the control problem
with regime shifts can be applied to the commitment case using existing concepts from the control literature in
economics. The solution proposed here (which is an addition to the original version) is different from the solution to
the optimal control under commitment proposed by Svensson and Williams (2005) in that it is not based on the
recursive saddlepoint method of Marcet and Marimon (1998).
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of a rational expectations model with regime shifts or random parameters. This solution forms the

basis for solving the optimal control problem which is dealt with in Section 3 (Appendix B shows

how dynamic programming can be easily adapted to obtain the commitment solution.) Section 4

describes the small open economy model used in the application and the experiments being

carried out. Section 5 describes how to simulate the model both under symmetric and asymmetric

beliefs. Section 6 concludes.

2 The solution of a linear rational expectations model with regime shifts

We consider a linear rational expectations model in semi-structural form:

xt = A(st)xt−1 + B(st)E
d
xt+1|It

e+ C(st)εt (1)

where x is a vector of variables that can depend on lags and leads, A(st), B(st) and C(st) are

stochastic matrices which will depend on regime st ∈ {1, 2, ...N} and E
d
εt+1|It

e = 0 is a vector

of stochastic shocks with It the information set at time t . The shocks are uncorrelated with st .

The regime st , which is observable at t , (5) is assumed to be a Markov chain with probability

transition matrix (6)

P = dpi j

e
i, j = 1, .., N (2)

in which pi j = prob {st+1 = j |st = i} is the probability of moving from state i to state j at t + 1;

and
3N

j=1 pi j = 1, i = 1, ..., N . These probabilities are assumed to be time-invariant and

exogenous. The formulation (17) is general enough to capture different types of random changes

in the economic system, and therefore different sources of model uncertainty.

This model is described as semi-structural as it distinguishes between leads and lags for each

potential equation, although for longer leads and lags the model would need to be augmented. By

contrast, the state-space form (Appendix A) requires classification of the variables by type (ie

jump or predetermined).

(5) This means that the uncertainty faced by the policymaker is about where the system will be at t + 1, t + 2, and so
forth. Other assumptions about timing could be made, and we discuss them further in Appendix A.
(6) For an introduction to Markov chain and regime-switching vector autoregressive models see eg Hamilton (1994).

8



2.1 The method of undetermined coefficients

The model can be solved depending on agents’ expectations of future policy regimes. Let the

assumed reduced-form law of motion be:

xt = D(st)xt−1 + F(st)εt (3)

where D(·) and F(·) are matrices of undetermined coefficients and we have solved out for

expectations. For simplicity we assume that there are only two states. The formulae are easily

generalised to the N -state case (see Appendix A, for example).

To find the unknown coefficients, first solve for the expectation:

E
d
xt+1|It

e = E
d
D(st+1)xt + F(st+1)εt+1|It

e
= E

d
D(st+1)|It

e
xt

= (pi1 D1 + pi2 D2) xt

≡ D̄i xt

= D̄i (Di xt−1 + Fiεt)

where i denotes the regime at time t , ie st = i . Now plugging the above expression back into the

model gives:

xt = Ai xt−1 + Bi

b
D̄i Di xt−1 + D̄i Fiεt

c+ Ciεt

= b
Ai + Bi D̄i Di

c
xt−1 +

b
Bi D̄i Fi + Ci

c
εt (4)

Given the assumed law of motion, xt = Di xt−1 + Fiεt , the undetermined coefficients must satisfy

the following conditions:

Di = Ai + Bi D̄i Di (5)

Fi = Bi D̄i Fi + Ci (6)
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for i = 1, ...N . The first set of equations are to be solved for the feedback part of the solution, Di :

Di = Ai + Bi D̄i Di

= Ai + Bi (pi1 D1 + pi2 D2) Di

So, for i = 1:

D1 = A1 + B1 (p11 D1 + p12 D2) D1

= A1 + B1 p11 D2
1 + B1 p12 D2 D1

0 = B1 p11 D2
1 + (B1 p12 D2 − I ) D1 + A1

Likewise for i = 2. This yields a pair of coupled matrix equations that need to be solved

simultaneously:

0 = B1 p11 D2
1 + (B1 p12 D2 − I ) D1 + A1 (7)

0 = B2 p22 D2
2 + (B2 p21 D1 − I ) D2 + A2 (8)

These equations can be solved iteratively, if a solution exists (7) using an appropriate solution

method. Given a procedure for solving matrix quadratic equations, we can solve the linked

equations sequentially. The following is a possible solution algorithm for the two-state case. It

generalises easily for the multi-state model.

Algorithm 1 Rational solution with Markov switching (two-state case). For the model (1) assume

a solution of the form (3).

1. Select initial values for D0 = bD0
1, D0

2

c
.

(7) There are few proofs about the existence of solutions to such problems. We consider this to be a useful avenue for
future research, as, in our experience, solution methods can fail for interesting and plausible economic models.
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2. Solve quadratic equations for given values of Dr , obtaining a new set Dr+1:

Dr+1
1 = g(B1 p11, B1 p12 Dr

2 − I, A1)

Dr+1
2 = g(B2 p22, B2 p21 Dr

1 − I, A2)

where g(·) is a quadratic equation solver for (7) and (8). Similarly solve F.

3. Check convergence: if
nnDr+1

nn < ε or too many iterations stop; else repeat 2.

In the standard case the roots of the single quadratic equation can be checked and it can be

established if there are determinate, indeterminate or no solutions. In our linked case this is no

longer possible. If a solution exists and can be found by this procedure, we can check whether the

solution is stable conditional on the other Riccati solution(s). As mentioned above, issues of

existence have not been established in this class of models.

2.2 Arbitrary rules and commitment

Algorithm 1 can be used in finding the optimal coefficients of an arbitrary instrument rule (with or

without fixed coefficients). The first step is to use Algorithm 1 to find the reduced law of motion

corresponding to that rule. The next step is to compute the loss associated with the reduced form

by solving a system of interrelated Lyapunov equations, as shown in Zampolli (2006), Section 2.3.

Having built a function that maps the coefficients of the assumed policy rule into a loss, we can

employ an appropriate numerical optimiser to find the optimal response coefficients. Such a

policy would likely vary depending on the initial regime. A min-max approach could yield a rule

that was best given any initial regime. Appendix B provides the details. Combined with the

Lagrange method, Algorithm 1 (or its state-space version in Appendix A) can also be employed to

find the optimal policy under commitment. In this paper we focus more on the time-consistent

equilibrium for reasons that we have highlighted in the introduction.

In the next section we turn to the optimal control problem, which relies on the reduced-form

solutions obtained here.
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3 Optimal control

The rational solution algorithm presented above can be used as a basis for solving the optimal

control problem with regime shifts and forward-looking expectations. There are different

equilibrium concepts one can use to come up with a solution. Here the primary concern is to find a

time-consistent solution. We proceed with a closed-loop (feedback) time-consistent approach

similar to Oudiz and Sachs (1985). In Appendix A we follow their state-space approach. Here we

develop solutions using the so-called semi-structural form, following Dennis (2001).

Write the model (which represents the constraint of the optimal control problem) as:

xt = A(st)xt−1 + B(st)ut−1 + D(st)Et

d
xt+1|st

e+ C(st)εt (9)

where A(st), B(st), C(st) and D(st) are random matrices depending on the same Markov chain st ,

Et

d
xt+1|st

e
is the expectation conditional on the information set available at time t which also

include st . st is observable.

It is convenient to begin with the assumption that a control law exists:

ut = −F(st)xt

which is conveniently re-formulated as a function of the states and shocks. To make sure the

system parameters are always a function of the same regime st (rather than, eg, (st , st−1)), and to

get rid of the control (that is why we are assuming that a control rule exists), it is convenient to use

the augmented model:

⎡⎣ I 0

F (st) I

⎤⎦⎡⎣xt

ut

⎤⎦ =
⎡⎣A(st) B(st)

0 0

⎤⎦⎡⎣xt−1

ut−1

⎤⎦+
⎡⎣D(st) 0

0 0

⎤⎦ Et

⎡⎣⎡⎣xt+1

ut+1

⎤⎦ |st

⎤⎦
+
⎡⎣C(st)

0

⎤⎦ εt

or (after pre-multiplying with the inverse of the left-hand matrix):

zt = A+(st)zt−1 + D+(st)Et

d
zt+1|st

e+ C+(st)εt (10)

where the definitions are obvious. Now that the system is one without control variables (which are

incorporated into z), we can then use the solution method developed in the previous section to
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solve for the equilibrium law of motion for z, and hence for the expectations. Assume an

equilibrium law of motion for z:

zt = Gi zt−1 + Hiεt (11)

where Gi and Hi are undetermined, and st = i in an obvious notation. Following the steps above,

one can find Gi and Hi by solving the following systems of inter-twined equations:

Gi = A+i + D+
i Ḡi Gi (12)

Hi = D+
i Ḡi Hi + C+

i (13)

where i = 1, 2, ..., N and Ḡi =3N
j=1 pi j G j =3N

j=1 p[st+1 = j |st = i]G j . (12) is a system of N

coupled quadratic equations in G = (G1, ...,GN). After solving for the feedback part, the

feedforward part can be easily solved as: Hi = (I − D+
i Ḡi)

−1C+
i .

What have we established? Subject to some feedback rule F , we have computed the law of motion

of the economy (11) which is now a backward-looking regime-switching VAR (where the regime

is observable). Recalling the definition of z, we can rewrite the law of motion of the economy in

such a way that the control actions are explicit:

xt = Gxx(st)xt−1 + Gxu(st)ut−1 + Hx(st)εt (14)

where Gxx , Gxu and Hx are matrices partitioned conformably. (14) can be used as an input into the

optimal control problem with regime shifts, for which we have a solution algorithm. This takes

Gxx , Gxu and the transition probability matrix P as input and returns an updated feedback rule

ut = −F(st)xt . This is used to update the matrices A+, D+ and C+ and start a new iteration of the

algorithm.

So far we have characterised but not solved the control problem. This is established in the next

subsection, following Zampolli (2006).

13



3.1 The quadratic control problem with regime shifts

The policymaker’s problem is to choose a decision rule for the control ut to minimise the

intertemporal loss function: (8)

∞;
t=0

β tr(xt, ut) (15)

where β ∈ (0, 1] is the discount factor and r is a quadratic form:

r(xt , ut) = x )t Rxt + u)t Qut (16)

with R a n × n positive definite matrix, Q a m ×m positive semi-definite matrix. The

optimisation is subject to x0, s0 and the model of the reduced-form economy:

xt+1 = A(st+1)xt + B(st+1)ut + εt+1 t ≥ 0 (17)

x is the n-vector of state variables, u is the m-vector of control variables and ε is the n-vector of

mean-zero shocks with variance-covariance matrix �ε. The matrices A and B are stochastic and

take on different values depending on the regime or state of the world st ∈ {1, ..., N} which is

observable at time t . st is assumed to have the probability transition matrix (2).

3.1.1 Solution

Solving the problem means finding a state-contingent decision rule, ie a rule which tells how to set

the control ut as a function of the current vector of reduced-form state variables, xt , and the current

regime st . Associated with each current state of the world is a Bellman equation. Therefore,

solving the model requires jointly solving the following set of N inter-twined Bellman equations:

v (xt , i) = max
ut

�
r (xt, ut)+ β

N;
j=1

pi j E
ε
t

d
v (xt+1, j)

e�
i = 1, ..., N (18)

where v(xt , i) is the continuation value of the optimal dynamic programming problem at t written

as a function of the state variables xt as well as the state of the world at t , st = i , Eεt is the

expectation operator with respect to the martingale ε, conditioned on information available at t ,

such that Eεt
d
εt+1

e = 0.

The policymaker has to find a sequence {ut}∞t=0 which maximises her current pay-off r(·) as well

as the discounted sum of all future pay-offs. The latter is the expected continuation value of the

dynamic programming problem and is obtained as the average of all possible continuation values

(8) A good introduction to dynamic programming and the linear quadratic regulator problem can be found in
Ljungqvist and Sargent (2000), Ch. 2-4. Kendrick (2002) provides a more comprehensive and advanced treatment.
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at time t + 1 weighted by the transition probabilities (2). Given the infinite horizon of the problem,

the continuation values (conditioned on a particular regime) have the same functional forms.

Given the linear-quadratic nature of the problem, let us further assume that:

v(xt, i) = x )t Vi xt + di i = 1, .., N (19)

where Vi is a n × n symmetric positive-semidefinite matrix, and di is a scalar. Both are

undetermined. To find them, we substitute (19) into the Bellman equations (18) (after using (16))

and compute the first-order conditions, which give the following set of decision rules:

u(xt, i) = −Fi xt i = 1, .., N (20)

where the set of Fi depend on the unknown matrices Vi , i = 1, .., N . By substituting these

decision rules back into the Bellman equations (18), and equating the terms in the quadratic forms,

we find a set of interrelated Riccati equations, which can be solved for Vi , i = 1, .., N by iterating

jointly on them, that is:

[V1 . . . VN ] = T ([V1 . . . VN ]) (21)

This set of Riccati equations defines a contraction over V1, . . ., VN , the fixed point of which, T (·),
is the solution. After lengthy matrix algebra, the resulting system of Riccati equations can be

written in compact form as:

Vi = R + βG
d
A)V A|s=i

e
−β2G

d
A)V B|s=i

e b
Q + βG

d
B )V B|s=i

ec−1
G
d
B )V A|s=i

e
(22)

where i = 1, .., N , and G(·) is a conditional operator defined as follows:

G
d
X )V Y |s=i

e = N;
j=1

X )j
b
pi j Vj

c
Yj

where X ≡ A, B; Y ≡ A, B. Written in this form the Riccati equations contain ‘averages’ of

different ‘matrix composites’ conditional on a given state i .

Having found the set of Vi which solves (22), the matrices Fi in the closed-loop decision rules

(20) are given by:

Fi = (Q + βG
d
B )V B|s=i

e
)−1βG

d
B )V A|s=i

e
i = 1, .., N (23)
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Solving for the constant terms in the Bellman equations (18) after substitution of (20) gives

(IN − βP) d = βP�. The vector of scalars d = [d]i=1,...,N in the value functions (19) is given by:

d = (IN − βP)−1 βP� (24)

where � = [tr (Vi�ε)]i=1,...,N . (9)

The decision rules (20) depend on the uncertainty about which state of the world will prevail in the

future, as reflected in the transition probabilities (2). Yet, the response coefficients (ie the entries

in Fi ) do not depend on the variance-covariance matrix �ε of the zero-mean shock ε in (17). Thus,

with respect to ε, certainty equivalence holds (the noise statistics, as is clear from (24), affect the

objective function). Clearly, certainty equivalence does not hold with respect to the matrices of

stochastic parameters.

It is interesting to note that the above solutions incorporate the standard linear regulator solutions

as two special cases. First, by setting the transition matrix P = IN (ie N -dimensional identity

matrix), one obtains the solution of N separate linear regulator problems, each corresponding to a

different regime on the assumption that each regime will last forever (and no switching to other

regimes occurs). This case could be useful as a benchmark to see how the uncertainty about

moving from one regime to another impacts on the state-contingent rule. In other words, by

setting P = IN , we are computing a set of rules which will differ from ones computed with

P /= IN , in that the latter will be affected by the chance of switching to another regime. Second,

by choosing identical matrices (ie Ai = A, Bi = B), the solution obtained is trivially that of a

standard linear regulator problem with a time-invariant law of transition. (10)

(9) The transition law (17) can be generalised to make the variance of the noise statistics vary across states of the
world, ie:

xt+1 = A
b
st+1

c
xt + B

b
st+1

c
ut + C(st+1)εt+1

Assuming Eε
b
εtε

)
t
c = I , then the covariance matrix of the white-noise additive shocks would be

� (st ) = C (st )C (st)
) or, to simplify notation, �i = CiC )i (i = 1, .., N). As we note elsewhere, the introduction of a

state-contingent variance for the noise process does not affect the decision rules but does affect the value function.
(10) In this case (23) reduces to:

F = bQ + βB)V B
c−1

βB)V A

where V is the solution to the single Riccati equation:

V = R + βA)V A− β2 A)V B
b
Q + βB)V B

c−1 B)V A

and (24) is the constant:

d = β

1− β tr (V�ε)

See, eg, Ljungqvist and Sargent (2000, pages 56-58).
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3.2 Complete solution

For greater clarity, the algorithm is given in steps below. It consists of two main blocks: one solves

the rational expectations model with regime shifts given a feedback rule, thereby putting it into

backward-looking form; the other solves the optimal control problem given the backward-looking

form. By iterating back and forth on these two distinct blocks the algorithm converges to a

solution if one exists, perhaps with the use of some damping. The gist of the algorithm is thus to

make expectation formation and optimisation consistent, through repeated iteration. It can be

compared with the solutions given in Appendix A.

Algorithm 2 We want to compute the optimal control of the following economy:

xt = A (st) xt−1 + B (st) ut−1 + D (st) E
d
xt+1|It

e+ C (st) εt

The algorithm consists of the following steps:

1. Assume an initial control law:

ut = −F (st) xt

2. Form the augmented system (the goal here is to get rid of the control and make sure that the

stochastic matrices depend only on st , not on (st, st−1)):

⎡⎣ Inx 0nx ,nu

F (st) Inu

⎤⎦⎡⎣ xt

ut

⎤⎦ =
⎡⎣ A (st) B (st)

0 0

⎤⎦⎡⎣ xt−1

ut−1

⎤⎦
+
⎡⎣ D (st) 0

0 0

⎤⎦ E

⎡⎣ xt+1

ut+1

|It

⎤⎦+
⎡⎣ C (st)

0

⎤⎦ εt

Pre-multiply by

⎡⎣ Inx 0nx ,nu

−F (st) Inu

⎤⎦ (the inverse of the left-hand matrix above) to get:

zt = A+ (st) zt−1 + D+ (st) E
d
zt+1|It

e+ C+ (st) εt

where zt = [xt ut]).

3. The augmented system can be solved by means of Algorithm 1, yielding the equilibrium law of

motion:

zt = G (st) zt−1 + H (st) εt

17



or: ⎡⎣ xt

ut

⎤⎦ =
⎡⎣ Gxx (st) Gxu (st)

Gux (st) Guu (st)

⎤⎦⎡⎣ xt−1

ut−1

⎤⎦+
⎡⎣ Hx (st)

Hu (st)

⎤⎦ εt

The bottom part gives the policy rule as a function of the past states and controls.

4. The upper part is used as an input into the optimal control algorithm:

xt = Gxx (st) xt−1 + Gxu (st) ut−1 + Hx (st) εt

5. The mew control law is obtained by solving the optimal control problem:

ut = −F (st) xt

6. Having obtained this, the next step is to check for convergence:ooF (st)− F (st)
(0)
oo < ε

If there is convergence (or too many iterations) terminate, otherwise go to the next step.

7. Select the control law to use in the subsequent iteration:

F (st)
(1) = γ F (st)+ (1− γ ) F (st)

(0)

where γ ∈ (0, 1] is appropriately chosen. A combination is necessary to prevent the law of

motion from moving too far away from the stable one, which ensures convergence.

We conclude this section with a number of remarks. First, this algorithm has unknown numerical

properties, as with the Oudiz and Sachs (1985) method. This is a fixed-point algorithm, modified

to allow for a relaxation parameter γ . This substantially improves convergence properties in some

cases.

Second, it is possible that the algorithm could be made both faster and more stable by iterating on

the first-order conditions rather than solving the optimal control problem as in Oudiz and Sachs

(1985). We outline this in Appendix A. Our approach has the considerable expositional advantage

that the two ‘blocks’ of the solution procedure are distinct. We have also found that sufficient

damping has so far proved a reliable method for finding the fixed point. Indeed, it is not known if

the Oudiz and Sachs (1985) procedure is at all reliable (and it can certainly be very slow) even

without the modifications we propose. In practice both methods might be usefully implemented in

case one fails.

Third, the algorithm solves for the time-consistent Nash-Stackelberg equilibrium. See

Appendix A for a different Nash approach and Dennis (2001) for a similar one. The intrinsic
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difference is that the algorithm allows the policymaker to take into account the contemporaneous

actions of agents in determining the optimal policy. In Appendix A, where we make a distinction

between jump and predetermined variables, this can be modelled explicitly as part of the

first-order conditions. Here, as all variables are modelled the same, the reactions of agents are

treated no differently to any predetermined behaviour.

Fourth, the solution in Section 3.1 can be easily adapted to find the optimal policy under

commitment following Backus and Driffill (1986). Appendix B provides the details.

Finally, an interesting extension to the algorithm of Section 1 is to introduce stochastic

re-optimisation by the policymaker (as in Roberds (1987)): for example, if one can reformulate

the problem in such a way that the Lagrange multiplier is reset to zero stochastically, then one

could solve the problem using such algorithm.

4 Application

In our application we look at how optimal policy is affected if the structure of the economy might

change in some specific way, and investigate probabilities that key parameters change. We outline

our model here, and then the control and simulation experiments later.

4.1 A small open-economy model

We apply the methods discussed above to an open-economy model. Our model embeds those of

Batini and Nelson (2000) and Leitemo and Söderström (2004) and enables us to discuss stochastic

changes in parameters. The model is in the tradition of New Keynesian policy models. It consists

of the following equations:

1. IS curve

The now-standard intertemporal IS curve is used:

yt = φ
d
(1− θ) Et yt+1 + θ yt−1

e− σ (Rt − Etπ t+1)+ δqt−1 + vt
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2. Phillips curve

A forward-looking Phillips curve with inertia:

π t = απ t−1 + (1− α) Etπ t+1 + φ y yt−1 + φqqt−1 − φqqt−2 + ut

3. Uncovered interest parity

Nominal exchange rate equation:

s̄t = Êtst+1 − Rt − kt − zt

4. Definition of q

Real exchange rate definition:

qt − qt−1 = st − st−1 − π t

5. Expectations of s

Êt s̄t+1 = ψEt s̄t+1 + (1− ψ) sa
t+1,t

where the operator E indicates rational expectations.

6. Adaptive expectations

sa
t+1,t = ξsa

t,t−1 + (1− ξ) st

7. IS shock

vt = ρvvt−1 + evt
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8. Phillips curve shock

ut = ρuut−1 + eut

9. Risk premium/non-UIP factors

kt = ρkkt−1 + ekt

In addition there are a number of definitional equations we need for our model form, which are the

definition of q̄ as well as qt−1 and qt−2. We add two new variables Rt−1 and Rt−2, necessary to add

a smoothing target to the cost function, ie (Rt − Rt−1)
2. We give further details in Appendix C.

4.2 Experiments

In this paper we conduct the following experiments. We assume that there is a structural break in

some key parameters, eg α. We assume there is some probability P of a permanent shift up or

down. We then plot selected response coefficients as a function of P .

In the graphs we plot a mixture of experiments. First, we assume in a two-state model that there is

a probability p that there will be a change in the coefficient, and a probability q that once it has

changed regime it will switch back. The Markov matrix is given by:

P =
⎡⎣ 1− p p

q 1− q

⎤⎦
In the first set of experiments we assume that q = 0, that is once a switch has occurred there is no

switch back. On the same graphs we plot a three-state problem using the Markov matrix:

P =

⎡⎢⎢⎢⎣
1− p 1

2 p 1
2 p

q 1− q 0

q 0 1− q

⎤⎥⎥⎥⎦
where there is equal likelihood of two changes—which we choose to be up or down by the same

amount—so we can get a handle on the certainty equivalence of the results. This is the red

(usually central) line on the graphs.
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Chart 1: Effect of changes in α
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We begin by assuming that all changes are expected to be permanent (q = 0). In Chart 1 we show

the effect of a change in α from the central case of 0.8. An anticipated fall requires a more

aggressive response to the output gap for example, but only past some critical point. In Chart 2 we

show the same effect on σ . A similar pattern emerges, but with no marked switching effect on the

real exchange rate and output coefficients. Chart 3 illustrates an almost perfect certainty

equivalence result for changes to the exchange rate pass-through coefficient, as the red line is

nearly horizontal.

However, if we consider changes to φy a different picture emerges (Chart 4). Here complicated

trade-offs between coefficients occur. This seems particularly true of the coefficients on the real

exchange rate and the inflation rate. In Chart 5 changes to ϕ have small and predictable effects.

As φ y seems an important parameter we plot this for different assumptions about q. Chart 6 refers

to the case q =0.5, and Chart 7 refers to q =0.25. The pattern of trade-offs in coefficients seems

to be preserved.
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Chart 2: Effect of changes in σ
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Chart 3: Effect of changes in φq
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Chart 4: Effect of a change in φy
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Chart 5: Effect of changes in ϕ
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Chart 6: Effect of changes in φ y, q = 0.5
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Chart 7: Effect of changes in φ y, q = 0.2
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5 Simulating the model under asymmetric beliefs

So far we have developed methods to calculate optimal time-consistent policies where agents and

policymakers correctly understand each other’s behaviour. Each understands the model used and

the probabilities assigned by each other to possible outcomes. If we focus on the probabilities,

then our control algorithm can be characterised as solving a fixed-point problem. This can be

succinctly described in the following way:

1. The policymaker (cb) computes an optimal policy u as a function of the probability P and the

private sector’s (ps) expectations Eps , that is:

ucb = u(P, Eps)

2. In turn, the private sector forms expectations E ps as a function of the probability P and the

optimal policy rule ucb, that is:

Eps = E (P, ucb)

3. Hence, ucb = u
b
P, Eps

c = u (P, E (P, ucb)). The algorithm solves for the fixed point ucb. It is

assumed that P is the true probability governing the transition across regimes.

This illustrates rather nicely that the expectations of both sets of agents and the consequent

solution to the fixed point are determined by the various agents’ perceived values for P . However,

all, some, or none of these beliefs may be accurate.

Most obviously, we can make a variety of assumptions about perceived values for P . In this

section we explore the consequences of agents’ use of different values of P when calculating

optimal policies and forming expectations. These assumed values can apply to themselves or to

others. There are two consequences of this. First, the optimal policies may need to be calculated

differently depending on our assumptions, and second, they need to be simulated differently,

where the true value of P determines the evolution of the economy.

5.1 A number of cases

Policy and expectations can be set under different assumptions than above. Assumptions regarding

what each agent believes or knows about the world, the transition probabilities and the other
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agent’s decision problem. There are a number of cases that we consider, which are not exhaustive.

The first case we consider is one in which all agents share the same beliefs about the probability

matrix P (as well as everything else) but such beliefs may be wrong. Let us indicate these beliefs

with P̂ . The problem can now be characterised by the pair of decision rules:

ucb = u(P̂, E ps)

Eps = E(P̂, ucb)

The problem is solved as before with ucb = u(P̂, E ps) = u
r

P̂, E
r

P̂, ucb

ss
, the difference being

the probability matrix P̂ . Once ucb and E ps have been found, they can be substituted out from the

true model, obtaining a reduced form. This reduced form is the same as obtained under P̂ .

However, it needs to be simulated under the true (but unknown to agents) value of P . One can

compare responses under P̂ and P to gauge the possible errors involved in selecting P̂ /= P . If P

is genuinely unknown, one can compute the losses corresponding to the probability pairs
r

P̂, P
s

,

where P̂ are the probabilities assumed by agents and P are the true probabilities. The losses can

inform the selection of P̂ as ‘optimal’ P̂ that minimises risk. For example, it can be selected using

a min-max criterion or some other criterion. Operationally this requires that the policymaker is

believed by all other agents in their assessment of the probability, so the policymaker can

influence expectations through this channel. In this circumstance the policymaker seeks to modify

expectations to its advantage, that of increased robustness. This can be seen as a way of

manipulating agents that is akin to time inconsistency, but in effect as long as beliefs about the

true probability never change agents are never fooled and there is no incentive to renege.

The second case is one in which the private sector correctly perceives P and perfectly knows the

policy rule adopted by the policymaker. The policymaker, on the other hand, has beliefs P̂ , which

in general differ from the true P , and also believes that the public shares those beliefs and hence

forms expectations according to E
r

P̂, ucb

s
, ie:

ucb = u
r

P̂, E
r

P̂, ucb

ss
As the public correctly perceives P and the beliefs of the policymaker:

E ps = E (P, ucb) = E
r

P, u
r

P̂, E
r

P̂, ucb

sss
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To find the equilibrium solution, one needs to find the fixed point in ucb = u
r

P̂, E
r

P̂, ucb

ss
,

which is done using the standard algorithm. Then ucb is substituted out from the true model.

Notice that when we solve the model with regime shifts we need to compute the expectations

Eps = E(P, ucb) based on the true P as well as the policy ucb computed in the previous step to

generate the false expectation used by the policymaker.

A third possibility is one in which the policymaker and the private sector do not share the same

beliefs but perfectly understand each other’s beliefs and decisions. Namely:

ucb = u
r

P̂, E
b
P̄, ucb

cs
Eps = E

r
P̄, u

r
P̂, E ps

ss

where in general P̂ /= P̄ . Both P̂ and P̄ may also be different from the true P . The standard

algorithm is straightforwardly modified to allow computation of this case. If an equilibrium exists,

we can designate it the ‘known disagreement’ equilibrium. A special case of this is a variation of

case two illustrated above: the policymaker chooses policy ucb = u
r

P̂, E ps

s
knowing that the

public has knowledge of the true probability matrix P , ie Eps = E (P, ucb).

A fourth case is one in which a disagreement is unknown to both players:

ucb = u
r

P̂, E
r

P̂, ucb

ss
Eps = E

b
P̄, u

b
P̄, Eps

cc

The standard algorithm can be run twice to solve for ucb and for E ps separately. Then, ucb and Eps

need to be substituted out from the true model to find the reduced form associated with this case.

There are, of course, many other cases which can be considered. Each agent may form beliefs not

only about the true model but also about the other agent’s beliefs about the true model, beliefs

about his own beliefs, beliefs about his own beliefs over other’s beliefs, and so on ad infinitum.
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This problem of infinite regress is not dealt with here. It is also clear that there could be

considerable value to private information, as in Morris and Shin (2002). We do not further

consider the strategic advantages that may accrue here.

5.2 Learning

When simulating the model under the previous cases we implicitly assume that agents do not learn

through time. This is clearly not realistic but there are two ways of defending the approach. First,

the simulations help us inform about the choice of P , and therefore we are actually learning from

them. Second, we could extend the algorithm to allow for passive learning. In other words, agents

update their probabilities using (for example) a Bayesian scheme in every period, but they make

decisions assuming that these probabilities will not change in the future. This is in some ways

realistic: not all agents are so rational as to anticipate the way they will learn in the future, ie know

the law of motion of the probabilities. In this case of passive learning, Bayesian techniques can be

used to update the probabilities period by period, and the above algorithm can be used to compute

the policymaker’s instrument choice as well as the private sector’s expectations of future variables.

A more sophisticated algorithm may record the evolution of the probabilities and estimate a law of

motion for them. Thus the policymaker will need to solve a more sophisticated control problem in

which he has to allow for future variation in the probabilities.

5.3 Simulation results

We plot a variety of responses in the following charts.

• Case 1: both agents incorporate uncertainty as well as each other’s reactions.

• Case 2: only the central bank factors in uncertainty while the private sector does not and

assumes Regime 1 persists forever.

• Case 3: the central bank has a certainty equivalent rule, which is understood by the public, but

the public factors in the probability of a regime shift.

In each of the charts the blue line is the ‘certainty equivalent’ policy, so that p = 0.
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Chart 8: α goes from 0.8 to 0.6 with p = 0.5
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We concentrate on a break in α, as before possibly falling from 0.8 to 0.6. In Chart 8 we show a

supply shock of unity and the assumption that p = 0.5. Here the responses of the output gap,

inflation, the real exchange rate and interest rates are shown for each of the scenarios above. In

Chart 9 we show the interest rate responses for this and other shocks. In Chart 10 we repeat the

analysis for p = 0.25. It is clear that the perceptions of the various players can matter a great deal.

Now consider Chart 11. This simulation assumes a break in α, jumping down to 0.6 from 0.8.

There is an initial negative inflationary shock and then the break in α occurs in period 3 (with

probability 50% we would expect the breaks to concentrate mostly in period 2 and 3). You can see

that not taking into account uncertainty produces a somewhat ‘bumpier’ economy. Note that when

the break occurs, in all cases the policymaker can observe the break and switches to the same

policy rule. However, because the system is at that point in a different state following the different

policies, the responses follow different paths from that point onwards, though all converging in the

long run towards equilibrium. In Chart 12 we reduce the probability to 0.25. What does this

imply? Policy should be loosened less in response to a negative shock but should then return more

gradually to neutral stance.
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Chart 9: Interest rate responses
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Chart 10: α goes from 0.8 to 0.6 with q = 0.25
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Chart 11: Negative inflation shock, break to α in period 3, p = 0.5
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Chart 12: Negative inflation shock, break to α in period 3, p = 0.25
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6 Conclusions

In this paper we have investigated optimal time-consistent monetary policy when the model is

subject to regime shifts driven by Markov processes. We have barely scratched the surface of the

control and simulation experiments that can be carried out. In these first steps we find in general

that policies are more cautious with this form of uncertainty. Recall that we are considering

time-consistent policies. If the monetary authorities are unable to affect expectations at all, it may

be that they would do almost nothing.

We have tried out a number of possible simulation scenarios. The sole source of uncertainty here

is the Markov process and not the model. Agents know all the alternative models or

parameterisations, and how likely they are to switch between them. It would be an interesting

problem to extend this model to uncertainty about the Markov process, and to model learning over

that, rather than behavioural parameters.
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Appendix A: State-space solutions for the time-consistent policy

In this Appendix we detail an alternative method for the calculation of explicitly time consistent

policies. In the next section we consider the rational expectations solution, perhaps conditional on

a given policy rule. We then consider the dynamic programming solution as a generalisation of the

Oudiz and Sachs (1985) procedure. As the problem is certainty equivalent with respect to the

additive stochastic disturbances we only discuss the case without such disturbances.

A.1 A generalised rational expectations solution

Define a rational expectations model in state space as:⎡⎣ zt+1

E
d
xt+1|It

e
⎤⎦ =

⎡⎣Ai
11 Ai

12

Ai
21 Ai

22

⎤⎦⎡⎣zt

xt

⎤⎦ (A-1)

We seek a solution of the form:

xt = −Ni zt (A-2)

where we recognise that there may be a change in regime of some sort. For two possible regimes

this means that E
d
xt+1|It

e = −(pi1N 1 + pi2N 2)E
d
zt+1|It

e
for a model in ‘state i’ or, more

generally, for l possible regimes:

E
d
xt+1|It

e = −� l;
j=1

pi j N
j

�
E
d
zt+1|It

e
(A-3)

for the i th regime. Using this in the model (A-1) gives:

−
�

l;
j=1

pi j N
j

� b
Ai

11zt + Ai
12xt

c = Ai
21zt + Ai

22xt (A-4)

implying:

−
��

l;
j=1

pi j N
j

�
Ai

12 + Ai
22

�
xt

=
��

l;
j=1

pi j N
j

�
Ai

11 + Ai
21

�
zt (A-5)
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or:

xt = −
r

Ñ i Ai
12 + Ai

22

s−1 r
Ñ i Ai

11 + Ai
21

s
zt

= −Ni zt

where Ñ i =3l
j=1 pi j N j . We can develop an iteration based on this as:

Ñ 1
k+1 =

l;
i=1

p1i N
i
k+1

N 1
k =

r
Ñ 1

k+1 A1
12 + A1

22

s−1 r
Ñ 1

k+1 A1
11 + A1

21

s
Ñ 2

k+1 =
l;

i=1

p2i N
i
k+1

N 2
k =

r
Ñ 2

k+1 A2
12 + A2

22

s−1 r
Ñ 2

k+1 A2
11 + A2

21

s
...

Ñ l
k+1 =

l;
i=1

pli N
i
k+1

Nl
k =

r
Ñ l

k+1 Al
12 + Al

22

s−1 r
Ñ l

k+1 Al
11 + Al

21

s

which continues until convergence. Thus in equilibrium for the i th regime we get:

−
�

l;
j=1

pi j N
j

� b
Ai

11 − Ai
12Ni

c = bAi
21 − Ai

22 Ni
c

(A-6)

as the solution to the i th linked Riccati-type equation. (11)

A number of remarks should be made. First, in common with Oudiz and Sachs (1985) we assume

that
r

Ñ i
k+1 Ai

12 + Ai
22

s
is non-singular. This is almost always the case in our experience. Second,

if the model is instead: ⎡⎣Ei
11 Ei

12

Ei
21 Ei

22

⎤⎦⎡⎣ zt+1

E
d
xt+1|It

e
⎤⎦ =

⎡⎣Ai
11 Ai

12

Ai
21 Ai

22

⎤⎦⎡⎣zt

xt

⎤⎦ (A-7)

(11) See Blake (2004) for a discussion of the types of Riccati equations used in rational expectations solutions.
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we can develop an equivalent iteration assuming that Ei
11 and Ai

22 are non-singular. Indeed, the

semi-structural form model can be written:⎡⎣I 0

0 Bi

⎤⎦⎡⎣ xt

E
d
xt+1|It

e
⎤⎦ =

⎡⎣ 0 I

−Ai I

⎤⎦⎡⎣xt−1

xt

⎤⎦ (A-8)

which conforms to those restrictions. Finally, if the regimes are all the same then the solution

reduces down to:

−N (A11 − A12N) = (A21 − A22N) (A-9)

which could be solved using the method of Blanchard and Kahn (1980) or iteratively as above.

A.2 Control

Let the control model in state space be:⎡⎣ zt+1

E
d
xt+1|It

e
⎤⎦ =

⎡⎣Ai
11 Ai

12

Ai
21 Ai

22

⎤⎦⎡⎣zt

xt

⎤⎦+
⎡⎣Bi

1

Bi
2

⎤⎦ ut (A-10)

We can apply the solutions of the previous section to yield:

xt = −
r

Ñ i Ai
12 + Ai

22

s−1 r
Ñ i Ai

11 + Ai
21

s
zt

−
r

Ñ i Ai
12 + Ai

22

s−1 r
Ñ i Bi

1 + Bi
2

s
ut

= −J i zt − K iut (A-11)

For a given feedback rule, say ut = −Fi zt , then:

xt = −(J i − K i Fi)zt

= −Ni zt (A-12)

Now consider the discounted quadratic objective function:

Ct = 1

2

∞;
t=0

β t
b
z)t Qzt + u )t Rut

c
(A-13)

More generally we would consider a cost function of the form:

Ct = s )t Q̃st + 2u)t Ũ st + u)t R̃ut (A-14)
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where st =
⎡⎣zt

xt

⎤⎦ and we assign costs to the jump variables and covariances. We use (A-13) to

reduce the amount of algebra without changing the essential message. Algebra for the complete

cost case is available on request. (A-13) is minimised subject to (A-10) and a time-consistency

restriction. We next sketch a solution in the standard case and then for the Markov-switching case.

A.2.1 Standard time-consistent policies

The ‘standard’ Oudiz and Sachs (1985) dynamic programming solution is obtained from the

following. Write the value function as:

Vt = 1

2
z)t St zt = min

ut

1

2

b
z)t Qzt + u )t Rut

c+ β
2

z)t+1St+1zt+1 (A-15)

Note that the first line of the model is:

zt+1 = A11zt + A12xt + B1ut (A-16)

which we substitute in as the constraint. We can obtain the following derivatives:

∂Vt

∂ut
= R̃ut + βB )1St+1zt+1 (A-17)

∂Vt

∂xt
= βA)12St+1zt+1 (A-18)

∂xt

∂ut
= −K (A-19)

with the last obtained from (A-11), our time-consistency restriction. This reflects intraperiod

leadership with respect to private agents, so can be seen as reflecting Stackelberg behaviour. Using

(A-11) we can also write (A-16) as:

zt+1 = (A11 − A12 J )zt + (B1 − A12K )ut (A-20)

37



We can use (A-17)–(A-19) and (A-20) to obtain the first-order condition:

∂Vt

∂ut
+ ∂Vt

∂xt

∂xt

∂ut
= b

R + β(B )1 − K )A)12)St+1(B1 − A12K )
c

ut

+β(B )1 − K )A)12)St+1(A11 − A12 J )zt

= 0

⇒ ut = −β bR + β(B )1 − K )A)12)St+1(B1 − A12K )
c−1

× b(B )1 − K )A)12)St+1(A11 − A12 J )
c

zt

= −FSzt (A-21)

with the subscript emphasising the Stackelberg equilibrium. The value function can be written:

z)t St zt = z)t
b
Q + F )S RFS + β(A)11 − J )A)12 − F )S(B

)
1 − K )A)12))

×St+1(A11 − A12 J − (B1 − A12K )FS)) zt

implying:

St = Q + F )S RFS + β(A)11 − N )A)12 − F )S B )1)St+1(A11 − A12N − B1FS) (A-22)

where N = J − K FS.

Note we could assume that ∂xt/∂ut = 0, the Nash assumption, and instead obtain:

∂Vt

∂ut
= b

R + βB )1St+1(B1 − A12K )
c

ut

+βB )1St+1(A11 − A12 J )zt = 0

⇒ ut = −β bR + βB )1St+1(B1 − A12K )
c−1

× bB )1St+1(A11 − A12 J )
c

zt

= −FN zt (A-23)
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with associated Riccati equation:

St = Q + F )N RFN + β(A)11 − N )A)12 − F )N B )1)St+1(A11 − A12N − B1FN)

with N = J − K FN now. This gives us a second time-consistent equilibrium to investigate.

A.2.2 Markov-switching models

We now turn to the case with random matrices. We modify the value function for the i th regime to:

V i
t = min

ut

1

2

b
z)t Qzt + u)t Rut

c+ βEt V̂
i
t+1 (A-24)

where we need to make some assumption about V̂ i
t+1. In common with what went before we will

weight the forward value function by the probability that it comes to pass. However, the assumed

information set will determine the exact form.

In either case the required modification is very simple, and it is easy to see that one possibility is

to replace the last term with the probability weighted values of the alternative future value

functions to give:
1

2
z)t S

i
t zt = min

ut

1

2

b
z)t Qzt + u)t Rut

c+ β
2

zi )
t+1 S̃i

t+1z
i
t+1 (A-25)

where:

zi
t+1 = (Ai

11 − Ai
12 J i)zt + (Bi

1 − Ai
12K i)ut

and X̃ i =3l
j=1 pi j X j for any X , the same as the weight scheme we had before for the

expectations generating mechanism. In so doing we are assuming that the policymaker identifies

the regime that she currently faces but is uncertain about any future one. If uncertainty extended to

the current regime, then the optimisation problem would be:

1

2
z)t S

i
t zt = min

ut

1

2

b
z)t Qzt + u)t Rut

c+ β
2

z̃)t+1 S̃i
t+1z̃t+1 (A-26)

where:

z̃t+1 = ( Ãi
11 − Ãi

12 J̃ )zt + (B̃i
1 − Ãi

12K̃ )ut

as policymakers would only know the previous policy regime, i , and the transition probabilities

from that regime and so must ‘average’ the models to give the anticipated state.

What do all other agents expect? The equilibrium policy is one where agents’ expectations of the

future policy is consistent with the assumed probabilities. Thus the value of (A-12) calculated to

determine expectations is (in equilibrium) consistent with the policy actually followed, although

we can modify this by having differing perceived probabilities across the policymaker and other
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agents. In fact, it is only across probabilities that we allow agents to differ in what they expect.

Note that when this happens there is no intrinsic time inconsistency, as we discuss above, but

rather this may lead to an inferior (or possibly superior) outcome. One of the advantages to the

semi-structural form of the main text is that this is much more easily seen due to the fixed-point

nature of the solution.

Given expectations we need to determine that policy. In the first case the first-order condition

yields the Stackelberg solution:

∂V i
t

∂ut
+ ∂V i

t

∂xt

∂xt

∂ut
=

r
R + β(Bi )

1 − K i )Ai )
12)S̃

i
t+1(B

i
1 − Ai

12K i)
s

ut

+β(Bi )
1 − K i )Ai )

12)S̃
i
t+1(A

i
11 − Ai

12 J i)zt = 0

⇒ ut = −β
r

R + β(Bi )
1 − K i )Ai)

12)S̃
i
t+1(B

i
1 − Ai

12K i)
s−1

×
r
(Bi )

1 − K i )Ai )
12)S̃

i
t+1(A

i
11 − Ai

12 J i)
s

zt

= −Fi
Szt

Substituting into the value function we have the following Ricatti-type equation for regime i :

Si
t = Q + Fi )

S RFi
S + β(Ai )

11 − Ni )Ai )
12 − Fi )

S Bi )
1 )S̃

i
t+1(A

i
11 − Ai

12Ni − Bi
1 Fi

S)

where Ni = J i − K i Fi
S.

In the second case, we get the Stackelberg solution:

∂V i
t

∂ut
+ ∂V i

t

∂xt

∂xt

∂ut
=

r
R + β(B̃i )

1 − K i ) Ãi )
12)S̃

i
t+1(B̃

i
1 − Ãi

12K i)
s

ut

+β(B̃i )
1 − K i ) Ãi )

12)S̃
i
t+1( Ã

i
11 − Ãi

12 J i)zt = 0

⇒ ut = −β
r

R + β(B̃i )
1 − K i ) Ãi)

12)S̃
i
t+1(B̃

i
1 − Ãi

12K i)
s−1

×
r
(B̃i )

1 − K i ) Ãi )
12)S̃

i
t+1( Ã

i
11 − Ãi

12 J i)
s

zt

= −Fi
Szt
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with:

Si
t = Q + Fi )

S RFi
S + β(Ai )

11 − Ni )Ai )
12 − Fi )

S Bi )
1 )S̃

i
t+1(A

i
11 − Ai

12Ni − Bi
1 Fi

S)

There is an open question as to which solution should be used. The Stackelberg case is almost

always used (our semi-structural form admits no other). However, it implies a degree of leadership

over the private sector, which we could interpret as commitment. This may be appropriate for

some policymakers, but may be questionable for the monetary authority. It is an empirical

question as to whether there is value to such commitments.

A.3 Iterative schemes

Consider the Stackelberg equilibrium with current-state information for every participant. A

possible solution scheme is shown in Table A. We can develop Nash solutions by deleting the

relevant part of the policy rules. The resulting modified algorithm is in Table B.

The ‘no current information for the policymaker’ solutions involve probability averaging the

matrices A11, A12 and B1 in the recursions for F and S. The resulting algorithms are given in

Tables C and D. Note that this involves different data sets for agents and policymakers,

emphasised by the lack of the tilde over the system matrices in the equations determining J and K .

We need to note the termination rules that we should observe. In the tables we merely terminate

when the period count reaches 0. We would normally terminate iteration before this if the matrices

have converged to a steady state. In general, without the stochastic matrices, we would stop when

abs(max(Nt+1 − Nt)) < > and abs(max(St+1 − St)) < > for some small >. This does not work for

the stochastic matrix case, as the future values are always probability weighted, so we need to

store N and S between iterations separately.
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Table A: FBS

Si
T = S̄, Ni

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 = 3l

j=1 pi j N
j

t+1

S̃i
t+1 = 3l

j=1 pi j S
j
t+1

J i =
r

Ñ i
t+1 Ai

12 + Ai
22

s−1 r
Ñ i

t+1 Ai
11 + Ai

21

s
Ki =

r
Ñ i

t+1 Ai
12 + Ai

22

s−1 r
Ñ i

t+1 Bi
1 + Bi

2

s
Fi

S = β
r

R + β(Bi )
1 − K i)Ai )

12)S̃
i
t+1(B

i
1 − Ai

12Ki)
s−1

×
r
(Bi )

1 − K i)Ai)
12)S̃

i
t+1(A

i
11 − Ai

12 J i)
s

Ni
t = J i − K i Fi

S

Si
t = Q + Fi )

S RFi
S + β(Ai )

11 − Ni )
t Ai )

12 − Fi)
S Bi )

1 )

×S̃i
t+1(A

i
11 − Ai

12Ni
t − Bi

1Fi
S)

endfor
endfor
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Table B: FBN

Si
T = S̄, Ni

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 = 3l

j=1 pi j N
j

t+1

S̃i
t+1 = 3l

j=1 pi j S
j
t+1

J i =
r

Ñ i
t+1 Ai

12 + Ai
22

s−1 r
Ñ i

t+1 Ai
11 + Ai

21

s
Ki =

r
Ñ i

t+1 Ai
12 + Ai

22

s−1 r
Ñ i

t+1 Bi
1 + Bi

2

s
Fi

N = β
r

R + βBi )
1 S̃i

t+1(B
i
1 − Ai

12K i)
s−1

Bi)
1 S̃i

t+1(A
i
11 − Ai

12 J i)

Ni
t = J i − K i Fi

N

Si
t = Q + Fi )

N RFi
N + β(Ai )

11 − Ni )
t Ai )

12 − Fi)
N Bi )

1 )

×S̃i
t+1(A

i
11 − Ai

12Ni
t − Bi

1Fi
N)

endfor
endfor
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Table C: FBS, policy information lag

Si
T = S̄, Ni

T = N̄ , Ãi
11 =

3l
j=1 pi j A j

11, Ãi
12 =

3l
j=1 pi j A j

12

and B̃i
1 =

3l
j=1 pi j B

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 = 3l

j=1 pi j N
j

t+1

S̃i
t+1 = 3l

j=1 pi j S
j
t+1

J i =
r

Ñ i
t+1 Ai

12 + Ai
22

s−1 r
Ñ i

t+1 Ai
11 + Ai

21

s
Ki =

r
Ñ i

t+1 Ai
12 + Ai

22

s−1 r
Ñ i

t+1 Bi
1 + Bi

2

s
Fi

S = β
r

R + β(B̃i )
1 − K i) Ãi )

12)S̃
i
t+1(B̃

i
1 − Ãi

12Ki)
s−1

×
r
(B̃i )

1 − K i) Ãi)
12)S̃

i
t+1( Ã

i
11 − Ãi

12 J i)
s

Ni
t = J i − K i Fi

S

Si
t = Q + Fi )

S RFi
S + β(Ãi )

11 − Ni )
t Ãi )

12 − Fi)
S B̃i )

1 )

×S̃i
t+1( Ã

i
11 − Ãi

12Ni
t − B̃i

1Fi
S)

endfor
endfor
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Table D: FBN, policy information lag

Si
T = S̄, Ni

T = N̄ , Ãi
11 =

3l
j=1 pi j A j

11, Ãi
12 =

3l
j=1 pi j A j

12 and B̃i
1 =

3l
j=1 pi j B

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 = 3l

j=1 pi j N
j

t+1

S̃i
t+1 = 3l

j=1 pi j S
j
t+1

J i =
r

Ñ i
t+1 Ai

12 + Ai
22

s−1 r
Ñ i

t+1 Ai
11 + Ai

21

s
Ki =

r
Ñ i

t+1 Ai
12 + Ai

22

s−1 r
Ñ i

t+1 Bi
1 + Bi

2

s
Fi

S = β
r

R + β B̃i )
1 S̃i

t+1(B̃
i
1 − Ãi

12K i)
s−1

B̃i)
1 S̃i

t+1( Ã
i
11 − Ãi

12 J i)

Ni
t = J i − K i Fi

S

Si
t = Q + Fi )

S RFi
S + β(Ãi )

11 − Ni )
t Ãi )

12 − Fi)
S B̃i )

1 )

×S̃i
t+1( Ã

i
11 − Ãi

12Ni
t − B̃i

1Fi
S)

endfor
endfor
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Appendix B: Commitment

B.1 Commitment to an (arbitrary) optimised policy rule

Suppose the policymaker can commit to a policy rule of the form:

ut = −Fi xt (B-1)

where i = st indicates the regime at time t (i = 1, ..., N) . This rule can encompass

fixed-coefficient rules (ie Fi = F,∨i), regime-switching rules or rules with escape clauses, for

example. Zero restrictions can be imposed on Fi (i = 1, ..., N) such that the control responds only

to a subset of the state variables. (12)

We want to find the coefficients Fi (i = 1, ..., N) which minimise the intertemporal quadratic loss:

∞;
t=0

β t
b
x )t Rxt + u)t Qut

c
subject to any constraints on Fi . The first step consists in augmenting the rational expectations

model (1) with the policy rule (B-1). The augmented model can be solved using Algorithm 1 in

the main text, (13) thereby producing the equilibrium law of motion:

zt = G j zt−1 + Hjεt

or ⎛⎝ xt

ut

⎞⎠ =
⎛⎝ Gxx, j Gxu, j

Gux, j G uu, j

⎞⎠⎛⎝ xt−1

ut−1

⎞⎠+
⎛⎝ Hx, j

Hu, j

⎞⎠ εt

To evaluate the policy rule we can eg take the upper part of the above expression and substitute out

(12) We could also consider rules in which the instrument responds to expectations of future variables. We will not
deal explicitly with this latter case here, as it is straightforward. Different timing of uncertainty can also be
considered but we do not deal with them here.
(13) Alternatively, the state-space version of the same algorithm can be used, which can be found in Appendix A.
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(B-1) to obtain:

xt = Gxx, j xt−1 + Gxu, j ut−1 + Hx, jεt

= b
Gxx, j xt−1 − Gxu, j Fi

c
xt−1 + Hx, jεt

≡ Di j xt−1 + Hx, jεt

Note that i = st and j = st−1. The value of the loss:

v (xt , i) = x )t Vi xt + di (B-2)

(i = 1, 2, ..., N) can now be computed by solving a system of interrelated Lyapunov equations (eg

Zampolli (2006), Section 2.3):

Vi = R + F )i QFi + β
N;

j=1

pi j D
)
i j Vj Di j

(i = 1, 2, ..., N), where di is the i th entry in d = (IN − βP)−1 βP�, � = [tr (Vi�ε)]i=1,...,N .

Having built a function that maps the feedback coefficients of the policy rule into a loss value we

can employ an appropriate numerical optimiser to find the optimal value of the coefficients. Note

that the objective function to be minimised can be chosen (depending on the application being

considered) to be either the loss function given a particular initial regime i , (B-2), or the

unconditional loss function obtained by averaging across initial regimes
3N

i=1 p̄iv (xt, i), where p̄i

indicates the unconditional probability of being in regime i .

B.2 Optimal policy under commitment

We sketch the commitment solution following the analysis of Backus and Driffill (1986). It turns

out that the solution under commitment is much simpler than under discretion. Let the control

model in state space be: ⎡⎣ zt+1

E
d
xt+1|It

e
⎤⎦ =

⎡⎣Ai
11 Ai

12

Ai
21 Ai

22

⎤⎦⎡⎣zt

xt

⎤⎦+
⎡⎣Bi

1

Bi
2

⎤⎦ ut (B-3)

where i indicates the regime in which the economy is at time t , ie i = st . We make the assumption

that such a regime is observable. Let yt =
⎡⎣zt

xt

⎤⎦. Backus and Driffill (1986) begin by ignoring the
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rational expectations structure, and set up a dynamic programming solution. Write the value

function as:

vt = 1

2
y )t Vt yt = min

ut

1

2

b
y)t Ryt + u)t Qut

c+ β
2

y)t+1Vt+1yt+1 (B-4)

We obtain the following first-order conditions:

∂vt

∂ut
= Qut + βB )1Vt+1yt+1 = 0 (B-5)

∂vt

∂yt
= Ryt + βA)Vt+1yt+1 (B-6)

From (B-5) we find ut = −β(R + βB )Vt+1 B)−1 B )Ayt = −Ft+1yt . For given policy rule Ft+1 the

value function can be written:

y )t Vt yt = y)t
b
R + F )t+1 QFt+1 + β(A) − F )t+1 B ))Vt+1(A − BFt+1)

c
yt (B-7)

implying in steady state:

V = R + F )QF + β(A) − F )B ))V (A − BF) (B-8)

Backus and Driffill (1986) point out that given the form of the value function, and that x0 is not

predetermined, the optimal policy requires that:

∂v0

∂x0
= V22x0 + V21z0 = 0 = µx

0 (B-9)

so that it must be x0 = −V−1
22 V21z0. In every subsequent period V22xt + V21zt = µx

t holds, with µx

the shadow price of the constraint associated with the free variables. If we define a matrix

T =
⎡⎣ I 0

V21 V22

⎤⎦, then we can implement the policy rule incorporating (B-9) as

ut = −FT−1

⎡⎣ zt

µx
t

⎤⎦. It is easy to show that given V we can simulate the model under

commitment using: ⎡⎣ zt

µx
t

⎤⎦ = T (A − BF)T−1

⎡⎣ zt−1

µx
t−1

⎤⎦ (B-10)

We now turn to the case with random matrices. We modify the value function for the i th regime to:

v i
t = min

ut

1

2

b
y)t Ryt + u)t Qut

c+ βEt v̂
i
t+1 (B-11)

where we make our usual assumptions about v̂ i
t+1 and weight the forward value function by the

probability that it comes to pass. Although we have to keep track of the shadow prices to
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implement the policy in the different regimes, all the information about the saddlepath system is

captured in the matrix V i for each regime. As with the discretionary case, the optimisation

problem is (in steady state):

1

2
y)t V

i yt = min
ut

1

2

b
y )t Ryt + u)t Qut

c+ β
2

y)t+1V̂ i yt+1 (B-12)

(i = 1, 2, ..., N), with V̂ i ≡3N
j=1 pi j V j (we have the complete state instead of just the

predetermined variables). (14) For any given regime we now have xt = −(V i
22)

−1V i
21zt and we

simulate the model using: ⎡⎣ zt

µx
t

⎤⎦ = T i(A j − B j F j)(T j)−1

⎡⎣ zt−1

µx
t−1

⎤⎦ (B-13)

where T now depends on the regime, and in particular i = st and j = st−1. (15)

Different timing of uncertainty can be handled. For example, if the stochastic matrices A and B in

(B-3) depend on st+1 instead of (observable) regime st , then one would need to solve the set of

Bellman equations (B-12) with the second term on the right-hand side replaced by
β
2

3N
j=1 pi j

b
A j yt + B jut

c)
V j
b
A j yt + B jut

c
. The algorithm described in Section 3.1 can then be

used. (16) We simulate the model using:⎡⎣ zt

µx
t

⎤⎦ = T i(Ai − Bi F j)(T j)−1

⎡⎣ zt−1

µx
t−1

⎤⎦
where i = st and j = st−1.

Other simple algorithms can be applied to find the commitment solution. For instance, the

Lagrange method can be used to derive the first-order conditions of the optimisation problem. The

resulting system can then be solved eg using the method of undetermined coefficients in Section 2

or in Appendix A. (17)

(14) The algorithm for solving (B-12) is slightly different from the one presented in Section 3.1, as it is now only
necessary to average across V i .
(15) Further details on the solution are available from the authors.
(16) If A11, A12 and B1 are conditioned on regime st+1 while A21, A22 and B2 are conditioned on regime st , the
dynamic programming solution can be computed with a simple modification of the algorithm in Section 3.1. In the
simulation we also need to take into account the different timing of uncertainty.
(17) The details are not provided here but are available.
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Appendix C: Model in semi-structural form

The model can be written:

Hxt = Axt−1 + But−1 + DEt[xt+1|It]+ Cεt

where the x , u and ε vectors are defined as:

xt

1 yt

2 π t

3 s̄t

4 qt

5 Êt s̄t+1 or Êt st+1

6 sa
t+1,t

7 vt

8 ut

9 kt

10 q̄t

11 q̄t−1

12 qt−1

13 qt−2

14 Rt−1

15 Rt−2

16 c

17 zt

18 bt

19 st

ut

1 Rt

εt

1 evt

2 eut

3 ekt

4 ezt

The parameters, similar to Batini and Nelson (2000) and Leitemo and Söderström (2004), were set

as φ = 0.9, θ = 0.7, σ = 0.2, δ = 0.05, α = 0.8, φ y = 0.1, φq = 0.025, ψ = 1 (full rationality

unless stated otherwise; in examining learning we set the updating parameter to ξ = 0.1), ρv = 0,

ρu = 0 and ρk = 0.753 consistent with a small open economy. The shock variances were set as
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σv = 1%, σ u = 0.5%, and σ k = 0.92%.

Finally, the policymaker’s preferences were set (in the main case) to be β = 1, λy = 1, λπ = 2 and

λ�R = 0.1.

C.1 Loss function

Period function:

x )t Rxt + u)t Qut + 2x )t Wut

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λy 0 0 · · · 0

0 λπ 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q = [λ�R] ,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

−λ�R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

This implies that 2x )t Wut = 2 (−Rt−1λ�R) Rt = −2λ�R Rt Rt−1.
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