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Abstract

In aggregate models, costs that penalise changes in investment – investment adjustment costs –

have been introduced to help account for a variety of business cycle and asset market phenomena.

In this paper, we evaluate empirical evidence for these types of costs using US and UK industry

data. We consider a general adjustment cost structure which nests both investment adjustment

costs and the traditional capital adjustment costs as special cases. The estimated weight on the

former is close to zero for all the industries. When only the investment adjustment cost structure is

considered, the estimates of the adjustment cost parameter are small relative to those based on

aggregate data, and imply an elasticity of investment with respect to the shadow price of capital

(the value to the firm of one additional unit of capital) fifteen times larger than that found in

aggregate studies. Our results suggest that from a disaggregated empirical perspective it remains

difficult to motivate and interpret the investment friction considered in recent macroeconomic

models.

Key words: Investment adjustment costs, capital adjustment costs.

JEL classification: E2, E3.
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Summary

If wages and prices were perfectly flexible, and if labour and capital could move costlessly

between firms and sectors, the economy would always operate at potential. In this case, large

fluctuations in output, consumption and investment would not be observed. But from the past we

know that some of these variables exhibit large fluctuations over the business cycle. To understand

these movements, it is important to acknowledge the presence of frictions in the economy, that

prevent prices and the factors of productions – labour and capital – from adjusting in response to

shocks.

The literature has recognised the importance of both nominal and real frictions. Nominal frictions

arise when wages and prices are sticky and therefore do not respond to changes in the economic

environment. These types of frictions have been stressed in the New Keynesian literature, and give

rise to the well-known Phillips trade-off between inflation and some measure of real activity. Real

frictions prevent labour and capital from costlessly adjusting in response to changes in the

economy. As an example, consider a firm that wants to increase its stock of capital, to be able to

meet an increase in demand. In addition to the cost for buying new equipment, it may also need to

spend resources on physically installing the capital, training labour and reorganising the

production process, to make full use of the capital. These types of costs prevent firms from

costlessly adjusting the level of capital. In turn, this means that firms will only slowly respond to

shocks that alter the optimal level of capital, since it may prove costly to adjust capital in response

to short-lived changes in economic conditions.

Frictions to adjusting the level of capital are common in models of the business cycle, to better

replicate and explain economic fluctuations. But there are some shortcomings with these models.

For example, they fail in generating the hump-shaped response of output, investment and

consumption that is typically observed after a monetary policy shock – an unexpected change in

the stance of monetary policy. They are not able to account for the volatility of asset returns over

the business cycle. And they are not able to match the response of wages and hours worked in

response to fiscal shocks. For this reason, recent studies instead introduce a friction to changing

investment, instead of capital, into models of the business cycle – a so-called investment

adjustment cost. This friction prevents investment quickly responding to changes in economic

conditions. By introducing this friction, the performance of business cycle models are improved
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along a number of dimensions, such as those discussed above.

Investment adjustment costs therefore appear to have important implications for understanding the

aggregate dynamics of the economy. It is, however, unclear whether there is empirical support for

these types of costs at the firm or industry level, or whether they are largely an ad hoc friction,

introduced to better match aggregate data. Some motivations have been made for these types of

costs – they may proxy delays in investment planning, or inflexibility in changing the planned

pattern of investment. While this interpretation is appealing, so far no attempt has been made to

estimate investment adjustment costs directly at a disaggregated level. In comparison, a large body

of literature has estimated capital adjustment costs using disaggregated data. The disaggregated

approach is also extensively used to assess evidence on other important frictions in the economy.

In this paper we conduct an empirical assessment of investment adjustment costs and investigate

whether industry-level data provide support for this cost structure. We use industry data for both

the United States and the United Kingdom, and estimate a theoretical model for capital and

investment under different assumptions of the adjustment cost structure. In particular, we consider

a model which is a weighted average of the investment and the capital adjustment cost model, and

obtain industry-specific estimates of the relevant parameters in the adjustment cost function. The

main result is that the relative weight on the investment adjustment cost model turns out to be

close to zero, for all industries, in both countries. In other words, industry data do not support the

investment adjustment cost structure and instead favour the traditional capital adjustment costs.

We also estimate a constrained model which imposes the investment adjustment costs on the data.

Based on the estimated parameters from this model, we are able to quantify the importance of the

investment adjustment cost friction. We compare this estimate to those typically obtained in

aggregate models of the economy. Our results suggest that at the industry level, the friction arising

from investment adjustment costs is significantly smaller than that assumed at the aggregate level.

From this, we conclude that from a disaggregated empirical perspective it remains difficult to

motivate and interpret the investment friction considered in recent macroeconomic models.
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1 Introduction

Recent literature on dynamic general equilibrium models considers the cost of changing the level

of investment – investment adjustment cost – as a key mechanism that significantly improves the

quantitative performance of the models along a number of dimensions. Investment adjustment

costs induce inertia in investment, causing it to adjust slowly to shocks. When these costs are

present, Christiano, Eichenbaum and Evans (2005) show that a sticky-price model can generate

hump-shaped investment dynamics consistent with the estimated response of investment to a

monetary policy shock. Burnside, Eichenbaum and Fisher (2004) find that a real business cycle

model can account for the quantitative effects of fiscal shocks on hours worked and real wages.

Basu and Kimball (2005) show that a sticky-price model can generate output expansions after a

fiscal shock. Jaimovich and Rebelo (2006) show that news shocks, as discussed in Beaudry and

Portier (2006), can drive business cycles. Beaubrun-Diant and Tripier (2005) show that it is

possible to account for both volatility of asset returns and business cycle facts within a single

model. By contrast, models with costs to adjusting the level of capital – capital adjustment cost –

as in the neoclassical investment literature, do not match any of these aspects.

Investment adjustment costs, therefore, have important implications for understanding the

aggregate dynamics of an economy. It is, however, unclear whether there is empirical support for

these types of costs at a disaggregated level, or whether they are largely an ad hoc friction,

introduced to better match aggregate data. Basu and Kimball (2005), for example, present a

theoretical model with ‘investment planning costs’ in which the effects of monetary and fiscal

shocks on output and investment resemble those in models with investment adjustment cost. Their

findings suggest that investment adjustment cost may proxy delays in investment planning or

inflexibility in changing the planned pattern of investment, as considered in Christiano and Todd

(1996) and Edge (2000). (1) While this interpretation is appealing, so far no attempt has been made

to estimate investment adjustment costs directly at a disaggregated level. In comparison, a large

body of literature has estimated capital adjustment costs using disaggregated data. (2) The

disaggregated approach is also extensively used to assess evidence on other important frictions

such as nominal price stickiness and habit-formation in consumption that are incorporated in

(1) Gertler and Gilchrist (2000) and Casares (2002), for example, explicitly model time-to-plan and time-to-build
constraints.
(2) See, for example, recent work by Hall (2004), Cooper and Haltiwanger (2006) and the overview by Hammermesh
and Pfann (1996).
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macro models. Existing estimates of investment adjustment costs are instead based on aggregate

data as, for example, in Christiano et al (2005), Smets and Wouters (2003), and Altig, Christiano,

Eichenbaum and Lindé (2005), among others. (3)

In this paper we conduct an empirical assessment of investment adjustment costs and investigate

whether industry-level data provides support for this cost structure. We estimate a model with

investment adjustment costs (hereafter IAC) for the United States and the United Kingdom, using

two-digit industry data. We follow the Euler equation approach and estimate the first-order

condition for capital to obtain estimates of the adjustment cost parameters using generalised

method of moments (GMM). Specifically, we consider a functional form that allows for both

investment and capital adjustment costs, and nests the standard neoclassical analysis as a special

case. To estimate the model, we use annual industry data for 27 industries for the United

Kingdom, spanning the whole economy, for the period 1970-2000. For the United States, we use

data on 18 manufacturing industries over the period 1949 to 2000, also used by Hall (2004) to

estimate capital adjustment costs.

One of the major challenges under the GMM methodology is to confront the weak instrument (or,

instrument relevance) problem which makes inference on estimated parameters difficult.

Diagnostic checks, using Shea (1997) partial R2 statistic, reveal that instruments are indeed weak.

To address this issue, we use the Anderson and Rubin (1949) F statistic and Kleibergen (2002) K

statistic for identification robust inference.

We consider a general industry model which is a weighted average of the IAC and the capital

adjustment cost (CAC) structures, and obtain industry/sector-specific estimates. The point estimate

of the weight on IAC turns out to be zero, or close to zero, for all industries/sectors. In other

words, industry data does not support the investment adjustment cost structure and instead favours

the traditional capital adjustment costs. However, we find instrument weakness to be pervasive.

But inference based on F and K test statistics, which are robust to weak instruments, do not reject

the parameter estimates. Based on that, we conclude that our estimates are valid, given the data.

When we estimate the constrained model which imposes either the IAC or the CAC structure on

the data, we find slightly different results for the two countries: for the United States, there is

(3) An early paper by Topel and Rosen (1988) presents and estimates a model of new housing supply in which rapid
changes in the level of construction are penalised by higher costs.
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similar support for the CAC and the IAC model while, for the United Kingdom, the data strongly

favours the CAC model while rejecting the IAC model. For both countries, however, the estimate

of the adjustment cost parameter under IAC is substantially smaller relative to that obtained under

CAC, across all industries. Moreover, the estimates of the adjustment cost parameter under the

IAC structure are substantially smaller compared to the estimates from aggregate data as in

Christiano et al (2005) and Smets and Wouters (2003). We compute the elasticity of investment

with respect to the shadow price of capital. Our estimates imply elasticities that are around 6,

while the estimate of Christiano et al (2005) based on aggregate data, for example, is 0.4. That is,

in aggregate models, frictions to investment are much larger implying that investment responds

less to a change in the shadow price of capital, than our industry estimates suggest.

While evidence supports the presence of CAC, as stressed by the standard neoclassical investment

literature, these costs do not help improve the empirical performance of aggregate models, along

the dimensions mentioned above. The lack of evidence in favour of investment adjustment costs at

the industry level suggests that from a disaggregated empirical perspective it remains difficult to

motivate and interpret the investment friction considered in recent macroeconomic models.

The paper is organised as follows. Section 2 discusses the role of investment adjustment costs in

recent macroeconomic models. Section 3 turns to the industry analysis. It presents a simple model

of investment that allows for both investment and capital adjustment costs, and discusses the data

and estimation method. Section 4 presents the empirical results. Section 5 comments on the

discrepancy between the aggregate and the industry results. Section 6 concludes.

2 Investment adjustment costs in aggregate models

In this section we illustrate how the presence of investment adjustment cost modifies investment

dynamics relative to capital adjustment costs. We also provide a brief discussion of recent

literature which demonstrates the importance of investment adjustment costs in accounting for a

broad range of business cycle and asset markets stylised facts.

We consider the formulation proposed by Christiano et al (2005). The representative household

makes consumption, labour supply, and capital accumulation decisions. Capital is accumulated
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according to

Kt+1 = (1− δ)Kt + (1− S(It, It−1, Kt)) It (1)

where Kt denotes capital, It investment, δ the depreciation rate, and S(.) the adjustment cost

function. When households face IAC, the adjustment cost function depends on current and lagged

investment and given as

S(.) ≡ S(It/It−1) (2)

where S(1) = S ′(1) = 0 and S ′′(1) ≡ κ > 0. This functional form implies that it is costly to

change the level of investment, the cost is increasing in the change in investment, and there are no

adjustment costs in steady state. The log-linearised dynamics around the steady state are

influenced only by the curvature of the adjustment cost function, κ. When households face CAC,

the adjustment cost function is given by

S(.) ≡ S(It/Kt) (3)

where S(δ) = S ′(δ) = 0 and S ′′(δ) ≡ ε > 0. The functional form implies that it is costly to

change the level of capital, and there are no adjustment costs in steady state. The dynamics around

the steady state are influenced by the curvature parameter ε. The CAC in (3) have been considered

extensively in the neoclassical investment literature (see, for example, Hayashi (1982), Abel and

Blanchard (1983) and Shapiro (1986)).

The log-linearised first-order condition for investment under the assumption of IAC is given as

(see Appendix A for details)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

κ(1 + β)
qt (4)

where small letters denote log-deviations from steady state and Et [·] expectations, conditional on

information available in period t, qt is the shadow price of installed capital (the shadow value of

one unit of kt+1 at the time of the period t investment decision), and β the subjective discount

factor. The presence of investment adjustment costs introduces inertia in investment, as reflected

by the lagged investment term. The investment decision also becomes forward looking, as it is

costly to change the level of investment. The larger the IAC parameter κ, the less sensitive is

current investment to the shadow value of installed capital.

By contrast, investment under the assumption of CAC responds immediately to movements in the

current shadow value of capital, with the log-linearised first-order condition given as,

it − kt =
1

εδ2
qt (5)
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where εδ2 is the elasticity of investment with respect to the shadow value of capital (or, Tobin’s

Q). Hence, CAC are not, by themselves, able to generate inertia in investment, as observed in the

aggregate data.

2.1 Monetary and fiscal shocks

A large body of literature has documented that identified monetary shocks in the United States

have persistent hump-shaped effects on output, consumption, and investment. (4) For the United

Kingdom, we find that identified monetary policy shocks have a very similar impact on these

variables. (5)

Christiano et al (2005) find that a dynamic general equilibrium model with IAC in (2) matches the

strong, hump-shaped response of investment to a monetary policy shock in the US data. By

contrast, CAC in (3) are unable to generate the shape of the estimated response. The inertia in

investment induced by IAC is important for accounting the effects of monetary policy on

investment.

Burnside et al (2004) identify fiscal policy shocks in the post-war US data. They find that these

shocks are followed by persistent declines in real wages and rises in government purchases, tax

rates, and hours worked. Accompanying these effects is a transitory increase in investment and

some movement in consumption.

The standard real business cycle model substantially overstates the response of investment.

Burnside et al (2004) find that IAC are necessary to improve the quantitative performance of the

model along this dimension.

Basu and Kimball (2005) point out that in dynamic general equilibrium models with price

stickiness or ‘New Keynesian’ models, fiscal expansions (financed by lump-sum taxes) tend to

(4) See, for example, Christiano, Eichenbaum and Evans (1999) and references therein.
(5) There is little evidence on the response of UK output and investment to a monetary policy shock. We therefore
estimate a VAR, following the approach of Christiano et al (1999), to identify the monetary policy shock. The VAR
includes seven variables (real GDP, consumption, investment, GDP deflator, real exchange rate, nominal interest rate,
and commodity prices). The variables are ordered such that the interest rate is the second last variable followed by
commodity prices. The implications of this ordering are that (i) real GDP, consumption, investment, GDP deflator and
real exchange rate do not respond contemporaneously to a monetary policy shock, and (ii) the interest rate at time t is
set prior to observing commodity price data for that period. We use seasonally adjusted data for the period 1970 Q1 to
2004 Q2 to estimate the model.
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reduce output on impact. This countercyclical response occurs because of a sharp increase in

equilibrium mark-up which reduces labour demand. This effect tends to dominate the increase in

labour supply due to the negative wealth effect which would increase labour supply and output.

Basu and Kimball (2005) explore how an environment of IAC deliver positive effects of fiscal

shocks on output by preventing investment to not respond instantaneously to the shock.

2.2 News shocks

Recently Beaudry and Portier (2006) have stressed the quantitative importance of ‘news shocks’ in

driving business fluctuations. A ‘news shock’ reflects changes in agents expectations about future

economic conditions. Beaudry and Portier (2006) show that an identified news shock predicts

future measured total factor productivity by several years and over this period, consumption,

investment, and hours worked increase. The standard one-sector neoclassical model generates

negative comovement between consumption and investment in response to changes in

expectations about future productivity. Beaudry and Portier (2005) show that introducing CAC

does not improve the performance of the model, and discuss alternative modelling approaches.

Jaimovich and Rebelo (2006), however, propose a model in which IAC is one of the key elements.

This model can generate a positive comovement between consumption and investment in response

to news shocks. (6)

2.3 Asset returns and business fluctuations

As discussed in Rouwenhorst (1995), the framework of a dynamic general equilibrium model is a

useful starting point to investigate the relationship between asset prices and business fluctuations.

Previously, Jermann (1998) showed that a one-sector model with habit formation and CAC can

match the stylised facts on asset returns and business cycles. Boldrin, Christiano and Fisher

(2001), however, show that it is necessary to consider a multi-sector model to avoid the

implication that hours are countercyclical in the model. Recently, Beaubrun-Diant and Tripier

(2005) consider IAC in a one-sector model. They find that the model successfully matches key

business cycle stylised facts in the United States (comovement and volatilities of output,

consumption, investment, and hours) and asset returns (generates highly volatile return on equity

(6) Jaimovich and Rebelo (2006) also consider replacing IAC with adjustment costs to capital utilisation. This
model, however, requires a high elasticity of labour supply to generate a comovement in consumption and investment
following a news shock.
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along with a smooth risk-free rate).

3 Industry analysis

As evident from the discussion above, IAC have begun to play a prominent role in accounting for

business fluctuations and asset market movements. We now turn to the main contribution of this

paper. Specifically, we conduct an industry analysis to investigate if there is empirical support for

the IAC structure assumed in aggregate models.

3.1 The model

We assume that the representative industry has a production function for gross output, Yt, on the

following form,

Yt = F (Lt,Mt, Kt, It, ∆It) (6)

where Lt denotes labour input, Mt material inputs, Kt capital, It investment, and ∆It a measure of

the change in investment. CAC implies that, conditional on the level of variable inputs, capital and

output, a rise in investment results in foregone output, due to costs associated with changing the

level of capital. IAC imply that the change in investment has a similar impact on output. The

implicit assumption is that, instead of producing marketable output, firms need to use resources to,

for example, train labour, reorganise work, and install new equipment. These adjustment costs are

internal to the production process; that is, the cost of output lost when capital and investment are

varied. By contrast, the aggregate model discussed in Section 2 made the assumption of external

adjustment costs. These were accounted for in the capital accumulation identity – the implicit

assumption in that model is that part of investment will capture services provided to install new

capital, rather than providing new capital goods. Although the first-order conditions for capital

and investment will differ across the two ways of measuring the costs, the implied investment

dynamics around steady state are identical. For conducting the industry analysis, there is a

practical advantage in choosing the production function approach. First, this approach is

consistent with the available capital data used to estimate the model, since conventional capital

measures are constructed under the assumption that all investment spending generates new capital.

Second, the production function approach is also the standard way of modelling adjustment costs

in the investment literature (see, for example, Morrison (1988)).

12



We assume that the production function has standard properties, defined implicitly by the

regularity conditions for the dual variable cost function, Ct, specified below

Ct = C (Wt, P
m
t , Yt, Kt, It, ∆It) (7)

where Wt and Pm
t are the prices of labour and material inputs, both taken as given by the

individual industry. The cost function is non-decreasing and concave in the two prices, decreasing

and convex in Kt, and non-decreasing and convex in It and ∆It. (7)

The optimal path for capital is chosen by minimising the expected discounted value of future

costs, subject to the capital accumulation identity, Kt+1 = (1− δ)Kt + It. The first-order

conditions for investment and capital are given by

∂Ct

∂It

+ P I
t −Qt +

1

1 + rt

Et

[
∂Ct+1

∂It

]
= 0 (8)

(1 + rt)Qt + Et

[
∂Ct+1

∂Kt+1

− (1− δ)Qt+1

]
= 0 (9)

where 1 + rt is the relevant discount factor for costs accrued in period t + 1, P I
t the price of

investment, and Qt the shadow value of capital installed in period t. Combining the first-order

conditions for capital and investment gives the Euler condition,

Et

[
PK

t + (1 + rt)
∂Ct

∂It

+
∂Ct+1

∂Kt+1

+
∂Ct+1

∂It

− (1− δ)

(
∂Ct+1

∂It+1

+
1

1 + rt+1

∂Ct+2

∂It+1

)]
= 0

(10)

where PK
t is the user cost of capital, PK

t ≡ P I
t

[
rt + δ − (1− δ) πI

t

]
, where

πI
t ≡

(
P I

t+1 − P I
t

)
/P I

t .

3.2 Econometric specification

Let Cv
t denote the variable cost function net of adjustment costs, and let Ca

t denote the adjustment

cost function. For estimation, we specify the variable cost function as

log Ct = log Cv
t +

ψ

2
Ca

t (11)

where ψ is the adjustment cost parameter. We use a first-order approximation for Cv
t , which

means that the elasticity of Cv
t with respect to capital is constant, here denoted by α < 0. (8) We

(7) The curvature conditions for the variable cost function under the assumption of capital adjustment costs are
standard in the investment literature. Here we also assume similar curvature conditions for the change in investment.
When these conditions are fulfilled, a well-defined dual production function exists.
(8) The choice of a first-order approximation is mainly driven by the lack of suitable instruments for parameter
identification. We do, however, allow for potential misspecification of the variable cost function when estimating the
model, as is further discussed in Section 3.3.
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consider an adjustment cost function of the form:

Ca
t = λ

(
It

Kt

− δ

)2

+ (1− λ)

(
It

It−1

− 1

)2

(12)

with 0 ≤ λ ≤ 1. (9) The functional form nests both IAC and CAC, and assumes that adjustment

costs are zero in steady state. The parameter λ determines the weight on CAC, relative to that on

IAC. When λ = 1, it is only costly to adjust capital. When λ = 0, it is only costly to change the

level of investment.

3.2.1 Non-linear specification

By combining (10)-(12), we get the Euler condition

Et

[
PK

t + α
Ct+1

Kt+1

+ ψΓt

]
= 0 (13)

where ψΓt is the marginal cost of adjusting the level of capital and/or investment. An expression

for Γt, which is a function of current and expected future changes in investment and capital, and of

the weight parameter λ, is given in Appendix C. Equation (13) states that, in a long-run

equilibrium, the user cost of capital equals the marginal product of capital, −αCt/Kt. Due to

costly adjustment of capital and/or investment, capital may deviate from its long-run equilibrium

by the term ψΓt.

3.2.2 Log-linearised specification

We log-linearise the first-order condition for investment and capital (8)-(9) around steady state and

combine to get

Et

[
λδ (it − kt) +

1− λ

δ
∆it − βα

ψ
st+1 − βλδ (it+1 − kt+1)− β(1− λ)

δ
(γ1∆it+1 − γ2∆it+2)

]
= 0

(14)

where st+1 = ct+1 − kt+1 − pK
t , γ1 = 1 + (1− δ), γ2 = β (1− δ). The term st+1 is the difference

between the marginal product of capital and its user cost. As such, it is a measure of the deviation

of capital from its long-run equilibrium. When st+1 is positive, it is optimal for firms to invest in

new capital, so that it − kt and/or ∆it is positive (recall that α < 0). The adjustment cost

parameter ψ will govern the speed at which capital adjusts to its long-run equilibrium. When ψ is

(9) We consider an adjustment cost function that is homogenous of degree zero in its arguments. By contrast, the q
literature typically assumes a capital adjustment cost function that is homogenous of degree one in investment and
capital, to ensure that marginal Q equals average Q. It is not clear, a priori, which is the more appropriate
specification. We, therefore, considered an alternative specification that is homogenous of degree one in its arguments
(given in Appendix B). The results from this specification were qualitatively similar to those presented in Section 4.
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large, so that it is costly to adjust capital and/or investment, firms put little weight on st+1 relative

to the dynamic adjustment cost terms.

Under the CAC assumption (λ = 1), we can solve (14) forward to get

it − kt = −βα

ψδ
Et

[ ∞∑
τ=0

βτst+1+τ

]
(15)

Since it is costly to adjust capital, the investment decision is forward looking. When the return to

capital is expected to be greater than its user cost (that is, st greater than zero), today and in the

future, it is optimal for firms to increase the investment to capital ratio relative to its steady-state

value. With IAC, we instead have

∆it = βEt

[−δα

ψ
st+1 + γ1∆it+1 − γ2∆it+2

]
(16)

Investment growth now depends on the excess return to capital, and future investment growth. We

can solve this difference equation forward to get

∆it = −βδα

ψ
Et

[ ∞∑
γ=0

(1− δ)γ βγ

∞∑
τ=0

βτst+1+τ+γ

]
(17)

The two cost structures therefore give different predictions about movements in the model

variables over the business cycle – CAC imply that the investment to capital ratio should lead

variable st, in the sense that a rise (decline) in the current ratio should signal a subsequent rise

(decline) in st. The IAC structure instead predicts that the change in investment should lead st.

These predictions, however, are unable to distinguish between the two cost structures. The reason

being that these predictions are not ‘nested’ as they are about different variables. Hence, evidence

in favour of one would not necessarily imply the absence of the other. Moreover, Granger

causality tests, not reported here, turned out to be inconclusive. We, therefore, take the direct

approach of estimating the parameters using the nested specification of the cost structure in (12).

3.3 GMM estimation

We estimate the non-linear, (13), and the log-linearised, (14), specifications, using generalised

method of moments (GMM). Both specifications have their relative advantages, which we discuss

further below.

To estimate the model using GMM, we replace the conditional expectations in the Euler condition

with actual values and introduce an expectation error, εt. Under rational expectations, εt is
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uncorrelated with any information known at the decision date. Given this identifying assumption,

any period t variable could be used as an instrument to form the moment conditions to estimate

the model parameters.

Under a more general representation, which allows for potential misspecification, identification

requires some additional assumptions about the error terms. It is common in the investment

literature to assume that they follow a first-order moving average process, in which case any

variable known in period t− 1 could be used as instrument. There is evidence, however, that this

may not be an appropriate identifying assumption. (10) Following Hall (2004), we therefore use a

more general specification, that allows for serially correlated error terms. In this case, we cannot

rely purely on timing considerations in the choice of instrument. Instead, we need to use strongly

exogenous variables, that are uncorrelated with the Euler condition residual in any period t. For

the United States, we use the instruments from Hall (2004); a dummy variable which takes the

value of one in the years when there was a shock to the oil price (1956, 1974, 1979, and 1990) and

a measure of the shock to federal defence spending. We include four lags of these variables as

instruments (lag t− 2 to t− 6) and, following the previous literature, we exclude the first lag of

variables from the instrument set. For the United Kingdom, we use an instrument set consisting of

lagged values of the growth rates of two variables; the price of oil and exogenous demand. (11) Due

to the shorter sample for the United Kingdom, we only include lag t− 2 of the instruments in the

UK regressions.

To avoid weak identification, the instruments also need to be adequately correlated with the model

variables, as discussed by Stock, Wright and Yogo (2002). Ideally, the instrument set should be

strong for all the expected variables in (13) and (14) (that is, variable st+1, ikt+1 = it+1 − kt+1,

∆it+1, and ∆it+2 in (14)). Since we have multiple endogenous regressors, the conventional

first-stage F -statistic for checking evidence for weak instruments may not provide adequate

information (as discussed, for example, in Shea (1997) and Stock et al (2002)). To assess

instrument weakness, we instead follow the recommendation of Shea (1997) and compute the

(10) Previous investment regressions that use lagged endogenous variables for identification typically find strong
evidence against the overidentifying restrictions, reflecting either model misspecification or invalid instruments (see
discussions in Chirinko (1993), Whited (1998)). Hall (2004) argues that movements in factor shares are too slow to be
only the result of adjustment costs, pointing to potential misspecification problems. In a similar model, Garber and
King (1983) show that serially correlated technology shocks will invalidate most candidate instrumental variables
(including lagged endogenous variables).
(11) The demand instrument is industry specific and created as an attempt to increase the correlation between the
exogenous variables and the model variables, to avoid weak identification. To create the demand instrument we build
on work by Shea (1993), discussed in more detail in Groth (2007).
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partial (adjusted) R2 statistics for each of the variables needing instruments. The partial R2

statistics indicates the explanatory power of the instrument set for each variable once the

instruments are orthogonalised to account for their contribution in explaining the remaining

variables (to be instrumented). (12)

One advantage with the log-linearised specification is that this model permits a relatively

straightforward computation of instrument relevance and identification robust statistics (discussed

further in Section 4). For the non-linear model, these types of tests are not available. On the other

hand, it is not possible to identify separately all parameters of the linearised model. Instead, a

subset of parameters needs to be calibrated. For this reason, we estimate both the non-linearised

and the linearised model. For the linearised model, we calibrate an industry-specific value for α,

using the steady-state relation α = −PKK/C. The depreciation rate is calibrated as the mean of

the industry-specific depreciation rate, and we use the mean of the interest rate r to calibrate β.

3.4 The data

For the United States, we use the data set that Hall (2004) constructs for the estimation of capital

adjustment costs. It consists of annual data for 18 manufacturing industries for the period

1949-2000, compiled using data from the Bureau of Labour Statistics (BLS) and the National

Income and Product Accounts (NIPA). To get investment, depreciation rates, and a measure of the

user cost of capital, we follow Hall (2004). Table 1 gives the industry classifications.

For the United Kingdom, we use data for 27 manufacturing and services industries for the period

1970 to 2000, taken from the Bank of England Industry Data set. (13) It contains industry data on

gross output, value added and inputs of capital services, labour and intermediates. (14) To construct

the user cost of capital, we assume that economic profits are zero. Table 2 classifies the industries

for the United Kingdom. The model is estimated using data for the private non-farm economy

(excluding agriculture and the government sectors) and also excluding oil and gas, and coal and

mining.

(12) The partial R2 statistics proposed by Shea (1997) is a useful diagnostics to check for instrument relevance and
has been considered in several studies with GMM-IV estimation. See, for example, Fuhrer, Moore and Schuh (1995),
Burnside (1996), and Fuhrer and Rudebusch (2003).
(13) The data set is described in detail in Oulton and Srinivasan (2005).
(14) The capital services data is a quality-adjusted measure of capital that takes into account the composition of
capital by weighting different assets together by their rental prices. To aggregate investment data, we use a method
which is consistent with the rental-price weighted index of capital, discussed in Groth (2007).
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4 Estimation results

We conduct industry-specific estimation using the non-linear (13) and the linearised (14) model,

respectively. We start with the US estimation, and then provide the UK results. The section also

discusses the issue of instrument relevance and provides tests that are robust to weak instruments

and excluded instruments.

4.1 US results

4.1.1 Industry-specific estimates

We estimate the weight parameter λ in the adjustment cost function freely and let the data choose

between the CAC and the IAC structures. That is, we only constrain λ to lie between zero and one

for a meaningful interpretation. Table 3 presents the estimates of the non-linear specification

(13). (15) Column 2 shows the estimated elasticity of the variable cost function with respect to

capital, α. It is negative, as predicted by theory, and statistically significant at the 1% level for all

the industries. Column 3 shows the estimates of the adjustment cost parameter, ψ. It is positive

and statistically significant in two thirds of the industries. Column 4 shows the estimated weight

parameter λ. It ranges between 0.92 and 1.0, and is statistically significant at the 1% level in all

industries. For industries where the weight is less than one and ψ̂ > 0, the null hypothesis of

λ = 0 (IAC) is clearly rejected. By contrast, we cannot reject the null hypothesis that λ = 1. The

data, therefore, seem to favour the CAC structure over the IAC structure. The J-statistic for the

test of overidentifying restrictions indicates that overidentifying restrictions are not rejected. That

is, we cannot reject the joint null hypotheses of correct model specification and that the

instruments satisfy the orthogonality condition.

Next, we estimate the log-linearised specification (14) for each industry. (16) The second and third

columns of Table 4 present the estimates of the adjustment cost parameter ψ and the weight

(15) We used λ0 = 0.5 and ψ0 = 0.5 as starting values in the estimation. For α0, we used the implied
industry-specific mean (mentioned in Section 3.3) as the starting value. The model is estimated using the Newey-West
optimal weighting matrix with 8 lags.
(16) Some of the variables, in particular st, exhibits a trend for most industries, except industries 6, 11 and 12. The
unit root tests (Dickey-Fuller and Phillips-Perron) did not reject the null of a unit root for industries 1, 5, 10, 13 and
14. We used the Hodrick-Prescott (HP) filter with a weight parameter of 100 to remove the stochastic trend for these
industries. For industries 2, 3, 4, 7, 8, 9, 15, 16 and 17 we removed a quadratic trend. Our results are robust to
different different methods of detrending the data.

18



parameter λ. The adjustment cost parameter is positive and statistically significant in two thirds of

the industries. It takes a negative sign in two industries. The point estimate of λ is one in all the

industries, and statistically significant at the 1% level. The estimates reveal that the industry data

strongly favour the CAC structure (λ = 1) and does not support the IAC structure (λ = 0). The J

test (column 4) does not reject the overidentifying restrictions, for any of the industries. (17)

4.1.2 Instrument relevance and identification robust inference

We conduct a diagnostic check to examine the potential issue of instrument weakness, that would

invalidate the standard statistics to draw inference (eg the J statistics), using the Shea (1997)

partial R2 statistic, which we carry out for the linearised model. (18)

Columns 5 to 8 in Table 4 show the partial R2 statistics for each of the instrumented variables

(st+1, ikt+1, ∆it+1, ∆it+2). No distribution theory is available for these statistics, but the low

statistics (ranging between 0.03 and 0.38) suggest that the exogenous instruments are, in general,

weak for all industries. Our findings of instrument weakness for the United States are consistent

with those of Burnside (1996) who estimated production function regressions using two-digit US

industry data, and with Shea (1997). Both of these found low partial R2 for the instrument set

which included the growth rate of military expenditure and the growth rate of the world oil price.

The weak instrument problem appears pervasive. This problem means that we may not only have

imprecise estimates of the structural parameters but also the standard statistics to draw inference

may be unreliable. The reason, as discussed in Stock et al (2002) and Dufour (2003), is that if

instruments are weak then the limiting distribution of GMM-IV statistics are in general

non-normal and depend on nuisance parameters. The standard statistics which are based on the

normality of sampling distribution may, therefore, be incorrect.

To address this issue, we compute two identification robust tests statistics considered in recent

literature. The first is the Anderson and Rubin (1949) (AR) statistic, discussed in Dufour and

(17) Our estimates of ψ, conditional on the support for the CAC structure, are broadly consistent with the estimates of
Hall (2004). However, our results are not directly comparable due to the differences in model specifications.
(18) The set of endogenous variables in (14) to be instrumented is X = {ikt+1 st+1 ∆it+1 ∆it+2}. Let Z be the
matrix of instruments. R2

p(Xi) in Table 4 is computed as the sample squared correlation between X̃i and X̄i. X̃i is
the component of Xi that is orthogonal to other variables in X . X̄i is the component of the projection of Xi on Z that
is orthogonal to the projections of other endogenous variables on Z. R2

p(Xi) indicates the explanatory power of Z for
variable Xi once the instruments are orthogonalised relative to their contributions to explaining Xi.
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Jasiak (2001) and Dufour (2003). The main advantage of this statistic is that its limiting

distribution is robust to weak and excluded instruments. One deficiency, however, is that when the

number of instruments exceeds the number of estimated structural parameters, as in our context,

the AR statistic has a low power. We therefore also compute the K statistic proposed by

Kleibergen (2002), which remedies this problem. (19)

Given the estimated values of the adjustment cost parameter ψ̂ and weight parameter λ̂ in Table 4,

we test the null hypothesis H0 : Θ = Θ0 for each industry, where Θ0 contains the model

parameters (both estimated and calibrated). Under the null, the AR statistic follows an

F (k, T − k)-distribution where k is the number of instruments and T is the number of

observations, whereas the K-statistic follows a χ2(m) where m is the number of elements of

θ0. (20) We report the p-values associated with these statistics in Table 4 (columns 9 and 10). In

fourteen industries, the p-values associated with both the AR and the K-statistics indicate that we

do not reject the null hypothesis at the 5% level. Thus, for these industries, we cannot reject the

null hypotheses of correct model specification and that the instruments satisfy the orthogonality

condition. For two industries (number 4, 11), the results are inconclusive, with one of the statistics

rejecting the model and the other one accepting it, at the 5% level. For the remaining two

industries (12 and 14), the model is rejected by both tests.

4.1.3 Imposing the IAC and CAC structures on the data

So far, we have estimated an unconstrained version of the model, where we let the data choose

between the IAC and the CAC structures. In that case, the data put a high weight on the CAC

model, for all industries. By contrast, aggregate studies that consider IAC have imposed this

adjustment cost structure on the data. To be able to compare our estimates of the adjustment cost

parameter with those obtained in aggregate studies, this section estimates constrained versions of

the non-linearised model, where either the IAC (λ = 0) or the CAC (λ = 1) structure are imposed.

Thus, this exercise provides an estimate of the adjustment cost parameter based on a particular

assumption regarding the underlying cost structure.

As shown in Table 5, under both the IAC (columns 2-4) and the CAC (columns 5-7) constraint, the
(19) For recent applications of these statistics in empirical work see, for example, Dufour, Khalaf and Kichian (2006)
and Yazgan and Yilmazkuday (2005).
(20) To compute the AR and K statistics we follow Kleibergen (2002). Formal expressions for the statistics are given
in Appendix D. A RATS program to compute them is available upon request.
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adjustment cost parameter, ψ, is positive and significant in around one third of the industries. The

estimates under IAC, however, are substantially smaller relative to those under CAC. (21) We will

return to these estimates in Section 5.

4.2 UK results

For the United Kingdom, we only have 30 years of data. To avoid small sample bias, we estimate

the model using pooled data, both at the aggregate and the sectoral level, where the sectors include

non-manufacturing – or services – industries, and manufacturing industries. (22) For the

manufacturing group, we also estimate the model for durable and non-durable industries

separately. (23)

4.2.1 Sector-specific estimates

We estimate the unconstrained version of the non-linearised Euler equation (13) for the aggregate

private non-farm economy, where we let the data choose the relative weight parameter λ, as shown

in the first row of Table 6. (24) The estimate of α is negative and significant, in line with theory. The

adjustment cost parameter, ψ, is positive but not significant, and similar in size to what has been

found in previous studies. (25) The weight parameter λ is close to one, and significant at the 1%

level, supporting the CAC model. The table also gives the J-statistic for the test of overidentifying

restrictions and the corresponding significance level. These restrictions are not rejected.

To see whether these results appear to be robust across industry subgroups, the model is

re-estimated for the manufacturing and services sectors, and for the durables and non-durables

manufacturing industries, also shown in Table 6. The results are similar to those obtained under

pooled estimation; the adjustment cost parameter is positive and significant and the estimate of λ

is equal to one, in all sectors. Overall, these results suggest that, at the sectoral level, the null

(21) The estimation results from the linearised specification with λ constrained reveal similar results on the magnitude
of the estimates.
(22) Note that the services sector includes the construction industry, which is not classified as a services industry. For
simplicity, however, we denote non-manufacturing industries services.
(23) To remove any industry-specific fixed effects that could otherwise bias the pooled estimates, we work with
first-differenced data when we estimate the linearised model. The model could be estimated at a more disaggregated
level for the services industries. As this quickly reduces the number of observations, we have chosen a slightly more
aggregated approach, however.
(24) For starting values, we use λ and ψ equal to 0.5, and α = −0.1.
(25) See Groth (2007) for UK capital adjustment cost estimates.
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hypothesis of λ = 0 (IAC) is clearly rejected, while we cannot reject the hypothesis of λ = 1

(CAC).

Next, we estimate the log-linearised specification (14) for the aggregate economy and at the

sectoral level, as shown in Table 7. (26) For the linearised verson of the model, we also include lag

t− 3 and t− 4 of the instrument variables into the instrument set. The point estimate of λ is one

and the adjustment cost parameter is positive and significant, both at the aggregate and the sectoral

level. Once again, the estimates reveal that the industry data strongly favour the CAC structure

(λ = 1) and does not support the IAC structure (λ = 0). The J test, however, indicate that the

overidentifying restrictions are rejected for the manufacturing sector. For the remaining sectors,

the restrictions cannot be rejected.

4.2.2 Instrument relevance and identification robust inference

Table 8 reports partial R2 statistics for the United Kingdom, at the industry level. As in the case of

the United States, the low values of this statistics suggest that instruments are weak. We therefore

proceed by computing the (AR) and the K statistic, as shown in columns 5-6 in Table 7. The

p-values indicate no evidence against the null hypothesis, indicating that our estimates are

plausible given the data.

4.2.3 Imposing the IAC and CAC structures on the data

We also estimate the two constrained cases where we impose the CAC (λ = 1) and the IAC model

(λ = 0), respectively, using the non-linear model. Table 9 reports the results. Under the CAC

model (columns 5-7), the estimated adjustment cost parameter ψ is positive and statistically

significant, both at the aggregate and the sectoral level. When we impose the IAC model (columns

2-4), the estimate of ψ is negative, which is inconsistent with theory, or close to zero. In addition,

the estimated parameter is insignificant at both the aggregate and the sectoral level.

(26) As for the United States, we find that some of the variables exhibit a trend over the sample, in some of the
industries. Due to the shorter sample period, it is difficult to evaluate the trend statistically, which we did for the
United States (see footnote 17). We therefore choose to work with first differenced data. One advantage of using this
approach is that industry-specific effects, that could otherwise bias the pooled estimates, are removed.
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5 Discussion

The results from Section 4 show that when both the IAC and the CAC structures are considered

the industry data put almost full weight on the latter. In particular, we reject the hypothesis that

λ = 0, but cannot reject the hypothesis that λ = 1. This result is obtained both for US

manufacturing industries, and for UK services and manufacturing industries.

By contrast, the constrained model, which imposes either the IAC or the CAC structure on the

data, gives slightly different results for the two countries. For the United States, it gives similar

support for the two cost structures; the estimated adjustment cost parameter is positive and

significant in around one third of the industries, but it is substantially smaller under IAC relative to

the CAC case. For the United Kingdom, there is strong support for the CAC case, but no support

for the IAC case; the estimated adjustment cost parameter is positive and significant under the

assumption of CAC, but negative or close to zero and insignificant under the assumption of IAC.

Given the importance of IAC in aggregate models, we next ask how the US industry estimates of

the adjustment cost parameter compare with the aggregate estimates in the recent literature. To do

so, we compute the elasticity of aggregate investment with respect to the shadow price of capital

implied by the industry estimates, and compare this to estimates of the elasticity obtained using

aggregate data. We linearise (8) around steady state under the assumption of IAC, which gives

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 − δα

ψ (r + δ) (1 + β)

(
qt − pI

t

)
(18)

In each industry, the elasticity of investment with respect to the current shadow price of capital is

given by
∂it
∂qt

= − δα

ψ (r + δ)
(19)

In the aggregate model (4), the elasticity of aggregate investment with respect to aggregate Tobin’s

q is given by κ−1. Under certain conditions further discussed in Appendix E, the aggregate

elasticity will be a weighted average of the industry-specific elasticities,

1

κ
= −

J∑
j=1

ωj

[
δjαj

ψj (r + δj)

]
(20)

where j denotes industry and where ωj is the weight of investment in industry j in aggregate

investment. To get an implied estimate of the aggregate elasticity, we consider the largest estimate

of ψ (thus giving the strongest possible support to the IAC model) obtained under the constraint

λ = 0 using the non-linearised model (column 3, Table 5). Based on the sample averages of the
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model parameters, we have δ = 0.08, α = −0.10, r = 0.05, ψ = 0.01. This gives an estimate of

κ−1 of 6, which is substantially higher (approximately fifteen times) than, for example, the

estimate of 0.4 based on aggregate data reported in Christiano et al (2005). (27) Our industry results

thus imply a much smaller cost for adjusting investment than the aggregate estimates.

One important criticism to our study is that, if delays in investment planning or inflexibility in

changing the planned pattern of investment are indeed the source of IAC, and if project planning

and completion times typically last less than a year, then one may not expect IAC to have much

effect on capital outlays at the annual frequency. There are several reasons, however, which

suggest that the use of annual data may not be restrictive in estimating IAC. First, evidence on

project planning and completion times for firms in the manufacturing industries, indicates an

average time-to-build of 23 months (Koeva (2001)). For private structures the average planning

and completion time is approximately 20 months (Edge (2000)), both well above one year.

Second, empirical evidence of the response of investment to a monetary policy shock shows a

humped-shaped response that typically peaks after around six quarters, and returns to its

pre-shock level after three years (Christiano et al (2005)), suggesting that not all adjustment at the

aggregate level takes place within the first year of the shock. If IAC are the main mechanism

behind this slow adjustment, then we should be able to identify them at the annual as well as the

quarterly frequency.

Another issue, related to the frequency of the data is the mapping between the elasticity of

investment with respect to Tobin’s q obtained at the annual frequency and that obtained at the

quarterly frequency. Recent studies have made an adjustment to the elasticity, to account for the

difference in data frequency. However, it can be shown that the elasticity of investment with

respect to Tobin’s q at the annual frequency equals the elasticity of investment with respect to

Tobin’s q at the quarterly frequency. Hence, we argue that no such adjustment needs to be made

for interpreting the results. (28)

(27) We also identify the industries with the highest adjustment cost estimates (industry 2 and 3) and use their
industry-specific values of δ and α to calibrate a value for the industry-specific elasticity of investment with respect to
Tobin’s q. By doing so, we get an even higher estimate of the elasticity than what is obtained using the sample means.
(28) See Appendix F.
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6 Conclusion

Recent literature on dynamic general equilibrium suggests that investment adjustment costs are

necessary to account for a variety of business cycle and asset market phenomena. We conducted a

disaggregated analysis using US and UK industry data to estimate the capital Euler condition via

GMM.

When both investment and capital adjustment costs structures are considered, the industry-specific

data appear to strongly support the latter. We find that instrument weakness is pervasive, however,

identification robust tests indicate that our estimates are plausible, given the data. When

investment adjustment costs alone are considered, the adjustment cost estimates are small relative

to the estimates based on aggregate data, and imply an elasticity of investment with respect to the

shadow price of capital that are fifteen times larger.

Overall, the industry data seem to support capital adjustment costs. But, as shown in the recent

literature, these types of frictions do not improve the ability of aggregate models to account for a

variety of macroeconomic phenomena. Our results suggest that from a disaggregated empirical

perspective it remains difficult to motivate and interpret the investment friction considered in

recent macroeconomic models.
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Appendix A: The aggregate model

Consider a representative household with a period utility function given as

Ut(Ct, Ht) =
C1−σ

t

1− σ
− H1+φ

t

1 + φ
(A.1)

where 0 < β < 1 is the discount factor, Ct =
(∫ 1

0
Ct(z)(θ−1)/θdz

)θ/(θ−1)

is the composite

consumption aggregate and Ct(z) is the demand for differentiated good of type z ∈ [0, 1], θ > 1 is

the elasticity of substitution between the differentiated goods, σ > 0 is the inverse of the

intertemporal elasticity of substitution for consumption expenditure by the household, Ht denotes

hours worked in period t, and φ > 0 captures the disutility of work effort. The household

minimises the total cost of purchasing differentiated goods, taking as given their nominal prices

Pt(z). This gives consumption demand for each good Ct(z) = (Pt(z)/Pt)
−θ Ct where Pt is the

aggregate price level defined as Pt =
(∫ 1

0
Pt(z)1−θdz

)1/(1−θ)

. Households own capital Kt, which

they rent to firms at rental rate Rk
t . Capital is accumulated according to

Kt+1 = (1− δ)Kt + (1− S(It, It−1, Kt)) It (A.2)

where S(.) is the adjustment cost function. When households face investment adjustment costs

(IAC), the adjustment cost function depends on current and lagged investment and given as

S(.) ≡ S(It/It−1) (A.3)

where S(1) = S ′(1) = 0 and S ′′(1) ≡ κ > 0. When households face capital adjustment costs

(CAC), the adjustment cost function is given by

S(.) ≡ S(It/Kt) (A.4)

where S(δ) = S ′(δ) = 0 and S ′′(δ) ≡ ε > 0. In each period t = 0, 1, ..., the household chooses

consumption Ct, labour Ht, nominal bonds Bt, capital Kt+1, and investment It to maximise (A.1)

subject to (A.2)-(A.4) and a sequence of period budget constraints

Ct + It +
Bt+1

Pt

=
RtBt

Pt

+
WtHt

Pt

+ Dt + Πt + Rk
t Kt (A.5)

where Bt denotes the amount of nominal riskless one-period bonds purchased by the household at

the end of period t that pay a gross return of Rt in period t + 1, Dt denotes the real dividend

income, Πt are the lump-sum profits received from the ownership of firms. The resulting

first-order conditions are as follows:

Cσ
t = λ1t (A.6)

βEt

[(
λ1t+1

λ1t

)
Pt

Pt+1

Rt

]
= 1 (A.7)
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Hφ
t Cσ

t =
Wt

Pt

(A.8)

Qt =
λ2t

λ1t

(A.9)

where λ1t is the Lagrange multiplier associated with the budget constraint and λ2t is the Lagrange

multiplier associated with (A.2). Qt is the shadow value, in consumption units, of a unit of Kt+1 at

time t. The capital and investment first-order conditions are, under the assumption of IAC, given

by

Qt = βEt

[(
λ1t+1

λ1t

) (
(1− δ)Qt+1 + Rk

t+1

)]
(A.10)

QtS
′(It/It−1)

It

It−1

+ 1 − βEt

[(
λ1t+1

λ1t

)
Qt+1S

′(It+1/It)

(
It+1

It

)2
]

= Qt [1− S(It/It−1)]

(A.11)

After log-linearising (A.11) around a non-stochastic steady state, we get (4). Under CAC, we

instead obtain

Qt

(
1− S ′(It/Kt)

(
It

Kt

)2
)

= βEt

[(
λ1t+1

λ1t

)
((1− δ)Qt+1 + Rk

t+1)

]
(A.12)

Qt

(
1− S(It/Kt)− S ′(It/Kt)

(
It

Kt

))
= 1 (A.13)

After log-linearising (A.13) around a non-stochastic steady state, we get (5).
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Appendix B: An alternative adjustment cost specification

The adjustment cost function which is homogeneous of degree zero in its arguments is given by

Ca
t =

(
It

Kt

− δ

)2

Kt +

(
It

It−1

− 1

)2

It−1 (B.1)

Under this cost structure, the log-linearised equation (14) is replaced by

Et

[
λδ (it − kt) + (1− λ) ∆it − β

α

Kψ̃
st+1 − βλδ (it+1 − kt+1)− β (1− λ) (γ1∆it+1 − γ2∆it+2)

]
= 0

(B.2)

where ψ̃ is the adjustment cost parameter under the alternative adjustment cost structure (B.1), and

where γ1 = 1 + (1− δ) , γ2 = β (1− δ). The mapping between the industry and the aggregate

elasticity is modified as

1

κ
= − δα

ψ (r + δ)
=

α

ψ̃K (r + δ)
⇔ ψ̃ =

ψ

δK

The difference, compared to (14), is the presence of the steady-state value of capital, K.
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Appendix C: An expression for Γ

The term Γ in (13) is given by

Γt = (1 + rt) Ctft − Ct+1 [gt+1 + (1− δ) ft+1] +
(1− λ)(1− δ)Ct+2

1 + rt+1

∆It+2

It+1

It+2

I2
t+1

(C.1)

where ft and gt are given by

ft = λ
∆Kt+1

K2
t

+ (1− λ)
∆It

I2
t−1

(C.2)

gt = λ
∆Kt+1It

K3
t

+ (1− λ)
∆ItIt

I3
t−1

(C.3)

with ∆Kt+1 = Kt+1 −Kt, ∆It = It − It−1.
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Appendix D: AR and K statistics

Following Kleibergen (2002), we can represent (14) as a limited information simultaneous

equation model

y = Y Θ + ε (D.1)

Y = XΠ + V (D.2)

where y = ikt(≡ it − kt), Y = [∆it ikt+1 skt+1 ∆it+1 ∆it+2] is of dimension T X5,

Θ ≡ [ (1− λ)/λδ2 βα/(ψλδ) − β β(λ− 1)(1 + (1− δ))/λδ2 β2(1− λ)(1− δ)/λδ2]
′ is

a 5X1 vector, ε is a T X1 vector of structural errors, X is T Xk matrix of instruments, Π is the

parameter matrix for the second equation, and V is T Xm matrix of reduced-form errors. Under

the null hypothesis H0 : Θ = Θ0, where λ = λ̂ and ψ = ψ̂ and the remaining parameters are

calibrated, the AR statistic is

AR(Θ0) =
1
k
(y − Y Θ0)

′PX(y − Y Θ0)
1

T−k
(y − Y Θ0)′MX(y − Y Θ0)

∼ F (k, T − k) (D.3)

where PX = X(X ′X)−1X ′ and MX = I − PX .

The K-statistic is

K(Θ0) =
(y − Y Θ0)

′PỸ (Θ0)(y − Y Θ0)
1

T−k
(y − Y Θ0)′MX(y − Y Θ0)

∼ χ2(m) (D.4)

where

PỸ (Θ0) = Ỹ (Θ0)(Ỹ (Θ0)
′Ỹ (Θ0))

−1Ỹ (Θ0)
′

Ỹ (Θ0) = XΠ̃(Θ0)

Π̃(Θ0) = (X ′X)−1X ′
[
Y − (y − Y Θ0)

sεV (Θ0)

sεε(Θ0)

]

sεV (Θ0) =
1

T − k
(y − Y Θ0)

′MXY

sεε(Θ0) =
1

T − k
(y − Y Θ0)

′MX(y − Y Θ0)
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Appendix E: Aggregate and industry estimates of the investment elasticity

The linearised first-order condition for investment in the aggregate model is given by (4), which

can be rewritten as

iAt =
1

1 + β

∑
j

ωjt−1ijt−1 +
β

1 + β

∑
j

ωjt+1ijt+1 +
1

κ (1 + β)
qA
t (D.1)

where iAt denotes aggregate investment, which satisfy

iAt =
∑

j

ωjtijt (D.2)

where ijt is investment in industry j, and ωjt is the share of investment in industry j in aggregate

investment. At the industry level, investment is given by (18). Aggregation of both sides of (18)

together with (D.2) gives

iAt =
∑

j

ωjt

(
1

1 + β
ijt−1 +

β

1 + β
ijt+1 +

Φj

1 + β
qjt

)
(D.3)

where

Φj =
δjαj

ψj (r + δj)
(D.4)

and where, for simplicity, we have treated pI
t as a constant. Combining this with (D.1) gives

∑
j

ωjt−1ijt−1 + β
∑

j

ωjt+1ijt+1 +
1

κ
qA
t =

∑
j

ωjt (ijt−1 + βijt+1 + Φjqjt) (D.5)

In the aggregate model the elasticity of aggregate investment with respect to aggregate Tobin’s q is

given by 1/κ. Solving for the aggregate elasticity from the expression above gives

1

κ
=

1

qA
t

(∑
j

(ωjt − ωjt−1) ijt−1 + β
∑

j

(ωjt − ωjt+1) ijt+1 +
∑

j

ωjtΦjqjt

)
(D.6)

Under the assumption that the share of each industry in aggregate investment is constant over

time, we get an approximate solution given by

1

κ
=

(∑
j

ωjtΦj
qjt

qA
t

)
(D.7)

The elasticity of aggregate investment with respect to q (1/κ) equals a weighted average of the

elasticity of industry investment with respect to industry q, times a term that captures how industry

q deviates from aggregate q. In the short run, qjt/qt may not equal one in all industries, due to

costs of adjustment. But in the longer run, reallocation of capital across industries means that the

shadow value of capital should be equalised across industries.
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Appendix F: Annual and quarterly estimates of the investment elasticity

From (18)-(20), we have that the elasticity of investment with respect to the shadow value of

capital equals −δα/ (ψ (r + δ)) at the annual frequency. For simplicity, assume that all other

variables than it and qt equal zero, and let ξ = −δα/ (ψ (r + δ)). We then have it = ξqt, or

dIt/I = ξdQt/Q where I and Q are the steady-state values of It and Qt. Annual investment It is

the sum of quarterly investment, It =
∑4

k=1 Ikt, where Ikt denotes investment in quarter k in year

t. The shadow value of capital at the annual frequency is the average of the shadow values in the

different quarters, Qt =
∑4

k=1 Qkt/4. We then have

d
(∑4

k=1 Ikt

)

I
= ξ

d
(∑4

k=1 Qkt

)

4Q
(D.8)

Rewriting gives
4∑

k=1

dIkt

Ik

Ik

I
=

ξ

4

4∑

k=1

dQkt

Qk

Qk

Q
(D.9)

In steady state, we have Ik = I/4, Qk = Q. This gives
4∑

k=1

dIkt

Ik

1

4
=

ξ

4

4∑

k=1

dQkt

Qk

(D.10)

which can be rewritten as
4∑

k=1

ikt = ξ

4∑

k=1

qkt (D.11)

That is, the elasticity of quarterly investment with respect to the quarterly shadow price of capital

equals the elasticity of annual investment with respect to the shadow value of capital at the annual

frequency.
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Tables

Table 1: US industry classification
No. BLS classification SIC classification Sector
1 Food and kindred products 20 Non-durable goods
2 Textile mills products 22
3 Apparel & related products 23
4 Paper & allied products 26
5 Printing & publishing 27
6 Chemical & allied products 28
7 Petroleum & refining 29
8 Rubber & plastic products 30
9 Lumber & wood products 24 Durable goods
10 Furniture and fixture 25
11 Stone, clay & glass 32
12 Primary metal industries 34
13 Fabricated metal 34
14 Ind machinery, comp equipment 35
15 Electric & electrical equipment 36
16 Transportation equipment 37
17 Instruments 38
18 Miscellaneous manufacturing 39
Notes: The NIPA industries Food and kindred products and tobacco
products are classified as industry 1, and industries textile mill products
and leather products are both classified as industry 2.
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Table 2: UK industry classification
No. Industry Sector
1 Agriculture NA
2 Oil and gas
3 Coal and mining
4 Manufactured fuels (ND) Manufacturing
5 Chemicals and pharmaceuticals (ND)
6 Non-metallic mineral products (D)
7 Basic metals and metal goods (D)
8 Mechanical engineering (D)
9 Electrical engineering and electronics (D)
10 Vehicles (D)
11 Food, drink and tobacco (ND)
12 Textiles, clothing and leather (ND)
13 Paper, printing and publishing (ND)
14 Other manufacturing (D)
15 Electrical supply Services
16 Gas supply
17 Water supply
18 Construction
19 Wholesale and vehicle sales
20 Retailing
21 Hotels and catering
22 Rail transport
23 Road transport
24 Water tranport
25 Air tranport
26 Other transportation
27 Communications
28 Finance
29 Business services
30 Public administration and defence NA
31 Education
32 Health and social work
33 Waste treatment
34 Miscellaneous services Services
Notes: (D) denotes durables manufacturing. (ND) denotes non-durables manufacturing.
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Table 3: Estimation results for the United States (non-linear specification)
Parameters J

Industry α ψ λ p-value

1. -0.08*** 0.23*** 1.00*** 0.86
(0.00) (0.01) (0.00)

2. -0.45*** -0.32 0.93*** 0.94
(0.01) (0.71) (0.13)

3. -0.22*** 0.98*** 1.00*** 0.94
(0.00) (0.19) (0.00)

4. -0.13*** 0.04 0.96*** 0.85
(0.00) (0.04) (0.00)

5. -0.09*** 0.14* 1.00*** 0.87
(0.00) (0.08) (0.02)

6. -0.07*** 0.06*** 0.97*** 0.74
(0.00) (0.02) (0.00)

7. -0.09*** -0.08 1.00*** 0.98
(0.00) (0.10) (0.01)

8. -0.12*** 0.19*** 0.97*** 0.95
(0.00) (0.03) (0.00)

9. -0.22*** 0.10 1.00*** 0.92
(0.01) (0.24) (0.07)

10. -0.26*** -0.12 0.92*** 0.84
(0.01) (0.32) (0.17)

11. -0.23*** 0.05 1.00*** 0.92
(0.00) (0.04) (0.05)

12. -0.13*** 0.27*** 1.00*** 0.95
(0.00) (0.03) (0.00)

13. -0.08*** 0.25*** 1.00*** 0.93
(0.00) (0.02) (0.00)

14. -0.06*** 0.17*** 0.96*** 0.83
(0.00) (0.01) (0.00)

15. -0.09*** 0.29*** 0.97*** 0.85
(0.01) (0.07) (0.00)

16. -0.09*** 0.26*** 0.95*** 0.72
(0.00) (0.05) (0.00)

17. -0.10*** 0.16*** 1.00*** 0.98
(0.00) (0.03) (0.01)

18. -0.34*** 0.06*** 0.98*** 0.84
(0.01) (0.29) (0.10)

Notes: Estimates of Euler equation (13). Instruments: lags 2 to 6 of oil-shock
dummies and the innovation in federal defense spending.
Standard errors in parentheses: * significant at the 10% level; ** significant at
the 5% level; *** significant at the 1% level.
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Table 4: Estimation results for the United States (linearised specification) with weak instrument diagnostics and
identification robust tests

Parameters J partial-R2 AR K
Industry ψ λ p-value R2

p(st+1) R2
p(ikt+1) R2

p(∆it+1) R2
p(∆it+2) p-value p-value

1. 0.59*** 1.00*** 0.90 0.14 0.08 0.09 0.24 0.78 0.72
(0.18) (0.00)

2. 2.68*** 1.00*** 0.96 0.07 0.26 0.21 0.15 0.30 0.25
(0.82) (0.00)

3. 0.08 1.00*** 0.88 0.06 0.30 0.21 0.24 0.45 0.19
(0.22) (0.02)

4. 0.93*** 1.00*** 0.83 0.26 0.18 0.36 0.14 0.11 0.01
(0.20) (0.00)

5. 0.18 1.00*** 0.82 0.08 0.12 0.13 0.14 0.20 0.21
(0.22) (0.00)

6. 0.40*** 1.00*** 0.79 0.31 0.23 0.10 0.15 0.43 0.44
(0.15) (0.00)

7. 1.64*** 1.00*** 0.86 0.35 0.23 0.23 0.18 0.27 0.13
(0.55) (0.00)

8. -0.27 1.00*** 0.84 0.05 0.09 0.15 0.13 0.58 0.75
(0.36) (0.02)

9. -0.46 1.00*** 0.89 0.10 0.29 0.38 0.10 0.12 0.18
(0.42) (0.00)

10. 1.92*** 1.00*** 0.88 0.09 0.22 0.07 0.08 0.17 0.12
(0.39) (0.00)

11. 1.00*** 1.00*** 0.94 0.10 0.17 0.24 0.09 0.07 0.04
(0.35) (0.00)

12. 2.52*** 1.00*** 0.96 0.15 0.13 0.11 0.10 0.04 0.00
(0.85) (0.00)

13. 0.59*** 1.00*** 0.98 0.03 0.06 0.07 0.08 0.21 0.71
(0.18) (0.00)

14. 0.50*** 1.00*** 0.91 0.16 0.13 0.14 0.09 0.03 0.03
(0.15) (0.00)

15. 0.14** 1.00*** 0.89 0.12 0.05 0.11 0.13 0.25 0.37
(0.06) (0.00)

16. 0.10 1.00*** 0.80 0.05 0.04 0.09 0.15 0.22 0.47
(0.12) (0.01)

17. 0.50*** 1.00*** 0.98 0.12 0.23 0.24 0.23 0.85 0.60
(0.12) (0.00)

18. 0.77 1.00*** 0.94 0.06 0.24 0.19 0.19 0.05 0.06
(0.57) (0.00)

Notes: Estimates of Euler equation (17). Instruments: lags 2 to 6 of oil-shock dummies and the innovation in federal defense spending.
Standard errors in parentheses: * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 5: Estimation results for the Untied States (non-linear specification) with λ constrained
Investment Adjustment Costs (λ=0) Capital Adjustment Costs (λ=1)

Parameters J Parameters J
Industry α ψ p-value α ψ p-value

1. -0.06*** 0.00 0.90 -0.06*** 0.01 0.90
(0.00) (0.00) (0.00) (0.10)

2. -0.46*** 0.01*** 0.93 -0.46*** 3.26*** 0.94
(0.00) (0.00) (0.00) (0.92)

3. -0.19*** 0.01*** 0.91 -0.20*** 1.38*** 0.93
(0.00) (0.00) (0.00) (0.00)

4. -0.12*** -0.00 0.91 -0.12*** -0.01 0.90
(0.00) (0.00) (0.00) (0.07)

5. -0.09*** 0.001*** 0.90 -0.09*** 0.19** 0.90
(0.00) (0.00) (0.00) (0.09)

6. -0.07*** -0.001* 0.82 -0.07*** -0.08** 0.83
(0.00) (0.00) (0.00) (0.04)

7. -0.09*** -0.00 0.97 -0.09*** -0.04 0.97
(0.00) (0.00) (0.00) (0.10)

8. -0.102*** -0.00 0.88 -0.10*** -0.20*** 0.89
(0.00) (0.00) -(0.00) (0.08)

9. -0.21*** 0.00 0.97 -0.21*** 0.26* 0.97
(0.00) (0.00) (0.00) (0.15)

10. -0.24*** -0.01*** 0.82 -0.28*** -0.30 0.87
(0.00) (0.00) ()0.00 (0.58)

11. -0.22*** -0.00 0.94 -0.22*** 0.10 0.94
(0.00) (0.00) (0.00) (0.19)

12. -0.10*** 0.001*** 0.92 -0.12*** 0.15 0.87
(0.00) (0.00) (0.00) (0.10)

13. -0.06*** 0.001*** 0.90 -0.06*** 0.37* 0.87
(0.00) (0.00) (0.00) (0.21)

14. -0.04*** 0.001*** 0.93 -0.04*** 0.22*** 0.93
(0.00) (0.00) (0.00) (0.09)

15. -0.04*** 0.00 0.93 -0.04*** -0.01 0.94
(0.00) (0.00) (0.00) (0.06)

16. -0.07*** 0.00 0.81 -0.07*** 0.25*** 0.91
(0.00) (0.00) (0.00) (0.03)

17. -0.09*** -0.00 0.90 -0.09*** -0.03 0.90
(0.00) (0.00) (0.00) (0.12)

18. -0.34*** -0.00 0.90 -0.34*** -0.06 0.90
(0.00) (0.00) (0.00) (0.31)

Notes: Estimates of Euler equation (13). Instruments: lags 2 to 6 of oil-shock dummies
and the innovation in federal defense spending. Standard errors in parentheses: * significant
at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 6: Estimation results for the United Kingdom (non-linear specification)
Parameters J

Sector α ψ λ p-value

Non-farm private -0.16** 2.27 0.99** 0.82
(0.08) (0.70) (0.00)

Services -0.21** 3.74** 1.00** 0.92
(0.01) (1.73) (0.00)

Manufacturing -0.11** 0.98** 1.00** 0.72
(0.00) (0.49) (0.00)

Durables -0.10** 0.84* 1.00** 0.97
(0.01) (0.45) (0.01)

Non-durables -0.12** 1.60* 1.00** 0.93
(0.00) (0.99) (0.00)

Notes: GMM estimation of (13) using pooled data. Instruments: lag 2 of oil and demand
variable, constant. Starting value for λ = ψ = 0.5
Standard errors in parentheses: **(*) denotes significance at the 5% (10%) level.
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Table 7: Estimation results (linearised specification) with weak instrument diagnostics and
identification robust tests

Parameters J AR K
Sector ψ λ p-value p-value p-value
Non-farm private 1.81** 1.00** 0.19 0.27 0.32

(0.79) (0.00)
Services 2.64* 1.00** 0.87 0.31 0.42

(1.42) (0.00)
Manufacturing 0.43** 1.00** 0.01 0.07 0.12

(0.18) (0.00)
Durables 0.69* 1.00** 0.02 0.10 0.14

(0.41) (0.00)
Non-durables 0.30* 1.00** 0.04 0.08 0.11

(0.16) (0.01)
Notes: Estimates of Euler equation (17). Instruments: lags 2 to 4 of oil and demand variables.
Standard errors in parentheses: **(*) denotes significant at the 5% (10%) level.
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Table 8: Shea (1997) partial R2 for UK industries
Industry st+1 ikt+1 ∆it+1 ∆it+2

4 0.04 0.16 0.26 0.18
5 0.06 0.04 0.02 0.07
6 0.01 0.01 0.01 0.02
7 0.01 0.00 0.13 0.00
8 0.00 0.15 0.03 0.03
9 0.00 0.01 0.03 0.05
10 0.02 0.13 0.01 0.02
11 0.04 0.04 0.27 0.17
12 0.03 0.04 0.01 0.00
13 0.00 0.19 0.00 0.07
14 0.00 0.02 0.01 0.00
15 0.00 0.02 0.02 0.06
16 0.01 0.01 0.00 0.00
17 0.13 0.08 0.07 0.00
18 0.04 0.00 0.02 0.00
19 0.04 0.02 0.03 0.04
21 0.07 0.01 0.01 0.00
22 0.02 0.13 0.04 0.00
23 0.00 0.00 0.00 0.03
24 0.06 0.10 0.10 0.08
25 0.15 0.04 0.02 0.07
26 0.04 0.00 0.00 0.00
27 0.00 0.00 0.02 0.10
28 0.03 0.02 0.08 0.00
29 0.04 0.02 0.03 0.00
34 0.04 0.16 0.15 0.13
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Table 9: UK estimation results (non-linear specification) with λ constrained
Investment Adjustment Costs (λ=0) Capital Adjustment Costs (λ=1)

Parameters J Parameters J
Sector α ψ p-value α ψ p-value
Non-farm private -0.19** -0.00 0.19 -0.16** 2.31* 0.66

(0.02) (0.01) (0.01) (1.31)
Services -0.25** 0.00 0.57 -0.21** 3.71* 0.52

(0.02) (0.00) (0.01) (1.72)
Manufacturing -0.11** 0.00 0.01 -0.11** 0.92* 0.31

(0.00) (0.00) (0.00) (0.00)
Durables -0.01** 0.01 0.08 -0.10** 0.81 0.67

(0.00) (0.00) (0.01) (0.45)
Non-durables -0.13** -0.00 0.01 -0.13** 1.55* 0.53

(0.00) (0.00) (0.00) (0.88)
Notes: GMM estimation of (13) using pooled data. Instruments: lag 2 of oil and demand
variable, constant.
Standard errors in parentheses: **(*) denotes significance at the 5% (10%) level.
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