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Summary

A large share of all economic transactions is ultimately settled via money transfers between

banks, taking place on ‘large-value payment systems’ (LVPSs). In 2006, the annual value of

interbank payments made in the European system TARGET totalled €533 trillion

(about $670 trillion), amounting to more than 50 times the value of the corresponding countries’

gross domestic products. The sheer size of these transactions, and their importance for the

functioning of the economy, explains why policymakers are interested in LVPSs, and in the

behaviour of their participants.

In the past, most payment systems worked on a deferred, net settlement basis. During a business

day the banks would exchange promises of payments, deferring the actual transfer of funds to the

end of the day, when only net positions were settled. The advantage of this arrangement was that

only net debtors had to actually provide funds, and only in a quantity sufficient to cover their net

position. Because net positions are typically small (compared to gross payments), the system as a

whole would require little liquidity to function. Today instead, most LVPSs work on a gross

settlement basis: there is no netting, and a payment obligation is legally discharged only when

the corresponding full amount is transferred across accounts held at a central bank. This apparent

backward step, strongly encouraged by monetary authorities worldwide, was motivated by credit

risk concerns. Suppose indeed that, in a net system, at the end of the day a bank is unable to

make good its final position. Its creditors may face losses too large to be sustained, so their

payments too might have to be cancelled, creating a domino effect with significant consequences

for financial stability. Gross settlement eliminates this risk but requires more liquidity, as the

benefits (not only the risks) of netting are foregone. These arguments suggest that the provision

of liquidity is an essential issue to modern payment systems.

Real-time gross systems are more ‘liquidity hungry’ than deferred net systems. However, they

allow for liquidity ‘recycling’: when a bank receives a payment, it can use the received funds to

make other payments of its own. To make an analogy, in a football game the ball can be passed

between the players many times; similarly, a same unit of liquidity can be used to settle many

payments. Consider however what happens if the ball is expensive to buy − maybe no one would

like to pay for it in the first place. Unfortunately the analogy carries on to payment systems,

where liquidity (the ball) bears a cost for commercial banks. This is an interest cost (typically
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charged by the central bank) or an opportunity cost (when liquidity is obtained against a pledge

of collateral). So, even though just a little liquidity could generate a large volume of exchanges,

it is unclear who should provide it. Banks are thus faced with a dilemma: to act as liquidity

providers by acquiring costly funds, or to wait for liquidity to arrive from other banks. In the first

case a bank does not depend on its partners, and it can promptly execute payments. In the second

case, a bank benefits from a free source of liquidity, but is exposed to the risk of delaying

payments while waiting for funds to arrive.

This paper develops a dynamic model of liquidity provision in a payment system, where banks

face a choice between: a) the costs of borrowing liquidity, and b) the cost of delaying payments.

In more detail, the model is a sequence of days. At the beginning of each day, every bank

chooses how much liquidity to borrow from external sources. This liquidity is then used to

execute payment orders which arrive throughout the day in a random, exogenous fashion (these

orders can be interpreted as being commissioned by a bank’s external clients, or by some area of

the bank, different from the treasury). As long as the bank has sufficient funds, payments are

executed as soon as they are received; when instead a bank’s liquidity balance reaches zero,

payments are queued until incoming payments provide the bank with new funds. Finally, at the

end of the day banks receive profits, which depend on the liquidity borrowed, and on the delays

suffered in executing payment orders. Day after day, banks adapt their liquidity choices

following a particular learning process. As a consequence, the banks’ behaviour eventually

stabilises, and the banks end up providing an equilibrium amount of liquidity.

The system’s equilibrium level depends on the model’s parameters. By changing these, we look

at the amount of liquidity absorbed by the system in a variety of scenarios, drawing conclusions

on the efficiency of the system. We find that, for a wide range of costs, efficiency could be

enhanced if banks were to commit more liquidity than they do in equilibrium. This might

constitute a rationale for imposing measures that encourage liquidity provision (for example,

throughput guidelines). From a different perspective, systems with fewer participants are found

to be more liquidity-efficient than larger ones, due to the emergence of ‘liquidity pooling’ effects,

as described by previous studies. These results are found by varying the size of the system but

not its structure: it is outside the scope of this work to look at how liquidity choices are affected

by changes in the extent of ‘tiering’ of a payment system (that is, we do not fully investigate the

case of banks ‘moving out’ of the system, and making their payments through other system

participants).
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1 Introduction

Virtually all economic activity is facilitated by transfers of claims by financial institutions. In

turn, these claim transfers generate payments between banks whenever they are not settled across

the books of a (perhaps third) institution. These payments are settled in interbank payment

systems. In 2006, the annual value of interbank payments made in the European system

TARGET totalled €533 trillion (about $670 trillion). In the corresponding US system Fedwire,

the amount was $572 trillion, while the UK system CHAPS processed transactions for a value of

£59 trillion (about $109 trillion). In perspective, these transfers amounted to 24 to 40 times the

value of the respective countries’ GDPs. The sheer size of the transfers, and their pivotal role in

the functioning of financial markets and the implementation of monetary policy, make payment

systems a central issue for policymakers and regulators.

At present, most interbank payment systems work on a real-time gross settlement (RTGS)

modality. That is, settlement takes place as soon as a payment is submitted into the system (real

time); also, a payment can be submitted only if the paying bank has enough funds to deliver the

full amount in central bank money (gross settlement). Because no netting takes place, RTGS

modality imposes high liquidity demands on the banks, making RTGS systems vulnerable to

liquidity risk, ie to the risk that liquidity-short banks are unable to send their own payments. This

may create delays and possibly cause gridlocks in the system (see eg Bech and Soramäki (2002)).

Hence, liquidity is one of the central issues in RTGS payment systems; as such it attracts the

attention of central banks and stimulates a large amount of research. This paper aims at

contributing to this knowledge, offering a model of liquidity demand and circulation in an RTGS

system. To our knowledge, this is the first paper that explores this question using an

‘agent-based’ approach, ie combining elements of game theory and numerical simulations.

The amount and the distribution of liquidity in a payment system is the result of a complex

interaction between the system’s participants. Indeed, during the day, each bank has to make a

stream of payments, that can only be partly predicted. To cover the liquidity needs generated by

these payments, banks typically rely on two sources: a) reserve balances or credit acquired from

the central bank and b) funds received from other settlement banks during the course of the day.

The first source can be seen as providing external (to the system) liquidity, while the second is a

source of internal liquidity. In normal conditions a bank can draw freely on external liquidity.
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This however has a cost, which gives incentives to economise on its use.1 Internal liquidity on

the other hand carries no cost, but its arrival is out of the bank’s control. Hence, reliance on

internal liquidity exposes the bank to the risk of having to delay its own payment activity −
something which is also costly.2 As a consequence, a bank has to optimally decide how much

external liquidity to acquire, trying to forecast when and how much internal liquidity it will

receive, trading off external liquidity costs against (expected) delay costs. The fact that banks i)

delay some payments, and yet ii) do not wait till the very end of the day to make all their

payments, shows that this trade-off indeed exists.

Two main difficulties emerge when studying the behaviour of banks in a payment system. First,

when modelled in sufficient detail, liquidity flows in RTGS systems follow complex dynamics,

making the bank’s liquidity management problem anything but trivial. Indeed, recent work by

Beyeler et al (2007) shows that, when the level of external liquidity is low, payments lose

correlation with the arrival of payment orders; as a consequence, it is difficult to gauge the

precise relationship between liquidity and delays, making it hard to determine the optimal usage

of external funds. Second, the actions of each bank produce spillover effects on the rest of the

system, so no system participant can solve its optimal liquidity demand problem in isolation. As

strategic interactions are widespread, banks interact in a fully fledged ‘game’, jointly determining

the performance of the system.

This paper studies this liquidity game, putting particular effort into modelling liquidity flows. We

thus build a payments model where external liquidity is continuously ‘recycled’ among many

banks, with delays and costs generated in a non-trivial way by a realistic settlement process.

Such realism will inevitably force us to abandon the analytical approach and instead to use

simulations. In particular, we use numerical methods to compute a crucial element of the game,

the pay-off function, or a relationship between i) a bank’s own external liquidity, ii) the external

liquidity of other banks, and iii) the resulting settlement delays and costs.

We are interested in the equilibria of the liquidity game, or the choices that banks may be seen to

adopt in a consistent fashion. To do so we solve the model adopting a dynamic approach. That is,

we assume that banks change their actions over time, using an adaptive process whereby actions

1The costs of acquiring liquidity are opportunity costs (returns that the bank would obtain if it could employ this liquidity differently),
and interest costs (costs from borrowing the liquidity itself).
2Delays usually carry two types of cost. First, formal agreements often penalise late delivery; if a delay extends over the end of the due
day, penalties may apply. Second, delays may entail reputational costs, which are difficult to quantify but potentially large.
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are chosen on the basis of past experience. We then simulate the resulting dynamics and we look

at the limit, or equilibrium, behaviour. This depends on the specific form of the adaptive rule, so

we choose the learning process in such a way that, on the one hand, it embeds some rationality

on the part of the banks; on the other, it leads to a meaningful equilibrium. A convergence point

of our dynamics will be a Nash equilibrium of the liquidity game.

Given its game-theoretic approach, this paper is related to recent work by Angelini (1998), Bech

and Garratt (2003, 2006), Buckle and Campbell (2003) and Willison (2005). These papers model

various ‘liquidity management games’ with a few agents and a small number of periods

(respectively, two and three). While these models improve our understanding of the incentives in

payment systems, the actual pay-off functions may be too simple to describe costs in real

payment systems accurately. As we said, in RTGS systems liquidity can circulate many times

and between many banks, generating dynamics that cannot be captured by these simple, but

analytically tractable, models.

Recently, a growing literature has used simulation techniques to investigate efficiency and risk

issues payment systems (see eg James and Willison (2004) and the volumes edited by Leinonen

(2005, 2007)). Simulation studies have been widely used in comparing alternative central bank

policies, or testing the impact of new system features before their implementation in payment

systems. A common shortcoming of such studies has been, however, that participant behaviour is

rarely endogenised in the models. The behaviour of banks has either been assumed to remain

unchanged across alternative scenarios, or to change in a predetermined manner, leaving aside

(or largely simplifying) the strategic aspects studied by the game-theoretic studies.

Recognising the strengths and disadvantages of these two approaches, the present paper tries to

build a bridge between them, combining the strength of each of them. Of course, we have to

leave something behind: the realism of historical data (which may however be inappropriate to

study counterfactual scenarios), and the sharpness of analytical results.

The paper is organised as follows: Section 2 provides a formal description of the model,

describes some properties of the cost function, and illustrates the tatônnement process towards

equilibrium. Section 3 presents the results of the experiments and Section 4 concludes.
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2 Description of the model

The model is a stylised representation of a day in RTGS, where the banks (players) engage in the

following game.

2.1 Banks and liquidity choices

At the beginning of the day, each of N banks (denoted by i = 1...N ) chooses its reserves, say

li (0), to be used in the course of the settlement day.3 To simplify, we assume that these reserves,

the external liquidity, can only be acquired once, at the beginning of the day. Once reserves have

been (simultaneously) chosen, the settlement day begins: banks start receiving payment orders,

and execute them using available liquidity. In game-theoretic terms, li (0) is bank i’s action and

the vector l = (l1 (0) , l2 (0) ..lN (0)) is an action profile. The next subsection illustrates how

payments are received and executed, generating the outcome of the game.

2.2 Payments and delays

The outcome of the day-game is determined as follows. The day is modelled as a continuous

time interval [0, T ]. Payment orders arrive according to a Poisson process with parameter λ = 1,

so the system as a whole receives, on average, T orders per day. The payor and the payee of

these payment orders are determined by (uniform) random draws: for any order, the probability

that banks i and j /= i are respectively the payor and the payee is 1
N

1
N−1 . Equivalently, each

single bank receives payment orders according to a Poisson process with parameter λ = 1/N ,

and the payee of each such order is determined by a random (uniform) draw. These orders can be

seen as generated outside the bank, by a bank’s clients, or within the bank, by some area which is

different from the treasury department. Whatever the interpretation, payment orders are

exogenous for the agent choosing li (0).

Let us call zi (t) the number of payment orders received by bank i up to time t , and xi (t) the

number of payment orders executed by i up to t . At t , bank i’s queue (its backlog of outstanding

orders) is therefore

qi (t) = zi (t)− xi (t)

3In the simulations, we assume that li (0) is an integer between 0 and some large L .
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where we set zi (0) = xi (0) = 0. Payments orders are executed using available liquidity. Bank

i’s available liquidity at time t is defined as:

li (t) = li (0)− xi (t)+ yi (t)

where yi (t) is the amount of payments that i has received from other banks up to time t . For

simplicity, we assume that every i adopts the following payment rule:4

if li (t) > 0, execute new and queued payments as FIFO;

if li (t) = 0, queue new payment orders.
(1)

Bank i’s incoming payments yi (t) are just other banks’ outgoing payments, so the settlement

process is fully described by the above equations.

As mentioned in the introduction, even this simple model generates extremely complex dynamics

of liquidity li (t) and queues qi (t).5 However, the model can be simulated numerically. A given

action profile l = (l1 (0) , ...lN (0)) pins down the initial conditions of the system; from there, the

exogenous arrival of payment orders mechanically generates liquidity fluxes, queues and delays.

All this can be numerically simulated, to determine how delays depend on liquidity choices. For

example, Chart 1 shows the (average) amount of delays obtained for different levels of total

liquidity in the system, when li (0) is the same for each i .6

As system liquidity is reduced, delays increase non-linearly due to what are often referred to as

‘deadweight losses’ (Angelini (1998)) or ‘gridlocks’ (Bech and Soramäki (2002)). Intuitively, a

bank that reduces its liquidity holdings might have to delay its outgoing payments; as a

consequence, the receivers of the delayed payments may in turn need to delay their own

payments, causing further downstream delays and so on. These delay chains are more likely and

more extended the lower the liquidity in the system. Thus, the total effect of liquidity reduction

acts in a compounded fashion.

4Such a rule is optimal for the cost specification given in the next section: banks need to pay upfront for liquidity, so they have no
incentive to delay payments if liquidity is available. Under other cost specifications (eg heterogeneous payment delay costs) this would,
however, not be the case.
5Queues do not form only when li (0) is very high. Then, �x = �z so executed payments essentially follow a Poisson process which
mirrors the arrival of payment orders.
6Delays are normalised such that 1 reflects a situation where all payments are delayed until the end of the day, and 0 a situation where no
delays take place.
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Chart 1: Delays as a function of total liquidity
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2.3 Costs

At the end of the settlement day, banks receive pay-offs that depend on the liquidity posted at the

beginning of the day, and on the delays generated by the settlement algorithm illustrated in the

above section. More precisely, we assume that acquiring initial liquidity li (0) imposes a liquidity

cost equal to:

C (li (0)) = λli (0) , λ > 0 (2)

This is the first component of a bank’s pay-off (cost). We then suppose that a payment order

received at t and executed at t ) carries a penalty equal to

c
b
t ), t
c = κ(t ) − t), κ > 0 (3)

Such penalties are summed over all received payment orders of the day, to give a bank’s delay

cost. A bank’s total pay-off is then the sum of delay and liquidity costs.

The random arrival of payment orders generates random delays; hence, pay-offs too are a random

function of the action profile l (0). As anticipated above, the analytical form of this pay-off is

exceedingly complex to determine; hence, we simulate the settlement process many times for

every action profile, to obtain a numerical estimate of expected costs, as a function of l (0).7 The

resulting pay-off function is plotted in Charts 2 and 3 for two levels of delays costs; ‘low’ (2) and

‘high’ (3).

The simulations also show an interesting fact:

7We assume banks are risk-neutral, ie they care about expected pay-offs.
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Chart 2: Costs as a function of own initial funds - low delay costs
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Chart 3: Costs as a function of own initial funds - high delay costs
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Remark 1 Bank i’s cost is (essentially) a function of its own action and of the sum of others’

actions.

This important empirical finding, which probably depends on the fact that the day is ‘long’,

greatly simplifies the analysis.8 First, in certain respects it leaves us with a game with only two

players: bank i playing against ‘the rest of the system’. Second, it allows us to derive some

analytical results, to be discussed in the next section.9

We find this result by comparing two sets of simulations. In the first set, we vary the total amount

of liquidity, while spreading it uniformly across banks (ie we simulate the settlement day for

different values of
3

li (0), imposing every time li (0) = 1
N

3
li (0) ∀i). In the other, we change

again the total liquidity, but we distribute it randomly across banks, so li (0) varies across banks.

Comparing the total costs in the two sets, we found that the differences are small− around 2% or

less. We suspect this can be explained by two facts: i) the assumption of a complete symmetric

network (every bank exchanges payments to any other with similar intensity), and ii) the

relatively large number of payments quickly redistributes liquidity, flushing out the initial

conditions. Both assumptions are realistic in many systems, for example in the UK CHAPS

system (see Soramäki et al (2007)).

2.4 Equilibrium

To find the equilibrium of the liquidity game, we use the so-called fictitious play tatônnement

process (Brown (1951)). Largely studied in evolutionary game theory, fictitious play is a

specification of how players change their actions in time, learning from experience. A precise

description of this process is in the appendix; the reason to adopt this particular dynamic is

twofold. First, despite its simplicity the fictitious play rule is in a sense rational and thus not too

unrealistic, corresponding to Bayesian updating of beliefs about others’ actions.10 Second,

fictitious play can indeed be a useful tool to compute equilibria. Indeed, when fictitious play

converges to a stable action profile, this is a Nash equilibrium of the underlying game.11

8We do not have a rigorous proof, but we suspect the following. When many payments are made (ie the day is ‘long’), liquidity is soon
spread among banks according to a stable distribution. Hence the initial distribution does not matter, only the total liquidity does.
9Games with this property are known as aggregation games. They have the convenient feature that a number of adjustment dynamics
applied to them are ‘well behaved’ (see eg Mezzetti and Dindo (2006)).
10See eg Fudenberg and Levine (1998, page 31) for details.
11It is well known that fictitious play may fail to converge. However this is not the case here, as shown by the simulations. Interestingly,
convergence in aggregation games was shown by Kukushkin (2004) for a dynamic similar to fictitious play.
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Summing up, fictitious play can be seen either as a computational device, or as a ‘story’ with an

appealing economic meaning.

A key question is whether the game has a unique equilibrium and, if not, which equilibrium will

be uncovered with fictitious play. The appendix discusses this in more detail. The bottom line is

that, although our model does have different equilibria (depending on the initial conditions the

simulations will pick one or the other), all equilibria are characterised by exactly the same total

level of liquidity
3

i li (0), which can therefore be rightly called the equilibrium liquidity. This

allows us to perform comparative statics, where we change parameters of the cost function and

other elements of the model.

3 Results

3.1 Liquidity demand and efficiency of the equilibrium

We start with a base case scenario with 15 banks; this number is chosen so that our system ‘looks

like’ the UK CHAPS.12 In all of the simulations banks interact in a complete network, ie each

sends payments to every other bank in the system − another fairly realistic assumption for

CHAPS.

First, we obtain a ‘liquidity demand function’, relating the (equilibrium) amount of external

liquidity
3

i li (0) to unit delay costs κ, for λ normalised to 1.13 As expected, the amount of

liquidity acquired by the banks is low for relatively inexpensive delays (Chart 4). When k grows,

so does liquidity demand, roughly following a logarithmic pattern up to a certain point. However,

as liquidity grows, delays become increasingly rare. As a consequence, decreasing returns on

liquidity eventually prevail, causing liquidity demand to eventually flatten out.

An important question is whether the equilibrium of the liquidity game is efficient; that is,

whether the self-interested behaviour of banks can be improved upon by some co-ordinated

action. To answer this question, one should ideally compare the equilibrium outcome of the

game, to what would result if banks were jointly minimising the total costs of the system. To

12The length of the day is 3,000 ‘time ticks’, so on average each bank makes 200 payments a day.
13Only λ/κ matters for the banks’ decisions; hence our demand function is essentially equivalent to a ‘traditional’ liquidity demand,
where the demand

3
i li (0) depends on the cost λ.
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Chart 4: Equilibrium external liquidity as a function of delay costs
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Chart 5: Cost-minimising common action (dashed) versus Nash-equilibrium outcome
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simplify computations, we search for optimal liquidity levels under the constraint

li (0) = l j (0) ∀i, j − all banks are given the same amount of funds.14 We find that the

equilibrium outcome roughly coincides with the collective cost minimising choice for extreme

values of k (delay costs), as shown in Chart 5 (the continuous line represents the liquidity

minimising total cost). However, for intermediate unit delay costs, the outcome reached by

independent banks is dominated by the co-ordination outcome, where more liquidity is provided

as a whole.

At the origin of such inefficiency are positive externalities in liquidity provision: external

liquidity is used by all banks, but of course an individual institution only cares about private costs

14This constraint should not be binding: returns to own liquidity are decreasing, so redistribution from a liquidity-rich to a liquidity-poor
bank should on average reduce total delays. Hence, an efficient allocation of liquidity should assign the same li (0) to all banks.
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and benefits. Competitive banks then free-ride on others, leading to insufficient provision of

external liquidity.

3.2 Relative efficiency of different size networks

Is a system with more participants preferable to a smaller one? This question can be considered

from different points of view: from a risk / financial stability perspective,15 or from a

cost-efficiency perspective. Here, we concentrate on the second aspect. We then run experiments

varying the number of banks in the model. In the first experiment, we increase the number of

participants while keeping the number of payments per bank constant. In the second experiment,

we increase the number of participants while keeping constant the system-wide number of

payments (so per-bank payments are decreased). We measure efficiency using the netting ratio,

that is the average amount of external liquidity required for each payment:

netting ratio = total external liquidi ty
total payments

The lower the netting ratio, the higher is the level of ‘liquidity recycling’ in the system.

A caveat: while we change the size of the system, we maintain the assumption of a complete and

symmetric payment network. This type of change (a pure ‘rescaling’) is convenient to analyse,

but is just a simplified description of what happens in real payment systems. There, changes in

the number of banks are usually accompanied by changes in the topology of the system, as some

banks de facto merge their payment activity with others (giving rise to the so-called ‘tiering’).

When this happens, liquidity demand is influenced in a complex way by a number of factors, that

we do not need to consider in our simplified ‘rescaling’ case. The interaction of liquidity demand

(and costs) and tiering is outside the scope of this paper; it is instead studied in Jackson and

Manning (2007).

3.2.1 Size effects I − constant individual bank payments

Here we vary N (the number of banks), while keeping the number of payments per bank constant

− so the number of system-wide payments changes accordingly. The number of system

participants has a dramatic effect on liquidity choices and efficiency. As the system size

increases, liquidity demand grows while efficiency falls, and increasingly so as delays become

15For example, fewer participants could imply that the failure of one bank implies disruption of a larger share of payments. On the other
hand, fewer participants might also mean safer participants, making it non-trivial to draw financial stability conclusions.
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Chart 6: Equilibrium external liquidity with alternative system sizes and fixed turnover per
bank
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expensive. As Chart 6 shows, for low delay costs the netting ratio16 is virtually unaffected by the

network size. But, at higher unit delay costs, differences are amplified and systems with fewer

participants are more liquidity-efficient than systems with a higher number of participants.

The following is an intuitive explanation of this result (as we said, liquidity flows are too difficult

to be described analytically, so we can only rely on intuition to interpret the simulations).

Consider a bank i and suppose N is increased from, say, 2 to 3. Because the number of payments

per bank are kept constant and equally distributed over all banks, both outgoing and incoming

expected payments remain constant for i in any time interval.17 However, the variance of i’s

incoming payments increases: at each t , a bank i can now receive 0, 1 or 2 payments instead of

only 0 or 1. Faced with a more unstable source of internal liquidity, the banks find it convenient

to rely more on external liquidity.

3.2.2 Size effects II − constant total volume

In a second experiment, we keep constant the system total volume, distributing it over a varying

number of banks. Note however that we keep constant the number of payments between banks.

The results, illustrated in Chart 7, show a pattern similar to the previous case: systems with fewer

members are seen to absorb less liquidity.

16The average liquidity required for each payment, or the ratio (total bank external liquidity) / (total payments).
17If Z is the number of a bank’s outgoing payments, the total outflow out of all j /= i is (N − 1)Z . By construction, i captures a fraction
1/(N − 1) of this flow, ie Z , which is kept constant.

Working Paper No. 352          August2008                                                 16

148585
Stamp



Chart 7: Equilibrium external liquidity with alternative system sizes and fixed total turnover

n=2
n=5

n=15

n=50

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100
price of delays

ne
tti

ng
 ra

tio

Our (again, intuitive) explanation of this finding is as follows. A reduction of the number of

banks from N to say N ) can be seen as taking place in two ‘steps’: first, a reassignment of the

payments as to involve N ) banks only; second the elimination of the banks left with no payments.

The second stage is neutral, as the eliminated banks are ‘dummy’. Instead, the first stage brings

about liquidity savings, due to the so-called liquidity ‘pooling effect’ (see eg Jackson and

Manning (2007)). In turn, the liquidity pooling can be explained as follows: suppose the

payments to/from two different banks are settled by one bank only. The volatility of the liquidity

balance of this one bank increases, but by a factor less than two. Thus, a liquidity buffer of less

than two times the original liquidity buffers is sufficient to settle all payments; a more precise

explanation is given in the appendix.

4 Conclusions

In this paper we build and simulate an agent-based model of an RTGS system, paying special

attention to the complex liquidity flows exchanged by the participating banks. The simulations

demonstrate that a complete, symmetric RTGS system can be described as an aggregation game,

whose convenient features allow us to compute the equilibrium behaviour of the system, and to

perform various comparative statics exercises.

First, we retrieve a liquidity demand function, relating the system’s liquidity to the costs faced by

banks in their payment activity (liquidity versus delay costs). Then we consider the question of

whether such liquidity demand, expressed by non-cooperating banks, is efficient. We find that,

for a wide range of costs, efficiency (measured by the netting ratio) could be enhanced if banks

Working Paper No. 352          August 2008  17



were to commit more liquidity than they do in equilibrium. This might constitute a rationale for

imposing measures that encourage liquidity provision (for example, throughput guidelines).

From a different perspective, systems with fewer participants are found to be more

liquidity-efficient than larger ones, due to the emergence of ‘liquidity pooling’ effects, as

described by previous studies. We privileged complexity and realism, over analytical solvability.

Consequently, we used a numerical, agent-based approach. Besides being useful when

closed-form results are difficult to obtain, our approach is flexible and modular, allowing the

present work to be extended to alternative scenarios. Further research may look at different

network structures, at more elaborated liquidity management rules, at banks that differ in their

costs or payment orders. Finally, our model of a ‘vanilla’ RTGS system could be easily extended

to ‘hybrid’ systems like the European TARGET, which features liquidity-saving mechanisms.
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5 Appendix

5.1 Fictitious play

Consider a sequence of daily games (settlement days) running from t = 0 to potentially infinity.

The actions chosen on day t are a vector l t = jl t
1, lt

2, ..., lt
N
k
.18 Fictitious play assumes that, over

the sequence of days, every i forms a belief of what others will play next, choosing l t
i as a best

reply to such belief:

• i’s belief at time t is a vector pt
i (.) =

b
pt

i (1) , pt
i (2) ...

c
, where pt

i (x) is the probability that i

attaches to
3

j /=i l t
j = x being played at t .

• a bank updates its belief according to the following rule:

pt
i (k) =

1+3s=1...t−1 Ik (s)
t +�

where � = N L (N being the number of banks, L the maximum liquidity each can post), and

Ik (s) is defined to be 1 if
3

j /=i l i
j = k, and zero otherwise.19

• at t , bank i chooses l t
i = arg max

l

L3
x=1

fi (l, x) pt
i (x) − where fi (l, x) is the cost incurred by i

playing l, if the others play
3

j /=i l t
j = x .

5.2 Equilibria in the simulations

Most of the equilibria found with the simulations have banks switching between two or more

actions, depending on the evolution of their beliefs. This is due to the fact that, in the

simulations, liquidity choices are discrete. For example, at the lowest delay price level banks

oscillate between l = 0 and l = 1, chosen with probabilities 8.6% and 91.4%, respectively. As

banks become sufficiently confident that other banks chose l = 1 each, the best reply is l = 0. As

the probability of others choosing l = 0 is thereby increased, banks switch back to l = 1. In this

case, the game is a classic ‘hawk-dove’ game. If no one commits any liquidity, all will

experience very high delays as no payments can be settled. If everyone commits one unit of

liquidity, payment settlement can take place. From an individual bank’s perspective, however, a

18Here lt
i denotes the action li (0) chosen at time zero in day t . We are not interested in the intraday timing now, but rather in sequence of

days, so we slightly change notation.
19On the first day (t = 0), all banks believe that each

3
j /=i li

j is equally likely: p0
i (k) = 1/�. Then, the more frequently a

3
j /=i li

j is
played, the more frequently it is ‘believed’ to be played again.
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better outcome would be not to commit any liquidity while others do. As the cost for delays is

increased, the probability of banks committing no liquidity is reduced gradually until, at delay

price of one, a pure equilibrium emerges, where each bank chooses l = 1. At higher cost levels

banks either reach a pure equilibrium, or a mixed equilibrium where they mix between a narrow

range of different liquidity levels.

5.3 Uniqueness of equilibrium liquidity level

We now show that all equilibria feature the same level of aggregate liquidity. This allows us to

speak about the equilibrium liquidity, even though the game may possess many different

equilibria.

Recall that

• f (li , l−i) is the expected pay-off (cost) of bank i at strategy profile (li , l−i).

By Remark 1 (page 12), we can also consider f (li , l−i) a function of two variables. So, from

now on l−i is no longer a vector but a scalar, l−i =3 j /=i l j . We need some new notation:

• l∗i (l−i) is bank i’s best reply to l−i .

• �i = l )i − li , to be used when l )−i and l−i are clear from the context. Similarly,

�∗i = l∗i
b
l )−i
c− l∗i (l−i), and �−i =3 j /=i(l )j − l j) and � =3i∈N (l )i − li).

• z (li , l−i) is the amount of delays suffered by i at strategy profile (li , l−i), so total pay-offs are

f = λli + κz (li , l−i).

We can now prove our result:

Theorem 1 All equilibria feature the same total liquidity.

Proof. The argument proceeds in two steps.
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Step (1) For each l−i and l )−i , we have �∗i ≤ −�−i .

That is, a bank optimally ‘under-reacts’ to a change in others’ liquidity. To show this, first note

that when we take second derivatives of f = λli + κz (li , l−i) only the second term survives, so

eg ∂2 f (li ,l−i )
∂li∂l−i

= κ ∂2z(li ,l−i )
∂li∂l−i

.20 The diagram on page 22, shows how the liquidity balance of a bank

may evolve in time (kinked line). Delays z are measured by the area below the zero liquidity line

(balances cannot become negative, so the ‘depth’ below the zero line represents the length of a

queue). From the picture it is evident that ∂
2z(li ,l−i )

∂l2
i

< 0, as also found in the simulations (Chart 1).

Hence, l∗i satisfies the first-order condition ∂z(li ,l−i )
∂li

= g (li , l−i) = λ, and the standard result

applies: dl∗i
dl−i
= − ∂g(.)

∂l−i
/∂g(.)
∂li

. Close examination of the diagram also reveals that
∂2z(li ,l−i )
∂li∂l−i

≤ ∂2z(li ,l−i )

∂l2
i

, so dl∗i
dl−i
≤ −1, which is the statement of Step (1).21

Step 2) If l and l ) are equilibria, then �l =3 l )i −
3

li = 0.

To reach a contradiction, suppose l and l ) are equilibria but
3

l )i >
3

li ie � > 0. If it were so,

there should be a non-empty set of banks S : �k > 0 for all k ∈ S. By Step 1) we can write

�k = − (�−k + εk) (with εk ≤ 0), so the total change in liquidity between the two equilibria is:

� =
�;

k∈S
�k

�
+
� ;

k∈N\S
�k

�
= −

�;
k∈S
(�−k + εk)

�
+
�;

k∈N\S
�k

�

Now, given a set S = {x1, x2, x3..} it is clear that
3

i∈S x−i = (|S| − 1)
3

i∈S xi . Similarly, if x−i

comes from a larger set R ⊇ S, then
3

i∈S x−i = (|S| − 1)
3

i∈S xi + |S|3i∈R\S xi . So the above

expression can be written as

� = −
⎡⎣(|S| − 1)

;
k∈S
�k + |S|

;
k∈N\S

�k −
ε] `_ ^;

k∈S
εk

⎤⎦+ �;
k∈N\S

�k

�

= −
�
|S|
�;

k∈S
�k +

;
k∈N\S

�k

�
−
;
k∈S
�k − ε

�
+
� ;

k∈N\S
�k

�
= (1− |S|)�l + ε
⇒ � = ε

|S|

But ε ≤ 0, so this contradicts � > 0.

20Strictly speaking, we should not be using derivatives, as payments and liquidity choices are discrete. The argument in terms of
difference is similar, just more cumbersome.
21Because ∂2z(li ,l−i )

∂li ∂l−i
< ∂2z(li ,l−i )

∂l2
i

everywhere, this inequality extends to non-infinitesimal changes in l−i .
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5.4 System size and pooling effect

In the main text we said that when payments are distributed over more banks, the liquidity needs

of the system increase. This is due to the liquidity pooling effect, that we now illustrate for the

(simpler) case where liquidity is abundant, so queues do not form.

When liquidity is abundant, a bank’s net liquidity balance is a random walk: over a time interval

�t , on average, p�t payments are made (pushing ‘down’ the liquidity balance), and p�t

payments are received (pushing ‘up’ the balance). Hence, the average balance change is zero,

with a standard deviation σ = √p�t . Suppose the number of participants N is increased to

N ) = Nx (with x > 1), but turnover is kept constant. Payments are now distributed over more

banks, so their arrival rate is reduced from p to p/x . As a consequence, the variance in a bank’s

balance is reduced to σ ) = √p/x�t > σ
√

1/x .

Suppose now that a bank’s optimal liquidity li is proportional to its balance variance (say li = zσ ,

which is exactly the case if a bank chooses li as to cover z standard deviations from the average

balance). Then, the fall in variance (factor
√

1/x) is not enough to offset the increase in system’s

size (factor x), so the larger system absorbs more liquidity: N )zσ ) = (N x) zσ
√

1/x > Nzσ .
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