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Abstract
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‘search for yield’ effects).  We also find that shocks that increase EMBIG spreads tend to widen 
US high-yield spreads and vice versa, constituting an important contagion channel through which crises
in emerging market economies can affect mature markets.  Forecast error variance decompositions show
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Summary

With an increasingly integrated global �nancial system, we frequently observe that shocks to

individual asset markets affect not only other asset markets in the same country but also the ones

in other countries. Such spillover effects were noticeable during several past �nancial crises

episodes in emerging market economies (EMEs) and have been also prevalent during the current

global �nancial crisis which started in developed countries. From a central banking perspective,

understanding the mechanisms through which shocks are transmitted across �nancial markets is

important for gauging the impact that �nancial crises and volatilities in EMEs can have on the

�nancial systems in developed countries, and vice versa.

Using daily data from prior to the east Asian crisis through to the early stages of the current

global �nancial crisis, this study analyses the relationships between bond markets in the United

States and EMEs. How do shocks � such as �nancial disruptions � in EME bond markets

affect interest rates in the United States? And how do changes in US interest rates in turn affect

EME bond markets? A key challenge in answering these questions is to identify a shock to a

speci�c asset. For example, interest rates paid on risky US corporate debt and the rates paid on

EME debt exhibit a high positive correlation: they tend to move in the same direction. However,

we do not know whether this positive correlation is caused by EME shocks being transmitted to

the United States, by US shocks affecting EMEs, or merely the result of a common shock.

Many studies deal with this problem by imposing some ad hoc restrictions; for example,

assuming that the causality runs in only one direction. In this paper, we use a method developed

by Rigobon and his co-authors, which allows us to capture all feedback effects. This method

identi�es a shock to a speci�c asset market as a period when volatility in this asset market is

uniquely high; ie volatilities in other asset classes are low. Then the period can be used to

identify the feedback effects from this market to other asset markets. The period of shocks

identi�ed in this way for EME bond markets capture all the known EME sovereign crises over

the past decade (such as in Argentina, Brazil, Russia and Turkey).

We �nd that adverse shocks to EME sovereign bond spreads lead to a short-run fall in US

interest. This �nding supports a stylised fact that, at the time of stress, investors shift their

investment away from risky assets into risk-free assets which causes prices of the risk-free assets
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to rise, and thus their rates to fall. This is often described as a `�ight to quality'. An adverse

shock to EME bond spreads also leads to a widening in US high-yield spreads, and vice versa.

This constitutes an important contagion channel through which crises in emerging markets can

affect mature economies. What is the overall contemporaneous effect of a shock to EMEs on

mature economies? On the one hand, mature economies might bene�t from strong `�ight to

quality', driving down the �nancing costs for risk-free bonds. On the other hand, an EME shock

is not necessarily good news for mature economies as it will widen the spreads on other risky

bonds, leading to a higher �nancing cost for risky corporates. In the other direction, we also �nd

that an increase in �nancing costs of US riskier corporates � as happened in the early stages of

the current �nancial crisis � can lead to a sizable increase in �nancing cost of EME sovereigns

(although by much less than if shocks originate in EMEs themselves).

We also examine the speed and duration of shock transmission. For example, shocks that raise

US interest rates initially decrease US high-yield and EME bond spreads for a very short period,

but eventually widen the spreads of risky debt with a lag of about two days. Since both EME

sovereign bonds and US high-yield bonds are priced as spreads over risk-free US Treasury yields

with similar maturities, a rise in the US interest rates will automatically increase the interest rates

paid on these risky bonds, ie higher �nancing cost for emerging market (EM) sovereigns and US

corporates. The reverse is also true: a fall in US interest rates is likely to lead to a fall in EM and

US high-yield bond spreads. This is consistent with the stylised fact that, when the safe rates are

low, investors search for higher return by purchasing riskier bonds, which push up the prices and

bring down the spreads on these assets. Therefore, our results support the existence of the

`�nancing cost' and `search for yield' channels, but they work with a lag.

We then ask how much of the forecast error variance of each variable can be explained by shocks

from other variables. We �nd that both US short and long-term government bond yields are

explained largely by their own structural shocks, across all forecast horizons. However, a very

different picture emerges for US high-yield and EM bond spreads: at longer forecast horizons the

variances of the errors in forecasting US high-yield and emerging market sovereign debt spreads

are both largely explained by structural shocks to US short and long-term rates. In particular,

shocks to US long-term government bond yields explain 60% and 75% of the forecast error

variance in EM bond spreads for 5-day and 20-day ahead forecasts. This suggests that US

interest rates are of primary importance for explaining the developments in markets for more

risky debt, at least in the medium run.
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1 Introduction

Financial markets worldwide have become increasingly integrated. One consequence of this

integration is that we observe a large degree of comovement across �nancial markets, as shocks

to individual markets or countries are transmitted internationally. Such spillover effects were

notable during past �nancial crises in emerging market economies (EMEs) and have been

prevalent during the current global �nancial crisis which started in developed countries. From a

central banking perspective, understanding the mechanisms through which shocks are

transmitted across �nancial markets is important for gauging the extent to which �nancial crises

and volatility in EMEs can affect the �nancial systems in developed countries, and vice versa.

Using daily data from prior to the east Asian crisis through to the early stages of the current

global �nancial crisis, the aim of this paper is to quantify the linkages between bond markets in

the United States and EMEs, and across government and high-yield debt markets.1 How do

shocks to one market or asset class affect other markets? And how fast are shocks transmitted

through different channels? To answer these questions we estimate a structural vector

autoregressive (VAR) model which is identi�ed using the changing volatility in the data,

following Rigobon (2003). We use daily data on US government bond yields, EME bonds

spreads, and US high-yield spreads. The estimated coef�cients of the structural model describe

how the underlying structural shocks are transmitted across markets in the very short run

(intraday), while the effects of shocks over longer horizons can be analysed using impulse

response functions and forecast error decompositions.

We �nd that in the short run � over a horizon of one or two days � shocks that widen emerging

market sovereign debt (EMBIG) or US high-yield spreads decrease US government bond yields,

consistent with `�ight to quality' effects. While the effect of shocks to US interest rates on EME

and US high-yield spreads is negative over very short horizons, we �nd that shocks to US interest

rates increase spreads of risky debt with a lag of about two days: a positive shock to US short or

long rates leads to wider spreads on risky debt, which could be interpreted as re�ecting an

increase in the default risk following higher �nancing costs; and the effect of lower US interest

rates leading to more narrow spreads could re�ect the market's `search for yield'. We also �nd

that shocks to EME spreads tend to widen US high-yield spreads, and vice versa: this

comovement is particularly important because it represents one possible channel through which

1For a related study using data on UK bond markets see Felices, Hoggarth and Madouros (2008).
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crises in EMEs might negatively affect mature markets.

Studies of �nancial market comovement are often complicated by endogeneity bias. When two

variables, such as US government bond yields and EMBIG spreads, are both endogenous,

estimation results in structural models will be biased. To circumvent this bias researchers have

typically resorted to restrictions, effectively imposing that in�uences run only one way. We do

not want to impose such restrictions because it is precisely the direction of in�uence that we are

trying to uncover. Using a relatively new methodology made popular by Rigobon (2003), we are

able to estimate a structural VAR model without imposing the ad hoc restrictions that are

commonly used for identi�cation in the VAR literature. The crucial assumption underlying this

methodology is that while the volatility of the underlying shocks is allowed to change across

time, the coef�cients describing the comovement of the endogenous variables are constant over

the whole sample period: our results should therefore be thought of as capturing average,

long-run effects.

While the assumption of heteroskedastic underlying shocks is appropriate for the bond market

data in our sample, assuming that parameters are stable across the sample period is more

problematic. Especially in the context of EMEs the size of spillover effects seems to change in

times of market turmoil. However, even with stable coef�cients the importance of different

transmission channels can change in high-volatility periods. Intuitively, the effect of an EME

shock on US high-yield spreads (to take an example) is given by the estimated coef�cient

multiplied by the size of the shock. Thus, as the size of the shock to EME spreads varies

(between tranquil and crisis periods in EMEs), so will the spillover effect between EMEs and

mature markets. With our methodology it is impossible to test whether parameters are stable

across volatility periods. Instead, we check for parameter stability by estimating the model

separately for the �rst and second half of the sample. Although parameters do change

quantitatively, almost all parameters have the same sign across both periods. This is remarkable,

especially given the fact that the volatility of EMEs has declined substantially over the later part

of the sample. Also, for the reduced-form model the null hypothesis of parameter stability across

the �rst and second part of the sample is not rejected in a standard multivariate Chow test.

A crucial step in our estimation procedure is to identify periods in which the volatility of the

underlying unobserved structural shocks changes. We employ two different methods to identify

such volatility `regimes'� an ad hoc threshold rule and a regime-switching model � and check
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whether our results are robust to the particular volatility periods chosen. We also discuss how our

choice of volatility regimes corresponds to actual events, such as �nancial crises in EMEs.

The theoretical literature on �nancial markets and contagion has identi�ed several channels

through which shocks may be transmitted across �nancial markets,2 and there is a large number

of empirical studies on the comovement of international �nancial markets. The empirical

literature can be roughly classi�ed into two broad strands: studies on the (long-run) comovement

of �nancial markets, and studies analysing �nancial contagion, typically de�ned as an increase in

the correlation between markets in times of crises.3 Research in the �rst strand has generally

focused exclusively on the comovement of markets for just one asset class (typically stock

markets). Furthermore, most studies either do not identify the contemporaneous feedback effects

between the endogenous variables, or use standard, but ad hoc restrictions for identi�cation. An

exception to both of these limitations is the paper by Ehrmann, Fratzscher and Rigobon (2005),

who analyse the interlinkages between US and European �nancial markets (including bonds,

stocks, and exchange rates), employing the method developed in Rigobon (2003) to identify a

structural VAR.

Empirical research in the second strand has attempted to establish whether or not contagion

occurred, based on two different methodologies: tests for increases in correlations in crises times

(for example Forbes and Rigobon (2002)), and tests whether the probability of a crisis in one

market, conditional on a crisis in another market, is higher than the unconditional probability (for

example Pesaran and Pick (2007). However, the literature on contagion faces the same

identi�cation challenges mentioned above, which have to be circumvented by making restrictive

assumptions. For example, Favero and Giavazzi (2002) test for non-linearities in the transmission

of shocks in European money markets; to identify their model they have to assume that several

reduced-form coef�cients are equal to zero.

While most empirical work on asset price comovements has looked at stock markets, studies

analysing bond markets and in particular `�ight to quality' effects are scarce.4 Hartmann,

Straetmans and de Vries (2004) study the relationship of stocks and government bonds in times

2Examples include the correlated information channel (King and Wadhwani (1990)), portfolio rebalancing (Kodres and Pritsker (2002)),
herd behaviour (Calvo and Mendoza (2000) and Chari and Kehoe (2003)), wealth effects (Kyle and Xiong (2001)), and the role of
information markets (Veldkamp (2006)).
3See Gagnon and Karolyi (2006) for an extensive review of the empirical literature on the comovement of international �nancial markets,
and Dornbusch, Claessens and Park (2000) and Dungey et al (2003) for surveys of the empirical literature on contagion.
4For a comprehensive empirical study of bond markets see Borio and McCauley (1996).
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of market turmoil. Using an extremal dependence measure, they calculate the probability of joint

stock market crashes and of `�ight to quality', conditional on a crash in one market. Baur and

Lucey (2006) study the relationship of bond yields, stock prices and gold prices and investigate

whether gold acts as a hedge for bonds and stocks in normal times, and as a `safe haven' in times

of market turmoil. However, they only analyse the effects of shocks to bond and stock markets

on the price of gold, without taking into account possible feedback from gold to other markets.

Gonzalo and Olmo (2005) develop a copula to describe different patterns of dependence across

stock and bond markets.

The contribution of this paper is to analyse the relationships between bond markets in EMEs and

the United States, including both US high-yield debt and US government debt, and to identify

how shocks are transmitted across markets without imposing unrealistic restrictions. The

inclusion of US corporate debt spreads adds important insights that have been missing from the

previous literature of �nancial market comovement, as widening credit spreads on risky debt are

an important channel through which EME shocks can affect mature markets and vice versa. To

our knowledge, this study is the �rst to analyse comovement between �nancial markets in EMEs

and developed countries using the Rigobon (2003) methodology.

The remainder of this paper is structured as follows. The next section sets out the intuition for

how variables in our sample might be related, and reviews some stylised facts about the

correlations of the data for tranquil and crises periods. This is important for interpreting our �nal

results concerning the comovements of �nancial markets, and they are also useful for deciding on

starting values for the estimation of our model. The third section gives a brief introduction to the

empirical methodology that we use, `identi�cation through heteroskedasticity', and outlines our

empirical model and estimation strategy. The fourth section then presents the results. Section 5

discusses robustness; in particular, we estimate our model separately for the �rst and second part

of the sample to check whether parameters can indeed be considered to be stable over time, as

assumed. Furthermore, we employ an alternative method of regime choice to test the sensitivity

of our results to the choice of volatility regimes. Finally, Section 6 concludes.

2 Comovement of international bond markets: intuition and stylised facts

Before we begin with the formal empirical analysis it is useful to outline possible channels

through which shocks could be transmitted across bond markets, and to look at some simple
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Table A: Correlations

(a) Full sample, 1997-2008
US 3m US 10y US HY EMBIG

US 3m 1.00
US 10y 0.27 1.00
US HY -0.24 -0.60 1.00
EMBIG -0.12 -0.29 0.33 1.00

(b) Russian/LTCM crisis, 1.8.1998-31.10.1998
US 3m US 10y US HY EMBIG

US 3m 1.00
US 10y 0.49 1.00
US HY -0.26 -0.74 1.00
EMBIG -0.21 -0.45 0.55 1.00
Data in �rst differences.

statistics of the raw data to get an idea of the relevant stylised facts.

Our data set includes daily data from 1 January 1997 to 30 May 2008. We use US short

(three-month) and long-term (ten-year) government bond yields as a measure of risk-less debt,

and the Merrill Lynch High Yield Master II index (`US high-yield'), a benchmark index for the

broad US high-yield debt market, as a measure of US corporate debt spreads. As a measure of

emerging market debt spreads we use the JPMorgan Emerging Markets Bond Index Global

(`EMBIG'), a benchmark for emerging market dollar-denominated debt.5 For the compilation of

the EMBIG index, JPMorgan uses information collected at 3 pm New York time. Therefore all

data can be treated as being generated in the same time zone. Data is obtained from Bloomberg,

Merrill Lynch and JPMorgan.

What comovements should we expect across bond market in the United States and EMEs? First

consider the comovement of US short and long-term government bond yields. The economic

theory of the term structure of interest rates suggests that US short and long rates should be

positively related on most occasions. However, a fall in short-term interest rates could also

induce an increase in long rates if markets take lower short rates as a signal of higher in�ation in

the future. Panel (a) of Table A reports contemporaneous correlations of the differenced raw

data, computed over the whole sample period.6 Note that US short and long-term government

5Since the EMBIG was introduced only in 1999, the JPMorgan Emerging Markets Bond Index (EMBI) is included up to 1998.
6We present correlations of differenced data for consistency with the empirical results below.
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bond yields are indeed positively correlated.

Next consider the comovement of high-yield markets in the United States and EMEs. Intuitively,

we would expect US high-yield spreads and EMBIG spreads to be positively related. For

example, consider the case of a �nancial crisis in some emerging market economy, which could

be captured through a shock to EMBIG spreads. We often observe that the reaction to such an

event is a sell-off not only in the assets that are directly affected, but also in other risky and

high-yielding markets. Such sell-offs could be driven by increased risk aversion, or margin calls

forcing investors to sell risky debt following losses on some investments. From panel (a) of Table

A we see that EMBIG and US high-yield spreads are positively correlated across the sample

period.

US government bond yields, EMBIG and US high-yield spreads could be related through several

distinct channels. First, risky debt is typically priced at a spread over risk-less rates. Therefore

higher US interest rates should raise the �nancing costs of EMEs, which could increase their

default risk and thus the spreads of EME sovereign bonds. Moreover, since spreads are computed

as the difference between the yields of risky and risk-less assets with corresponding maturity

they should be increasing in risk-less rates for simple `mathematical' reasons.7 Furthermore, falls

in risk-less rates are often thought to be associated with a `search for yield', as investors shift into

more risky assets such as EME debt in order to earn higher returns, thus driving the prices of

these assets up and their yield spreads over risk-less debt down. These `�nancing cost' and

`search for yield' channels suggest that an increase (decrease) in US interest rates should lead to

higher (lower) spreads on risky debt.

However following a rise in US government bond yields, US high-yield and EMBIG spreads

could also move in the opposite direction. The spread of risky bonds is determined by the

probability of default and the loss given default. Both factors have countercyclical

characteristics. During a recession, the probability of default and the loss given default are likely

to pick up, so does the spread. Therefore, the spread on risky assets is believed to be

countercyclical (see for example Duf�e and Singleton (2003). If an increase in US interest rates

is associated with or signals strong economic growth in the United States,8 it could hence lead to

7To see this, consider the following simple example taken from Kamin and von Kleist (1999). Let i denote the yield of a risky asset
which is repaid with probability p, and r denote the yield of a corresponding risk-less asset. Then we have
1C r D p � .1C i/C .1� p/ � 0. From this, the spread is computed as i � r D .1C r/ .1� p/ =p which is increasing in r .
8Indeed, the simple statistical correlation between GDP growth and US ten-year government bond yields is around 0.4 for our sample
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a decrease in US high yield spreads. Moreover, given that the United States is an important

trading partner of most countries in the EMBIG index, a rise in US interest rates could induce a

fall in EMBIG spreads as well. We call this the `growth effect'.

Furthermore, �nancial crises episodes often seem to be associated with a `�ight to quality' and

thus a negative effect of EMBIG spreads and risk-less rates, as investors shift out of risky assets

and into `safe-haven' assets such as US government debt: therefore, an increase in EME spreads

could lead to a fall in US government bond yields. In short, the `growth effect' and the

`�ight-to-quality effect' suggest a negative correlation between US interest rates and US

high-yield spreads and EMBIG.

From panel (a) of Table A we see that US interest rates, EMBIG and US high-yield spreads are

negatively correlated. One possible interpretation of this �nding is that at least in the

contemporaneous relationship between US interest rates and yields on risky debt, `�ight to

quality' and `growth' effects dominate the `�nancing cost' and `search for yield' channels.9

Previous empirical studies have failed to �nd clear evidence of a positive effect of US interest

rates on EME bond spreads (see for example Eichengreen and Mody (1998) and Kamin and von

Kleist (1999), and only few studies have sought to quantify the reverse in�uence of EMEs on

�nancial markets in mature economies.10 One of the main contributions of this paper is to shed

light on the causal relationship between US interest rates and EME bond spreads.

It is interesting to also look at how correlations change during periods of �nancial market

turmoil. As an example, panel (b) of Table A summarises the correlations for the period of the

Russian/LTCM crisis 1998. Note that the magnitude of all correlations increases, while the sign

of the correlation coef�cients stays the same. The strong correlation between EMBIG spreads

and US high-yield spreads in that period is an indication of the contagion that occurred following

the Russian default, possibly through an increase in investors' risk aversion. The strong negative

correlation between US government bond yields and EMBIG spreads may re�ect the `�ight to

quality'.

period.
9Note however that correlations of US government bond yields and EMBIG spreads are positive when the variables are analysed in levels.
10For example, Sáez, Fratzscher and Thiemann (2007) identify shocks originating in emerging markets from data on news
announcements and analyse their effect on global equity markets, including equity markets in mature economies. Kaminsky and Reinhart
(2003) �nd that emerging market shocks spreads globally if they affect the �nancial centres in mature economies. Moschitz (2004) is the
only study that we are aware of that analyses the relationship of bond markets in EMEs and the US corporate debt market, as well as US
stock markets, using a reduced-form regime-switching model. In contrast, we are also able to identify the contemporaneous relationships
across markets.
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Chart 1: Correlation of US ten-year government bond yields and EMBIG spreads

Chart 1 plots the correlation between US long-term government bond yields and EMBIG spreads

versus EMBIG volatility (computed over moving windows of 21 days) to illustrate how

correlations change in times of �nancial market volatility. Several �nancial crises episodes are

marked by spikes in EMBIG volatility, and by a corresponding fall in the correlation between

EMBIG and US long-term yields. Again, this could be interpreted as a `�ight to quality', or as the

result of the provision of ample liquidity by the Federal Reserve in the face of the LTCM crisis.

There are two ways to interpret these �ndings. First, the changing correlations in times of

�nancial market turmoil could imply that the relationship between our variables is non-linear, so

that spillover effects change in times of high volatility. This is the approach taken by the

empirical literature on �nancial contagion. In contrast, for our econometric model we will

assume that the underlying parameters that govern the feedback effects between variables stay

the same, and that different transmission channels will dominate in times of crises because of the

size and volatility of the underlying structural shocks that change.

Correlations indicate how �nancial variables move together, but do not provide information

about the source of that comovement. For example, a high correlation between EMBIG spreads

and US government bond yields could be caused by EMBIG spreads affecting US interest rates

(eg, `�ight to quality'); by US interest rates affecting EMBIG spreads (eg, the `�nancing costs'
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channel); or causation could run through some third factor such as US high-yield spreads (eg, a

�nancial crisis in an EME increases EMBIG spreads, and US high-yield spreads increase as well

because of higher risk aversion; to ease the burden on the economy, the Federal Reserve lowers

interest rates). Moreover, apart from the contemporaneous correlations presented in Table A,

shocks to one variable could be transmitted more slowly, affecting other variables only with a

lag. To analyse through which channels these feedback effects occur, we estimate a fully

identi�ed structural VAR below.

3 Empirical methodology

3.1 Some intuition: identi�cation through heteroskedasticity

The variables in our sample are highly heteroskedastic. As an example, Chart 1 shows that

episodes of EME crises are clearly marked by higher EMBIG volatility. This heteroskedasticity

of the data can be exploited to identify the structural model, following Rigobon (2003).11

To illustrate this identi�cation method consider a simple example with only two endogenous

variables � say, EMBIG spreads and US government bond yields � which are related as

follows:

EMBIG t D � � iUS;t C �t (1)

iUS;t D � � EMBIG t C �t (2)

where "t and �t are structural shocks. Following the intuition from the previous section we might

expect � > 0 (the `�nancing cost channel') and � < 0 (`�ight to quality' effects). This situation

is captured in panel (a) of Chart 2. A data set of observations on EMBIG and US interest rates

might look like the scatterplot on the right panel (b) of Chart 2. Clearly, it is very dif�cult to

separately identify the two relationships in (1) and (2). More formally, estimating equations (1)

and (2) separately will yield biased coef�cients because of simultaneous equation bias.

Now, suppose that we can distinguish periods in which the volatility of one variable increases,

11See also Wright (1928) and Sentana and Fiorentini (2001).
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Chart 2: Illustration of identi�cation procedure

while the volatility of the other variable stays constant or increases only slightly. We could

interpret the heteroskedasticity observed in EMBIG spreads and US interest rates as stemming

from varying volatility of the underlying structural shocks "t and �t . Then during periods when

US interest rate shocks are very volatile the relationship in equation (1) is traced out, as shown in

panel (c) of Chart 2. Similarly, panel (d) shows how the relationship in equation (2) is traced out

during periods when shocks to EMBIG are more volatile. This is intuitive: in times of high US

interest rate volatility the effect of US interest rates on the �nancing costs of sovereign borrowers

may dominate the data, and we are likely to �nd a positive correlation corresponding to equation

(1). In times of EME crises however the relationship between US interest rates and EMBIG

spreads may be dominated by `�ight to quality', allowing us to identify equation (2). Thus,

estimating our model separately for periods of different volatility � `volatility regimes' � can

help to identify the model.

Note that the choice of volatility regimes is very important to properly identify the model:
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identi�cation works best if the change in relative volatilities is large across regimes, as shown in

Chart 2. The next section introduces our empirical model and explains identi�cation through

heteroskedasticity more formally.

3.2 The empirical model

We use a VAR model to account for the fact that no variable is truly exogenous. Following

Ehrmann, Fratzscher and Rigobon (2005) our structural model is given by

Ayt D # .t/C5.L/ yt�1 C zt C �t (3)

where yt is a vector of endogenous variables, zt is a common shock, and �t is a vector of

structural shocks, A and 5.L/ are parameter matrices with L denoting the lag operator,  is a

vector of parameters, and the vector #.t/ includes both constants and a time trend. The diagonal

elements in A and the �rst element in  are normalised to one. Of particular interest to us is the

matrix A, which determines the contemporaneous feedback effects among the endogenous

variables. We make the following assumptions:

E.�t/ D E.�t zt�k/ D 0

E .zt/ D E.zt zt� j/ D 0

E.�t�0t�i/ D 0

8i; j; k 6D 0. While we assume that the covariances of the structural shocks are equal to zero, the

inclusion of the common shock zt serves to introduce some correlation among the underlying

shocks that drive the system.

To capture the changing volatility of the endogenous variables that we observe in the data, we

allow the variances of both structural and common shocks to change across the sample. In

particular, we assume that there are s D 1; :::; S volatility periods or regimes, and that the shock

variances are constant within each regime, but differ across regimes. For each regime s we have

E
�
�t�

0
t
�
D ��;s

E
�
z2t
�
D � 2z;s
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We cannot estimate equation (3) directly because of endogeneity bias. Therefore, we need to

work with the reduced-form model, which is computed by multiplying both sides of (3) with

A�1. This yields

yt D B0 .t/C B1 .L/ yt�1 C ut (4)

where B0 .t/ � A�1# .t/, B1 .L/ � A�15.L/ and

ut � A�1zt C A�1�t (5)

Since the same variables appear on the right hand side of every equation in (4), OLS can be used

to estimate the reduced-form parameters in B0 .t/ and B1 .L/.12 However, we want to go further

and identify the structural parameters in A and . To do this we can use `identi�cation through

heteroskedasticity', implemented through general methods of moments (GMM) estimation. The

residuals from the regression in (4) will re�ect the underlying shocks �t and zt . Therefore it is

natural to use these residuals to determine volatility regimes. How this can be done is described

in the next section.

From equation (5) the variance-covariance matrix of the error term ut for regime s is computed as

�u;s D A�1 0� 2z;sA
�10 C A�1��;sA�10 (6)

While �u;s is unknown, we can compute the variance-covariance matrix of the VAR residuals

�e;s separately for each regime s. Substituting �e;s as a proxy for �u;s into (6) and rearranging

leads to GMM conditions, which are given by

A�e;sA0 D  0� 2z;s C��;s (7)

Note that ��;s is diagonal since we have assumed that the structural shocks are uncorrelated. If

there are n endogenous variables �e;s will have N D n � .n C 1/=2 distinct elements, so that

equation (7) delivers N moment conditions for each regime which we summarise in the column

vector ms . Therefore, with S regimes, we obtain N � S moment conditions which can be used for

GMM estimation. There are in total n2 � 1C S .n C 1/ structural parameters which need to be

estimated: n .n � 1/ non-normalised parameters in A, n � 1 non-normalised parameters in ,

and the variances of the n C 1 shocks for the S regimes. The model is identi�ed if there are at

least as many moment conditions as unknown parameters. Therefore we need to �nd at least

S � 2 �
n � 1
n C 2

(8)

12See eg Enders (2003), page 270.
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volatility regimes for the model to be identi�ed. Let � denote a vector containing all unknown

structural parameters. We choose � to minimise the objective function

min
�
m0m (9)

with

m D
h
m1 � T1T m2 � T2T ::: mS � TST

i0
where Ts denotes the number of observations in regime s and T denotes the total number of all

observations. Note that we multiply the moment conditions of regime s with the relative weight

of the regime: in this way we attach more importance to moment conditions that represent a

larger number of observations and thus are associated with less uncertainty. This implicitly

de�nes a weighting matrix for GMM estimation.

Our estimation strategy can be summarised as follows. First, we estimate the reduced-form

model given in equation (4) using OLS, including US short- and long-term government bond

yields, US high-yield spreads and EMBIG spreads as endogenous variables. We use the residuals

from this regression to pick the regimes: since the volatility of the structural and common shocks

changes across regimes, so will the volatility of the VAR residuals. For each regime we compute

the covariance-matrix of the residuals and derive moment conditions according to equation (7).

Finally, GMM is used to identify the structural form parameters of the original VAR.

3.3 Choosing volatility regimes

Some previous studies applying `identi�cation through heteroskedasticity' have used

straightforward economic intuition to identify volatility regimes. For example, Rigobon and Sack

(2004) analyse the effect of US monetary policy on asset prices. They use two regimes, one

including periods of Federal Open Market Committee meetings and Fed chairman's testimonies

to congress, and another including all other periods. The idea is that monetary policy is more

volatile on days when interest rate decisions are taken or when news about interest rate policies

emerge. Similarly, Gonçalves and Guimaraes (2008) analyse the relationship between monetary

policy and exchange rates in Brazil, identifying periods of Brazilian Central Bank policy

meetings as regimes of higher interest rate volatility.

In our case no such natural, exogenous events are available to identify volatility regimes. While

some events can be identi�ed � for example, �nancial crises in emerging markets could be

interpreted as shocks to EMBIG spreads, tightening cycles in US monetary policy could
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represent shocks to US short-term government bond yields, and the US auto sector turmoil in

2005 could be captured through shocks to US high-yield spreads � it is often not straightforward

to map such events into volatility regimes because many events may be associated with shocks to

several variables at once. Therefore we instead use two alternative methods to choose regimes.

The �rst method uses a simple threshold rule, following Ehrmann, Fratzscher and Rigobon

(2005). As a robustness check, we also estimate a mixture of distributions model on the residuals

to choose regimes. This second approach is discussed in Section 5.

Recall from Chart 2 that volatility regimes should be chosen such that the relative volatilities of

different structural shocks vary signi�cantly across regimes. To achieve identi�cation it would be

ideal to identify periods where only one variable was volatile, while the others were relatively

`tranquil'. What precisely is interpreted as `volatile' and `tranquil' can be decided by de�ning a

reasonable volatility threshold. Thus the basic idea is to determine in which periods the EMBIG

residuals, to take an example, are very volatile, while residuals of the other variables are not. To

do this we compute standard deviations of residuals for each of the n endogenous variables over

�xed windows of 21 days. Let � i;t be the standard deviation of residuals corresponding to

endogenous variable i , computed over the period t � 10; :::; t; :::; t C 10. We then de�ne a

threshold according to

mean.� i;t/C c � st:dev.� i;t/ (10)

where we set c D 1. Whenever � i;t is above this threshold we consider residuals of variable i in

period t to be volatile. We then de�ne n C 1 regimes, where n is the number of endogenous

variables, so that from equation (8) the model is overidenti�ed. In regime one we include periods

where the residuals of all endogenous variables are tranquil. In addition, for each endogenous

variable i , we identify a regime that includes periods where i's residuals are volatile, but the

residuals of other endogenous variables are not. If more than one variable is above the volatility

threshold in some period t , we do not use that period for GMM estimation since such periods

would not signi�cantly help to identify the model.13

Chart 3 plots the volatility of EMBIG residuals and the threshold which is used to determine

whether EMBIG residuals are considered to be volatile. Note the spikes in volatility

corresponding to the Asian crisis (1997/98), the Russian/LTCM crisis (Autumn 1998), and the

13Increasing c in equation (10) will decrease the number of volatility periods and therefore typically also the number of unique
high-volatility periods, making identi�cation more dif�cult. Decreasing c will increase the number of high-volatility periods; however, it
is then also more likely that the volatility of more than one variable is above the threshold for any period t , so that the number of periods
not used for GMM estimation rises.
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Chart 3: EMBIG high-volatility regime periods with threshold rule

Brazilian (beginning of 1999) and Argentine (2001/02) crises. However, as indicated in the chart,

these episodes are only partly included in the EMBIG regime. The reason is that the volatility of

other variables � notably US high-yields spreads, but also US interest rates � tends to increase

as well in times of EME crises.14

The threshold rule delivers sensible results. Nevertheless, we also combined the threshold rule

with economic intuition to de�ne regimes. For example we allowed for a longer period of the

Asian crisis (according to the threshold rule, the high EMBIG volatility lasts only from

mid-November to December 1997), attributed all of the Russian crisis period to the EMBIG

shock regime, and extended the period of US high-yield volatility in Spring 2005 to cover the

whole period of the US auto sector turmoil. Therefore, there are more observations in the

regimes corresponding to EMBIG and US high-yield volatility, and less observations in the

regime corresponding to tranquility. The resulting covariances of the residuals within each

volatility regime were not very different from the corresponding covariances within volatility

regimes chosen with the threshold rule, and the GMM estimates for the structural coef�cients

were also very similar. Therefore we only report the results from the regime choice using the

threshold rule below.15

14With the threshold rule, regime 1 (tranquility) includes 2,182 observations, while regime 2 (US three-month volatility) has 112, regime
3 (US ten-year volatility) 150, regime 4 (US high-yield volatility) has 79 and �nally regime 5 (EMBIG volatility) 130 observations.
15Rigobon (2003, proposition 3) analyses the conditions under which estimation by `identi�cation through heteroskedasticity' remains
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4 Results

This section presents our empirical results. Using `identi�cation through heteroskedasticity' we

are able to estimate all parameters in the structural model of equation (3), including the

coef�cients in the matrices A and  and the (co)variances of the underlying shocks in ��;s and

� 2z;s . This makes it possible to analyse the effects of the underlying structural shocks on the

endogenous variables, and to assess the importance of various transmission channels across

different time horizons. We use data on bond yields and spreads in �rst differences to ensure

stationarity,16 and include constants, time trend and �ve lags in the VAR.17

Before discussing the results let us brie�y note some computational issues. Good starting values

are important for the optimisation procedure to converge. We use the �ndings from Section 2 to

set starting values for estimation.18 For the variances of structural shocks we use the regime

variances of the VAR residuals contained in the matrix �e;s as starting values � this should

ensure that the starting values are at least roughly of a realistic magnitude. For the variances of

the common shock and coef�cients in the vector  we use starting values of one. Furthermore we

impose sign restrictions on some structural coef�cients to ensure that we choose that `rotation' of

matrix A which is economically meaningful (see Ehrmann, Fratzscher and Rigobon (2005) for a

discussion).19 We also constrain all variances to be positive. Since the model is already identi�ed

through exploiting the changing volatility of the underlying shocks, these additional constraints

are overidentifying restrictions whose validity can be tested, and we make sure to check that they

are never actually binding.

4.1 Transmission of shocks in the short run

From the structural model in equation (3) it is clear that the contemporaneous effects (occurring

within one day) of structural shocks can be found by examining the coef�cients in the matrix

consistent even if the volatility regimes are misspeci�ed.
16Augmented Dickey-Fuller tests show that all variables are clearly non-stationary. However, cointegration test results using the
Johansen (1988) procedure are not clear-cut. Nevertheless, we also analysed the data in a cointegrated vector error correction model; the
estimated structural coef�cients were very similar to the results presented below.
17The likelihood ratio test, �nal prediction error and Akaike information criterion suggest an optimal lag length of 5, while the Schwarz
and Hannan-Quinn information criteria point to an optimal lag length of 3. Our intuition is that �nancial markets adjust to new
information very quickly, and that including lagged values covering the past working week should be suf�cient.
18We use the built-in MATLAB constrained optimisation routine fmincon.
19For example, we constrain the feedback effects between US short and long-term government bond yields to be positive. While this
restriction does not necessarily always hold in theory, it is not rejected for our sample.
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Table B: Estimation results using threshold rule for regime choice

contemporaneous feedback effects (matrix A�1)
From... �US3m �US10y �USHY �EMBIG
...to
US 3m 1:0129���

[0:0000]
0:1783���
[0:0000]

�0:0086
[0:1450]

�0:0805���
[0:0030]

US 10y 0:0823�
[0:0840]

1:0952���
[0:0000]

�0:1643���
[0:0050]

�0:1392���
[0:0000]

US HY �0:0408�
[0:0840]

�0:5524���
[0:0000]

1:0956���
[0:0000]

0:1401���
[0:0000]

EMBIG �0:0023
[0:4920]

�0:0923���
[0:0000]

0:1986���
[0:0000]

1:0239���
[0:0000]

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Bootstrap
p-values in parentheses. See Table E in appendix B for details. Sample includes daily data
from January 1997 to May 2008.

A�1: the .i; j/th coef�cient in A�1 determines the contemporaneous effect of a shock to

endogenous variable j on variable i . Table B reports the parameter estimates; parameter

signi�cance is judged using bootstrap p-values.20 Note that the coef�cients on the diagonal are

greater than one: the initial impact of, for example, a structural shock to EMBIG spreads is

normalised to one, but this effect is magni�ed through the feedback effects of other variables so

that the overall effect on EMBIG spreads is larger than one.

Our results imply that structural shocks that increase EMBIG and US high-yield spreads will

tend to decrease US government bond yields, where the effect is stronger for long-term yields.

This �nding can be interpreted as re�ecting a `�ight to quality', as discussed in Section 2. As for

the reverse effect, the overall effect of shocks that raise US interest rates � especially long rates

� is to decrease US high-yield and EMBIG spreads, although the effect of short-term yields on

EMBIG spreads is insigni�cant. The effect of a shock to US long-term interest rates on US

high-yield spreads is estimated to be strongly negative and highly signi�cant. These results might

be interpreted as re�ecting the `growth effect'. Our results also indicate strong comovement of

US high-yield spreads and EMBIG spreads; note that the in�uence of US high-yields spreads

on EMBIG is stronger than vice versa. Finally, US short and long-term interest rates are

positively related, with the in�uence of US long-term on short-term yields being stronger than

20Following Kilian (1998), the standard bootstrap procedure introduced by Runkle (1987) to VAR analysis is amended to a `bootstrap
after bootstrap' procedure with 1,000 + 1,000 replications to correct for a potential bias in the OLS estimation of the reduced-form VAR.
Following Rigobon (2003), the residuals in each of the regimes are then bootstrapped to obtain a distribution of covariance matrices �e;s
for each regime s, from which con�dence intervals for the structural parameters in A�1 are estimated. Detailed results on parameter
signi�cance can be found in Appendix B.

Working Paper No. 373 August 2009 21



the reverse effect.

What is the overall contemporaneous effect of a shock to EMEs on mature economies? On the

one hand, mature economies might bene�t from strong `�ight to quality', driving down the

�nancing costs of low-risk borrowers. On the other hand, an EME shock is not necessarily good

news for bond markets in mature economies since it will widen the spreads on other risky debt as

well, thus causing problems for more risky borrowers in mature markets. In the other direction,

shocks to the US corporate debt market � for example, the US auto sector shock in 2005 � will

also tend to spill over to EMEs.

4.2 Transmission of shocks over longer horizons

From Table B it appears as if EMEs have a stronger in�uence on the United States than vice

versa. However the strength of these transmission channels is determined not only by the

coef�cients describing the contemporaneous effects, but also by the average size of the shocks

and effects occurring through lagged terms. These effects of shocks over longer horizons can be

analysed using impulse response functions and forecast error decompositions. Note that since we

have estimated all structural parameters in equation (3), impulse responses and variance

decompositions can be computed directly and are not sensitive to the ordering of the variables, as

in most other VAR studies.

Chart 4 plots the responses of the endogenous variables (in columns) to one standard deviation

shocks (in rows). Consistent with the `�ight to quality' channel, shocks to US high-yield and

EMBIG spreads decrease US government bond yields only in the very short run: these shocks are

incorporated into US interest rates very quickly. Concerning the reverse effects, note that shocks

to US government bond yields decrease US high-yield and EMBIG spreads only in the very short

run; but these shocks strongly widen the spreads of risky debt with a lag of about two days. This

suggests that `�nancing cost' and `search for yield' channels do exist, but work with a lag. The

contagion channel between bond markets in EMEs and the United States appears to work only in

the short term: shocks that raise EMBIG spreads signi�cantly widen US high-yield spreads, and

vice versa, in the short run, with the effect turning negative after two days. A shock to US

short-term (long-term) rates has an immediate (intraday) positive effect on US long (short) rates;

this effect dies off over the following days. Thus, US short and long rates tend to move together.
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Chart 4: Impulse response functions
Response of the variables listed in the columns to one standard deviation shocks listed in the rows. Dotted lines are 95% con�dence

bands obtained from 1,000 + 1,000 bootstrap replications. Regime choice using threshold rule. Sample includes daily data from

January 1997 to May 2008.

These results are supported by the forecast error variance decompositions shown in Chart 5,

which shows the contribution of individual structural shocks (in rows) to the forecast error

variances of the endogenous variables (in columns), at various forecast horizons. Both US short

and long-term government bond yields are explained largely by their own structural shocks,

across all forecast horizons. However, a very different picture emerges for US high-yield spreads

and EMBIG spreads: while the forecast error variances of US high-yield and EMBIG spreads are

largely explained by their own structural shocks in the short run, at longer forecast horizons the

variances of the errors in forecasting US high-yield and EMBIG spreads are both almost

exclusively explained by structural shocks to US short and long-term government bond yields.

When forecasting the value of EMBIG spreads one day ahead, shocks to US long-term

government bond yields explain 0.72% of the forecast error variance; for 5-day and 20-day ahead

forecasts this percentage increases to 61.32% and 74.95%. The corresponding contributions of

US short-term yields to the forecast error variance of EMBIG 5 days and 20 days ahead are

21.49% and 16.65%. This suggests that US interest rates are of primary importance for

explaining the developments in markets for more risky debt, at least in the medium run.
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Chart 5: Forecast error decomposition Fraction of forecast error variance of the variables listed in the

columns, explained by shocks listed in the rows. Dotted lines are 95% con�dence bands obtained from 1,000 + 1,000 bootstrap

replications. Regime choice using threshold rule. Sample includes daily data from January 1997 to May 2008.

5 Robustness checks

5.1 Parameter stability

The fundamental assumption underlying our empirical methodology is that the structural

parameters in A and  are stable. Unfortunately, within our methodology it is impossible to

check whether parameters are stable across volatility periods. Given our limited sample it is not

possible to estimate the reduced-form VAR in equation (4) separately for each regime and then

test for whether the estimated coef�cients are stable across regimes (the smallest regime contains

only 79 observations). What we can test for, however, is whether parameters are stable across

reasonably large subsets of our sample. We do so formally by using a multivariate version of the

Chow test, which tests for stability of the reduced-form parameters, but not for stability of the

structural shock variances. If the reduced-form parameters B0 .t/ D A�1# .t/ and

B1 .L/ D A�15.L/ are stable, then so should the structural parameters in A. We therefore

re-estimate the reduced-form VAR for two subsamples, from January 1997 up until May 2001
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and from May 2001 until May 2008. The null hypothesis of parameter stability is not rejected.21

To investigate further whether the parameters of the structural model change across time, we split

our data set into two samples and re-estimate our model. As a robustness check, we use the same

regime periods as before, chosen from the analysis of the whole data set, for the estimation of the

model in the two subsamples. The estimation in the subsamples is complicated by the fact that

regime periods are spread unevenly across the sample: for example, most EMBIG-regime

periods are in the �rst half of the sample (corresponding to the observation that EMBIG volatility

has declined substantially in recent years), while US high-yield regime periods are mostly in the

middle and second half of the sample. We split the sample in May 2001 to ensure that all regimes

in both samples contain enough observations for the model to be identi�ed. The results are

reported in Table C, where it is seen that even with this early split date some estimated

coef�cients remain insigni�cant because the number of observations in some high-volatility

regimes remains too small to guarantee robust identi�cation. Most of the structural coef�cients

estimated for both subsamples have the same sign as in the benchmark estimation in Table B.

Moreover, most coef�cients are even quantitatively similar. Where parameters are different

between the �rst and second subsample, those parameters are typically insigni�cant in at least

one of the subsamples. Charts 7 to 10 in Appendix B show that impulse responses and variance

decompositions are also very similar for both subsamples.

The changes in coef�cients between the two samples may partly re�ect dif�culties in

identi�cation, since due to the rarity of EME crises in recent years there are only very few

observations in the EMBIG-volatility regime of the second sample. However, it is also possible

that there are more fundamental reasons. Over the years, the composition of the EMBIG index

has changed: while in the 1990s the fraction of investment-grade debt in the EMBIG was about

10%, this number has increased to about 50% in recent years. Therefore, the nature of EME

bonds as an asset class � including their relationship with other macroeconomic indicators �

may have changed.

21Note however that results from the test may be biased because of heteroskedasticity of the structural shocks � see eg Toyoda (1974).
Therefore, it is likely that the critical value is in fact lower than the one found from the �2 - distribution. However, our test results
indicate that parameter stability is not rejected by a wide margin.
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Table C: Contemporaneous feedback effects (matrix A�1) in two subsamples

�rst sample (pre-2001)
From... US 3m US 10y US HY EMBIG
...to
US 3m 1:0499���

[0:0000]
0:2620��
[0:0260]

0:1024
[0:4000]

�0:0844���
[0:0000]

US 10y 0:3118
[0:1350]

1:1030���
[0:0000]

�0:0673��
[0:0130]

�0:1428���
[0:0000]

US HY �0:0235
[0:4800]

�0:5442���
[0:0030]

1:0255���
[0:0000]

0:1441���
[0:0000]

EMBIG �0:1948�
[0:0730]

�0:0534
[0:1770]

0:0815
[0:1470]

1:0040���
[0:0000]

second sample (post-2001)
From... US 3m US 10y US HY EMBIG
...to
US 3m 1:0219���

[0:0000]
0:2167
[0:1170]

0:1315
[0:1190]

0:1363
[0:2000]

US 10y 0:1028�
[0:0790]

1:2318��
[0:0380]

�0:3771�
[0:0610]

�0:2134
[0:1490]

US HY �0:1040��
[0:0590]

�0:6276��
[0:0380]

1:1846��
[0:0360]

0:1161
[0:1780]

EMBIG 0:0597��
[0:0420]

�0:1674��
[0:0390]

0:2263�
[0:0610]

1:0444���
[0:0050]

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Bootstrap p-
values in parentheses. See Tables G and H in appendix B for details. Regime choice using
threshold rule. The �rst sub-sample includes daily data from January 1997 to May 2001; the
second sub-sample includes daily data from May 2001 to May 2008.

5.2 Alternative methods of regime choice

The results presented in the previous sections were derived using a simple threshold rule to

choose volatility regimes. This rule is very easy to implement and works well in practice.

However, one may feel uncomfortable with regime choice using an apparently ad hoc rule. As a

robustness check, we present here results using an alternative method which involves estimating

a regime-switching model to describe the behaviour of the residuals, as a proxy for the

underlying structural shocks. We assume that the stochastic process through which structural

shocks are generated is governed by an underlying unobserved variable which we call the state.

Thus, if the system is in state st D 1, structural shocks are assumed to have a covariance matrix

�1, in state st D 2 shocks have a covariance matrix �2 and so forth. The covariance matrices for

each state, as well as the probability that any given observation of the residuals is generated by an

underlying state st D j can be estimated and in this way volatility regimes can be chosen

endogenously. Because of the dimensionality of the problem, we use a multivariate mixture of
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Chart 6: EMBIG high-volatility regime periods with multivariate mixture model

normal distributions model, rather than a more standard Markov model. Therefore, we only need

to estimate the unconditional probabilities of each state and their means and covariances, but no

transition matrix. Details are given in Appendix A.

Chart 6 plots the regime periods chosen for the case of EMBIG spreads, together with the

volatility of EMBIG residuals (computed over moving windows of 21 days). Note that the

regime periods chosen differ greatly from the previous threshold method, and are spread out

more across the sample. Again, the most important EME crises episodes are picked up in the

EMBIG high-volatility regime. Estimation results concerning the overall effects of structural

shocks on the endogenous variables, corresponding to the coef�cients in matrix A�1, are reported

in Table D. All coef�cients are equal in sign and similar in magnitude to the benchmark results in

Table B. Impulse responses and forecast error variance decompositions are not reported, but are

virtually identical to the benchmark results presented in Charts 4 and 5. This suggests that our

empirical results are robust to alternative speci�cations of the volatility regimes that are used for

identi�cation of the structural model.
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Table D: Estimation results using multivariate mixture model for regime choice

contemporaneous feedback effects (matrix A�1)
From... �US3m �US10y �USHY �EMBIG
...to
US 3m 1:0104���

[0:0000]
0:1673��
[0:0200]

�0:0743
[0:3390]

�0:0994�
[0:0850]

US 10y 0:0583�
[0:0930]

1:0765���
[0:0060]

�0:1004��
[0:0120]

�0:1714���
[0:0050]

US HY �0:0394
[0:6200]

�0:6035���
[0:0060]

1:0631���
[0:0060]

0:1548���
[0:0070]

EMBIG �0:0230
[0:1830]

�0:1592��
[0:0340]

0:1267��
[0:0500]

1:0328���
[0:0000]

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Bootstrap
p-values in parentheses. See Table F in appendix B for details. Sample includes daily data
from January 1997 to May 2008.

6 Conclusion

Using daily data from the start of 1997 through to end-May 2008, this paper analysed how

shocks are transmitted across bond markets in emerging market economies and mature countries.

Our main contribution was to exploit the heteroskedasticity of the data, following Rigobon

(2003), to identify all parameters in a structural model of bond markets in the United States and

EMEs, without imposing ad hoc restrictions. This allowed us to quantify the importance of

alternative transmission channels.

We found that shocks that widen EME and US high-yield spreads tend to lower US government

bond yields in the short run, consistent with the `�ight to quality' phenomenon. Concerning the

reverse effect we found that shocks to US interest rates tend to widen high-yield spreads with a

lag of about two days, which could be interpreted as re�ecting higher �nancing cost for risky

borrowers or `search for yield' effects. Shocks that increase US high-yield spreads widen

EMBIG spreads, and vice versa, in the short run; therefore, the feedback between EME bond

markets and markets for risky debt in developed countries appears to be an important channel

through which crises in EMEs can negatively affect mature markets and vice versa as has

occurred, to some extent, during the current �nancial crisis.

We carried out robustness checks to show that our results are not sensitive to the exact choice of

the volatility periods. To do this we used a multivariate mixture model to choose volatility
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regimes endogenously. We also tested for parameter stability by re-estimating the model for two

subsamples of our data set.

Apart from providing some interesting new evidence on �nancial transmission channels between

emerging and mature bond markets, our analysis can hopefully be of further use for monitoring

the development of international �nancial markets. Comparing how estimated coef�cients

change as the sample grows might lead to interesting insights into how the importance of

different transmission channels has changed. In face of adverse shocks, this can help to better

quantify the interaction of �nancial asset prices in developed countries and EMEs.
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Appendix A: Estimating regimes using a multivariate mixture model

This appendix provides more detailed information on how volatility regimes can be estimated

using a multivariate mixture model.22 Let be et a vector containing the period t VAR residuals,

et D
h
eus3m;t eus10y;t eushy;t eembig;t

i0
and assume that for each period t , et is drawn from a different probability distribution, depending

on the current realisation of an underlying, unobserved variable st which we call the state (some

realisations of st will later correspond to our volatility regimes). Assume that there are N states,

so that st D f1; 2; :::; N g. Let the unconditional probability that a given state, say st D j , is

realised in t be given by

p .st D jI�/ D � j

where � is a vector that contains all parameters of the model, as de�ned below. If the underlying

state in t is st D 1, our residuals et are assumed to have been drawn from a multivariate normal

distribution with mean �1 and covariance matrix 61; if the current state is st D 2, the residuals

are drawn from a normal distribution with mean �2 and covariance matrix 62. In general, we

have

et j fst D jI�g � N
�
� j ; 6 j

�
The corresponding conditional probability density function is denoted by f .et jst D jI�/. The

vector � summarises all parameters in our model. Thus � will contain the unconditional

probabilities of the N states, �1; :::; � N , the elements of the mean vectors � j for each state

j D 1; :::; N , and the unique elements of the N covariance matrices 6 j .

The idea is then to choose the parameters in � such that the probability of observing our sample

of residuals is maximised. To compute the likelihood function, consider �rst the joint probability

of observing et while the underlying state is st D j . This is given by

p .et ; st D jI�/ D f .et jst D jI�/ � � j

Summing over all possible states N , the unconditional density of et is then

f .etI�/ D
NX
jD1
p .et ; st D jI�/

22For an introduction into the formulation and estimation of univariate mixture of distributions models see Hamilton (1994), Chapter 22.
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From this, the log likelihood is computed as

L .�/ D
TX
tD1
log f .etI�/

The likelihood function is then maximised with respect to � using the EM algorithm. This

algorithm has the advantage that it increases the value of the likelihood function in each iteration;

thus, if the algorithm converges, we have found the maximum of the likelihood function. The

estimation was performed using the MATLAB toolbox h2m, written by Oliver Cappé.

Once the parameters have been estimated, we can compute the probability that the underlying

state in some period t is st D j . This is done using Bayes' rule:

p .st D j jet ;�/ D
p .et ; st D jI�/

f .etI�/
We then say that the underlying state in period t is j if this is the state which has the highest

conditional probability: formally, st D j if p .st D j jet ;�/ > p .st D i jet ;�/ for all i 6D j . Next,

we need to decide which of the N states correspond to our volatility regimes. Recall from

subsection 3.3 that for identi�cation purposes, we would like to choose 1C n regimes: one

`tranquility' regime, and n regimes where only one variable is volatile, while the others have a

low volatility. Thus we pick those of the N states that best match this description.

How should the number of states, N , be determined? We let N D n2, where n denotes the

number of endogenous variables in the VAR, to cover all possible volatility combinations that

can arise if each variable is either volatile or not.23 For example, there could be one state where

only US short rates are volatile, another state where US short and long rates are volatile, a third

state where US short rates and US high-yield spreads are volatile and so forth. We set starting

values for the EM algorithm to point estimation in the direction of such volatility combinations.

It is worth noting that the dimension of the problem can become quite large, so that the algorithm

may take long to converge. Convergence is signi�cantly faster if the covariance matrices 6 j are

diagonal. Unfortunately, the VAR-residuals will be correlated (unlike the underlying structural

shocks which we are trying to uncover). Alternatively, we could also work with the standard

deviations of the residuals � however, in this case it is not clear whether or not it is reasonable

that, for example, � 2us10;t and � 2embig;t will be correlated in a given state.

23Of course, the estimated variances do not need to con�rm this intuition; for example, one variable could be estimated to have a low
variance in all states, while another variable exhibits several different levels of volatility across states. However, allowing for a greater
number of states would further increase the dimensionality of the maximisation problem.
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Appendix B: Tables and charts

Table E: Bootstrap results for benchmark speci�cation (threshold rule)

contemporaneous feedback effects (matrix A�1)

bootstrap
Point estimate mean standard error p-value

�us3m !US 3m 1.0129*** 1.0083 0.0102 0.0000
�us3m !US 10y 0.0823* 0.0774 0.0572 0.0840
�us3m !US HY -0.0408* -0.0683 0.0515 0.0840
�us3m !EMBIG -0.0023 -0.0002 0.0264 0.4920

�us10y !US 3m 0.1783*** 0.1316 0.0423 0.0000
�us10y !US 10y 1.0952*** 1.0910 0.0413 0.0000
�us10y !US HY -0.5524*** -0.5446 0.0370 0.0000
�us10y !EMBIG -0.0923*** -0.0917 0.0210 0.0000

�ushy !US 3m -0.0086 -0.0896 0.0993 0.1450
�ushy !US 10y -0.1643*** -0.1852 0.1119 0.0050
�ushy !US HY 1.0956*** 1.1006 0.0461 0.0000
�ushy !EMBIG 0.1986*** 0.2008 0.0366 0.0000

�embig !US 3m -0.0805*** -0.0795 0.0251 0.0030
�embig !US 10y -0.1392*** -0.1371 0.0223 0.0000
�embig !US HY 0.1401*** 0.1378 0.0277 0.0000
�embig !EMBIG 1.0239*** 1.0228 0.0046 0.0000

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Results from 1000+1000
bootstrap replications, following Kilian (1998) and Rigobon (2003). Regime choice using threshold rule.
Sample includes daily data from January 1997 to May 2008.
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Table F: Bootstrap results for regime choice with multivariate mixture model

contemporaneous feedback effects (matrix A�1)

bootstrap
Point estimate mean standard error p-value

�us3m !US 3m 1.0104*** 1.0092 0.0335 0,0000
�us3m !US 10y 0.0583* 0.0604 0.0573 0.0930
�us3m !US HY -0.0394 0.0070 0.0980 0.6200
�us3m !EMBIG -0.0230 -0.0285 0.0409 0.1830

�us10y !US 3m 0.1673** 0.8092 11.1890 0.0200
�us10y !US 10y 1.0765*** 2.8488 34.1474 0.0060
�us10y !US HY -0.6035*** -2.0762 30.1229 0.0060
�us10y !EMBIG -0.1592** -0.4024 5.3423 0.0340

�ushy !US 3m -0.0743 -0.7055 13.0522 0.3390
�ushy !US 10y -0.1004** -2.2860 39.7169 0.0120
�ushy !US HY 1.0631*** 2.8603 34.4809 0.0060
�ushy !EMBIG 0.1267** 0.4168 6.2835 0.0500

�embig !US 3m -0.0994* -0.0898 0.1972 0.0850
�embig !US 10y -0.1714*** -0.1784 0.4014 0.0050
�embig !US HY 0.1548*** 0.0801 2.2058 0.0070
�embig !EMBIG 1.0328*** 1.0892 1.7123 0.0000

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Results from 1000+1000 boot-
strap replications, following Kilian (1998) and Rigobon (2003). Regime choice using multivariate mixture
model. Sample includes daily data from January 1997 to May 2008.
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Table G: Bootstrap results for �rst subsample (threshold rule)

contemporaneous feedback effects (matrix A�1)

bootstrap
Point estimate mean standard error p-value

�us3m !US 3m 1.0499*** 1.0080 0.0325 0.0000
�us3m !US 10y 0.3118 0.1749 0.1493 0.1350
�us3m !US HY 0.0235 -0.0061 0.1055 0.4800
�us3m !EMBIG 0.1948* 0.2520 0.1267 0.0730

�us10y !US 3m 0.2620** 0.2586 0.1356 0.0260
�us10y !US 10y 1.1030*** 1.1270 0.0436 0.0000
�us10y !US HY -0.5442*** -0.4648 0.0826 0.0030
�us10y !EMBIG -0.0534 -0.0407 0.0447 0.1770

�ushy !US 3m -0.1024 -0.0481 0.1543 0.4000
�ushy !US 10y -0.0673** -0.2374 0.1648 0.0130
�ushy !US HY 1.0255*** 1.0878 0.0433 0.0000
�ushy !EMBIG 0.0815 0.0788 0.0735 0.1470

�embig !US 3m -0.0844*** -0.0869 0.0242 0.0000
�embig !US 10y -0.1428*** -0.1423 0.0229 0.0000
�embig !US HY 0.1441*** 0.1425 0.0271 0.0000
�embig !EMBIG 1.0040*** 0.9968 0.0078 0.0000

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Results from 1000+1000
bootstrap replications. Regime choice using threshold rule. Sample includes daily data from January 1997 to
May 2001.
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Table H: Bootstrap results for second subsample (threshold rule)

contemporaneous feedback effects (matrix A�1)

bootstrap
Point estimate mean standard error p-value

�us3m !US 3m 1.0219*** 1.0087 0.0474 0.0000
�us3m !US 10y 0.1028* 0.0776 0.0945 0.0790
�us3m !US HY -0.1040* -0.0911 0.0951 0.0590
�us3m !EMBIG 0.0597** -0.0380 0.0300 0.0420

�us10y !US 3m 0.2167 0.1018 4.4070 0.1170
�us10y !US 10y 1.2318** 1.9282 31.4776 0.0380
�us10y !US HY -0.6276** -2.0798 47.7696 0.0380
�us10y !EMBIG -0.1674** -0.4499 9.5248 0.0390

�ushy !US 3m 0.1315 -0.0310 4.4449 0.1190
�ushy !US 10y -0.3771* -0.5070 21.2091 0.0610
�ushy !US HY 1.1846** 1.8930 30.8741 0.0360
�ushy !EMBIG 0.2263* 0.3067 6.4118 0.0610

�embig !US 3m 0.1363 -0.1378 0.1907 0.2000
�embig !US 10y -0.2134 -0.1454 0.6107 0.1490
�embig !US HY 0.1161 0.1691 0.6257 0.1780
�embig !EMBIG 1.0444*** 1.0336 0.3167 0.0050

***, ** and * denote signi�cance at the 1%, 5% and 10% level, respectively. Results from 1000+1000
bootstrap replications. Regime choice using threshold rule. Sample includes daily data from May 2001 to
May 2008.
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Chart 7: Impulse response functions for �rst subsample.
Response of the variables listed in the columns to one-standard deviation shocks listed in the rows. Dotted lines are 95% con�dence

bands obtained from 1000+1000 bootstrap replications. Regime choice using threshold rule. Sample includes daily data from

January 1997 to May 2001.
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Chart 8: Impulse response functions for second subsample.
Response of the variables listed in the columns to one-standard deviation shocks listed in the rows. Dotted lines are 95% con�dence

bands obtained from 1000+1000 bootstrap replications. Regime choice using threshold rule. Sample includes daily data fromMay

2001 to May 2008.
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Chart 9: Forecast error decomposition for �rst subsample.
Fraction of the forecast error variance of the variables listed in the columns, explained by shocks listed in the rows. Dotted lines

are 95% con�dence bands obtained from 1000+1000 bootstrap replications. Regime choice using threshold rule. Sample includes

daily data from January 1997 to May 2001.
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Chart 10: Forecast error decomposition for second subsample.
Fraction of the forecast error variance of the variables listed in the columns, explained by shocks listed in the rows. Dotted lines

are 95% con�dence bands obtained from 1000+1000 bootstrap replications. Regime choice using threshold rule. Sample includes

daily data from May 2001 to May 2008.
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