
Working Paper No. 383
Contagion in financial networks
Prasanna Gai and Sujit Kapadia 

March 2010



Working Paper No. 383
Contagion in financial networks
Prasanna Gai(1) and Sujit Kapadia(2)

Abstract

This paper develops an analytical model of contagion in financial networks with arbitrary structure.  
We explore how the probability and potential impact of contagion is influenced by aggregate and
idiosyncratic shocks, changes in network structure, and asset market liquidity.  Our findings suggest that
financial systems exhibit a robust-yet-fragile tendency:  while the probability of contagion may be low,
the effects can be extremely widespread when problems occur.  And we suggest why the resilience of
the system in withstanding fairly large shocks prior to 2007 should not have been taken as a reliable
guide to its future robustness.

Key words: Contagion, network models, systemic risk, liquidity risk, financial crises.

JEL classification: D85, G01, G21.

(1)  Australian National University and Bank of England.  Email:  prasanna.gai@anu.edu.au
(2)  Bank of England.  Email:  sujit.kapadia@bankofengland.co.uk

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.  The paper is
forthcoming in Proceedings of the Royal Society A.  We thank Emma Mattingley, Nick Moore, Barry Willis and, particularly,
Jason Dowson for excellent research assistance.  We are also grateful to Kartik Anand, Fabio Castiglionesi, Geoff Coppins,
Avinash Dixit, John Driffill, Sanjeev Goyal, Andy Haldane, Simon Hall, Matteo Marsili, Robert May, Marcus Miller, 
Emma Murphy, Filipa Sa, Nancy Stokey, Merxe Tudela, Jing Yang, three anonymous referees and seminar participants at the
Bank of England, the University of Oxford, the University of Warwick research workshop and conference on ‘World Economy
and Global Finance’ (Warwick, 11–15 July 2007), the UniCredit Group Conference on ‘Banking and Finance:  Span and Scope
of Banks, Stability and Regulation’ (Naples, 17–18 December 2007), the 2008 Royal Economic Society Annual Conference
(Warwick, 17–19 March 2008), and the 2008 Southern Workshop in Macroeconomics (Auckland, 28–30 March 2008) for
helpful comments and suggestions.  This paper was finalised on 8 October 2009. 

The Bank of England’s working paper series is externally refereed.

Information on the Bank’s working paper series can be found at
www.bankofengland.co.uk/publications/workingpapers/index.htm

Publications Group, Bank of England, Threadneedle Street, London, EC2R 8AH 
Telephone +44 (0)20 7601 4030  Fax +44 (0)20 7601 3298  email mapublications@bankofengland.co.uk

© Bank of England 2010
ISSN 1749-9135 (on-line)



Contents

Summary 3

1 Introduction 5

2 The model 10

3 Numerical simulations 20

4 Liquidity risk 26

5 Relationship to the empirical literature 28

6 Conclusion 29

Appendix: Generating functions 30

References 32

Working Paper No. 383 March 2010 2



Summary

In modern �nancial systems, an intricate web of claims and obligations links the balance sheets

of a wide variety of intermediaries, such as banks and hedge funds, into a network structure. The

advent of sophisticated �nancial products, such as credit default swaps and collateralised debt

obligations, has heightened the complexity of these balance sheet connections still further. As

demonstrated by the �nancial crisis, especially in relation to the failure of Lehman Brothers and

the rescue of American International Group (AIG), these interdependencies have created an

environment for feedback elements to generate ampli�ed responses to shocks to the �nancial

system. They have also made it dif�cult to assess the potential for contagion arising from the

behaviour of �nancial institutions under distress or from outright default.

This paper models two key channels of contagion in �nancial systems. The primary focus is on

how losses may potentially spread via the complex network of direct counterparty exposures

following an initial default. But the knock-on effects of distress at some �nancial institutions on

asset prices can force other �nancial entities to write down the value of their assets, and we also

model the potential for this effect to trigger further rounds of default. Contagion due to the direct

interlinkages of interbank claims and obligations may thus be reinforced by indirect contagion on

the asset side of the balance sheet � particularly when the market for key �nancial system assets

is illiquid.

Our modelling approach applies statistical techniques from complex network theory. In contrast

to most existing theoretical work on interbank contagion, which considers small, stylised

networks, we demonstrate that analytical results on the relationship between �nancial system

connectivity and contagion can be obtained for structures which re�ect the complexities of

observed �nancial networks. And we provide a framework for isolating the probability and

spread of contagion when claims and obligations are interlinked.

The model we develop explicitly accounts for the nature and scale of macroeconomic and

bank-speci�c shocks, and the complexity of network structure, while allowing asset prices to

interact with balance sheets. The interactions between �nancial intermediaries following shocks

make for non-linear system dynamics, whereby contagion risk can be highly sensitive to small

changes in parameters.
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Our results suggest that �nancial systems may exhibit a robust-yet-fragile tendency: while the

probability of contagion may be low, the effects can be extremely widespread when problems

occur. The model also highlights how seemingly indistinguishable shocks can have very different

consequences for the �nancial system depending on whether or not the shock hits at a particular

pressure point in the network structure. This helps explain why the evidence of the resilience of

the system to fairly large shocks prior to 2007 was not a reliable guide to its future robustness.

The intuition underpinning these results is as follows. In a highly connected system, the

counterparty losses of a failing institution can be more widely dispersed to, and absorbed by,

other entities. So increased connectivity and risk sharing may lower the probability of contagious

default. But, conditional on the failure of one institution triggering contagious defaults, a high

number of �nancial linkages also increases the potential for contagion to spread more widely. In

particular, high connectivity increases the chances that institutions which survive the effects of

the initial default will be exposed to more than one defaulting counterparty after the �rst round of

contagion, thus making them vulnerable to a second-round default. The effects of any crises that

do occur can, therefore, be extremely widespread.
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1 Introduction

In modern �nancial systems, an intricate web of claims and obligations links the balance sheets

of a wide variety of intermediaries, such as banks and hedge funds, into a network structure. The

advent of sophisticated �nancial products, such as credit default swaps and collateralised debt

obligations, has heightened the complexity of these balance sheet connections still further. As

demonstrated by the �nancial crisis, especially in relation to the failure of Lehman Brothers and

the rescue of American International Group (AIG), these interdependencies have created an

environment for feedback elements to generate ampli�ed responses to shocks to the �nancial

system. They have also made it dif�cult to assess the potential for contagion arising from the

behaviour of �nancial institutions under distress or from outright default.1

This paper models two key channels of contagion in �nancial systems by which default may

spread from one institution to another. The primary focus is on how losses can potentially spread

via the complex network of direct counterparty exposures following an initial default. But, as

Cifuentes et al (2005) and Shin (2008) stress, the knock-on effects of distress at some �nancial

institutions on asset prices can force other �nancial entities to write down the value of their

assets, and we also model the potential for this effect to trigger further rounds of default.

Contagion due to the direct interlinkages of interbank claims and obligations may thus be

reinforced by indirect contagion on the asset side of the balance sheet � particularly when the

market for key �nancial system assets is illiquid.

The most well-known contribution to the analysis of contagion through direct linkages in

�nancial systems is that of Allen and Gale (2000).2 Using a network structure involving four

banks, they demonstrate that the spread of contagion depends crucially on the pattern of

interconnectedness between banks. When the network is complete, with all banks having

exposures to each other such that the amount of interbank deposits held by any bank is evenly

spread over all other banks, the impact of a shock is readily attenuated. Every bank takes a small

`hit' and there is no contagion. By contrast, when the network is `incomplete', with banks only

having exposures to a few counterparties, the system is more fragile. The initial impact of a

1See Rajan (2005) for a policymaker's view of the recent trends in �nancial development and Haldane (2009) for a discussion of the role
that the structure and complexities of the �nancial network have played in the �nancial turmoil of 2007-09.
2Other strands of the literature on �nancial contagion have focused on the role of liquidity constraints (Kodres and Pritsker (2002)),
information asymmetries (Calvo and Mendoza (2000)), and wealth constraints (Kyle and Xiong (2001)). As such, their focus is less on
the nexus between network structure and �nancial stability. Network perspectives have also been applied to other topics in �nance: for a
comprehensive survey of the use of network models in �nance, see Allen and Babus (2009).
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shock is concentrated among neighbouring banks. Once these succumb, the premature

liquidation of long-term assets and the associated loss of value bring previously unaffected banks

into the front line of contagion. In a similar vein, Freixas et al (2000) show that tiered systems

with money-centre banks, where banks on the periphery are linked to the centre but not to each

other, may also be susceptible to contagion.3

The generality of insights based on simple networks with rigid structures to real-world contagion

is clearly open to debate. Moreover, while not being so stylised, models with endogenous

network formation (eg Leitner (2005) and Castiglionesi and Navarro (2007)) impose strong

assumptions which lead to stark predictions on the implied network structure that do not re�ect

the complexities of real-world �nancial networks. And, by and large, the existing literature fails

to distinguish the probability of contagious default from its potential spread.

However, even prior to the current �nancial crisis, the identi�cation of the probability and impact

of shocks to the �nancial system was assuming centre-stage in policy debate. Some policy

institutions, for example, attempted to articulate the probability and impact of key risks to the

�nancial system in their Financial Stability Reports.4 Moreover, the complexity of �nancial

systems means that policymakers have only partial information about the true linkages between

�nancial intermediaries. Given the speed with which shocks propagate, there is, therefore, a need

to develop tools that facilitate analysis of the transmission of shocks through a given, but

arbitrary, network structure. Recent events in the global �nancial system have only served to

emphasise this.

Our paper takes up this challenge by introducing techniques from the literature on complex

networks (Strogatz (2001)) into a �nancial system setting. Although this type of approach is

frequently applied to the study of epidemiology and ecology, and despite the obvious parallels

between �nancial systems and other complex systems that have been highlighted by prominent

authors (eg May et al (2008)) and policymakers (eg Haldane (2009)), the analytical techniques

we use have yet to be applied to economic problems and thus hold out the possibility of novel

insights.

3These papers assume that shocks are unexpected; an approach we follow in our analysis. Brusco and Castiglionesi (2007) model
contagion in �nancial systems in an environment where contracts are written contingent on the realisation of the liquidity shock. As in
Allen and Gale (2000), they construct a simple network structure of four banks. They suggest, however, that greater connectivity could
serve to enhance contagion risk. This is because the greater insurance provided by additional �nancial links may be associated with
banks making more imprudent investments. And, with more links, if a bank's gamble does not pay off, its failure has wider rami�cations.
4See, for example, Bank of England (2007).
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In what follows, we draw on these techniques to model contagion stemming from unexpected

shocks in complex �nancial networks with arbitrary structure, and then use numerical

simulations to illustrate and clarify the intuition underpinning our analytical results. Our

framework explicitly accounts for the nature and scale of aggregate and idiosyncratic shocks and

allows asset prices to interact with balance sheets. The complex network structure and

interactions between �nancial intermediaries make for non-linear system dynamics, whereby

contagion risk can be highly sensitive to small changes in parameters. We analyse this feature of

our model by isolating the probability and spread of contagion when claims and obligations are

interlinked. In so doing, we provide an alternative perspective on the question of whether the

�nancial system acts as a shock absorber or as an ampli�er.

We �nd that �nancial systems exhibit a robust-yet-fragile tendency: while the probability of

contagion may be low, the effects can be extremely widespread when problems occur. The model

also highlights how a priori indistinguishable shocks can have very different consequences for

the �nancial system, depending on the particular point in the network structure that the shock

hits. This cautions against assuming that past resilience to a particular shock will continue to

apply to future shocks of a similar magnitude. And it explains why the evidence of the resilience

of the �nancial system to fairly large shocks prior to 2007 (eg 9/11, the Dotcom crash, and the

collapse of Amaranth to name a few) was not a reliable guide to its future robustness.

The intuition underpinning these results is straightforward. In a highly connected system, the

counterparty losses of a failing institution can be more widely dispersed to, and absorbed by,

other entities. So increased connectivity and risk sharing may lower the probability of contagious

default. But, conditional on the failure of one institution triggering contagious defaults, a high

number of �nancial linkages also increases the potential for contagion to spread more widely. In

particular, high connectivity increases the chances that institutions which survive the effects of

the initial default will be exposed to more than one defaulting counterparty after the �rst round of

contagion, thus making them vulnerable to a second-round default. The effects of any crises that

do occur can, therefore, be extremely widespread.

Our model draws on the mathematics of complex networks (see Strogatz (2001) and Newman

(2003) for authoritative and accessible surveys). This literature describes the behaviour of

connected groups of nodes in a network and predicts the size of a susceptible cluster, ie the

number of vulnerable nodes reached via the transmission of shocks along the links of the
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network. The approach relies on specifying all possible patterns of future transmission. Callaway

et al (2000), Newman et al (2001) and Watts (2002) show how probability generating function

techniques can identify the number of a randomly selected node's �rst neighbours, second

neighbours, and so on. Recursive equations are constructed to consider all possible outcomes and

obtain the total number of nodes that the original node is connected to � directly and indirectly.

Phase transitions, which mark the threshold(s) for extensive contagious outbreaks can then be

identi�ed.

In what follows, we construct a simple �nancial system involving entities with interlocking

balance sheets and use these techniques to model the spread and probability of contagious default

following an unexpected shock, analytically and numerically.5 Unlike the generic, undirected

graph model of Watts (2002), our model provides an explicit characterisation of balance sheets,

making clear the direction of claims and obligations linking �nancial institutions. It also includes

asset price interactions with balance sheets, allowing the effects of asset-side contagion to be

clearly delineated. We illustrate the robust-yet-fragile tendency of �nancial systems and analyse

how contagion risk changes with capital buffers, the degree of connectivity, and the liquidity of

the market for failed banking assets.6

Our framework assumes that the network of interbank linkages forms randomly and

exogenously: we leave aside issues related to endogenous network formation, optimal network

structures and network ef�ciency.7 Although some real-world banking networks may exhibit

core-periphery structures and tiering (see Boss et al (2004) and Craig and von Peter (2009) for

evidence on the Austrian and German interbank markets respectively), the empirical evidence is

limited and, given our theoretical focus, it does not seems sensible to restrict our analysis of

contagion to particular network structures. In particular, our assumption that the network

structure is entirely arbitrary carries the advantage that our model encompasses any structure

5Eisenberg and Noe (2001) demonstrate that, following an initial default in such a system, a unique vector which clears the obligations of
all parties exists. However, they do not analyse the effects of network structure on the dynamics of contagion.
6Nier et al (2007) also simulate the effects of unexpected shocks in �nancial networks, though they do not distinguish the probability of
contagion from its potential spread and their results are strictly numerical � they do not consider the underlying analytics of the complex
(random graph) network that they use. Recent work by May and Arinaminpathy (2010) uses analytic mean-�eld approximations to offer
a more complete explanation of their �ndings and also contrasts their results with those presented in this paper.
7See Leitner (2005), Gale and Kariv (2007), Castiglionesi and Navarro (2007) and the survey by Allen and Babus (2009) for discussion
of these topics. Leitner (2005) suggests that linkages which create the threat of contagion may be optimal. The threat of contagion and
the impossibility of formal commitments mean that networks develop as an ex ante optimal form of insurance, as agents are willing to
bail each other out in order to prevent the collapse of the entire system. Gale and Kariv (2007) study the process of exchange on �nancial
networks and show that when networks are incomplete, substantial costs of intermediation can arise and lead to uncertainty of trade as
well as market breakdowns.
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which may emerge in the real world or as the optimal outcome of a network formation game.

And it is a natural benchmark to consider.

We also model the contagion process in a relatively mechanical fashion, holding balance sheets

and the size and structure of interbank linkages constant as default propagates through the

system. Arguably, in normal times in developed �nancial systems, banks are suf�ciently robust

that very minor variations in their default probabilities do not affect the decision of whether or

not to lend to them in interbank markets. Meanwhile, in crises, contagion spreads very rapidly

through the �nancial system, meaning that banks are unlikely to have time to alter their

behaviour before they are affected � as such, it may be appropriate to assume that the network

remains static. Note also that banks have no choice over whether they default. This precludes the

type of strategic behaviour discussed by Morris (2000), Jackson and Yariv (2007) and Galeotti

and Goyal (2009), whereby nodes can choose whether or not to adopt a particular state (eg

adopting a new technology).

Our approach has some similarities to the epidemiological literature on the spread of disease in

networks (see, for example, Anderson and May (1991), Newman (2002), Jackson and Rogers

(2007), or the overview by Meyers (2007)). But there are two key differences. First, in

epidemiological models, the susceptibility of an individual to contagion from a particular

infected `neighbour' does not depend on the health of their other neighbours. By contrast, in our

set-up, contagion to a particular institution following a default is more likely to occur if another

of its counterparties has also defaulted. Second, in most epidemiological models, higher

connectivity simply creates more channels of contact through which infection could spread,

increasing the potential for contagion. In our setting, however, greater connectivity also provides

counteracting risk-sharing bene�ts as exposures are diversi�ed across a wider set of institutions.

Another strand of related literature (eg Davis and Lo (2001); Frey and Backhaus (2003);

Giesecke (2004); Giesecke and Weber (2004); Cossin and Schellhorn (2007); Egloff et al (2007))

considers default correlation and credit contagion among �rms, often using reduced-form credit

risk models. In contrast to these papers, clearly speci�ed bank balance sheets are central to our

approach, with bilateral linkages precisely de�ned with reference to these. And our differing

modelling strategy, which focuses on the transmission of contagion along these links, re�ects the

greater structure embedded in our network set-up.
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The structure of the paper is as follows. Section 2 describes the structure of the �nancial network,

the transmission process for contagion, and analytical results characterising a default cascade.

Section 3 uses numerical simulations to study the effects of failures of individual institutions and

to articulate the likelihood and extent of contagion. Section 4 considers the impact of liquidity

effects on system stability. Section 5 discusses points of contact with the empirical literature on

interbank contagion being pursued by central banks. A �nal section concludes.

2 The model

2.1 Network structure

Consider a �nancial network in which n �nancial intermediaries, `banks' for short, are randomly

linked together by their claims on each other. In the language of graph theory, each bank

represents a node on the graph and the interbank exposures of bank i de�ne the links with other

banks. These links are directed and weighted, re�ecting the fact that interbank exposures

comprise assets as well as liabilities and that the size of these exposures is important for

contagion analysis. Chart 1 shows an example of a directed, weighted �nancial network in which

there are �ve banks, with darker lines corresponding to higher value links.

A crucial property of graphs such as those in Chart 1 is their degree distribution. In a directed

graph, each node has two degrees, an in-degree, the number of links that point into the node, and

an out-degree, which is the number pointing out. Incoming links to a node or bank re�ect the

interbank assets/exposures of that bank, ie monies owed to the bank by a counterparty. Outgoing

links from a bank, by contrast, correspond to its interbank liabilities. In what follows, the joint

distribution of in and out-degree governs the potential for the spread of shocks through the

network.

For reasons outlined above, our analysis takes this joint degree distribution, and hence the

structure of the links in the network, as being entirely arbitrary, though a speci�c distributional

assumption is made in our numerical simulations in Section 3. This implies that the network is

entirely random in all respects other than its degree distribution. In particular, there is no

statistical correlation between nodes and mixing between nodes is proportionate (ie there is no

statistical tendency for highly connected nodes to be particularly connected with other highly

connected nodes or with poorly connected nodes).
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Chart 1: A weighted, directed network with �ve nodes

Suppose that the total assets of each bank consist of interbank assets, A I Bi , and illiquid external

assets, such as mortgages, AMi . Further, let us assume that the total interbank asset position of

every bank is evenly distributed over each of its incoming links and is independent of the number

of links the bank has (if a bank has no incoming links, A I Bi D 0 for that bank). Although these

assumptions are stylised, they provide a useful benchmark which emphasises the possible

bene�ts of diversi�cation and allows us to highlight the distinction between risk sharing and risk

spreading within the �nancial network. In particular, they allow us to show that widespread

contagion is possible even when risk sharing in the system is maximised. We consider the

implications of relaxing these assumptions in Section 2.5.

Since every interbank asset is another bank's liability, interbank liabilities, L I Bi , are

endogenously determined. Apart from interbank liabilities, we assume that the only other

component of a bank's liabilities are exogenously given customer deposits, Di . The condition for

bank i to be solvent is therefore

.1� �/ A I Bi C q AMi � L
I B
i � Di > 0 (1)

where � is the fraction of banks with obligations to bank i that have defaulted, and q is the resale
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price of the illiquid asset.8 The value of q may be less than one in the event of asset sales by

banks in default, but equals one if there are no `�re sales'. We make a zero recovery assumption,

namely that when a linked bank defaults, bank i loses all of its interbank assets held against that

bank.9 The solvency condition can also be expressed as

� <
Ki � .1� q/ AMi

A I Bi
, for A I Bi 6D 0 (2)

where Ki D A I Bi C AMi � L I Bi � Di is the bank's capital buffer, ie the difference between the

book value of its assets and liabilities.10

To model the dynamics of contagion, we suppose that all banks in the network are initially

solvent and that the network is perturbed at time t D 1 by the initial default of a single bank.

Although purely idiosyncratic shocks are rare, the crystallisation of operational risk (eg fraud)

has led to the failure of �nancial institutions in the past (eg Barings). Alternatively, bank failure

may result from an aggregate shock which has particularly adverse consequences for one

institution: this can be captured in the model through a general erosion in the stock of illiquid

assets or, equivalently, capital buffers across all banks, combined with a major loss for one

particular institution.

Let ji denote the number of incoming links for bank i (the in-degree). Since linked banks each

lose a fraction 1=ji of their interbank assets when a single counterparty defaults, it is clear from

(2) that the only way default can spread is if there is a neighbouring bank for which
Ki � .1� q/ AMi

A I Bi
<
1
ji

(3)

We de�ne banks that are exposed in this sense to the default of a single neighbour as vulnerable

and other banks as safe. The vulnerability of a bank clearly depends on its in-degree, j .

Speci�cally, recalling that the capital buffer is taken to be a random variable (see footnote 10), a

bank with in-degree j is vulnerable with probability

� j D P
�
Ki � .1� q/ AMi

A I Bi
<
1
j

�
8 j � 1 (4)

8A regulatory requirement for banks to maintain capital above a certain level at all times could easily be incorporated into the model by
rewriting the solvency condition to require that .1� �/ AI Bi C q AMi � L

I B
i � Di exceeds a positive constant. This would not

fundamentally alter the analysis.
9This assumption is likely to be realistic in the midst of a crisis: in the immediate aftermath of a default, the recovery rate and the timing
of recovery will be highly uncertain and banks' funders are likely to assume the worst-case scenario. Nevertheless, in our numerical
simulations, we show that our results are robust to relaxing this assumption.
10Formally, this capital buffer is taken to be a random variable � the underlying source of its variability may be viewed as being
generated by variability in Di , drawn from its appropriate distribution. For notational simplicity, we do not explicitly denote this
dependence of Ki on Di in the subsequent expressions.
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Further, the probability of a bank having in-degree j , out-degree k and being vulnerable is

� j � p jk , where p jk is the joint degree distribution of in and out-degree.

The model structure described by equations (1) to (4) captures several features of interest in

systemic risk analysis. First, as noted above, the nature and scale of adverse aggregate or

macroeconomic events can be interpreted as a negative shock to the stock of illiquid assets, AMi ,

or equivalently, to the capital buffer, Ki . Second, idiosyncratic shocks can be modelled by

assuming the exogenous default of a bank. Third, the structural characteristics of the �nancial

system are described by the distribution of interbank linkages, p jk . And �nally, liquidity effects

associated with the potential knock-on effects of default on asset prices are captured by allowing

q to vary. To keep matters simple, we initially �x q D 1, returning later to endogenise it.

2.2 Generating functions and the transmission of shocks

In suf�ciently large networks, for contagion to spread beyond the �rst neighbours of the initially

defaulting bank, those neighbours must themselves have outgoing links (ie liabilities) to other

vulnerable banks.11 We therefore de�ne the probability generating function for the joint degree

distribution of a vulnerable bank as

G.x; y/ D
X
j;k
� j � p jk � x j � yk (5)

The generating function contains all the same information that is contained in the degree

distribution, p jk , and the vulnerability distribution, � j , but in a form that allows us to work with

sums of independent draws from different probability distributions. Speci�cally, for our

purposes, it generates all the moments of the degree distribution of only those banks that are

vulnerable. Note that probability generating functions are the discrete analogue of moment

generating functions. The appendix provides a detailed description of their key properties,

focusing on those which are used in this paper.

Since every interbank asset of a bank is an interbank liability of another, every outgoing link for

one node is an incoming link for another node. This means that the average in-degree in the

network, 1n
P

i ji D
P

j;k j p jk , must equal the average out-degree,
1
n

P
i ki D

P
j;k kp jk . We refer

11If the number of nodes, n, is suf�ciently large, banks are highly unlikely to be exposed to more than one failed bank after the �rst round
of contagion, meaning that safe banks will never fail in the second round. This assumption clearly breaks down either when n is small or
when contagion spreads more widely. However, the logic of this section still holds in both cases: in the former, the exact solutions
derived for large n will only approximate reality (this is con�rmed by the numerical results in Section 3); in the latter, the exact solutions
will apply but the extent of contagion will be affected, as discussed further in Section 2.4.
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to this quantity as the average degree and denote it by

z D
X
j;k
j p jk D

X
j;k
kp jk (6)

From G.x; y/, we can de�ne a single-argument generating function, G0 .y/, for the number of
links leaving a randomly chosen vulnerable bank. This is given by

G0 .y/ D G .1; y/ D
X
j;k
� j � p jk � yk (7)

Note that

G .1; 1/ D G0 .1/ D
X
j;k
� j � p jk (8)

so that G0.1/ yields the fraction of banks that are vulnerable.

We can also de�ne a second single-argument generating function, G1 .y/, for the number of links

leaving a bank reached by following a randomly chosen incoming link. Because we are

interested in the propagation of shocks from one bank to another, we require the degree

distribution, � j � r jk; of a vulnerable bank that is a random neighbour of our initially chosen bank.

At this point, it is important to note that this is not the same as the degree distribution of

vulnerable banks on the network as a whole. This is because a bank with a higher in-degree has a

greater number of links pointing towards it, meaning that there is a higher chance that any given

outgoing link will terminate at it, in precise proportion to its in-degree. Therefore, the larger the

in-degree of a bank, the more likely it is to be a neighbour of our initially chosen bank, with the

probability of choosing it being proportional to j p jk .12 The generating function for the number

of links leaving a vulnerable neighbour of a randomly chosen vulnerable bank is thus given by

G1 .y/ D
X
j;k
� j � r jk � yk D

P
j;k
� j � j � p jk � ykP
j;k
j � p jk

(9)

Now suppose that we follow a randomly chosen outgoing link from a vulnerable bank to its end

and then to every other vulnerable bank reachable from that end. We refer to this set of banks as

the (outgoing) vulnerable cluster at the end of a randomly chosen outgoing link from a

vulnerable bank. Because it captures links between vulnerable banks, the size and distribution of

12This point is discussed in more detail in the context of undirected graphs by Feld (1991), Newman et al (2001) and Newman (2003).
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Chart 2: Transmission of contagion implied by equation (10)
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the vulnerable cluster characterise how default spreads across the �nancial network following an

initial failure.

As Chart 2 illustrates, each vulnerable cluster (represented by a square in the �gure) can take

many different forms (see also Newman (2003)). We can follow a randomly chosen outgoing link

and �nd a single bank at its end with no further outgoing connections emanating from it. This

bank may be safe (s) or vulnerable (v). Or we may �nd a vulnerable bank with one, two, or more

links emanating from it to further clusters. At this point, we assume that the links emanating

from the defaulting node are tree-like and contain no cycles or closed loops. This is solely to

make an exact solution possible: the thrust of the argument goes through without this restriction

and we do not apply it when conducting our numerical simulations in Section 3.

Let H1 .y/ be the generating function for the probability of reaching an outgoing vulnerable

cluster of given size (in terms of numbers of vulnerable banks) by following a random outgoing

link from a vulnerable bank. As shown in Chart 2, the total probability of all possible forms can

be represented self-consistently as the sum of probabilities of hitting a safe bank, hitting only a

single vulnerable bank, hitting a single vulnerable bank connected to one other cluster, two other

clusters, and so on. Each cluster which may be arrived at is independent. Therefore, H1 .y/

satis�es the following self-consistency condition:

H1.y/ D Pr
�
reach safe bank

�
C y

X
j;k
� j � r jk �

�
H1 .y/

�k (10)

where the leading factor of y accounts for the one vertex at the end of the initial edge and we

have used the fact that if a generating function generates the probability distribution of some

Working Paper No. 383 March 2010 15



property of an object, then the sum of that property over m independent such objects is

distributed according to the m th power of the generating function (see the appendix). By using

equation (9) and noting that G1 .1/ represents the probability that a random neighbour of a

vulnerable bank is vulnerable, we may write equation (10) in implicit form as

H1 .y/ D 1� G1 .1/C yG1 .H1 .y// (11)

It remains to establish the distribution of outgoing vulnerable cluster sizes to which a randomly

chosen bank belongs. There are two possibilities that can arise. First, a randomly chosen bank

may be safe. Second, it may have in-degree j and out-degree k, and be vulnerable, the

probability of which is � j � p jk . In this second case, each outgoing link leads to a vulnerable

cluster whose size is drawn from the distribution generated by H1 .y/. So the size of the

vulnerable cluster to which a randomly chosen bank belongs is generated by

H0 .y/ D Pr
�
bank safe

�
C y

X
j;k
v j � p jk �

�
H1 .y/

�k
D 1� G0 .1/C yG0

�
H1 .y/

�
(12)

And, in principle, we can calculate the complete distribution of vulnerable cluster sizes by

solving equation (11) for H1 .y/ and substituting the result into equation (12).

2.3 Phase transitions

Although it is not usually possible to �nd a closed-form expression for the complete distribution

of cluster sizes in a network, we can obtain closed form expressions for the moments of its

distribution from equations (11) and (12). In particular, the average vulnerable cluster size, S; is
given by

S D H 0
0 .1/ (13)

Noting that H1 .y/ is a standard generating function so that H1 .1/ D 1 (see the appendix), it
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follows from equation (12) that

H 0
0 .1/ D G0 [H1 .1/]C G 00 [H1 .1/] H

0
1 .1/ (14)

D G0 .1/C G 00 .1/ H
0
1 .1/

And we know from equation (11) that

H 0
1.1/ D

G1 .1/
1� G 01 .1/

(15)

So, substituting equation (15) into (14) yields

S D G0 .1/C
G 00 .1/G1 .1/
1� G 01 .1/

(16)

From equation (16), it is apparent that the points which mark the phase transitions at which the

average vulnerable cluster size diverges are given by

G 01 .1/ D 1 (17)

or, equivalently, by X
j;k
j � k � v j � p jk D z (18)

where we have used equations (6) and (9).

The term G 01 .1/ is the average out-degree of a vulnerable �rst neighbour, counting only those

links that end up at another vulnerable bank. If this quantity is less than one, all vulnerable

clusters are small and contagion dies out quickly since the number of vulnerable banks reached

declines. But if G 01 .1/ is greater than one, a `giant' vulnerable cluster � a vulnerable cluster

whose size scales linearly with the size of the whole network � exists and occupies a �nite

fraction of the network. In this case, system-wide contagion is possible: with positive probability,

a random initial default at one bank can lead to the spread of default across the entire vulnerable

portion of the �nancial network.

As the average degree, z, increases, typical in and out-degrees increase, so that more of the mass

of p jk is at higher values for j and k. This increases the left-hand side of (18) monotonically

through the j � k term but reduces it through the v j term as v j is lower for higher j from equation

(4). So equations (17) and (18) will either have two solutions or none at all. In the �rst case,
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there are two phase transitions and a continuous window of (intermediate) values of z for which

contagion is possible. For values of z that lie outside the window and below the lower phase

transition, the
P
j;k
j � k � p jk term is too small and the network is insuf�ciently connected for

contagion to spread (consider what would happen in a network with no links); for values of z

outside the window and above the upper phase transition, the v j term is too small and contagion

cannot spread because there are too many safe banks.

2.4 The probability and spread of contagion

From a system stability perspective, we are primarily interested in contagion within the giant

vulnerable cluster. This only emerges for intermediate values of z, and only when the initially

defaulting bank is either in the giant vulnerable cluster or directly adjacent to it. The likelihood

of contagion is, therefore, directly linked to the size of the vulnerable cluster within the

window.13 Intuitively, near both the lower and upper phase transitions, the probability of

contagion must be close to zero since the size of the vulnerable cluster is either curtailed by

limited connectivity or by the presence of a high fraction of safe banks. The probability of

contagion is thus non-monotonic in z: initially, the risk-spreading effects stemming from a more

connected system will increase the size of the vulnerable cluster and the probability of contagion;

eventually, however, risk-sharing effects that serve to reduce the number of vulnerable banks

dominate, and the probability of contagion falls.14

At the minimum, the conditional spread of contagion (ie conditional on contagion breaking out)

must correspond to the size of the giant vulnerable cluster. But once contagion has spread

through the entire vulnerable cluster, the assumption that banks are adjacent to no more than one

failed bank breaks down. So `safe' banks may be susceptible to default and contagion can spread

well beyond the vulnerable cluster to affect the entire connected component of the network. Near

the lower phase transition, z is suf�ciently low that nearly all banks are likely to be vulnerable.

Therefore, in this region, the size of the giant vulnerable cluster corresponds closely to the size of

the connected component of the network, meaning that the fraction of the network affected by

13Note that this is not given by (16) since this equation is derived on the assumption that there are no cycles connecting subclusters. This
will not hold in the giant vulnerable cluster.
14In the special case of a uniform (Poisson) random graph in which each possible link is present with independent probability p, an
analytical solution for the size of the giant vulnerable cluster can be obtained using techniques discussed in Watts (2002) and Newman
(2003). Since this does not account for the possibility of contagion being triggered by nodes directly adjacent to the vulnerable cluster, it
does not represent an analytical solution for the probability of contagion. However, it highlights that the size of the giant vulnerable
cluster, and hence the probability of contagion, is non-monotonic in z.
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episodes of contagion is roughly similar to the probability that contagion breaks out. But these

quantities diverge as z increases and, near the upper phase transition, the system will exhibit a

robust-yet-fragile tendency, with episodes of contagion occurring rarely, but spreading very

widely when they do take place.

From equation (18), the size of the contagion window is larger if, for a given j , the probability

that a bank is vulnerable, v j , is larger. Greater levels of vulnerability also increase the size of the

giant vulnerable cluster and, hence, the probability of contagion within the range of intermediate

z values. Therefore, it is clear from equation (4) that an adverse shock which erodes capital

buffers will both increase the probability of contagion and extend the range of z for which

contagious outbreaks are possible.

2.5 Relaxing the diversi�cation assumptions

In our presentation of the model, we assumed that the total interbank asset position of each bank

was independent of the number of incoming links to that bank and that these assets were evenly

distributed over each link. In reality, we might expect a bank with a higher number of incoming

links to have a larger total interbank asset position. Intuitively, this would curtail the risk-sharing

bene�ts of greater connectivity because the greater absolute exposure associated with a higher

number of links would (partially) offset the positive effects from greater diversi�cation. But, as

long as the total interbank asset position increases less than proportionately with the number of

links, all of our main results continue to apply. In particular, v j will still decrease in z, though at

a slower rate. As a result, equation (18) will continue to generate two solutions, though in an

extended range of cases. The contagion window will thus be wider. On the other hand, if the total

interbank asset position increases more than proportionately with the number of links, v j will

increase in z and greater connectivity will unambiguously increase contagion risk. This latter

case does not seem a particularly plausible description of reality.

Assuming an uneven distribution of interbank assets over incoming links would not change any

of our fundamental results. In particular, v j would still decrease in z, maintaining the possibility

of two solutions to equation (18). But an uneven distribution of exposures would make banks

vulnerable to the default of particular counterparties for higher values of z than would otherwise

be the case. As a result, the contagion window will be wider.
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3 Numerical simulations

3.1 Methodology

To illustrate our results, we calibrate the model and simulate it numerically. Although the

�ndings apply to random graphs with arbitrary degree distributions, we assume a uniform

(Poisson) random graph in which each possible directed link in the graph is present with

independent probability p. In other words, the network is constructed by looping over all

possible directed links and choosing each one to be present with probability p � note that this

algorithm does not preclude the possibility of cycles in the generated network and thus

encompasses all of the structures considered by Allen and Gale (2000). The Poisson random

graph was chosen for simplicity given the primary focus of this section in empirically con�rming

our theoretical results; conducting the simulation analysis under different joint degree

distributions would be a useful extension but is left for future work.

Consistent with bankruptcy law, we do not net interbank positions, so it is possible for two banks

to be linked with each other in both directions. The average degree, z, is allowed to vary in each

simulation. And although our model applies to networks of fully heterogeneous �nancial

intermediaries, we take the capital buffers and asset positions on banks' balance sheets to be

identical.15

As a benchmark, we consider a network of 1,000 banks. Clearly, the number of �nancial

intermediaries in a system depends on how the system is de�ned and what counts as a �nancial

intermediary. But several countries have banking networks of this size, and a �gure of 1,000

intermediaries also seems reasonable if we are considering a global �nancial system involving

investment banks, hedge funds, and other players.

The initial assets of each bank are chosen so that they comprise 80% external (non-bank) assets

and 20% interbank assets � the 20% share of interbank assets is broadly consistent with the

�gures for developed countries reported by Upper (2007). Banks' capital buffers are set at 4% of

15With heterogeneous banks, the critical Ki=AI Bi ratio, which determines vulnerability in equation (4), would vary across banks. In his
undirected framework, Watts (2002) shows that when thresholds such as this are allowed to vary, the qualitative theoretical results
continue to apply but the contagion window is wider. Intuitively, with heterogeneity, some banks remain vulnerable even when relatively
well connected because they have low capital buffers relative to their interbank asset position. Therefore, incorporating bank
heterogeneity into our numerical simulations would simply widen the contagion window. See also Iori et al (2006) for a discussion of
how bank heterogeneity may increase contagion risk.
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total (non risk-weighted) assets, a �gure calibrated from data contained in the 2005 published

accounts of a range of large, international �nancial institutions. Since each bank's interbank

assets are evenly distributed over its incoming links, interbank liabilities are determined

endogenously within the network structure. And the liability side of the balance sheet is `topped

up' by customer deposits until the total liability position equals the total asset position.

In the experiments that follow, we draw 1,000 realisations of the network for each value of z. In

each of these draws, we shock one bank at random, wiping out all of its external assets � this type

of idiosyncratic shock may be interpreted as a fraud shock. The failed bank defaults on all of its

interbank liabilities. As a result, neighbouring banks may also default if their capital buffer is

insuf�cient to cover their loss on interbank assets. Any neighbouring banks which fail are also

assumed to default on all of their interbank liabilities, and the iterative process continues until no

new banks are pushed into default.

Since we are only interested in the likelihood and conditional spread of system-wide contagion,

we wish to exclude very small outbreaks of default outside the giant vulnerable cluster from our

analysis. So, when calculating the probability and conditional spread of contagion, we only count

episodes in which over 5% of the system defaults. As well as being analytically consistent on the

basis of numerical simulations, a 5% failure rate seems a suitable lower bound for de�ning a

systemic �nancial crisis.

3.2 Results

Chart 3 summarises the benchmark case. In this and all subsequent diagrams, the extent of

contagion measures the fraction of banks which default, conditional on contagion over the 5%

threshold breaking out.

The benchmark simulation con�rms the results and intuition of Sections 2.3 and 2.4. Contagion

only occurs within a certain window of z. Within this range, the probability of contagion is

non-monotonic in connectivity, peaking at approximately 0.8 when z is between 3 and 4. As

noted above, the conditional spread of contagion as a fraction of network size is approximately

the same as the frequency of contagion near the lower phase transition � in this region, contagion

breaks out when any bank in, or adjacent to, the giant vulnerable cluster is shocked and spreads

across the entire cluster, which roughly corresponds to the entire connected component of the

Working Paper No. 383 March 2010 21



Chart 3: The benchmark case

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Average degree (ie connectivity)

Extent of contagion

Frequency of contagion

Contagion window

network.

For higher values of z, however, a large proportion of banks in the network fail when contagion

breaks out. Of particular interest are the points near the upper phase transition: when z > 8,

contagion never occurs more than �ve times in 1,000 draws; but in each case where it does break

out, every bank in the network fails. This highlights that a priori indistinguishable shocks to the

network can have vastly different consequences for contagion.

In Chart 4, we compare our benchmark results with the limiting case, since our analytical results

only strictly apply in the limit as n!1. Watts (2002) notes that numerical results in random

graph models approximate analytical solutions in the vicinity of n = 10,000. Chart 4

demonstrates that a smaller number of nodes in the benchmark simulation does not

fundamentally affect the results: the contagion window is widened slightly, but the qualitative

results of the analytical model remain intact.

Chart 5 considers the effects of varying banks' capital buffers. As expected, an erosion of capital

buffers both widens the contagion window and increases the probability of contagion for �xed
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Chart 4: Benchmark and analytical solutions compared
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Chart 5: Varying the capital buffer
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Chart 6: Connectivity, capital buffers, and the expected number of defaults

values of z.16 For small values of z, the extent of contagion is also slightly greater when capital

buffers are lower but, in all cases, it reaches one for suf�ciently high values of z. When the

capital buffer is increased to 5%, however, this occurs well after the peak probability of

contagion. This neatly illustrates how increased connectivity can simultaneously reduce the

probability of contagion but increase its spread conditional on it breaking it out.

Chart 6 illustrates how changes in the average degree and capital buffers jointly affect the

expected number of defaults in the system. Since this diagram does not isolate the probability of

contagion from its potential spread, rare but high-impact events appear in the benign (�at) region

as the expected number of defaults in these cases is low. Chart 6 serves to highlight another

non-linear feature of the system: when capital buffers are eroded to critical levels, the level of

contagion risk can increase extremely rapidly.

Finally, in Chart 7, we relax the zero recovery assumption. Instead, we assume that when a bank

fails, its default in the interbank market equals its asset shortfall (ie its outstanding loss after its

capital buffer is absorbed) plus half of any remaining interbank liabilities, where the additional

16Reduced capital buffers may also increase the likelihood of an initial default. Therefore, they may contribute to an increased
probability of contagion from this perspective as well.
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Chart 7: Relaxing the zero recovery rate assumption
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amount is interpreted as re�ecting bankruptcy costs that are lost outside the system.17 As we

might expect, this reduces the likelihood of contagion because fewer banks are vulnerable when

the recovery rate can be positive. But it is also evident that relaxing the zero recovery assumption

does not fundamentally affect our broad results.

3.3 Interpretation and discussion

Contagious crises occur infrequently in developed countries, suggesting that �nancial systems

are located near to the upper phase transition of our model. The �ndings of Soramaki et al

(2007), who report average degrees in �nancial systems of �fteen, are consistent with this. But

recent events have demonstrated that �nancial systems are prone to occasional system-wide

breakdown, with policymakers intervening to limit the extent of contagion.

Our framework implies that �nancial systems exhibit a robust-yet-fragile tendency. Although the

likelihood of contagion may be low, its impact can be extremely widespread. Moreover, even if

17Since interbank assets make up 20% of each bank's total asset position, interbank liabilities must, on average, make up 20% of total
liabilities. Therefore, for the average bank, the maximum bankruptcy cost under this assumption is 10% of total assets/liabilities, which
accords with the empirical estimates of bankruptcy costs in the banking sector reported by James (1991).
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contagion from idiosyncratic shocks never occurs when banks have relatively high capital

buffers, Chart 5 highlights that if an adverse aggregate shock, such as the macroeconomic

downturn we are currently experiencing, erodes capital buffers, the system could be susceptible

to contagion risk.

A priori indistinguishable shocks also have vastly different consequences in our model. Although

the system may be robust to most shocks of a given size, if it is hit by a similarly sized shock at a

particular pressure point, possibly re�ecting a structural weakness, the ensuing �nancial

instability could be signi�cant. This result cautions against assuming that the resilience of a

�nancial system to large shocks at some point in the past will continue to apply to future shocks

of a similar magnitude.

4 Liquidity risk

We now incorporate liquidity effects into our analysis. When a bank fails, �nancial markets may

have a limited capacity to absorb the illiquid external assets which are sold. As a result, the asset

price may be depressed. Following Schnabel and Shin (2004) and Cifuentes et al (2005), suppose

that the price of the illiquid asset, q, is given by

q D e��x (19)

where x > 0 is the fraction of system (illiquid) assets which have been sold onto the market (if

assets are not being sold onto the market, q D 1). We calibrate � so that the asset price falls by

10% when one tenth of system assets have been sold.

We integrate this pricing equation into our numerical simulations. Speci�cally, when a bank

defaults, all of its external assets are sold onto the market, reducing the asset price according to

equation (19). We assume that when the asset price falls, the external assets of all other banks are

marked to market to re�ect the new asset price. From equation (4), it is clear that this will reduce

banks' capital buffers and has the potential to make some banks vulnerable, possibly ultimately

tipping them into default.

The incorporation of (market) liquidity risk introduces a second potential source of contagion

into the model from the asset side of banks' balance sheets. Note, however, that this liquidity risk

only materialises upon default. Realistically, asset prices are likely to be depressed by asset sales

before any bank defaults. So accounting only for the post-default impact probably understates

Working Paper No. 383 March 2010 26



Chart 8: Liquidity effects and contagion
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the true effects of liquidity risk.

Chart 8 illustrates the effects of incorporating liquidity risk into the model. As we might expect,

liquidity effects magnify the extent of contagion when it breaks out. The contagion window also

widens.

As shown, liquidity effects do not drastically alter the main results of our model. But this should

not be taken to mean that liquidity effects are unimportant. In part, the limited effect of liquidity

risk re�ects the already high spread of contagion embedded in the benchmark scenario. As

demonstrated by May and Arinaminpathy (2010) in a similar set-up, liquidity effects can be more

material if recovery rates upon interbank default are relatively high. And, to the extent that

liquidity risk materialises before any bank defaults, it can be viewed as having the potential to

erode capital buffers and increase the likelihood of an initial default.
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5 Relationship to the empirical literature

There is a large empirical literature which uses counterfactual simulations to assess the danger of

contagion in a range of national banking systems (see Upper (2007) for a comprehensive survey).

This literature has largely tended to use actual or estimated data on interbank lending to simulate

the effects of the failure of an individual bank on �nancial stability.18 The evidence of contagion

risk from idiosyncratic shocks is mixed. Fur�ne (2003) and Wells (2004) report relatively limited

scope for contagion in the US and UK banking systems. By contrast, Upper and Worms (2004)

and van Lelyveld and Liedorp (2006) suggest that contagion risk may be somewhat higher in

Germany and the Netherlands. Meanwhile, Mistrulli's (2007) results for the Italian banking

system echo the �ndings of this paper: he �nds that while only a relatively low fraction of banks

can trigger contagion, large parts of the system are affected in worst-case scenarios. Moreover,

he shows that when moving from an analysis of actual bilateral exposures (which form an

incomplete network) to a complete structure estimated using maximum entropy techniques, the

probability of contagion from a random, idiosyncratic bank failure is reduced but its spread is

sometimes widened.

Contagion due to aggregate shocks is examined by Elsinger et al (2006) who combine a model of

interbank lending in the Austrian banking system with models of market and credit risk. They

take draws from a distribution of risk factors and compute the effects on banks' solvency,

calculating the probability and the severity of contagion. Their �ndings also echo the results

reported in our paper. While contagious failures are relatively rare, if contagion does occur, it

affects a large part of the banking system.

Counterfactual simulations have also been used to assess how changes in the structure of

interbank loan markets affect the risk of contagion. But these results do not show a clear

relationship. Mistrulli (2005) and Degryse and Nguyen (2007) consider how contagion risk has

evolved in Italy and Belgium as their banking structures have shifted away from a comparatively

complete graph structure towards one with multiple money-centre banks. Their �ndings suggest

that while this shift appears to have reduced contagion risk in Belgium, the possibility of

contagion risk in Italy appears to have increased.

As noted by Upper (2007), existing empirical studies are plagued by data problems and the

18A parallel literature explores contagion risk in payment systems � see, for example, Angelini et al (1996).
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extent to which reported interbank exposures re�ect true linkages is unclear: generally, interbank

exposures are only reported on a particular day once a quarter and exclude a range of items,

including intraday exposures. As such, they underestimate the true scale of �nancial

connectivity. Moreover, national supervisory authorities do not generally receive information on

the exposures of foreign banks to domestic institutions, making it dif�cult to model the risk of

global contagion in the increasingly international �nancial system. And studies attempting to

analyse the effects of changes in network structure on contagion risk are constrained by short

time series for the relevant data series.

6 Conclusion

In this paper, we develop a model of contagion in arbitrary �nancial networks that speaks to

concerns about the widespread transmission of shocks in an era of rapid �nancial globalisation

and in the wake of a major systemic �nancial crisis. Our model applies broadly to systems of

agents linked together by their �nancial claims on each other, including through interbank

markets and payment systems. While high connectivity may reduce the probability of contagion,

it can also increase its spread when problems occur. Adverse aggregate shocks and liquidity risk

also amplify the likelihood and extent of contagion.

Our results suggest that �nancial systems may exhibit a robust-yet-fragile tendency. They also

highlight how a priori indistinguishable shocks can have vastly different consequences, which

helps explain why the evidence of the resilience of the system to fairly large shocks prior to 2007

was not a reliable guide to its future robustness.

The approach provides a �rst step towards modelling contagion risk when true linkages are

unknown. It would be useful to extend the simulation analysis by relaxing the assumption that

the defaulting bank is randomly selected and, along the lines of Albert et al (2000), considering

the implications of targeted failure affecting big or highly connected interbank borrowers. This

would be particularly interesting in a set-up in which the joint degree distribution was calibrated

to match observed data. Added realism could also be incorporated into the model by using real

balance sheets for each bank or endogenising the formation of the network. Extending the model

in this direction could help guide the empirical modelling of contagion risk and is left for future

work.
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Appendix: Generating functions

Let Y be a discrete random variable taking values in f0; 1; 2; :::g and let pr D P [Y D r ] for

r D 0; 1; 2:::

Then the (probability) generating function of the random variable Y of the distribution, pr
(r D 0; 1; 2; :::), is

G .x/ D E
�
xY
�
D

1X
rD0
xr P [Y D r ] D

1X
rD0

pr xr

Note that

G .1/ D
1X
rD0

pr D 1

Theorem 1 The distribution of Y is uniquely determined by the generating function, G .x/.

Proof. Since G .x/ is convergent for jx j < 1, we can differentiate it term by term in jx j < 1.

Therefore

G 0 .x/ D p1 C 2p2x C 3p3x2 C :::

and so G 0 .0/ D p1. Repeated differentiation gives

G.i/ .x/ D
1X
rDi

r !
.r � i/!

pr xr�i

and so G.i/ .0/ D i!pi . Therefore, we can recover p0; p1; p2::: from the generating function.

Theorem 2

E [Y ] D lim
x!1

G 0 .x/

and, provided that x is continuous at x D 1,

E [Y ] D G 0 .1/

Proof.

G 0 .x/ D
1X
rD1
rpr xr�1

Therefore, for x 2 .0; 1/, G 0 .x/ is a non-decreasing function of x , bounded above by

E [Y ] D
1X
rD1
rpr
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Choose " > 0 and N large enough that
NX
rD1
rpr � E [Y ]� ". Then

lim
x!1

1X
rD1
rpr xr�1 � lim

x!1

NX
rD1
rpr xr�1

D
NX
rD1
rpr � E [Y ]� "

Since this is true for all " > 0,

lim
x!1

G 0 .x/ D E [Y ]

Provided that x is continuous at x D 1, the second result follows immediately.

Theorem 3

E [Y .Y � 1/] D lim
x!1

G 00.x/

and, provided that x is continuous at x D 1,

E [Y .Y � 1/] D G 00 .1/

Proof.

G 00 .x/ D
1X
rD2
r .r � 1/ pr xr�2

and the remainder of the proof is the same as the proof of Theorem 2.

Theorem 4 If Y1; Y2; :::; Yn are independent random variables with generating functions

G1 .x/ ;G2 .x/ ; :::;Gn .x/, then the generating function of Y1 C Y2 C :::C Yn is

G1.x/ � G2.x/ � ::: � Gn .x/.

Proof.

E
�
xY1CY2C:::CYn

�
D E

�
xY1 � xY2 � ::: � xYn

�
(A-1)

Since Y1; Y2; :::; Yn are independent random variables, the standard result from probability theory

that functions of independent random variables are also independent implies that xY1; xY2; :::; xYn

are independent. Therefore, using the properties of expectation, we can rewrite (A-1) as

E
�
xY1CY2C:::CYn

�
D E

�
xY1
�
� E
�
xY2
�
� ::: � E

�
xYn
�

D G1.x/ � G2.x/ � ::: � Gn .x/
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