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literature.  Different sets of identifying assumptions can lead to very different conclusions in the policy

debate.  This paper proposes a theoretically consistent identification strategy using restrictions implied
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Summary

Monetary policy making in central banks requires a profound understanding of the way the

economy reacts to the shocks that continually bombard it. So banks call upon a wide range of

economic models to help them in this undertaking. Since the pioneering work of Sims, vector

autoregressive (VAR) models have been used extensively by applied researchers, forecasters and

policymakers to address a range of economic issues. These models comprise equations

explaining a small number of key macroeconomic variables where each equation includes the

same set of explanatory variables, lagged values of all the variables in the system. The basic

VAR is therefore unable to tell us about the detailed structure of the relationship or shocks, which

is what the policymaker really wants to know, as it is a ‘reduced-form’ model. To unpack the

shocks hitting the system and their effects on the economy, we need to ‘identify’ the model with

extra assumptions.

Although VARs have been very successful in capturing the dynamic properties of

macroeconomic time-series data, the decomposition of these statistical relationships back to

coherent economic stories is still subject to a vigorous debate. However, the outcomes of the

VAR analysis depend crucially on these assumptions and the various competing identification

restrictions cannot be easily tested against the data. Even though several procedures have been

proposed in the literature, shock identification remains a highly controversial issue.

A type of model that is not susceptible to this problem is the dynamic stochastic general

equilibrium (DSGE) model. In this case, economic theory is used to define all the linkages

between variables. The tight economic structure solves the identification problem, but at a cost.

As theory is never able to fully explain the data, an agnostic VAR will almost certainly ‘fit’ the

data better.

This paper proposes an identification strategy for VARs that extends an idea introduced by

Harald Uhlig, a ‘penalty function’ that effectively weights various restrictions suggested by

theory - in his case, the signs of various effects. So we construct a penalty function that is based

on quantitative restrictions implied by a DSGE model. To assess the usefulness of the proposed

identification strategy, we present a series of Monte Carlo experiments (where many experiments
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are carried out on an artificial model, randomly differing in the shocks hitting the system). First,

we investigate the ability of the method to recover the true set of structural shocks; second, we

examine the source of bias in the identified VAR responses relative to the true data generating

process; and third, we assess how the proposed identification strategy performs using restrictions

from a misspecified model. We also present an application using a seven-variable VAR model

estimated on US data. The structural shocks are identified using restrictions from a classic

medium-scale DSGE model developed by Frank Smets and Raf Wouters.

A number of interesting results emerge from the analysis. First, by using the correct model

restrictions, the identification procedure is successful in recovering the initial impact of the

shocks from the data. Second, despite using restrictions from misspecified models, the data tends

to push the VAR responses away from the misspecified model and closer to that of the true data

generating process. Third, the proposed identification strategy systematically gives smaller bias

compared with other popular identification schemes.
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1 Introduction

Since the pioneer work of Sims (1980), vector autoregressive (VAR) models have been used

extensively by applied researchers, forecasters and policymakers to address a range of economic

issues. Although VAR models have been very successful in capturing the dynamic properties of

the macroeconomic time-series data, the decomposition of these statistical relationships back to

coherent economic stories is still under large debate. The key source of this disagreement arises

from the difficulty in identifying structural disturbances from a set of reduced-form residuals.

The sampling information in the data is not sufficient and several assumptions are needed in

order to recover the mapping between the structural and the reduced-from errors.1 However, the

outcomes of the VAR analysis depend crucially on these assumptions and the various competing

identification restrictions cannot be easily tested against the data.

The literature have proposed a number of different exact-identification strategies. First and the

most popular, is the Choleski short-run restriction on the VAR’s reduced-form covariance matrix.

Under the Choleski scheme, the ordering of the variables is particularly important for the

structural economic interpretation of the VAR (see, Lutkepohl (1993) and Hamilton (1994)).

Furthermore, as Canova (2005) explains, the Choleski decomposition implies ‘zero-type’

restrictions that are rarely consistent with dynamic stochastic general equilibrium (DSGE)

models. A similar procedure was introduced by Blanchard and Quah (1989) by imposing

long-run relationships that are consistent with economic theory. However, a number of studies

such as Chari, Kehoe and McGrattan (2005), Christiano, Eichenbaum and Vigfusson (2006),

Erceg, Guerrieri and Gust (2005) and Ravenna (2007) have concluded that long-run restrictions

are inadequate in recovering the true structural disturbances. The main reason is that it is often

difficult to obtain an accurate estimate of the long-run impacts because of the truncation bias

associated with VAR models. Therefore, imposing long-run restrictions based on these bias

estimates can lead to misleading conclusions.

More recently, Faust (1998), Canova and De Nicolo (2002) and Uhlig (2005) propose an

identification scheme that imposes ‘sign’ or ‘qualitative’ restrictions on the structural responses.

The strategy recognises there are infinite number of observationally equivalent mappings

between the structural and the reduced-form errors, and the idea of the sign restriction is to select

1The discussions here focus on exact VAR identification.
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a subset of these mappings that are consistent with certain qualitative features. An attractive

feature of this procedure is that it makes VAR and DSGE models more comparable than with

other identification strategies. Researchers can then use qualitative information in the form of

sign restrictions implied by DSGE models to help identify structural VAR shocks; for example

Liu (2008) and Peersman and Straub (2009) use this approach. Although attractive to applied

researchers, as highlighted by Uhlig (2005) and explicitly illustrated by Fry and Pagan (2007),

this type of identification scheme fails to deliver a unique identification mapping. There can be a

range of impulse responses that are consistent with the sign restrictions. This leads to large

uncertainty around the model’s estimates (see, Paustian (2007)) and makes policy inference less

informative.

Uhlig (2005) also discussed an alternative procedure using the ‘penalty-function’ approach. The

idea is to find a set of orthogonal shocks that minimise some specific penalty function. This is

certainly a less agnostic approach relative to the pure sign restriction method. Nevertheless, the

procedure produces a unique set of structural shocks and therefore reduces the degree of

uncertainty related to the identification procedure. However, the choice of the penalty function

remains arbitrary and difficult to motivate from an economic perspective. An alternative

procedure is proposed by Del Negro and Schorfheide (2004), who developed a methodology to

generate a prior distribution using a DSGE model for a time-series VAR. The DSGE-VAR

approach relaxes the tight theoretical restrictions of the DSGE model by making use of the model

and data, summarised by the likelihood of the model. While the DSGE-VAR has been a very

useful tool for model comparison and forecasting, as Sims (2008) pointed out, it remains difficult

to use the DSGE-VAR for policy analysis, for example impulse response analysis. The main

reason is that the DSGE-VAR still faces the same identification problems as with standard VAR

models. Del Negro and Schorfheide (2004) suggest using the identification matrix from the

DSGE model as an approximation; however, the resultant variance-covariance matrix will no

longer be the same as the estimated DSGE-VAR Del Negro and Schorfheide (see 2004, footnote

17).

This paper proposes an identification strategy that extends Uhlig’s (2005) penalty-function

approach to a more formal setting. In particular, we construct a penalty function that is based on

quantitative restrictions implied by a DSGE model. To assess the usefulness of the proposed

identification strategy, we present a series of Monte Carlo experiments. First, we investigate the
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ability of the algorithm to recover the true set of structural shocks; second, we examine the

source of bias in the identified VAR responses relative to the true data generating process; and

third, we assess how the proposed identification strategy performs using restrictions from a

misspecified model. We also present an application using a seven-variable VAR model estimated

on US data. The structural shocks are identified using restrictions from a medium-scale DSGE

model by Smets and Wouters (2007).

There are several advantages in adopting this approach. First, as Pagan (2003) argued, there is an

inherent trade-off between theoretical and empirical coherence for macroeconomic models.2 One

can think of the approach presented here as bringing the statistical VAR analysis closer to the

structural DSGE models along the ‘Pagan-curve’ but without sacrificing empirical coherence.

Second, despite applying more restrictions on the behaviour of the impulse response functions of

the VAR, the proposed method does not change the empirical fit of the VAR model. Rather, it

simply selects a unique identification mapping from the infinite number of observationally

equivalent ones. This is a subtle but important difference with Del Negro and Schorfheide (2004)

DSGE-VAR, where the approach here maintains the same variance covariance as the

reduced-form representation of the VAR for structural identification. Third, the identified VAR

can be used as a useful cross-check against the structural model’s dynamic behaviour.

A number of interesting results emerge from the analysis. First, by using the correct model

restrictions, the identification procedure is successful in recovering the initial impact of the

shocks from the data. We identify two sources of bias relating to the difference between the VAR

and the true response at longer horizons. One relates to the small sample bias, while the second

part is due to the truncation bias that arises from using a finite-ordered VAR to approximate a

vector autoregressive moving average (VARMA) process. Even in large samples, the truncation

bias remains the dominant source of bias. Second, despite using restrictions from misspecified

models, the data tends to push the VAR responses away from the misspecified model and closer

to that of the true data generating process. Third, the proposed identification strategy

systematically gives smaller bias compared with other identification schemes such as Choleski

decomposition and pure sign restrictions.

2Pagan (2003) illustrates this by placing various types of models along a concave ‘modelling frontier’ with the degree of theoretical
coherence and the degree of empirical coherence along each axis.
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The paper is organised as follows. Section 2 outlines the methodology of the proposed

identification strategy. Section 3 briefly describes the Monte Carlo experiments and outlines the

medium-scale DSGE model used for the data generating process. Section 4 reports the results

from the Monte Carlo experiments. Section 5 presents an application of the proposed

identification strategy using a seven-variable VAR model estimated on US data. Section 6

contains concluding remarks and proposes direction for future research.

2 Methodology

2.1 A review of the identification problem

The ability of using VAR models to address key macroeconomic policy questions depends

crucially on the identification of the reduced-form residuals. Even though several procedures

have been proposed in the literature, shock identification remains a highly controversial issue. To

illustrate the identification problem, consider the following stylised structural model:3

A0Yt = A(L)hYt + ηt (1)

Yt = A−1
0 A(L)hYt + A−1

0 ηt (2)

where Yt is a (n × 1) vector of endogenous variables, A0 is a (n × n ) matrix of coefficients,

A(L)h = A1L + · · · + Ah Lh is a hth order lag polynomial and E(ηtη
′

t) = I gives the

variance-covariance matrix of the structural innovations. Equation (1) is the structural model and

equation (2) is the corresponding reduced-form representation. The key parameters of interest are

A0 and A(L). However, the sampling information in the data is not sufficient to identify both A0

and A(L) separately without further identifying restrictions. There is an infinite combination of

A0 and A(L) all imply exactly the same probability distribution for the observed data. To see this,

premultiplying the model in (1) by a full rank matrix Q, which leads to the following new model:

Q A0Yt = Q A(L)Yt + Qηt (3)

Yt = A−1
0 Q−1 Q A(L)Yt + A−1

0 Q−1 Qηt (4)

The reduced-form representation of the two models in equations (2) and (4) are exactly the same.

That implies both models in (1) and (3) are observationally equivalent. Without additional

3For the moment, we remain agnostic as to the form of the structural model or where it comes from. More details are provided in the next
subsection.
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assumptions – identifying restrictions – no conclusions regarding the structural behaviour of the

‘true’ model can be drawn from the data.

As explained by Canova (2005, Chapter 4), popular identification schemes such as the Choleski

decomposition and long-run restrictions impose ‘zero-type’ restrictions that cannot be easily

justified by a large class of DSGE models. In particular, DSGE models hardly display the type of

recursive structures that are typically assumed by Choleski or long-run identification schemes.

This raises the question whether these identification schemes are the appropriate choices in

relation to the economic theory.

The identification scheme proposed by Faust (1998), Canova and De Nicolo (2002) and Uhlig

(2005) seem to overcome some of the difficulties by imposing sign or/and shape (pure sign)

restrictions on the structural responses. Although attractive to applied researchers, the procedure

fails to deliver unique identification mapping as is highlighted by Uhlig (2005) and Fry and

Pagan (2007). In other words, there can be a range of impulse responses that are consistent with

the sign restrictions. This can lead to large uncertainty around the model’s estimates and less

reliable inference.

2.2 The mapping between DSGE and VAR model

To see the links between structural and reduced-form VAR models, it is useful to explore the

mapping between the two. To be more specific, we are going to consider the class of structural

models that are usually based on agent’s optimisation behaviour and rational expectation

formation - DSGE models. Generally, the solution of a linearised DSGE model can be

summarised by the following state-space representation:4

X t = B (θ) X t−1 + 0 (θ) ηt (5)

Yt = A (θ) X t (6)

where X t is an n × 1 vector of state variables, Yt is an m × 1 vector of variables observed by an

econometrician, and ηt represents an k × 1 vector of economic shocks such that E(ηt) = 0 and

E(ηtη
′

t) = I .5 The matrices A(θ), B(θ) and 0(θ) are functions of the underlying structural

4The solution of the model can be obtained by using either Blanchard and Kahn (1980) or Sims’s (2002) type algorithms.
5In the notation here, xt also includes the current values of exogenous shock processes.
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parameters of the DSGE model. Equation (6) is usually referred to as the state equation (or

policy function) that describes the evolution of the underlying economy, and equation (5) is the

observation equation that relates the state of the economy with the set of observable variables.

For notational convenience, we will drop the indication that the matrices A, B and 0 are

functions of the structural parameters θ .

From the work of Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007), Christiano

et al (2006) and Ravenna (2007), the state-space representation of the DSGE model described

above has an infinite order VAR process representation, VAR(∞), if and only if the eigenvalues

of the following matrix

M =
[
In − 0 (A0)−1 A

]
B (7)

are less than one in absolute terms and the number of the shocks coincides with the number of

observed variables, ie: m = k. This is known as ‘Poor Man’s invertibility condition’ or simply

the ‘invertibility condition’ as in Fernandez-Villaverde et al (2007). If this condition holds, the

set of observable variables Yt can be written as a VAR(∞) such that

Yt =

∞∑
j=1

1 j Yt− j + A0ηt (8)

where

1 j = AB M j−10 (A0)−1

On the other hand, a reduced-form VAR(h) model can be estimated on a set of stationary

macroeconomic time series Yt to provide a summary of its statistical properties

yt =

h∑
j=1

A j yt− j + vt (9)

where vt is normally distributed with zero mean and variance-covariance 6v matrix. Assuming

the DSGE model in equation (8) is the true data generating process (DGP) for Yt , the

reduced-form VAR in equation (9) can provide a reasonably good approximation of the process

Yt as the number of lags (h) tends to infinity. In which case, the mapping between the

reduced-form and structural shocks can be uniquely defined as (Christiano et al (2006),

Proposition 1)

vt = A0ηt (10)

or

6v ≡ E
(
vtv
′

t

)
= A00′A′. (11)
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It is this unique mapping that this paper exploits to help identify reduced-form VAR shocks.

2.3 DSGE restrictions for structural VARs

In addition to the pure sign restriction approach, Uhlig (2005) also discusses an alternative

procedure using the ‘penalty-function’. The idea behind the procedure is to find a set of

orthogonal shocks that minimises some specific penalty function. However, the choice of the

penalty function remains arbitrary and difficult to motivate from an economic perspective. The

identification strategy described here essentially extends the ‘penalty-function’ approach to a

more formal setting. In particular, we exploit the mapping between the DSGE and the VAR

model as shown earlier to construct the penalty function. This is attractive because it provides a

theoretically consistent way of identifying structural VAR shocks, and the identifying

assumptions are motivated from restrictions implied by DSGE models. Furthermore, the

procedure can help bring together the two distinct approaches of macroeconomic modelling.

Assuming the DSGE model is the true DGP with variance-covariance matrix A00′A′,

Lutkepohl and Poskitt (1991) show that the estimated variance covariance of a VAR(h) model

converges to the true variance covariance when the number of lags tend to infinity (h →∞) as

the sample size tends to infinity (T →∞). The rate which the sample size tends to infinity must

be faster than the rate which h3 tends to infinity, that is

6̂v → A00′A′ as
h3

T
→ 0 (12)

where 6̂v is the estimated VAR variance covariance or the reduced-form covariance. In practice,

the two key assumptions underlying the above condition undoubtedly breaks down. First, mostly

DSGE models are tools designed to explain certain subsets of stylised facts. Despite the recent

success in improving its empirical performance, misspecification remains a concern (Del Negro,

Schorfheide, Smets and Wouters (2007)). Second, samples of macroeconomic time-series data

are limited, so the number of lags that can be included in the VAR is quite restrictive.

Consequently, the estimated VAR variance covariance can be quite different to the one implied

by the DSGE model.

In the pure-sign restriction case, 6̂v is decomposed into 6̂v = Ĉ P P ′Ĉ ′, where Ĉ is the Choleski

factor of 6̂v and P is an orthonormal matrix such that P P ′ = I . The matrix P is selected in such
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a way to meet the researcher’s belief regarding the qualitative properties of the impulse

responses. As discussed earlier, the selection of P is non-unique. The proposed identification

strategy here essentially selects a unique matrix P to minimise the ‘distance’ between the

contemporaneous response of the VAR and the DSGE model. The procedure can be summarised

as the following minimisation problem

P∗ = arg min
P

∥∥vec
(
Ĉ P − A0

)∥∥
2 +

k∑
j=1

m∑
i=1

δi j I
(
signi j

) (13)

subject to

P P ′ − I = 0 (14)

where ‖·‖2 stands for the Euclidian norm, I
(
signi j

)
is an indicator function for variable i in

response to shock j that takes values 0 if the sign restrictions are satisfied and 1 otherwise and δi j

is a positive number. A few remarks are worth noting. The first part of equation (13) resembles

Uhlig’s (2005) penalty function although here the function is based on restrictions from an

optimising DSGE model. The second part of equation (13) is analogous to the pure sign

restrictions. The parameter δi j controls for the importance attached to the sign restrictions.6 The

key difference is that by imposing additional restrictions from a DSGE model it will ensure a

unique identification matrix Ĉ P∗ for the VAR. The difference between the identified VAR

responses relative to the DSGE model will depend on how plausible the restrictions are in the

face of the data summarised by Â(L)h and 6̂v. If these restrictions are deemed far away from the

empirical evidence, then the difference can be quite large, and vice versa. There is no

closed-form solution readily available for the above minimisation problem, so we resort to

numerical methods for the simulation experiments.

3 Monte Carlo experiments

This section sets out a series of Monte Carlo experiments designed to evaluate the usefulness of

the proposed identification procedure.

6The first part of equation (13) penalises positive and negative deviations from the DSGE responses in exactly the same manner.
However, it is of greater economic interest for the VAR to deliver the same signs for the impulse responses compared to finding the
smallest absolute deviation. The algorithm achieve this by attaching a relatively large weight to δi j .
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3.1 The model for the data generating process

The model used for the Monte Carlo study is based on the model developed by Smets and

Wouters (2007).7 This is an estimated medium-scale DSGE model that incorporates various

sources of nominal and real frictions to match US post-war business cycle fluctuations. In this

model, the steady state of the economy follows a deterministic trend according to the rate of

labour-augmenting technological progress. Households select consumption and labour efforts to

maximise their non-separable utility preferences. Agents’ consumption behaviour exhibits habit

formation and households are assumed to supply differentiated labour services to firms. This

gives households monopoly power over wage negotiations and therefore aggregate wages are

sticky. In addition, households, who face capital adjustment costs, optimally decide how much

capital to rent to firms and how much capital to accumulate.

On the production side, firms minimise the cost of production by optimally selecting the amount

of labour and capital inputs subject to capital utilisation costs and the wage rate set by

households. Given demands for its product, firms re-optimise prices infrequently in a Calvo-type

fashion. Finally, wages and prices that are not re-optimised every period are partially indexed to

the past inflation. Appendix A summarises the key linearised equation of the model. Readers

who are interested in the agents’ decision problems are recommended to consult the references

mentioned above directly. The model’s key parameters values are taken directly from Smets and

Wouters’(2007) study and summarised in Table A.

In the original model, Smets and Wouters assume seven exogenous driving processes or shocks.

These are required in order to match the seven observable variables used in the estimation. Here,

we simplify the model to contain only four shocks, namely a government spending shock, a price

mark-up shock, a wage mark-up shock and a monetary policy shock.8

7Smets and Wouters’(2007) model is based on the earlier work of Christiano, Eichenbaum and Evans (2005) and Smets and Wouters
(2003).
8The original model also includes a net worth shock, technology shock and an investment specific shock. In principle, it is possible to
include all seven shocks for the Monte Carlo experiments but this would increase the computation burden for the Monte Carlo
experiment significantly.
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3.2 Monte Carlo design

To investigate the properties of the identification strategy described in Section 2.3, we set up two

Monte Carlo experiments. First, we investigate the properties of the identified structural VAR

using restrictions from the true model specification (we refer to this as the benchmark model

M0). Second, we perform the same experiment but using restrictions from a series of

misspecified models. In both cases, we simulate 500 samples of 200 observations of the

observable vector (output growth, inflation, wage growth and the nominal interest rate), Yt , using

the model and parameters described in Section 3.1.9 We also look at the properties of the VAR

using a large sample of data, 100,000 observations.

3.2.1 Experiment one: benchmark model restrictions

For each simulated sample Y i
t , i = 1, . . . , 500:

1. Estimate the benchmark model using maximum likelihood estimation (MLE). The likelihood

of the model is constructed via the Kalman filter and maximised using Sim’s CSMINWEL

algorithm. This gives the contemporaneous impact matrix of the DSGE model (Ai0i ) as

functions of the model’s structural parameters (θ i ).

2. Estimate a reduced-form VAR(2) model using ordinary least squares (OLS) and compute the

variance-covariance matrix (6̂i
v) of the reduced-form errors.

3. Decompose 6̂i
v into Ĉ P P ′Ĉ ′ and find an orthonormal matrix P∗ such that it minimises the

loss function in equation (13) . We use Matlab’s fmin function to find the minimum. To ensure

the minimisation algorithm finds the unique global minimum, we repeat the minimisation

procedure 1,000 times using different random starting values.

4. Construct impulse responses from the identified structural VAR (SVAR),

Ĉ P∗Y i
t = Â(L)2Y i

t + et .

9We generate 10,000 observations for each sample and keep the last 200 for the Monte Carlo experiment.
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3.2.2 Experiment two: restrictions from misspecified models

We consider five types of model misspecifications:

• M1: Model with no habit formation (h = 0);

• M2: Model with no price and wage indexation (i p = iw = 0);

• M3: Model with no MA terms for price and wage mark-up shocks (µp = µw = 0);

• M4: Model with no habit formation, price and wage indexation (M1 and M2);

• M5: Model with no interest rate smoothing term in the Taylor rule (ρ = 0).

This is certainly not an exhaustive list of potential misspecifications that one can consider, but it

does provide a way of evaluating the usefulness of the identification strategy using restrictions

from a misspecified model. For each Mi , we repeat the same steps as the first experiment with

the exception in step 1, the benchmark model is replaced with the misspecified models (Mi ).

4 Results from the Monte Carlo study

4.1 Benchmark model

First we present the results of the Monte Carlo study for the benchmark model specification using

500 samples of 200 observations. Chart 1 in Appendix C plots the median impulse response

functions (IRFs) for output growth, short-term interest rate, inflation and the wage growth with

respect to a government spending, monetary policy, price mark-up and wage mark-up shock.10

The black lines correspond to the responses of the true DGP described in Section 3.1 . The blue

lines correspond to the median responses (across 500 samples) of the benchmark model (M0)

estimated using MLE. The red lines correspond to the median responses (also across 500

samples) of the SVAR(2) model using the identification strategy described in Section 2.3.

10The first four top left hand side panels correspond to the government spending shock; the top right four panels correspond to the
monetary policy shock; the bottom left four panels correspond to the wage mark-up shock; and the bottom right four panels correspond to
the price mark-up shock.
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To compare the estimated responses with the DGP, we compute the bias of the impulse responses

from the true DGP as

biasT = 100
T∑

t=1

M∑
i=1

K∑
j=1

|9t,i, j − 9̄t,i, j |

9̄t,i, j
(15)

where 9t,i, j is the t’th period’s impulse response of the estimated benchmark or VAR model for

variable i to shock j , 9̄t,i, j is the DGP equivalent and the bias is calculated as the sum across all

the M variables, K shocks up to periods T . The first three columns in Table B provides a

summary of the Monte Carlo simulations using small samples. The first column displays the

average bias over 500 samples between the estimated DSGE model relative to the true DGP at

different horizons. Similarly, the second column displays the same statistics for the SVAR model.

The third column shows the ratio between the benchmark model and the SVAR. If the ratio is

greater than one, this means the SVAR responses are closer to the true DGP compared with the

benchmark model and vice versa for a ratio less than one.

Looking at the first two quarters following the shock, the responses of the benchmark model and

the SVAR are very similar compared with the true DGP. This can also be seen graphically from

Chart 1 where the SVAR (red line) and the benchmark model (blue line) overlap with the impulse

responses from the true DGP. However, at longer horizons both the SVAR and the benchmark

model’s responses deviate away from the true responses. The bias of the SVAR is greater than

the estimated benchmark model.

The discrepancy between the estimated benchmark model and its DGP is largely attributed to the

small-sample bias in estimating DSGE models. Liu and Theodoridis (2009) investigates the

small-sample properties of a similar medium-scale DSGE models in more detail. Essentially, the

bias comes about because of the non-negativity constraints placed on the model’s parameters and

the non-linear mapping between the structural and reduced-form representation of the model.

The resultant structural parameter estimates can be highly non-normal in small samples.

However, the bias disappear when a sufficiently large sample of data is used for the estimation.

In the Monte Carlo experiment, we demonstrate that with a sample size of 100,000 observations,

it is sufficient to eliminate the bias completely. Graphically this can be seen from Chart 2 where

the estimated benchmark model’s responses and the DGP lie on top of each other exactly.
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4.1.1 Bias of the SVAR impulse response functions

As discussed earlier, the bias from the VAR model is greater than the estimated benchmark

model. To provide an economic interpretation for the bias, it is useful to consider a SVAR in a

similar form as in equation (1):

A(L)Yt = et = A−1
0 ηt (16)

Yt = A(L)−1 A−1
0 ηt = R(L)A−1

0 ηt (17)

where A(L) = I − A1L − · · · − Ah Lh is the lag polynomial matrix, A0 is the contemporaneous

impact matrix, R(L) = A(L)−1, et and ηt are K × 1 vectors of reduced-form innovations and

structural innovations. From equation (17), one can see that the response of Yt to the underlying

structural innovation, ηt , is influenced both by the reduced-form moving average terms, R(L),

and by the identifying restrictions placed on A0. Erceg et al (2005) usefully categorise the bias of

a SVAR model relative to the true DGP (generated from a DSGE model) into three components:

SVAR bias = R bias+ A bias+ Truncation bias (18)

The first part, the ‘R bias’, reflects the small-sample error in estimating the reduced-form moving

average terms, the R(L) coefficients in equation (17) . The second part, referred to, as the ‘A

bias’ reflects the error associated with transforming the reduced form into its structural form by

imposing certain identifying restrictions, the A0 matrix. Lastly, the ‘truncation bias’ that arises

because a finite-ordered VAR (h <∞) is chosen to approximate the true dynamics implied by

the model. King, Plosser and Rebelo (1988) were among the first to recognise that DSGE models

imply a vector autoregressive moving average (VARMA) representation and Cooley and Dwyer

(1998) emphasised that this is the case for most popular DSGE models. The solution of Smets

and Wouters’s (2007) model can be shown to have similar VARMA representation. More

recently, Kapetanios, Pagan and Scott (2007) document that the truncation bias from medium to

large-scale models can be very large.

It is important to recognise that the three types of biases are not necessary independent of each

other, they can interact and exacerbate the overall bias of the SVAR responses. For example,

using a fixed sample size, a larger truncation bias can increase the R bias related to the estimation

of the reduced-form coefficients. Similarly, for a fixed set of identifying assumptions, the

imprecision in estimating R(L) can exacerbate the A bias associated with the identification of the

structural shocks.
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To investigate the relative importance of the biases for our SVAR model, we re-estimate the same

VAR(2) model using 100,000 observations and the identifying restrictions come from estimating

the benchmark model using the same data set. The results from this experiment are plotted along

side the benchmark model’s responses in Chart 2 (red line).11 To aid comparison, we also

reproduced the small-sample SVAR responses in the same chart (magenta line). The numerical

calculations are summarised in the seventh column in Table B

By using the correct model restrictions (the estimated benchmark model now coincides with the

DGP), the proposed identification strategy is able to recover the true impact matrix (A0). This

can be shown in Table B where the bias of the SVAR’s first-period responses are very close to

zero. Furthermore, the biases (at various horizons) are also smaller relative to the small-sample

estimates. Although using a large data set helped eliminate the identification error (A bias) and

reduced the small-sample error in estimating the reduced-form coefficients (R bias), large

differences still exists at longer horizons.

In contrast to Erceg et al’s (2005) findings, we find the truncation bias plays the dominant role in

explaining the difference between the VAR and the DSGE model’s responses. Chart 3 plots the

bias of the SVAR model in terms of the number of lags and the horizons for the impulse

responses. To compute the bias, we re-estimate the VAR using different lag lengths based on

100,000 observations and the identification matrix is computed as before. As one might expect,

for a fix number of lags the bias is larger at longer horizons (see explanations in Ravenna

(2007)). On the other hand, the bias is a monotonic function decreasing with the number of lags.

It is interesting to note that the bias decreases in a non-linear fashion. Moving from one to four

lags, the bias decreases by 35%, whereas the simulation results indicate even after 50 lags, the

bias remains around 15% of the VAR(1) model. This is in line with the evidences provided by

Kapetanios et al (2007) that in order to approximate a medium to large-scale DSGE model, one

would require a significant large number of lags for the VAR.

The speed in which the truncation bias decreases with the number of lags will depend on the

model’s specification and parameters. More specifically, Fernandez-Villaverde et al (2007) point

out that the closer the largest (absolute value) eigenvalue of the matrix M in equation (7) is to

one, the more lags are needed in order to approximate the true DGP. In our case, the largest

11Note, the estimated benchmark model responses using 100,000 observations are exactly the same as the DGP.
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eigenvalue of the matrix M is indeed very close to one and therefore it is not surprising that a

large-order VAR is needed to approximate the dynamics of the model.12

4.1.2 Proposed identification versus existing strategies

To compare the proposed identification with existing identification strategies, Chart 1 also

includes the responses of the VAR model identified using the Choleski decomposition (green

line) and sign restrictions (light blue line) implied by the model.13 In all cases, the Choleski and

sign restriction identification schemes produced impulse responses that are much further away

from the DGP. The standard ‘price puzzle’, for example, is evident in the Choleski scheme and

experiments with different recursive ordering structure produced similar results. It is interesting

to note that even though the sign restrictions deliver the right signs by construction, it

consistently overestimates the impact of the shock.

The summary statistics in Table B revealed similar conclusions.14 The size of the bias using the

Choleski scheme is between 8 and 11 times larger than the proposed identification strategy at

shorter horizons and the sign restriction scheme is 31 to 48 times larger. At longer horizons, the

truncation bias dominates and the differences are much smaller.

4.2 VAR identification using misspecified models

The Monte Carlo results so far assumes that the identifying restrictions come from the true

estimated model. A natural question to ask is how the proposed identification scheme will

perform in the face of model misspecification, this subsection investigates the issue in more

detail. We repeat the same Monte Carlo experiments as before, the key difference being that the

restrictions will come from a misspecified model as listed in Section 3.2. This is certainly not an

exhaustive list of potential misspecifications one can consider, but it does provide a way of

evaluating the usefulness of the identification scheme when restrictions are derived from

12We also experimented with a simple three-equation New Keynesian model where the eigenvalue of the matrix M is much smaller, in
which case a VAR(2) together with the proposed identification strategy provides an excellent match with the DGP’s impulse responses.
These results are available on request.
13For the Choleski decomposition, the variables are ordered as output, inflation, wage growth and short-term interest rate.
14The fourth column in Table B shows the ratio of the total bias between Choleski VAR relative to the VAR using DSGE restrictions.
Similarly, the fifth column reports the same ratio for the VAR using sign restrictions.
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misspecified models. The aim here is to compare the SVAR results against the misspecified

model, rather than exploring the importance of the misspecification on the model’s properties.

Table C displays the bias of the impulse responses across different horizons for the estimated

misspecified model and the SVAR.15 The model with no interest rate smoothing term in the

Taylor rule (M5) appears to give the largest bias. Since the VAR identification depends on the

restrictions implied by the misspecified model, the bias for the SVAR model is also the largest for

M5. At shorter horizons (one and two quarters), the bias for the SVAR models is smaller than that

of the misspecified models.16 This is an interesting result, even though the identification bias (A

bias) might be larger because of restrictions from a misspecified model, the data tend to push the

SVAR responses closer to the true DGP. Therefore, information from the data are useful in

correcting some of the bias from using misspecified model restrictions.

At longer horizons, the truncation bias (as discussed earlier) dominates and the bias of the SVAR

is around two times that of the misspecified model. It is interesting to note that once we take into

account the truncation bias (proxied by the benchmark model), the bias of the SVAR model is

comparable with that from the misspecified model.

The results from this experiment shows that despite misspecifications in the DSGE models, the

restrictions implied by the model are still useful in identifying the SVAR shocks. The resultant

dynamic properties of the SVAR is comparable with the misspecified model.

5 Application: seven-variable SVAR model for the United States

To demonstrate how the proposed identification scheme can be applied in practice, we estimate a

seven-variable VAR using US data from 1966 Q1 to 2004 Q4. The data set is taken from the

Smets and Wouters’ (2007) paper which includes: the log difference of real GDP, real

consumption, real investment and the real wage, log hours worked, log difference of GDP

deflator and the Federal funds rate. Although Smets and Wouters (2007) compare the estimated

DSGE model’s forecast performance with reduced-form VARs, they did not present any

comparisons between the DSGE model’s impulse response functions with a VAR model. This

15The bias for the benchmark model is also included in Table C for relative comparison.
16With the exception of model M5 where the bias between the misspecified model and the VAR are fairly similar.
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partly reflects the difficulty in finding the appropriate set of identifying restrictions for the VAR.

From that perspective, our identification scheme is a natural candidate for comparison analysis.

One can view this as a diagnostic tool for analysing the dynamic behaviour of the estimated

DSGE model.

We follow the same procedure set out earlier in Section 2.3 and the restrictions are based on

Smets and Wouters’ (2007) original model with all seven shocks.17 First, we estimate the VAR

using simple OLS regression to obtain the reduced-form variance-covariance matrix (6̂v). Next,

we find an orthogonal matrix P∗ that minimised the distance in the first-period response between

the DSGE and the SVAR model. The DSGE model’s response is based on the parameter

estimates obtained by Smets and Wouters (2007) as listed in Table A. For diagnostic comparison,

the log-likelihood of the VAR is calculated to be -1,064 versus -1,256 for the DSGE model.

5.1 Impulse response functions

In Charts 4 and 5, we present the impulse response functions for two of the most frequently

analysed shocks: an unexpected productivity shock and a monetary policy shock.18 The blue line

corresponds to the Smets and Wouters (2007) estimated model and the red line correspond to the

response of the SVAR model. It is worth highlighting that all the variables’ responses have the

same sign across the two models. However, there are some interesting differences in terms of the

magnitudes and adjustment paths to the shocks.

For the productivity shock, the SVAR model tends to suggest a smaller impact on hours worked

and the nominal interest rate. The impact on consumption, real wages and inflation is slightly

higher but less persistent. For the monetary policy shock, the SVAR model gives a larger but

more temporary response for inflation. On the other hand, the SVAR displays a much more

persistent behaviour for hours worked, real wages and the interest rate compared with the DSGE

model. Interestingly, the response of output, consumption and investment are very similar across

the two models.

17The seven shocks include: a government spending shock, a price mark-up shock, a wage mark-up shock, a monetary policy shock, a
net worth shock, a technology shock and an investment specific shock.
18The results of other shocks are available upon request to the authors.
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5.2 Forecast error variance decomposition

In addition to the impulse response analysis, we also compute the forecast error variance (FEV)

decomposition for both models. The results for the SVAR are summarised in Chart 6 and Chart 7

summarises Smets and Wouters’(2007) estimated DSGE model. For the SVAR, productivity and

investment shocks are the main drivers of the FEV for output growth, whereas in the DSGE

model, preference and government spending shocks play the dominant role. Similarly for

consumption growth, investment shocks are more important than preference shocks in the SVAR

model. For hours worked, productivity shocks explain over 50% of the FEV as opposed to the

wage mark-up shock identified in the DSGE model. Investment shocks are the key factor in

explaining investment growth across both models.

These observations highlight an important contrast across the two models, the SVAR tends to

suggest real shocks, such as investment and productivity shocks, play a relatively more important

role than nominal shocks (government spending and wage mark-up shocks) for real economic

variables. The sum of real shocks account for 80% of output, 87% of consumption, 70% of hours

worked and 65% of investment at the twelve-quarter horizon.19 On the other hand, the DSGE

model tends to suggest both real and nominal shocks play an equally important role.

For the nominal interest rate, both models suggest the contribution to the FEV is (roughly)

equally divided among all seven shocks over the medium term. The DSGE model identifies both

price and wage mark-up shocks to be the key drivers of the FEV for inflation, whereas the SVAR

also attributes part of the FEV to investment shocks. For wage growth, while both models agree

on the importance of wage mark-up shocks, the SVAR points to a much smaller role for price

mark-up shocks over the medium term. Another interesting feature is that the DSGE model

identifies wage mark-up shocks to be the dominant contributor of the unconditional variance for

interest rate, inflation and wage growth, whereas the SVAR highlights the importance of

productivity and price mark-up shocks.

19We classify real shocks to include productivity, preference and investment shocks. All other shocks are classified as nominal shocks.
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6 Conclusion

Issues relating to the identification of VAR models have been subject to numerous debates in the

literature. The key source of this disagreement arises from finding a set of appropriate identifying

assumptions to disentangle the reduced-form residuals back into structural disturbances. The

sampling information in the data is often insufficient to distinguish between these different sets

of assumptions. This paper proposes an identification strategy that extends Uhlig’s (2005)

penalty-function approach to a more formal setting. In particular, we construct a penalty function

that is based on quantitative restrictions implied by a DSGE model. We present a series of Monte

Carlo experiments to assess the usefulness of the proposed identification strategy. We also

present an application using a seven-variable VAR model estimated on US data and compare this

with the results obtained from a medium-scale DSGE model by Smets and Wouters (2007).

A number of interesting results emerge from the analysis. First by using the correct model

restrictions, the identification procedure is successful in recovering the initial impact of the

shocks from the data. We identify two sources of bias relating to the difference between the

SVAR and the true response at longer horizons. One is related to the small-sample bias, while the

other is due to the truncation bias that arises from using a finite-order VAR to approximate a

VARMA process. When a large sample is used, the truncation bias remains the dominant source

of bias. Second, despite using restrictions implied by a misspecified model, the data tend to push

the VAR responses away from the misspecified model and closer to the true DGP. Third, the

proposed identification strategy systematically gives smaller bias compared with other

identification schemes such as the Choleski decomposition and pure sign restrictions.

The identification procedure proposed here is mainly applied to VAR models with relatively

small number of variables. But increasingly, the empirical literature emphasises the importance

of estimating statistical models based on a large information set. Examples include the large

Bayesian VAR model put forward by Bandbura, Giannone and Reichlin (2010) and the factor

augmented VAR model of Bernanke, Boivin and Eliasz (2005). Future research could therefore

be directed towards exploiting information contained in DSGE models to help identify VAR

models with a large number of variables.
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Appendix A: The linearised DSGE model

This appendix briefly discusses some of the key linearised equilibrium conditions of Smets and

Wouters’(2007) model. Readers who are interested in the agents’ decision problems are

recommended to consult the references mentioned above directly. All the variables are expressed

as log deviations from their steady-state values, Et denotes expectation formed at time t , ‘−’

denotes the steady-state values and all the shocks (ηi
t) are assumed to be normally distributed

with zero mean and unit standard deviation.

The demand side of the economy consists of consumption (ct), investment (it), capital utilisation

(zt) and government spending
(
ε

g
t = ρgε

g
t−1 + σ gη

g
t
)

which is assumed to be exogenous. The

market clearing condition is given by

yt = cyct + iyit + zyzt + ε
g
t (A-1)

where yt denotes the total output and Table A provides a full description of the model’s

parameters. The consumption Euler equation is given by

ct =
λ/γ

1+ λ/γ
ct−1 +

(
1−

λ/γ

1+ λ/γ

)
Etct+1 +

(σC − 1)
(
W̄ h L̄/C̄

)
σC (1+ λ/γ )

(lt − Etlt+1)

−
1− λ/γ

σC (1+ λ/γ )
(rt − Etπ t+1) (A-2)

where lt is the hours worked, rt is the nominal interest rate and π t is the rate of inflation. If the

degree of habits is zero (λ = 0), equation (A-2) reduces to the standard forward-looking

consumption Euler equation. The linearised investment equation is given by

it =
1

1+ βγ 1−σC
it−1 +

(
1−

1
1+ βγ 1−σC

)
Et it+1 +

1(
1+ βγ 1−σC

)
γ 2ϕ

qt (A-3)

where it denotes the investment and qt is the real value of existing capital stock (Tobin’s Q). The

sensitivity of investment to real value of the existing capital stock depends on the parameter ϕ

(see, Christiano et al (2005)). The corresponding arbitrage equation for the value of capital is

given by

qt = βγ
−σC (1− δ)Etqt+1 +

(
1− βγ −σC (1− δ)

)
Etr k

t+1 − (rt − Etπ t+1) (A-4)

where r k
t = − (kt − lt)+ wt denotes the real rental rate of capital which is negatively related to

the capital-labour ratio and positively to the real wage.
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On the supply side of the economy, the aggregate production function is define as

yt = φ p

(
αks

t + (1− α) lt
)

(A-5)

where ks
t represents capital services which is a linear function of lagged installed capital (kt−1)

and the degree of capital utilisation, ks
t = kt−1 + zt . Capital utilisation, on the other hand, is

proportional to the real rental rate of capital, zt =
1−ψ
ψ

r k
t . The accumulation process of installed

capital is simply described as

kt =
1− δ
γ

kt−1 +
γ − 1+ δ

γ
it (A-6)

Monopolistic competition within the production sector and Calvo-pricing constraints gives the

following New Keynesian Phillips Curve for inflation

π t =
i p

1+ βγ 1−σC i p
π t−1 +

βγ 1−σC

1+ βγ 1−σC i p
Etπ t+1

−
1(

1+ βγ 1−σC i p
) (1− βγ 1−σCξ p

) (
1− ξ p

)(
ξ p

((
φ p − 1

)
ε p + 1

)) µp
t + ε

p
t (A-7)

where µp
t = α

(
ks

t − lt
)
− wt is the marginal cost of production and

ε
p
t = ρ pε

p
t−1 + σ pη

p
t − µpσ pη

p
t−1 is the price mark-up price shock which is assumed to be an

ARMA(1,1) process. Monopolistic competition in the labour market also gives rise to a similar

wage New Keynesian Phillips Curve

wt =
1

1+ βγ 1−σC
wt−1 +

βγ 1−σC

1+ βγ 1−σC
(Etwt+1 + Etπ t+1)−

1+ βγ 1−σC iw
1+ βγ 1−σC

π t

+
iw

1+ βγ 1−σC
π t−1 −

1
1+ βγ 1−σC

(
1− βγ 1−σCξw

)
(1− ξw)

(ξw ((φw − 1) εw + 1))
µwt + ε

w
t (A-8)

where µwt = wt −
(
σ llt +

1
1−λ (ct − λct−1)

)
is the households’ marginal benefit of supplying an

extra unit of labour service and the wage mark-up shock εwt = ρwε
w
t−1 + σwη

w
t − µwσwη

w
t−1 is

also assumed to be an ARMA(1,1) process.

Finally, the monetary policy maker is assumed to set the nominal interest rate according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ)
[
rππ t + ry

(
yt − y p

t
)]
+ r1y

[(
yt − y p

t
)
+
(
yt−1 − y p

t−1

)]
+ εr

t (A-9)

where y p
t is the flexible prices-wages and zero mark-up shocks level of output and

εr
t = ρrε

r
t−1 + σ rη

r
t is the monetary policy shock.
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Appendix B: Tables

Table A: Parameter descriptions and estimated values from Smets and Wouters (2007)

Symbols Description M0

γ Steady-State Growth Rate 1.00
π Steady-State Inflation 1.00
8 Fixed Cost 1.50
S” Steady-State Capital Adjustment Cost Elasticity 5.74
α Capital Production Share 0.19
σ Intertemporal Substitution 1.38
h Habit Persistence 0.71
ξw Wages Calvo Parameter 0.70
σ l Labour Supply Elasticity 1.83
ξ p Prices Calvo Parameter 0.66
iw Wage Indexation 0.58
i p Price Indexation 0.24
z Capital Utilisation Adjustment Cost 0.27
φπ Taylor Inflation Parameter 2.04
φr Taylor Inertia Parameter 0.81
φ y Taylor Output Gap Parameter 0.08
φdy Taylor Output Gap Change Parameter 0.22
ρg Government Spending Shock Persistence 0.97
ρms Policy Shock Persistence 0.15
ρ p Price Mark-up Shock Persistence 0.89
ρw Wage Mark-up Shock Persistence 0.96
map Price Mark-up MA Term 0.69
maw Wage Mark-up MA Term 0.84
σ g Government Spending Shock Uncertainty 0.53
σms Policy Shock Uncertainty 0.24
σ p Price Mark-up Shock Uncertainty 0.14
σw Wage Mark-up Shock Uncertainty 0.24
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Table B: Accumulated bias for the benchmark model and SVAR model

Small-sample estimates Large-sample estimates

Horizon M0 SVARD
M0

SVARD

SVARC

SVARD

SVARS

SVARD
M0 SVARD

SVARC

SVARD

SVARS

SVARD

1 1.5 1.6 0.9 11.0 48.5 0.0 0.3 66.9 279.3

2 2.5 3.7 0.7 8.3 31.9 0.0 2.3 13.6 50.2

3 4.9 28.3 0.2 3.0 10.2 0.0 5.6 8.7 29.3

4 8.4 28.3 0.3 3.0 10.2 0.0 27.3 4.4 8.8

8 39.2 98.4 0.4 2.8 5.5 0.0 95.4 3.7 5.0

12 68.4 190.2 0.4 2.2 3.3 0.0 184.3 2.8 3.3

16 86.1 253.7 0.3 1.9 2.7 0.0 236.5 2.5 2.9

20 104.5 311.9 0.3 1.8 2.4 0.0 281.7 2.4 2.8

1. M0 corresponds to the bias for the estimated benchmark model, SVARD , SVARC and SVARS correspond to the SVAR(2) model using DSGE, Choleski and sign restrictions.

2.The small sample estimates are computed by taking the median of the 500 samples and the large sample estimates are computed using 100,000 observations.

Table C: Accumulated bias for misspecified models and the SVAR model

Period 1 Periods 2 Periods 8 Periods 12

DSGE SVAR Ratio DSGE SVAR Ratio DSGE SVAR Ratio DSGE SVAR Ratio

M0 1.5 1.6 0.9 2.5 3.7 0.7 39.2 98.4 0.4 68.4 190.2 0.4

M1 6.1 5.9 1.0 10.3 9.5 1.1 61.9 131.8 0.5 85.3 230.0 0.4

M2 2.1 1.9 1.1 6.3 4.4 1.4 74.1 109.7 0.7 97.2 213.4 0.5

M3 4.2 5.0 0.8 9.8 7.9 1.2 72.2 117.4 0.6 109.8 203.3 0.5

M4 5.7 5.4 1.0 11.3 9.3 1.2 68.7 128.9 0.5 104.1 235.3 0.4

M5 12.8 12.9 1.0 19.8 19.6 1.0 117.5 190.0 0.6 164.0 263.4 0.6

1. The accumulated bias is calculated as the sum (across different number of periods) of the absolute percentage difference between the estimated DSGE model or the VAR’s impulse responses

with the DGP.

2. The ratio measure is simply the bias of the estimated DSGE model relative to that of the SVAR model.
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Appendix C: Charts

Chart 1: Median impulse response functions of the benchmark model: 500 samples of 200
observations
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Chart 2: Impulse response functions of the benchmark model: 100,000 observations
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Chart 3: Truncation bias (accumulated) of the VAR model
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Chart 4: US structural VAR: productivity shock

0 10 20

0

0.5

1
Output       

pr
od

uc
tiv

ity

0 10 20

0

0.1

0.2

0.3

Cons         

pr
od

uc
tiv

ity

0 10 20
−0.8

−0.6

−0.4

−0.2

0

0.2

hours        

pr
od

uc
tiv

ity

0 10 20

0

0.5

1

invest       

pr
od

uc
tiv

ity

0 10 20

−0.2

−0.1

0
Interest Rate

pr
od

uc
tiv

ity

0 10 20

−0.2

−0.1

0

inflation    

pr
od

uc
tiv

ity

0 10 20

0

0.1

0.2

0.3

0.4

wages        

pr
od

uc
tiv

ity

 

 
Initial
VAR

Chart 5: US structural VAR: monetary policy shock
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Chart 6: US structural VAR forecast error variance decomposition
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Chart 7: Smets and Wouters’ model forecast error variance decomposition
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