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Abstract

Structured credit instruments offer an insight into markets’ perceptions of the extent of future credit

defaults.  Claims of different seniorities incur losses only if defaults reach different magnitudes, so their

relative value offers an insight into the likelihood of losses being of different severities.  This paper

matches the traded values of structured credit products by modelling the defaults of the underlying

credits and their interdependence.  It offers an improvement on the industry-standard ‘Gaussian copula’

model in its ability to capture the ‘tail event’ of multiple firms defaulting together.  This allows

policymakers to draw better inference as to the likely scale of defaults implied by structured credit

prices.  It offers an indication of the extent to which defaults are driven by systemic shocks to firms’

balance sheets.  It may also be of use to those who trade structured credit products and may offer an

improvement in risk management.
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Summary 
 
Assessing the stability of an economy frequently involves assessing the risk of bad states of the 

world materialising. It is often necessary to judge how many firms are likely to default on their 

debt obligations over a certain time horizon. The likelihood of a large number of firms 

defaulting is of particular interest to policymakers, particularly if this is caused by some 

‘systemic shock’ that presents a particular threat to financial stability.  

 

Structured credit instruments are created by collecting defaultable assets, such as mortgages or 

corporate bonds, into portfolios and issuing claims of different seniority against these portfolios. 

Claims’ seniorities determine the order in which they receive cash flows from the underlying 

assets, with more senior claims being paid first. Their prices therefore reflect market perceptions 

about the chance of these cash flows materialising, or equivalently, the likely extent of defaults 

of the underlying credit instruments. While the values of standard credit instruments, such as 

corporate bonds, offer an insight into the market-perceived probability of a given firm 

defaulting, the values of structured credit instruments provide a richer view of the likely extent 

of corporate defaults away from this central case. Claims of different seniorities incur loss only 

if defaults reach different magnitudes; their relative value therefore affords an insight into the 

likelihood of losses being of different severities. 

 
Information can be recovered from the prices of structured credit by modelling the default of the 

different underlying credit instruments and then fitting the resulting modelled prices to those 

observed in the market.  Correctly modelling the distribution of defaults, and in particular their 

codependence, is crucial in order to find a model whose tranche premia fit those traded in the 

market. For example, only if a large number of firms default together will senior claims incur 

loss. Previous attempts to model this interdependence have used a ‘Gaussian copula model’, 

based on the Gaussian or normal distribution, to capture the correlation between firms’ defaults. 

However, this gives insufficient weight to the ‘tail event’ of multiple firms defaulting together.  

 

The framework presented here instead uses a gamma distribution that is more able to capture the 

possibility of extreme dependence between defaults. It is therefore more successful in matching 

the traded prices of structured credit products. The model is also extended to include 

‘catastrophe’ and ‘becalmed’ states that represent the possibility of very high degrees of 

systemic risk in credit markets, and its reduction perhaps due to government intervention; it 

therefore offers an intuitive explanation for the large fluctuations in codependence witnessed 

during the recent credit crisis.  
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This work offers three key outputs. First, it allows the market-implied probability distribution of 

firms’ defaults to be inferred from the traded value of structured credit instruments. These 

distributions may be of use to policymakers, particularly because they offer an insight into the 

risk of ‘tail outcomes’ involving the default of large numbers of firms. This is likely to be of 

particular interest to policymakers seeking to measure and mitigate systemic risk. Second, the 

model offers an insight into the nature and magnitude of the risks firms face. It allows the 

average probability of a firm defaulting to be decomposed into components relating to default 

events of different severities. For example, it can estimate how the probability of a particular 

firm defaulting depends on the likelihood of a very severe event such as widespread financial 

crisis. Finally, in common with other models of structured credit that go beyond the Gaussian 

copula, this work is of potential use to those who trade structured credit products. It gives rise to 

a set of parameters that determine the structure of the codependence of default between credits, 

which could form the basis of an investor’s ‘hedging strategy’ that allows positions in different 

tranches to be hedged against each other. This has the potential to protect them from changes in 

the nature of default codependence that reduce the value of their portfolio. 
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Introduction 
 
There is a strong tradition of central banks and other policymakers extracting information from 

the prices of financial securities. Under the efficient market hypothesis,1 traded prices reflect all 

publicly available information relating to their future pay-offs. Policymakers can therefore use 

these prices to back out information about these expected future cash flows. For example, 

information can be extracted from equity prices on the perceived value of their future 

dividends.2 Bond and swap market prices can communicate investors’ views on the future path 

of interest and inflation rates.3   

 

Expectations derived from financial asset prices have a number of advantages over other 

measures of private sector expectations such as surveys. They are available almost continuously, 

whereas surveys are produced intermittently and take some time to compile. The prices from 

which they are derived combine the information of a large number of investors. The fact that the 

expectations are derived from prices in financial markets where actual investments are made 

means that they are likely to reflect more careful consideration than survey responses. There 

remains the problem that the price of a financial asset is driven by more than just its expected 

future pay-offs: some prices are said to include an ‘illiquidity premium’ that compensates its 

holder for any difficulty they may encounter in finding a buyer for the asset should they wish to 

sell it at a future date. Expectations derived in this way will also be those of a ‘risk-neutral’ 

investor; in the likely case that investors are averse to risk, the market-implied probability of bad 

states of the world materialising will be less than under risk-neutral valuation. 

 

Financial derivatives can provide information on the future path of their underlying asset’s price 

that goes beyond its central expectation. Because their pay-offs are contingent on the asset’s 

price, derivatives provide a guide to the relative likelihood of different future price movements, 

as perceived by investors. Bahra (1996 and 1997) fit a mixture of two log-normal distributions 

to asset prices and fit the resulting distribution to that implied by options prices. Breeden and 

Litzenberger (1978) observed that the risk-neutral probability density of an asset’s future price is 

proportional to the second derivative of the price of options written upon it with respect to their 

strike prices. This has now become a standard technique adopted by central banks for extracting 

information on the future course of asset prices from options contracts.4 These methods also 

                                                 
1 See Fama (1970). The efficient market hypothesis has, however, been criticised in recent years: there is some empirical evidence 
suggesting that it may not hold true in practice, and debate as to whether some agents’ predictions could in fact be systematically wrong. 
2 See Panigirtzoglou and Scammel (2002). 
3 See Anderson and Sleath (2001)  
4 Clews et al (2000) gives the implementation used by the Bank of England.   
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highlight two different approaches to extracting information from derivatives prices. In contrast 

to that of Bahra, the framework of Breeden and Litzenberger is ‘non-parametric’ and makes no 

attempt to model the underlying asset’s price. While this has the advantage of being able to fit a 

large constellation of derivative prices without the constraint of a single model of asset 

dynamics, it has the disadvantage of offering no information as to the causes of these prices. The 

presentation offered here is parametric and seeks to model the behaviour of the underlying 

assets in order to offer some insight into the economic drivers of their prices. 

 
Structured credit instruments are created by collecting defaultable assets, such as mortgages or 

corporate bonds, into portfolios and issuing multiple ‘tranches’ that represent claims of different 

seniority against these portfolios. The relative seniority of a tranche determines the order in 

which it accrues losses incurred on the underlying credits. If any of the assets in the portfolio 

default during the life of the product, the resulting losses accrue first to junior tranches and only 

on to senior tranches if losses reach a sufficient magnitude. An understanding of what drives the 

relative value of exposures of differing level of seniority enables market practitioners to 

determine their relative value. This valuation process can also be reversed to infer information 

on the likely severity of defaults. 

 

Just as equity derivatives can be used to extract information on the relative likelihood of stock 

price movements, structured credit instruments can be used to extract information on the relative 

likelihood of the defaults of their underlying credits reaching different magnitudes. Because 

tranches of different seniorities incur loss only if defaults reach different magnitudes, their 

relative value therefore affords an insight into the likelihood of losses being of different 

severities. 

 

The approach taken here is to value structured credit products by modelling the defaults of the 

underlying credits. These modelled values are then fitted to those observed in the market. The 

implied values of the model’s parameters are then used to make inferences about the likely scale 

of defaults and their codependence.  Correctly modelling the codependence of defaults is crucial 

in order to find a model whose tranche premia fit those traded in the market. A standard means 

of modelling this interdependence has been to use a ‘Gaussian copula model’, based on the 

Gaussian, or normal, distribution to capture the codependence between firms’ defaults. 

However, this gives insufficient weight to the possibility of multiple firms defaulting together.  
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The presentation given here builds on a strand of literature that seeks to better capture the 

dependence structure between defaults of individual firms and consequently matches traded 

tranche premia better. There has for some time been interest in models of financial asset prices 

that go beyond the limited scope of the Gaussian distribution in their ability to capture ‘tail 

events’ witnessed in markets. Madan and Seneta (1990) model the value of equity derivatives 

using a gamma distribution, rather than a Gaussian distribution, to capture the possibility of 

extreme price movements beyond those incorporated in the standard Black-Scholes5 framework. 

Cariboni and Schoutens (2007) developed a similar model to price simple credit contracts. Both 

Albrecher et al (2007) and Baxter (2007) suggest using a gamma distribution to improve the 

pricing of structured credit products and better capture the ‘tail risk’ of extreme codependence 

between defaults. This work builds on this literature and offers a model based on a gamma 

distribution that accounts for the more complex dynamic for codependence of default witnessed 

during the recent credit crisis. In contrast to some recent literature however, the presentation 

here offers an intuitive explanation for the economic drivers of systemic risk. In particular, it 

includes ‘catastrophe’ and ‘becalmed’ states that represent the possibility of very high degrees 

of systemic risk in credit markets, and its reduction perhaps due to government intervention; it 

therefore offers a natural economic explanation for the large fluctuations in codependence 

witnessed during the recent crisis. 

 

The model presented here offers an improved calibration to traded prices of structured credit 

compared to that based on the Gaussian copula. This allows superior inferences to be drawn as 

to the nature of credit default risk priced into these products and offers two key outputs of use to 

policymakers. First, it allows for the extraction of the market-implied probability distribution of 

the underlying firms’ defaults. These distributions offer insight into the risk of ‘tail outcomes’ 

involving the default of large numbers of firms. This is likely to be of particular interest to 

policymakers seeking to measure and mitigate systemic risk. Second, the relative values of the 

parameters of the model give insight into the drivers of corporate defaults. An index of 

structured credit is decomposed into portions relating to different dynamics of the underlying 

model. This allows the average probability of a firm defaulting, reflected by the value of the 

index, to be decomposed into components relating to default events of different severities. The 

model can extract the proportion of default risk arising, for example, from systemic shocks to 

firms’ asset values that cause the default of multiple firms.  

 

                                                 
5 See Black and Scholes (1973). 
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Finally, this framework is of use to those who trade such securities. It gives rise to a set of 

parameters that give an intuitive explanation for the structure of the codependence of default 

between credits. These can form the basis of an investor’s ‘hedging strategy’ that allows 

positions in different tranches to be hedged against each other.  In common with that of Masol 

and Schoutons (2008), this model could offer an improvement in risk management and valuation 

compared to those based on a Gaussian distribution, because it is able to fit the prices of all 

traded tranches simultaneously. It also allows non-standard ‘bespoke’ products to be priced 

consistently. 

 

This paper proceeds as follows. Section 1 introduces structured credit indices and, in particular, 

the CDX index to which the models here are applied. Section 2 presents three competing models 

of structured credit premia, and compares their ability to capture the default codependence 

implied by the traded prices of structured credit products. It begins with a benchmark model of 

structured credit along with a description of its shortcomings. This is extended to a framework 

based on a gamma distribution that is shown to better capture default codependence as implied 

by market prices. A further refinement deals with the high levels of default codependence 

observed during the recent financial turmoil, as well as the possibility of state intervention to 

remove this codependence. A third section presents the results of calibrating this model to the 

CDX index, along with various measures of systemic risk implied by their prices which may be 

of interest to policymakers. A fourth section shows how, in common to other models that price 

structured credit products, this work may be relevant to industry professionals who wish to price 

new credit exposures and hedge existing ones. A final section concludes.  

 

Technical details are confined to an appendix. This gives details of how losses on each tranche 

are calculated under the various models, and how these then give rise to a premia on each 

tranche. An analytical approximation is used in the course of this calculation that radically 

reduces the computation time compared to alternative techniques. This is important as the 

subsequent fitting of observed premia in the market requires a number of successive 

computations of the modelled spreads. 

 
1 Structured credit indices 
 

This study focuses on the Dow Jones CDX five-year North American Investment Grade Index, 

which is based on a basket of 125 credit default swaps (CDS) that track the cost of insuring 

against the default of the underlying firms. Each CDS contract functions as an insurance 
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arrangement under which a buyer of credit protection pays a fixed quarterly premium over some 

given time such as five years. If there is a default on the underlying bond during that period then 

the buyer of protection may give the defaulted bond to the protection seller and receive the full 

face value of the bond in return. The index tracks the average CDS premia on the underlying 

firms, and hence their average level of credit risk.  

 

Figure 1: Tranche structure of the CDX 

index 

Chart 1: Premia on tranches of CDX index 
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Indices such as the CDX also include a number of tranches, each of which has an ‘attachment’ 

point that the proportion of defaults on the underlying firms must exceed before the tranche 

itself suffers loss. Attachment points on ‘junior’ tranches are low, meaning that losses accrue to 

them first; those on the ‘senior’ tranches are higher, so that they only suffer loss once more 

junior tranches have been depleted. An investor in a given tranche therefore functions as a seller 

of credit protection on a ‘slice’ of the underlying securities, receiving a fixed premium payment, 

but suffering a loss should defaults exceed a certain amount. Those investors requiring a 

highrisk investment can invest in junior tranches, to which losses accrue first, but which pay a 

high premium. Those requiring a lower risk investment can invest in senior tranches, which only 

suffer loss if large numbers of firms default, and so offer lower premia. In this way, tranches 

redistribute among investors both the credit risk of the underlying firms and the returns to 

bearing that risk. Attachment/detachment points of the tranches of the CDX index are set at  

0%-3%, 3%-7%, 7%-10%, 10%-15%, 15%-30% and 30%-100%. The tranche structure and its 

associated premia are shown in Figure 1 and Chart 1.6 The data are daily mid-quotes between  

1 February 2005 and 10 January 2010. The liquidity of the CDX index and its associated 

tranches has grown rapidly since its inception. 

                                                 
6 For further details on the CDX index see Rogoff and Ursino (2007). 
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The compensation demanded by investors to hold different tranches of structured credit offers 

policymakers an insight into the market’s perceptions of the nature of corporate default risk. 

These tranche premia reflect not only the probability of each underlying asset defaulting, but 

also market perceptions about the codependence of these defaults - the extent to which large 

numbers of firms are likely to default together.  

 

While the value of the main index tracks the average probability of default of the underlying 

firms, the tranche premia reflect how the market expects these losses to be distributed between 

tranches. Moves in tranche premia not accompanied by a change in the perceived risk of the 

index as a whole should, in principle, reflect only a change in the market view of the nature of 

the codependence of default. A higher degree of codependence increases the likelihood of polar 

outcomes in which either a majority of underlying assets default, or very few default. This 

reduces the likelihood of intermediate outcomes in which a modest proportion of the underlying 

credits default. This benefits investors in the equity tranche, because the transfer of probability 

mass from intermediate outcomes to outcomes with very few defaults increases the chance of 

the equity tranche being preserved. At the same time, investors in senior tranches become worse 

off because there is more chance of clustered defaults that could erode some of their tranche. 

The increased degree of clustering in defaults could be due to defaults being driven by a 

‘common economic shock’ that affects many firms simultaneously.   

 

Table 1: Examples of varying levels of codependence Premium for holding: 

State of the world A B C …the equity 

tranche 

...the senior 

tranche Probability 1/3 1/3 1/3 

Case 1–Low 

codependence 

Asset X 

defaults 

No defaults Asset Y 

defaults 

Higher Lower 

Case 2–High 

codependence 

No defaults Assets X and 

Y default 

No defaults Lower Higher 

 

This codependence is illustrated in Table 1. Each of three states of the world, A, B and C, occur 

with equal probability. In the first case, assets default in two of three states of the world - X in 

state A, Y in state C. In contrast, under case two assets only default in one state of the world, but 

now both default together. Crucially, the expected number of defaults in each case are equal; 

but in case 1 defaults occur idiosyncratically, whereas in case 2 they occur together.  
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2 Three competing models of portfolio credit risk 
 
Three models of structured credit premia are examined here, each of which seeks to model the 

codependence between defaults in order to fit the premia observed on tranches of the CDX 

index. Each is based on the same ‘copula’7 structure that seeks to capture the dependence 

structure between the defaults of individual credits, but offer successive improvements in their 

ability to capture the levels of codependence implied by market prices. The tranche premia 

given by each model are fitted to those traded in the market on each day separately, and the 

resulting model parameter values allow us to draw inference on the nature of the codependence 

between defaults and how it changes over time. 

 

The first model, based on the ‘Gaussian copula’, became the ‘industry-standard’ model for 

pricing structured credit products. However, it is shown to be unable to capture the degree of 

codependence between defaults implied by market prices. This motivates its comparison with a 

second model, of a type first proposed by Baxter (2007), which is based on a gamma 

distribution that enables it to better fit the traded values of tranches. A refinement of this, 

presented as a third model, offers an additional improvement that is able to fit the fluctuating 

degrees of codependence witnessed during the recent credit crisis.  

 

2.1 The Gaussian copula 
Early attempts to model the value of structured credit products have focused on the Gaussian 

copula.8 This represents the value of each firm’s assets by a state variable, Xi, which is the sum 

of two normally distributed random variables; Wg and W i:  

igi WWX   1 .  (1) 

Wg is a ‘global’ shock that affects all firms simultaneously; Wi is an idiosyncratic shock 

affecting only the ith firm. The default of the ith firm occurs if iiX  , that is if the value of the 

firm’s assets, over the life of the contract, breaches some barrier i , typically representing the 

face value of the firm’s liabilities. i  is calibrated so that each firm within the portfolio defaults 

with some probability that, for example, can be determined by its CDS premium, as this reflects 

its individual probability of default.9 The value of the correlation parameter,  1,0 , 

                                                 
7 For a general introduction to copulas see Nelsen (1999). 
8 See Li (2000). 
9 We require that  CDS

i
i P1 , where CDS

iP is the ith firms probability of default. 
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determines the extent to which defaults are all driven by the common shock rather than by 

idiosyncratic shocks, and thus the extent to which their defaults codepend.10 

 

Calibrating this model to market prices determines the probability of, and correlation between, 

defaults on the underlying firms such that the model produces tranche premia that fit those 

prevailing in the market. This technique became the industry standard for structured credit 

valuation; see Belsham et al (2005) for further details. 

 

The Gaussian copula does however have a significant shortcoming in that it does not accurately 

capture the nature of the codependence between defaults implied by market prices. No single 

value of the correlation parameter produces tranche premia that are close to those observed in 

the market. The Gaussian distribution fails to capture the possibility of very high codependence 

between defaults implied by the premia at which tranches are traded. This is analogous to how 

the univariate normal distribution underestimates the probability of extreme movements in the 

price of a single financial asset; thus no single volatility parameter allows the Black-Scholes 

model11 to fit the market prices of options of all strikes.  

 

Chart 2: Base correlations for tranches of 
the CDX index 

Chart 3: Correlation ‘smiles’ for the 
tranches of the CDX index on particular 
dates 
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In practice, practitioners have found a way to ‘force’ the Gaussian copula to fit values observed 

in the market, through a technique now commonly known as ‘base correlation’. This applies 

different correlations to each tranche, modelling the loss on each tranche as though it existed 

                                                 
10 The Gaussian copula is therefore a multidimensional extension of a Merton model (see Merton (1974)), which models the default of a 
single firm.  
11 Black and Scholes (1973). 
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independently of the other tranches.12 Base correlations for the tranches of the CDX are shown 

in Chart 2. Even with correlation set at 100%, the correlation structure provided by the Gaussian 

model is insufficient to fit premia on senior tranches, as shown by how the top-most line on 

Chart 2, relating to the 15%-30% tranche, appears ‘capped’ at 100%.  

 

The way in which base correlation allows the Gaussian copula to be fitted to the tranche market 

is analogous to how the Black-Scholes model can be made to fit options with different strike 

prices. With Black-Scholes, different ‘implied volatilities’ are fitted to options that pay-off if the 

underlying asset’s price moves by different amounts; here, different ‘implied base correlations’ 

are fitted to tranches of different seniorities – that is tranches which payout if losses accrue to 

different amounts. On a given day, ‘implied volatilities’ arising from the Black-Scholes model 

can be plotted for options of different strikes, resulting in ‘correlation smile’ plots. In the same 

way, Chart 3 shows a plot of implied correlations relating to the Gaussian copula for CDX 

tranches of a different seniority.  

 

These ‘correlation smiles’, while betraying the Gaussian model’s inadequacies, do however 

serve as a ‘prism’ through which to visualise levels of correlation implied by tranche premia and 

how they compare to those pertaining to the Gaussian model. The way in which the correlation 

smile moved upwards between January 2005 and 2008 shows how correlation levels implied by 

the CDX rose. However, because each tranche is a subordinated claim on the same pool of 

assets, a coherent pricing model ought to price all tranches using the same set of parameters.  

What is required is a model that correctly captures the dynamics of defaults on the underlying 

credits and allows all tranches to be priced with a single parameterisation.    

 

2.2 An improvement: the gamma copula model 
 
The Gaussian copula, and the normal distribution on which it is based, fails to capture the 

degree of codependence between defaults implied by the tranche premia on the CDX index. For 

each firm’s assets, the normally distributed process Xi is far too ‘smooth’, and fails to capture 

how downward  movements in firms assets can be sudden and jump-like, giving rise to ‘tail’ 

outcomes for assets that cause the firm to default.13 It is this that causes the Gaussian copula to 

fail to match the premia observed on senior tranches.  

 
                                                 
12 The problem is complicated by there being multiple correlations that will fit a given X%-Y% tranche under the Gaussian model. The 
approach of base correlation is therefore to price a 0%-X% tranche and a 0%-Y% tranche, allowing the ‘implied correlation’ for the 
X%-Y% tranche to be extrapolated. For further details see McGinty et al (2004). 
13 Jumps in the value of firms’ assets could occur, for example, following the unexpected release of price-relevant information. 
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A better approach, suggested by Baxter (2007), is to model firms’ assets through a gamma 

distribution, arising due to the firm’s assets experiencing a number of downward ‘jumps’.  

Firms’ assets now face a series of shocks that follow a ‘gamma process’ governed by two 

parameters,   and  . These determine the intensity and the (inverse) size of jumps 

respectively. The firm’s assets can either experience a series of small shocks with high 

frequency, or only occasional shocks of a greater size. Chart 4 shows a sample plot of a 

realisation of this process for two extreme parameterisations. The red line in this chart shows 

how these shocks might evolve when it has frequent (high  ) small (high  ) jumps, while the 

blue line shows the opposite case. As before, default occurs if these assets fall to a value below 

the face value of liabilities. The distribution of asset values arising from the realisation of a 

gamma process follows a gamma distribution, notated ),(  . The probability density function 

for this is plotted in Chart 5 for different values of  . As gamma increases this approaches the 

normal distribution and the case of high intensity, low impact ‘normal’ shocks akin to those 

obtained from the normal distribution. 

 

Chart 4: Gamma processes: two extremes 
 

Chart 5: Gamma distributions for 
different values of gamma 

Time
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Value

Low intensity, high impact

High intensity, low impact
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Gamma = 10 (high
intensity, low impact)

Probability density

The values of the gamma process’s parameters therefore give rise to a spectrum of credit risk 

models, which capture the nature of a firm’s defaults on a scale between two extremes:  

 The firm’s assets can either evolve smoothly, enduring a series of small but frequent 

shocks. The cost of credit protection increases slowly as the firm’s assets decrease, and 

default becomes steadily more likely;  

 The firm’s assets witness a series of infrequent but very severe shocks. In this case 

default occurs unexpectedly, with no prior increase in the cost of credit protection. 
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The gamma model therefore has the attractive feature of nesting the Gaussian model as a 

limiting case as   tends to infinity, but has added flexibility to fit the constellation of market 

prices.  

 

Under the gamma framework, the new expression for iX  is: 

    ,)1(,  igiX . (2) 

This is analogous in spirit to equation (1). We again assume that each firm defaults if Xi is 

below a threshold i , which can be calibrated to each firm’s default probability. The shape 

parameter,  , is now split between the global and idiosyncratic shocks by parameter  . The 

properties of the gamma distribution mean that iX  is gamma distributed, and has shape 

parameter,   - the sum of those of its two constituents.   is therefore analogous to the 

correlation parameter in the Gaussian model, and controls the degree of codependence between 

defaults. The   parameter is made redundant due to time-scaling.14 

                                                 
14 It is a property of the gamma distribution that if   ,~ G  then  ttG /,~  . Therefore,  
  ),|(),|()(  tttXP iiii  , hence lambda merely rescales our choice of default threshold. For further 

details see Applebaum (2009). 
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Figure 2: Illustration of the gamma copula 
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The gamma copula model therefore has two parameters:   and  : 

   controls the codependence of default;  

   controls the propensity of firms to ‘jump to default’. Higher values of   mean the 

model is more like the Gaussian copula model, where firms’ asset values gradually 

approach a default level. Lower values of gamma mean that firms jump to default more 

often. It thus determines the ‘normalness’ of the correlation structure.  

 

The effects of the two parameters are shown in the copula scatter diagrams in Figure 2, which 

show realisations of the value of individual firms’ assets, Xi. Higher values of   (copulas 2 and 

4) increase the codependence of firm’s asset values, drawing them together in the diagonal of 

the chart. It is this that increase the correlation of defaults. Altering   changes the structure of 

this codependence: high values of   (copulas 1 and 2) mean the gamma copula approaches that 

of the Gaussian. Lower values of   (copulas 3 and 4) make this correlation more extreme: some 

firms jump to default together, making their defaults highly correlated. Other firms’ defaults are 

less correlated than under the ‘high gamma’ parameterisation. It is this that causes the tight band 

of simultaneous defaults down the diagonal of the chart.  

 

2.3 An extension: ‘becalmed’ and ‘catastrophe’ regimes 
 
The gamma copula fitted the market well prior to August 2007. But as the credit crisis got under 

way, senior tranche premia widened to new-found highs that the gamma model was unable to 

match, as shown in the times series of fit scores in Chart 9. Later, around September 2008, the 

tranche market moved in strange ways. Premia increased, especially that of senior tranches, 

which moved to unprecedented highs (Chart 6). Later, equity tranche premia decreased a little. 

This caused their base correlations, as given by the Gaussian copula, to increase (shifting risk up 

the tranche structure) and meant that the base correlation curve in January 2009 (Chart 7) 

adopted a ‘smile’ shape.  

 

The movements can be explained in terms of risks faced by the underlying firms. The rise in the 

senior tranche premium reflected perceptions that a catastrophic credit event could occur, which 

would cause a large number of underlying firms to default. This would increase the chance of 

losses accruing to the senior tranche. The tightening of equity tranche premium could be 

attributed to government intervention creating the possibility of a ‘becalmed’ state where 

intervention mitigated system-wide risks to firms, and prevented them defaulting for systemic 
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reasons. The analogy to the Black-Scholes ‘volatility smile’ is again helpful: it is as though the 

market began to see high levels of codependence as an ‘out-of-the-money option’ that was less 

likely to materialise. This is analogous to how options that pay off in extremely ‘bad’ states of 

the world have high implied volatilities.  

 

Chart 6: Senior (30%-100%) tranche 
premia of the CDX index 

Chart 7: Correlation ‘smiles’ for the 
CDX index on particular dates 
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The onset of crisis motivates a variant of the model to cope with such ‘catastrophe’ and 

‘becalmed’ regimes.  This includes provision for extreme comovement of defaults that go 

beyond those provided by the gamma model.  We superimpose a ‘switching regime’ over the 

process Xi that controls the default of each firm, which now moves between three states in the 

course of the life of each CDS contract: 

 

1. Becalmed state: At the contract’s inception, systemic risk is mitigated perhaps by 

successful government intervention. Any defaults that occur are entirely idiosyncratic; 

all codependence between defaults is removed. 

 

2. Gamma state: At some point in the life of the contract, government support is 

withdrawn. The model enters the standard gamma model described in Section 2.2, and 

firms default for both systemic and idiosyncratic reasons. 

 

3. Catastrophe state: At some later date, there is a major systemic shock that causes the 

default of every firm. In this state, either all or no firms default. Codependence is total.  
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It is important to appreciate that the occurrence of the becalmed and catastrophe states does not 

alter the probability of any single firm defaulting. As in the earlier example in Table 1, this 

remains constant (and determined exogenously) across all models. The additional states merely 

serve to minimise/maximise the codependence between defaults if they occur. 

 

Our equation for iX , which controls the default of each firm, now has additional terms 

compared to that in (2): 

 

           ,)1(,  i

orglobalFact

gammaStategeStatecatastrophebenignStati IkIkIX
  

. (3) 

 

As both the catastrophe and the becalmed 

states affect all firms simultaneously, the new 

terms, which quantify the effects of the 

becalmed and catastrophe states, are added to 

the global factor. The becalmed/catastrophe 

states subtract/add a (arbitrary) large constant 

k on to the value of the global factor, reflecting 

the way in which they remove/maximise 

codependence of the defaults. This adds extra 

mass in the tails of the distribution of  the 

global factor, in addition to that provided by 

the gamma distribution over the Gaussian. 

This density function is illustrated in Chart 8. 

 

The occurrence of the becalmed and catastrophe states is controlled by two ‘Poisson 

processes’.15 These consist of jumps at unpredictable occurrence times, ti, i = 1,2,… . The jump 

times are assumed to be independent of one another, and each jump is assumed to be of the same 

size. During some small time interval, the probability of observing more than one jump is 

infinitesimal. The total number of jumps observed up to time t is a Poisson counting process, 

denoted Nt. The probability that during a finite interval of time ∆ there will be n jumps is given 

by:  

   
!n

e
nNP

n

t




 

,        (4) 

                                                 
15 For further details and rigorous definitions see Cox and Miller (1965). 

Chart 8: The probability density function 
of the global factor, with becalmed and 
catastrophe regimes 

 0-k +k
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where λ is the intensity parameter that controls the expected number of jumps per unit time.  

 

The model here adopts two independent processes Ct and Bt which control the occurrence of the 

catastrophe and becalmed states respectively. t is the time in years from the CDS contracts’ 

inception. At time t = 0, both processes take value zero. The becalmed state occurs for as long 

as Bt = 0, and hence, given (4), with probability bt
b etP )( . The catastrophe state occurs when 

Ct > 0, which occurs with probability ct
c etP 1)( , and Bt > 0, which occurs with probability 

bt
b etP  1)(1 . The occurrence of the ‘becalmed’ state and the extension of state support 

rules out the occurrence of a catastrophic credit event; the occurrence of a catastrophic event is 

conditional on the exit from the becalmed state. These state probabilities, and their effect on the 

value of the global factor, are summarised in Table 2. 

Table 2: Catastrophe and becalmed states 

 Becalmed state No becalmed state 

Catastrophe [Ruled out] 
P(this state occurring) = 0 
 

Catastrophe state 
P(this state occurring) = (1-Pb(t))Pc(t) 

Global factor = +k  
No catastrophe Becalmed state 

P(this state occurring) = Pb (t) 

Global factor = -k  
 

Standard gamma model 
P(this state occurring)= (1-Pb (t))(1-Pc (t)) 

Global factor =   ,;tg  

 

The becalmed-catastrophe extension to the model has the effect of introducing two new 

parameters, b and c, which are the intensities of the Poisson processes that control the exit from 

the becalmed state, and entry into the catastrophe state. Higher values of b increase the 

propensity of firms to exit from the becalmed state earlier, reducing the probability of 

government support applying at a given time t. Higher values of c increase the propensity of 

firms to enter the catastrophe state, increasing the probability of the catastrophe state applying. 

 
3 Calibration  
 
In this section, the Gaussian and gamma models, along with the becalmed-catastrophe 

extension, are fitted to the traded premia of the tranches of the CDX index on different days.  

The models’ parameters are optimised to achieve the best fit over the observed values. Two 

objective functions are used: root mean squared error,  



equitytr

trtr ModelMkt
n

21
, and mean 

proportional error, 




equitytr tr

trtr

Mkt

ModelMkt

n

||1
, where both sums are taken over the n tranches of 

the capital structure. Mkttr are the tranche premia observed in the market on tranche tr. The 
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probability of default of the underlying firms is computed from the value of the main CDX 

index, as this is the average of their individual CDS premia – the cost of insuring their debt.16  

 

Calibrations based on different objective functions serve different purposes. Root mean squared 

error prioritises minimising the absolute error on the junior tranches, as it is these that have 

larger premia. They are useful to gauge the models’ success at modelling tail risk inherent in 

senior tranches, as insufficient tail risk immediately shows up in the model giving too small a 

premium on the senior tranches. Proportionate errors apportion the fitting error more equally 

across tranches, and thus give equal weight to the information provided by each tranche. They 

are, therefore, used to extract information from the entirety of the tranche structure.   

 

The modelled tranche premia, Modeltr , can be calculated using a variety of methods, the most 

simple of which is Monte Carlo simulation. This involves the repeated simulation of underlying 

defaults allowing the loss incurred by each tranche to be sampled. While this is straightforward 

to implement, it is computationally expensive to run – a particular problem here as we intend to 

iterate over different sets of parameters to find that which produces tranche premia that best fit 

those observed in the market.  

 

We therefore prefer the ‘conditional normal’ approach of Li and Liang (2005), who, through an 

application of the central limit theorem, generates an analytical approximation for the loss on 

each tranche conditional on the value of the ‘global’ factor. Intuitively, the central limit theorem 

gives that the sum of independent random variables, which in this case determine the binary 

default/non-default of each firm, approaches a normal distribution as the number of summands 

approaches infinity. However, an important property of both the Gaussian and the gamma 

copula models is that defaults are not independent of each other: indeed, their mutual 

dependence is ensured by the presence of the global factor which drives the default of multiple 

firms. However defaults are independent conditional upon the value of this global factor, as the 

remaining source of variation lies in the remaining ‘idiosyncratic factor’ that is independent 

between firms. This conditional independence allows for the application of the central limit 

theorem and yields an analytical solution for the loss on each tranche, conditional on the value 

of the global factor. All that remains is to integrate this over the distribution of values of the 

global factor. This last step is undertaken numerically, but the method is far more 

computationally efficient than that of Monte Carlo. Further details are confined to the appendix. 

 

                                                 
16 Extracting firms’ probability of default from their CDS premium is fairly straightforward. See, for example, Hull (2007). 
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The remainder of this section present the results in three different forms. First, the tranche 

premia given by the different models on a given day are compared, allowing the models’ 

relative success at capturing traded premia to be evaluated. Second, time series of the models’ 

parameters offer an insight into how the nature of default codependence, as implied by the CDX 

index, changes over time. Finally, the models allow probability density functions of the likely 

extent of future defaults on firms underlying the index to be extracted from the traded tranche 

premia on a given day. This offers a means of assessing the likely severity of future defaults on 

the underlying firms. 

 
3.1 Model comparison 
 
The results of calibrating the gamma and the Gaussian copula models on a single day, using the 

root mean square error objective function, are shown in Table 3. This offers a view of how well 

the two models fit premia on the mezzanine and senior tranches, when the 3%-7% tranches are 

fitted well. The equity tranche is excluded from the calibration, but the modelled values for this 

tranche are included. This facilitates comparison of the becalmed state, which improves the fit 

on this tranche.  

 

Table 3: Modelled and actual (market) premia for the CDX index on 2 January 2009 
(fitted via root mean squared errors) 

Tranche 
(%) 

Market Gaussian 
model 

Gamma 
model 

Gamma model, with 
catastrophe extension 

Gamma model, with 
becalmed-catastrophe 
extension 

0-3 4108 8521 1302 2170 3948 
3-7 1515 1473 1436 1443 1529 
7-10 718 650 724 721 384 
10-15 439 100 210 477 397.6 
15-30 110.5 8.6 22 88 78.6 
30-100 57.5 0.01 4.99 47 52.5 
Fit score  4428.27 2818.32 1939.87 374.31 
 
The improved ability of the gamma model to fit the correlation structure of the tranches is clear. 

The Gaussian model (without using separate base correlations) does not come close to fitting 

tranches more senior than the 3%-7% and 7%-10%, such is its inability to capture the ‘tail 

correlations’ embodied in these. In contrast, the gamma model offers a considerable 

improvement in terms of goodness-of-fit over the Gaussian model, with a radically lower fit 

score.17 The fit to the mezzanine tranches is vastly improved, though the modelled super-senior 

premia remains small compared to that observed in the market. This indicates that although the 

                                                 
17 The ‘fit score’ – a measure of the goodness of fit obtained on a given date, is the value of the objective function for the optimal 
parameter values. 
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gamma model and its ability to capture ‘jump-to-default’ risk goes some way towards fitting 

prices better, it cannot account for the exceedingly high premia on senior tranches. The 

catastrophe extension goes far further in enabling the model to fit the premia on the senior 

tranche.  

 

Time series of average percentage errors across all tranches for the four models are shown in 

Chart 9. These confirm that the successive improvements to the Gaussian model are 

progressively more successful in capturing the nature of the codependence of defaults observed 

in the market. The gamma model’s inability to capture the movements in tranche premia from 

mid-2007 can be clearly seen by the tick up in its fit scores. Similarly, the catastrophe extension 

alone is unable to capture the movements in the tranche premia from late 2008. 

 
3.2 Time series of parameters 
 
Time series of the models’ parameters are 

presented in two forms: both as their raw 

values, and as a decomposition of the CDX 

index, which relates to the total credit risk of its 

underlying firms, into components relating to 

the global and idiosyncratic drivers of the 

model.  

 
The parameters 
The parameters of the becalmed-catastrophe 

model are plotted in Chart 10. Before the credit 

turmoil of 2007,   had slowly been decreasing 

and   increasing, indicating a decrease in both 

correlation and jump-to-default risk. Conditions in credit markets were perceived to be 

increasingly becalmed: defaults were largely driven by idiosyncratic shocks and firms’ assets 

were evolving relatively smoothly without sharp jumps. The implied probability of the 

catastrophe state occurring was both small and decreasing. That of the becalmed state was 

negligible.  

 

The initial phases of the credit crisis in late 2007 saw a rapid increase in  and a sharp decrease 

in  . The supply of credit to firms contracted and market worries increased regarding both the 

codependence of default and the risk of ‘nasty surprises’ in the form of jumps to default.  

Chart 9: Time series of fit scores for the 

successive models calibrated to the CDX index 
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Early in 2008, market worries about systemic risk increased.18 The catastrophe probability rose 

sharply, and correlation continues to increase. In mid-2008 there is a partial reversion as the US 

Federal Reserve supported Bear Stearns, and both decrease a little, consistent with a perceived 

reduction in systemic risk. At this point the probability of the becalmed state ticks up, consistent 

perhaps with an increased perceived likelihood of state support. 

 

In the autumn of 2008 the second phase of the crisis began, with the failure of two major US 

banks. The probability of catastrophe reached new-found highs, as did the perceived level of 

government support, reflected in the becalmed probability.  remained low, reflecting the 

chance of sudden bouts of bad news causing firms to jump to default. 

 

A decomposition of traded index 

All of these models allow the average risk of firms’ default, reflected in the value of the main 

CDX index, to be decomposed into systemic and idiosyncratic components. The proportion of 

systemic risk is proxied by the value of  , the correlation parameter, which controls the relative 

importance of the global shock. The remainder of the index premium is attributed to the risk of 

idiosyncratic default. This is perhaps a more intuitive presentation than presenting the parameter 

values in isolation, as it focuses on the relative importance of different drivers of default risk, as 

the overall default risk varies over time. With the inclusion of the catastrophe extension, the 

probability of the catastrophe state occurring can be plotted as a proportion of the index, giving 

an indication of the proportion of the risk of the index accounted for by the risk of a catastrophic 

credit event. The proportion of the global shock attributable to jump-to-default risk, through the 

  parameter, is also given.19  

 

Chart 11 shows this decomposition, both in terms of the absolute values, and as proportions. The 

latter is given on a logarithmic scale, so that the (small) proportion relating to the catastrophe 

state is visible. The effect of the becalmed state occurring can be represented by computing what 

the size of the systemic component would be in the counterfactual world where government 

support did not exist, and so the probability of the becalmed state occurring were zero. This is 

shown by the blue dotted line.20

                                                 
18 See, for example, Bank of England Financial Stability Report, May 2008. 
19 Recall that a large value of   corresponds to low jump-to-default risk, and vice versa. The proportion of the global factor attributable 
to jump-to-default risk is calculated by scaling the gamma parameter to 

e . 
20 In the case where government support is extended, which occurs with probability Pb, the proportion of spread driven by the global 
factor would be zero, as all systemic risk is removed. In the case where government support is not extended, which occurs with 
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Chart 10: Parameter values for the CDX index 

Phi (correlation): Gamma (jump-to-default risk): 
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probability (1-Pb), the proportion driven by the global factor takes some unobserved ‘counterfactual’ value, which we seek to recover. 
A little algebra reveals that this unobserved proportion of the global factor takes value of the ‘observed’ global factor, equal to ( * 
index spread) / (1 – Pb).   
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Chart 11: Decomposition of the CDX index: absolute values 
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Several interesting conclusions arise from this presentation of the drivers of default as a 

proportion of the index. The increase in the systemic component, both at the onset of the crisis 

in 2007, and its intensification in late 2008, is clear (in absolute values). The proportion of 

jump-to-default risk, though this increased substantially during the crisis, has remained broadly 

constant throughout it. The impact of the becalmed state on the level of systemic risk increases 

substantially in 2009, as a range of government policy measures were announced to support 

financial markets. 

 

3.3 Probability density functions 
 
The model can be used to extract probability distributions for losses on the portfolio of firms 

underlying the CDX index. These provide a useful means both for assessing the severity of 

corporate defaults implied by the model and how this changes over time, and also for gaining 
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insight into the performance of each model.21 Chart 12 shows probability densities for the CDX 

index extracted under both the Gaussian and the gamma copulas – one for a pre-crisis day and 

one for during the crisis. For both models, the bulk of the loss density moves to the right after 

the onset of the crisis, indicating an increase in loss severity.  

 

The probability density functions also offer insight into the performance of the two models. 

Those produced by the gamma model, indicate a more polar outcome for defaults than those of 

from the Gaussian, with the mode of the distribution being centred on a lower number of 

defaults, and a ‘spike’ in the tail indicating the possibility of a high number of defaults. It is this 

that improves the fit of senior tranche premia. In contrast the Gaussian model indicates a more 

intermediate outcome, with a slightly higher mode, but a thinner tail. The gamma distribution’s 

extra degree of freedom allows superior inferences from tranche premia to be drawn more 

accurately.  

 

Chart 12: Probability densities of defaults on firms underlying the CDX index:(a) 

Pre-crisis (1 June 2007) Mid-crisis (1 April 2009) 
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(a) These are ‘risk-neutral’ probability densities. In the likely case that investors are averse to risk, the 
perceived probability of high loss rates would be lower than under the risk-neutral measure. 
 
Were densities to be extracted under the model with the addition of the ‘becalmed/catastrophe’ 

states, ‘lumps’ of mass would appear at zero and total losses, representing the realisation of the 

becalmed and catastrophe states. While these enable the model to accurately price the tranches, 

they expose a weakness of the framework. If government support consisted of assistance only to 

selected firms that pose a material risk to the stability of the system as a whole, some firms may 

still default in the becalmed state. Similarly, catastrophe might therefore not result in the default 

                                                 
21 For an example of the use of probability densities of defaults in a policy context see Bank of England Financial Stability Report, 
December 2009, page 9. 
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of all names. The market values of only a limited number of tranches do not hold enough 

information to allow these subtleties to be deciphered. The resulting simplification (of zero or 

total default) allows prices to be fitted accurately, but may present problematic density 

functions.  

 
4 Valuation and risk management 
 
Having a coherent model of default codependence that fits tranches coherently has a number of 

potential benefits for those that trade structured credit products. It could facilitate better risk 

management of portfolios of structured credit. Dealers of structured credit run so-called 

‘correlation books’ comprising positions in single-name CDS contracts and credit indices such 

as the CDX. In managing the risk of their aggregate portfolios, dealers attempt to control their 

overall exposure to possible market movements, including changes in credit spreads, and 

movements in the correlation structure.  

 

The development of structured credit indices has given rise to ‘correlation trading’, where 

investors take views on the future direction of the codependence of credit defaults. By 

calculating the ‘delta’ of each tranche – that is how its premium changes as the value of the 

main index changes – investors can take a position in the index that offsets the credit risk 

embodied in the tranche. This allows trades to be constructed which are, in principle, unaffected 

by movements in the overall credit risk of the underlying firms and exposed only to changes in 

codependence.  These ‘deltas’ can be determined under the Gaussian copula, given an assumed 

base correlation for each tranche. 

 

However, base correlation does not allow dealers to risk-manage their exposure to correlation of 

default – because a different correlation is assumed for each tranche. To hedge against the risk 

of shifts in the nature of correlation it is necessary to have a coherent model for correlation 

across all tranches, such as the gamma model. 

  

By modelling the correlation of the underlying names and prices all tranches simultaneously, the 

gamma model and its variants may allow correlation risk to be better managed. Monitoring 

parameter values that fit all tranche prices simultaneously and tracking how they evolve over 

time could provide some useful risk management information. Prior to the auto crisis of  

mid-2005,22 many investors sold protection on the equity tranche and bought that on the 

mezzanine tranche. By delta hedging under the Gaussian copula, investors aimed to be 
                                                 
22 See Bank of England Quarterly Bulletin, Autumn 2005, pages 313-16. 
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unaffected by changes in the credit risk of the underlying firms, but aimed to profit from 

increasing levels of correlation that would cause the premia on the equity tranche to decrease 

and that on the mezzanine tranche to widen. However, this position was vulnerable to a decrease 

in gamma, which would produce the reverse effect. As several firms ‘jumped to default’ 

together, the market witnessed a swift reduction in gamma that widened equity tranche premia 

and narrowed mezzanine. The gamma model may have informed investors a priori that their 

position was exposed to a reduction in gamma, and so might have provided some useful risk 

management information that could go beyond that made possible under the Gaussian copula. 

 

Similarly, prior to mid-2007, many investors reportedly thought that senior tranche premia 

offered good value, in that they seemed to be trading at levels of implied codependence that, at 

the time, were unthinkably high, and were impossible to calibrate using the Gaussian copula. 

The catastrophe gamma model would have warned that these premia were consistent with a 

high-impact systemic shock, whose probability of occurrence had declined since 2005, but 

which was nonetheless non-zero. 

 

The ability of the gamma copula model to fit tranche premia coherently allows investors to carry 

out parameter-based hedging to protect themselves against such movements in the correlation 

structure. This is impossible under the Gaussian copula, which offers no coherent ‘view’ of 

correlation to fit the entire tranche 

structure. Table 5 shows the 

sensitivity of each tranche to a basis 

point movement in each parameter. 

These allow different parts of the 

tranche structure to be hedged against 

each other, by allowing a holder of 

one tranche to take an offsetting 

position in another tranche in order 

for their position to be neutral to 

changes in that parameter.  

 

The sensitivity analysis in Table 5 also offers an insight into the dynamics of the model. The 

 parameter shifts risk from the junior tranches to the senior, decreasing and increasing their 

premia respectively. Increasing  therefore increases the overall level of codependence, and can 

be thought of as producing a rise in the base correlation curve (shown in Chart 3). An increase in 

Table 5: Sensitivity of tranche premia to a 1% 
increase in the parameters of the becalmed-
catastrophe gamma model (a)

Tranche    Catastrophe  Becalmed 

0%-3% -100.092 -0.385 -3.611 38.236 

3%-7% -24.886 -2.106 -8.742 -3.041 

7%-10% -8.001 0.856 -3.482 -2.484 

10%-15% 3.120 1.267 -0.406 -0.293 

15%-30% 1.258 0.366 -0.311 -0.071 

30%-100% 0.6109 -0.169 0.746 -0.018 

(a) Basis-point increase in the premia of each tranche in response 
to a 1% increase in the value of each parameter. 
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the  parameter moves risk from the junior and senior tranches towards the mezzanine tranches. 

It reduces the level of jump-to-default risk (recall that decreasing  increases jump-to-default 

risk) and makes the correlation structure ‘more normal’ and akin to that of the Gaussian copula. 

 can be thought of as controlling the steepness of the base correlation curve (Chart 7) under the 

Gaussian model, with an infinite value of gamma corresponding to an entirely normal 

correlation structure found in the Gaussian copula (in the absence of the becalmed-catastrophe 

extension), and a flat correlation curve. As might be expected, the catastrophe and becalmed 

parameters increase the premia on the senior and junior tranches respectively. 

 

Bespoke pricing 

The gamma model also simplifies the pricing of non-standard ‘bespoke’ structured credit 

products, which typically consist of a certain tranche of exposure to a unique basket of credits 

that differ in their attachment points to those of mainstream indices such as the CDX.  The 

pricing of these under the Gaussian copula is problematic as it is impossible to determine the 

correlation parameter to apply to this tranche, with its unique attachments. Correlations are 

quoted and provided only for traded tranches of main indices. Under a coherent model that fits 

the entire tranche structure with a single set of parameters, such as those examined here, the 

consistent pricing of bespoke products becomes mechanical. The new attachment points can be 

inputted into the model and a value of the bespoke tranche immediately results. 

 

There remains the need to calibrate the parameter values to tranches of a traded index, such as 

the CDX, whose traded composition matches that of the bespoke product. There may be no 

traded index with comparable underlying firms, in which case a combination of parameters 

obtained from different indices could be used. But uncertainty may be reduced to the extent that 

all that is required is to find the right set of parameters. 

 
5 Conclusion 
 
Structured credit products can provide policymakers with information on the extent of defaults 

on their underlying credits, as perceived by the market. The relative value of their tranches 

allows inferences to be drawn on the nature and extent of codependence between defaults, and 

offers an insight into the ‘tail risk’ of multiple firms defaulting simultaneously. The presentation 

offered here aims to capture this codependence between defaults and subsequently match the 

traded premia of the tranches of structured credit products. It offers a refinement of the current 

‘industry-standard’ Gaussian copula model that cannot capture the degree of codependence of 



 

 
 Working Paper No. 407 December 2010 31

defaults implied by the market values of structured credit. In doing so it offers an intuitive 

economic explanation for the movements in the prices of structured credit instruments witnessed 

during the recent crisis. 

 

This work has three broad outputs. First, it allows policymakers to draw inferences as to the 

market-implied probability distributions of the scale of defaults. Second, the parameters of the 

model themselves offer an insight into the drivers of underlying defaults, and in particular the 

degree to which defaults are driven by systemic shocks to firms’ balance sheets. Their evolution 

over time explains the varying nature of the codependence of defaults perceived by market 

participants.  Finally, models of this sort may be of use to those who trade structured credit 

products, in that they may facilitate improved risk management.  
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Technical appendix   
 
For a given set of parameters ( in the case of the Gaussian model;   and   in the case of the 

gamma model;  ,  , b, and c in the case of the becalmed-catastrophe gamma) we seek a 

method of computing the corresponding premia on each tranche of the CDX index. With this 

method in hand, it is a simple matter to then iterate around different parameter values to find 

those that best fit the prices on a given day. 

 

As outlined in Section 3, the approach used here is as follows: 

 

1. Estimate the probability of an individual firm defaulting, conditional on the value of the 

global factor. 

2. Derive an analytical approximation for the loss on each tranche, conditional on the value 

of the global factor. 

3. Integrating this over possible values of the global factor then yields the unconditional 

loss on each tranche, and hence its premia. 

4. We repeat steps 1 to 3 for different parameter values in order to find those that best fit 

the value observed in the market.  

 

Only step 1 differs between the Gaussian and gamma models. The remainder of the procedure is 

identical. 

 

Probabilities of default, conditional on the global factor 

Recall from Section 2.1 that under the Gaussian model 

igi WWX   1 .  (4) 

Firm i defaults by time t with some exogenous probability pi(t) (calculated from its CDS 

premium) by setting it to default if iigi tWWX )(1    (5) 

where )).(()( 1 tpt ii
      (6) 

The probability of default, conditional on this global factor Wg, is then 
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The case of the gamma model is very similar. The weighted sum of random variables is now  

   ,1,  igi GGX ,  (8) 
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where baG , is a gamma-distributed random variable with intensity a and shape parameter b. The 

summation property of the intensity parameter gives that Xi is also a gamma-distributed random 

variable, with parameters   and  . It follows that 

   ))(1())(1()|__()|(
11

tpGGPtpXPGtbydefaultPGtp igiiiggi 
 

   gi Gtp 
 ))(1(1

11  . (9) 

 

The calculation of conditional expected losses 

On default, each loan is assumed to cause a loss of proportion  ii rf 1  to the total portfolio of 

CDS contracts, where fi is the fraction of the total portfolio that the loan constitutes, (1/125 the 

case of the CDX), and ri is the recovery rate, assumed to be 40%.  

 

The random loss caused by the default of loan I as   iiii IrfL  1 where  defaultediloani II __ , 

which takes the value 1 if the firm defaults, and 0 otherwise. This random loss at time t are 

Bernoulli random variables, which are independent conditional on the value of the global factor. 

Its mean and variance are given by:  

    (t)1|(t) i
iigi prfWLE   (10) 

and 

     (t)1(t)1|(t) 22 ii
iigi pprfWLVar  .  

…as )|__()( g
i GtbydefaultPtp  . (11) 

By the central limit theorem, the conditional distribution of the portfolio loss L at t can be 

approximated by a normal distribution with mean 

      
i

giii
i

gigt WtprfWLEWLEM )|(1|(t)|(t)  (12) 

and variance  

        
i

gigiii
i

gigt WtpWtprfWtLVarWtLVarV )|(1)|(1|)(|)( 22 . (13) 

The loss on a tranche with attachment/detachment points a and b, T(a,b), is given by: 

     dtLatLtL daT  )(,0max)(,0max)(,  

It follows that 
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which, after a little algebra, yields: 
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Tranche premia 

Integration over all possible values of the global factor then yields the unconditional loss on the 

portfolio. In the case of the Gaussian copula, this global factor is Gaussian distributed, and  

      gg
baTbaT dWWtLEtLE  |)()( ,, .  (15) 

In the case of the gamma copula this integral is with respect to the gamma distribution. In both 

cases it is computed numerically. 

 

Finally, the premia on each tranche is given by the ratio of the discounted expected loss on the 

tranche to its discounted expected remaining: 
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where both sums are taken over a set of times,  N

ii 1 ,when premium payments are made. 

  

Iterate to fit the market tranche premium 

Finally we repeat this procedure for different parameter values in order to find those which 

produce modelled premia that best fit those observed in the market, subject to a fitting criterion. 

We use a direct search ‘simplex’ style algorithm. 

 

Becalmed/catastrophe extensions 

The inclusion of the becalmed/catastrophe states presents no significant further challenge. All 

that changes is the distribution of the global factor, Wg, whose cumulative probability density is 

now given by: 
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where k is arbitrarily large, as in equation (4). 
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This must be accounted for in the integral in equation (15), and in the calculation of the inverse 

cumulative density function for the Wg used in equations (9) and (6) to determine the default 

barrier. All other calculations remain as before. 
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