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Summary

Economists have a keen interest in understanding what determines changes in attitudes to risk

and how they work through the economy. This in part explains why policymakers analyse the

behaviour of bond and equity prices, as these re�ect peoples' preferences for risk-taking. Such

analyses are often conducted using dynamic stochastic general equilibrium (DSGE) models.

These models use theory to describe how all the actors in the economy behave. The word

`stochastic' indicates that there is a fundamental uncertainty pervading the economy, with

different types of random disturbances affecting the dynamics of prices and quantities.

The economic relationships underlying the model uniquely determine the evolution of the

interconnected system, and �nding a rule which pins down that evolution is called solving the

model. Unfortunately, in most cases exact solutions are unknown and therefore economists need

to approximate them. This is typically done using linearisation, which often delivers very good

approximations. However, this method ignores the impact of uncertainty on the transmission

mechanism of shocks, and so is inadequate in an asset pricing context.

There exist many alternatives to linearisation, with `higher-order perturbation' methods being

one of them. In practice, however, there is a trade-off between accuracy and speed. In the past,

this trade-off has meant that researchers studying prices of long-maturity bonds needed to rely on

at most second-order perturbation approximations. This occurred because it was computationally

very demanding to allow for higher-order effects, which are present in the true - though unknown

- solution to any DSGE model.

The simple aim of this paper is to propose a method which speeds up the process of

approximating bond prices by exploiting the relationships which they satisfy. Our method

comprises two steps. In the �rst step, standard solution packages can be used to approximate all

the variables other than bond prices. In the second step, we use the fundamental pricing equation

to solve for bond prices recursively, ie using approximations to shorter-term bonds to �nd those

for longer-term bond prices.

We show that our two step method can reduce the time it takes to solve models by more than 100
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times. This is achieved with the same level of accuracy as using standard perturbation methods.

The paper also compares the accuracy of bond price approximations obtained using perturbation

methods to that of computationally feasible alternatives. It shows that for the models analysed

third-order perturbations generate the most accurate approximations to bond yields.
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1 Introduction

The in�uential paper by Mehra and Prescott (1985) highlighted issues arising when trying to

simultaneously account for the dynamics of aggregate consumption and asset prices. Much work

has subsequently used variants of Mehra and Prescott's (1985) consumption-based asset pricing

framework to improve our understanding of the links between �nancial markets and the

macroeconomy. A large number of models in this literature assume an exogenous consumption

process as in Mehra and Prescott (1985), see for instance Campbell and Cochrane (1999) and

Bansal and Yaron (2004). Another and rapidly growing strand of the literature uses dynamic

stochastic general equilibrium (DSGE) models to endogenize the dynamics of consumption in an

attempt to provide more detailed insights into the nature of macroeconomic risk. Important

contributions are Jermann (1998), Boldrin, Christiano and Fisher (2001), and more recently Wu

(2006), Uhlig (2007), De Paoli, Scott and Weeken (2007), Hordahl, Tristani and Vestin (2008),

Rudebusch and Swanson (2009), Guvenen (2009), and Bekaert, Cho and Moreno (2010).

When using DSGE models to analyse asset prices, an important constraint is that closed-form

solutions are in general unavailable. Accordingly, both the functions capturing state dynamics as

well as those mapping state variables into asset prices need to be approximated. This leaves

researchers with a challenging numerical problem which standard methods are poorly equipped

to deal with. For example, the well-known log-linear approximation is inadequate as it restricts

premia on risky assets to zero, contrary to existing evidence (see Campbell and Shiller (1991) or

Cochrane and Piazzesi (2005)). Higher-order perturbations are the most widely used alternative

(Arouba, Fernández-Villaverde and Rubio-Ramírez (2005) and Caldara, Fernandez-Villaverde,

Rubio-Ramirez and Yao (2009)), but they may also become impractical when the approximated

model features a yield curve.1

To understand why, consider a quarterly DSGE model with n state variables. Assume further that

we are interested in computing the 10-year interest rate from the price of a zero-coupon bond

with the same maturity. This bond price is a function of n state variables and to approximate it to

1Other alternative solution methods include value function iteration, �nite elements, and Chebyshev polynomials, but these are typically
considered infeasible for medium-scale DSGE models.
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third order � ie by a third-order polynomial � would require computing

1 C n C n �
n C 1
2

C n �
n C 1
2

�
n C 2
3

0th Order Terms 1st Order Terms 2nd Order Terms 3rd Order Terms

ie a total of n � .n C 1/=2 � .n C 2/=3 distinct coef�cients. Typically, the 10-year bond price is

computed recursively along with all 40 intermediate bond prices.2 Accordingly, in a quarterly

model, for n corresponding to 5, 10 or 15 years, the yield curve introduces respectively 2,240,

11,440, or 32,640 additional coef�cients to be simultaneously computed. This can either make

the problem too large to solve using standard solution packages or signi�cantly increase the time

required to compute the approximation.3 While the deterioration in performance might be

tolerable if the model needs to be solved once, it has the potential to make estimation or

sensitivity analysis infeasible as both of them rely on repeated approximations.

The contribution of this paper is to propose a method of reducing the computational burden when

approximating bond prices to arbitrary order. Matlab codes that implement the suggested method

to third order are also provided. We focus on the standard case in which bond prices with

maturities beyond one period do not affect the rest of the economy, but alternatives are also

considered.4 The solution we advocate splits the perturbation problem into two steps. In the �rst

step, standard solution packages can be used to approximate the solution to a DSGE model

without bond prices of maturity greater than one. The second step perturbs the fundamental

pricing equation for bond prices up to the same order. We then exploit the information from the

�rst step to recursively solve for the coef�cients of bond prices, signi�cantly speeding up the

approximation process. On account of this structure, we refer to our method as

perturbation-on-perturbation (POP). It is important to emphasise that the POP method computes

exactly the same expressions for bond prices as the standard `one-step' perturbation routine.

Our proposed method is closest to the one proposed in Hordahl et al (2008).5 They �rst

approximate a solution to the part of their DSGE model without bond prices to second order.

2Alternative, non-recursive methods involve creating many auxiliary variables which similarly complicates the approximation problem.
3These packages include Dynare, Dynare++, and Perturbation AIM (see Kamenik (2005) and Swanson, Anderson and Levin (2005),
respectively), and the set of routines accompanying Schmitt-Grohé and Uribe (2004).
4Expressed alternatively, the assumption we rely on is that the model is such that prices of all bonds exceeding one period only appear in
consumption-Euler equations.
5Binsbergen, Fernandez-Villaverde, Koijen and Rubio-Ramirez (2010) independently apply a related method to compute interest rates in
a version of the neoclassical growth model. The method and formulas we provide are not model speci�c and our approach nests their
procedure.
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Afterwards, all bond prices are solved for using the fundamental asset pricing equations and the

�rst approximation. Notably, we extend their work along three dimensions. Firstly, we go

beyond second-order and provide third-order accurate formulas for bond prices. These

third-order terms are of economic signi�cance as they allow for time variation in risk premia.

Secondly, we allow for more general transformations of variables in the model than the `log'

speci�cation considered in Hordahl et al (2008). Thirdly, we consider a slightly more general

set-up than in Hordahl et al (2008), as we do not introduce restrictions on the functional form of

the stochastic discount factor.

A simulation study is used to document the reduction in computational burden achieved by using

the POP method instead of the standard one-step perturbation. For the DSGE models in

Rudebusch and Swanson (2008) and De Paoli et al (2007), the speed gains vary from between 14

and 23 times for a 10-year yield curve to between 61 and 139 times for a 20-year yield curve. As

demonstrated in Andreasen (2010a), the speed gains involved are suf�cient to make estimation of

medium-scale DSGE models with a whole yield curve approximated to third order feasible.

We then assess accuracy of the POP method using closed-form solutions for bond prices in a

consumption based model with habits (Zabczyk (2010)). Broadly in line with Arouba et al

(2005) and Caldara et al (2009) we �nd that a third-order approximation outperforms alternative

methods like the log-normal approach (Jermann (1998), Doh (2007)) and the method using

consol bonds proposed in Rudebusch and Swanson (2008). We also �nd that the consol method

gives a less accurate approximation, and we show that it may be less accurate, even at third order,

than the �rst-order log-normal method.

The remainder of this paper is organised as follows: Section 2 describes the POP method,

Section 3 documents the gains in speed (at third order), accuracy is assessed in Section 4 and

Section 5 concludes.
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2 The POP method of computing bond prices

This section presents the POP method to approximate bond prices. For parsimony, we adopt the

same framework as in Schmitt-Grohé and Uribe (2004).6 We further assume that the model can

be split into two parts. The �rst part contains all equations in which bond prices beyond

one-period maturity do not appear. The second part consists entirely of Euler equations for the

remaining bond prices.7 Hence, let yt denote the ny � 1 vector of all non-predetermined variables

except bond prices with a maturity exceeding one period, and let xt be the nx � 1 vector of

predetermined state variables. As in Schmitt-Grohé and Uribe (2004), the solution can be written

as

yt D g .xt ; � / (1)

xtC1 D h .xt ; � /C ���tC1 (2)

where �tC1 � IID .0; I/ is a vector of n� innovations, � denotes the square root of their
covariance matrix, and � is the perturbation parameter. In the �rst step of the POP method, the

solution (1)-(2) is approximated to N -th order using standard perturbation methods.

Let P t; k denote the price in period t of a zero-coupon bond maturing in k periods with a face

value of one. The price of this bond satis�es the fundamental pricing equation (see Cochrane

(2001))
P t; k D Et

�
M� P tC1; k�1

�
for k D 1; 2; :::; K whereM is the stochastic discount factor. In many applications the focus is

on logarithms of prices rather than their levels. To accommodate this possibility we could rewrite

the equation above as
exp
�
Opt; k
�
D Et

�
M� exp

�
OptC1; k�1

��
where Opt; k � log.P t; k/ . More generally, since other transformations might be useful when

solving DSGE models (see for example Fernandez-Villaverde and Rubio-Ramirez (2006)), we

introduce an invertible transformation function R .�/ 2 CN and denote pt; k � R�1.P t; k/. The
pricing equation can then be written as

R
�
pt; k
�
D Et

�
M� R

�
ptC1; k�1

��
: (3)

6Extensions to the more general case in which shocks do not necessarily enter additively, as in Dynare++ (Kamenik (2005)) or
Perturbation AIM (Swanson et al (2005)), are straightforward and dealt with in the appendix. Note that when using Dynare++ we only
consider standard perturbation approximations around the deterministic steady state.
7This structure is standard and all macro-�nance models listed in the introduction satisfy this assumption.
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Setting R.x/ D x gives the original `levels' speci�cation, while letting R.x/ D exp.x/

corresponds to the case of a log-transformation. The gross yield-to-maturity in period t of a

k-period bond YT M t;k can still be computed and is given by

YT M t;k D .P t;k/�1=k D R.pt; k/�1=k .

To compute perturbation approximations to pt; k we exploit two facts. Firstly, the functional form

of the stochastic discount factorM.ytC1; yt ; xtC1; xt/ is known.8 Secondly, since any bond price

is non-predetermined, it is a function of xt and � . We denote this function by pk .xt ; � / where k

denotes the maturity of the bond. Where no ambiguity can arise, we omit the function arguments

and simply write pt;k . Using these insights and substituting (1) and (2) into (3), we then de�ne

F k .x; � / :D E
�
R
�
pk .x; � /

�
� R

�
pk�1

�
h .x; � /C ���tC1; �

��
�M

�
g
�
h .x; � /C ���tC1; �

�
; g .x; � / ;h .x; � /C ���tC1; x

��
for k D 1; 2; :::; K : (4)

It follows by construction that F k .x; � / � 0 for all values of x and � . Clearly, this implies that

all derivatives of F k .x; � / must also equal zero, ie

F kxi� j .x; � / D 0 8x; � ; i; j (5)

where F kxi� j .x; � / denotes the derivative of F
k with respect to x taken i times and with respect to

� taken j times. In the following subsections, we show how (5) together with the output from the

�rst perturbation step (1) and (2) can be used to �nd derivatives of pk .x; � / of order up to N

evaluated at the deterministic steady state. These derivatives suf�ce to construct an N -th order

perturbation approximation to pk .x; � / around the deterministic steady state.

2.1 Notation

To make the subsequent formulas more transparent, we adopt the convention that indices � and 

relate to elements of x, while � and � correspond to elements of y and �, respectively.

Furthermore, subscripts on these indices will capture the sequence in which derivatives are being

taken. For example, �1 corresponds to the �rst time a function is differentiated with respect to x,

while �2 is used when differentiating with respect to x for the second time.

8We assume that the variables in the �rst block of the model, ie x and y, have also been transformed using R.�/. Accordingly,M and all
its derivatives are known functions of the transformed variables. For example, for CRRA utility and R.x/ D exp.x/ we would have
M.ctC1; ct / D � exp.� ctC1/= exp.� ct /.
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In most of the subsequent derivations we follow Schmitt-Grohé and Uribe (2004) and use the

tensor notation. In particular, [pkx] 1 denotes the  1-th element of the 1� nx vector of derivatives

of pk with respect to x. Similarly, the derivative of h with respect to x is an nx � nx matrix and

[hx]
 1
�1 is the element of this matrix located at the intersection of the  1-th row and the �1-th

column. Also,
�
pk�1x

�
 1

�
hx
� 1
�1
D
Pnx

 1D1
.@ pk�1=@ x 1/.@ h

 1=@x�1/ while�
pk�1xx

�
 1 2

�
hx
� 2
�2

�
hx
� 1
�1
D
Pnx

 1D1
Pnx

 2D1
.@2 pk�1=@ x 1@ x 2/.@ h

 2=@x�2/.@ h 1=@x�1/ where, for

instance, h 1 denotes the  1-th function of mapping h and x�1 is the �1-th element of vector x.

For parsimony, we also use superscripts t and t C 1 on functions pk , h, g, and their derivatives to

indicate the arguments at which they are evaluated. When these superscripts are omitted,

functions are evaluated at the deterministic steady state, ie for .x; � / D .xss; 0/. For example, for

f 2 fpk; g;hg

f t :D f .xt ; � / f tC1 :D f .xtC1; � / f :D f .xss; 0/

f tx :D
�
@ f=@x

�
j.xt ;� / f tC1x :D

�
@ f=@x

�
j.xtC1;� / fx :D

�
@ f=@x

�
j.xss ;0/:

2.2 Finding the �rst-order derivatives

To �nd the �rst-order derivatives of pk .x; � / with respect to x, we start by differentiating

F k .x; � / with respect to x. Exploiting (5) we rewrite
�
F kx .xt ; � /

�
�1
D 0 as

Rp
�
pk
� �
pt;kx
�
�1
� [Mx]�1 R

�
ptC1;k�1

�
�MRp

�
ptC1;k�1

� �
ptC1;k�1x

�
 1

�
htx
� 1
�1
D 0 (6)

for �1;  1 2 f1; 2; :::; nxg. Evaluating (6) in the deterministic steady state gives a set of equations

which determine
�
pkx
�
�1
for �1 D 1; 2; :::; nx and k D 1; 2; :::; K . Given the output from the �rst

perturbation step, we now show how these derivatives can be solved recursively.

To show this and to establish the recursive argument, consider �rst the price of a bond with one

period to maturity. The price of a maturing bond is one for all values of .x; � /, and all of its

derivatives are therefore equal to zero, ie ptC1;0x D 0. Accordingly, equation (6) evaluated at the

steady state and for k D 1 simpli�es to

Rp
�
p1
� �
p1x
�
�1
D [Mx]�1 ; (7)

where we use R
�
p0
�
D P0 D 1. The value of Rp

�
p1
�
can easily be computed from its known

functional form and the steady state value of p1. Further, the value of [Mx]�1 evaluated at the
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steady state can readily be found by differentiatingM.ytC1; yt ; xtC1; xt/ and exploiting equations

(1) and (2)

[Mx]�1 D
�
MytC1

�
�1

�
gx
��1
 1
[hx] 1�1 C

�
Myt

�
�1

�
gx
��1
�1
C
�
MxtC1

�
 1
[hx] 1�1 C

�
Mxt

�
�1
; (8)

along with the fact that gx, hx, and all the derivatives ofM are known in the deterministic steady

state. An alternative and slightly easier way of obtaining [Mx]�1 is to report it in the �rst

perturbation step. However, this often comes at the cost of introducing extra variables into the

state vector which slows down the �rst step of the POP method. Once the scalar Rp
�
p1
�
and

[Mx]�1 have been computed, the derivatives
�
p1x
�
�1
are immediately given by (7).

Given that we know
�
p1x
�
�1
, we can then compute the �rst-order terms for the remaining

maturities directly from (6). To do that we evaluate (6) in the deterministic steady state. Using

M D R
�
p1
�
and substituting out for [Mx]�1 from (7), we obtain the following system of

equations for pkx

Rp
�
pk
� �
pkx
�
�1
D
�
p1x
�
�1
Rp
�
p1
�
R
�
pk�1

�
C R

�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[hx] 1�1 (9)

for k D 2; 3; :::; K and �1;  1 2 f1; 2; : : : ; nxg. Again, Rp
�
pk
�
is a scalar and all the terms on

the right-hand side are known, which makes it straightforward to solve for
�
pkx
�
�1
. In the special

case of a log-transformation, the expression in (9) simpli�es to

pkx D p
1
x C p

k�1
x hx; (10)

where pkx denotes a 1� nx vector of derivatives of pk with respect to x. This formula reproduces

the �rst-order expression derived in Hordahl et al (2008).

Expression (9) also suggests that the easiest way to start the recursion is to approximate p1 in the

�rst step of the POP method. This gives the derivative
�
p1x
�
�1
required to compute the right-hand

side of (9). This procedure does not add extra state variables to the �rst perturbation step and will

therefore be faster than the alternative of reporting the stochastic discount factorM mentioned

above. Moreover, if the R-transformed level of the one-period interest rate ytm is already given

in the �rst perturbation step, then
�
p1x
�
�1
can be computed by differentiating

pt;1 D R�1.1=R.ytm//. For instance, using a log-transformation it holds that p1x D �ytm1x.

The �rst-order derivatives of bond prices with respect to � are found in a similar way.9 That is,

9We know from Schmitt-Grohé and Uribe (2004) that these derivatives are zero. Nevertheless, we solve for these terms to make
subsequent derivations of higher-order derivatives more transparent.
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we exploit the fact that the derivative of F k .x; � / with respect to � evaluated at the deterministic

steady state equals zero, ie

F k� .xss; 0/ D Et
�
Rp
�
pk
� �
pk�
�
� [M� ] R

�
pk�1

�
�MRp

�
pk�1

� ��
pk�1x

�
 1

�
[h� ] 1 C ��tC1

�
C
�
pk�1�

���
D 0: (11)

For the one-period bond, this reduces to

Et
�
Rp
�
p1
� �
p1�
��
D EtM� (12)

as R
�
p0
�
D 1, Et

�
�tC1

�
D 0, and all the derivatives of p0 are zero. The fact that EtM� D 0

implies
�
p1�
�
D 0. Moreover, h� D 0 and this suf�ces to show that pk� D 0 for k D 2; 3; :::; K .

2.3 Second-order terms

This section shows how to compute all second-order terms for bond prices. The procedure is

similar to that used to compute all �rst-order derivatives of bond prices. In particular, we use

terms computed in the previous section, output from the �rst step of the POP method, and

second-order derivatives of F k .x; � / evaluated in the deterministic steady state.

Starting with second-order derivatives with respect to the state vector, we obtain�
F kxx .xss; 0/

�
�1;�2

D Rpp
�
pk
� �
pkx
�
�2

�
pkx
�
�1
C Rp

�
pk
� �
pkxx
�
�1�2

(13)

� [Mxx]�1�2 R
�
pk�1

�
� [Mx]�1 Rp

�
pk�1

� �
pk�1x

�
 2
[hx] 2�2

� [Mx]�2 Rp
�
pk�1

� �
pk�1x

�
 1
[hx] 1�1

�MRpp
�
pk�1

� �
pk�1x

�
 2
[hx] 2�2

�
pk�1x

�
 1
[hx] 1�1

�MRp
�
pk�1

� �
pk�1xx

�
 1 2

[hx] 2�2 [hx]
 1
�1

�MRp
�
pk�1

� �
pk�1x

�
 1
[hxx] 1�1�2 D 0

for �1; �2;  1;  2 D 1; 2; :::; nx . To solve for second-order bond price derivatives, we consider

the case where the price of the one-period bond is approximated in the �rst step of the POP

method and focus on computing pkxx given pk�1xx .10 To evaluate the right-hand side of equation

(13) we need expressions forM;Mx; andMxx. The value ofM equals R.p1/ andMx is given

10Along the lines discussed in Section 2.2 forMx, the value ofMxx can also be computed by second-order differentiation ofM, or
Mxx may be reported directly in the �rst step of the POP method.
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by equation (7). The expression forMxx can be computed from equation (13) when k D 1

[Mxx]�1�2 D Rp
�
p1
� �
p1xx
�
�1;�2

C Rpp
�
p1
� �
p1x
�
�2

�
p1x
�
�1
; (14)

as all derivatives of p0.x; � / are zero. Exploiting these �ndings in equation (13) gives

Rp
�
pk
� �
pkxx
�
�1;�2

D �Rpp
�
pk
� �
pkx
�
�2

�
pkx
�
�1

(15)

C
�
Rp
�
p1
� �
p1xx
�
�1;�2

C Rpp
�
p1
� �
p1x
�
�2

�
p1x
�
�1

�
R
�
pk�1

�
C
�
p1x
�
�1
Rp
�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 2
[hx] 2�2

C
�
p1x
�
�2
Rp
�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[hx] 1�1

CR
�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 2
[hx] 2�2

�
pk�1x

�
 1
[hx] 1�1

CR
�
p1
�
Rp
�
pk�1

� �
pk�1xx

�
 1 2

[hx] 2�2 [hx]
 1
�1

CR
�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[hxx] 1�1�2

for k D 2; 3; :::; K and for �1; �2;  1;  2 D 1; 2; :::; nx . For a log-transformation, the formula in

(15) simpli�es to

pkxx D p
1
xx C h

0
xp
k�1
xx hx C

Pnx
 1D1

pk�1x . 1/hxx. 1 ; :; :/: (16)

Here, we have adopted the notation used in Hordahl et al (2008) to clearly demonstrate that

equation (15) nests their second-order expression. Using this notation, A. 1 ;  2; : : : ;  N /

denotes an element on the intersection of dimensions  1 ;  2, and  N in matrix A and colons

refer to entire dimensions. For example, hxx. 1 ; :; :/ is an nx � nx matrix of second-order

derivatives of the  1-th mapping of h evaluated at the steady state, and pkxx is the nx � nx matrix

of second-order derivatives of pk with respect to x.

To �nd pk�� , we differentiate F k .x; � / twice with respect to � and evaluate the expression in the
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deterministic steady state. Since this derivative is equal to zero, we get

[F�� .xss; 0/] D Et
�
�Rp

�
pk
� �
pk��
�
C [M�� ] R

�
pk�1

�
(17)

C [M� ] Rp
�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
�tC1

��2
C [M� ] Rp

�
pk�1

� �
pk�1x

�
 1
[�] 1�1

�
�tC1

��1
CMRpp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
�tC1

��2 �pk�1x
�
 1
[�] 1�1

�
�tC1

��1
CMRp

�
pk�1

� �
pk�1xx

�
 1 2

[�] 2�2
�
�tC1

��2 [�] 1�1 ��tC1��1
CMRp

�
pk�1

� �
pk�1x

�
 1
[h�� ] 1 CMRp

�
pk�1

� �
pk�1��

��
D 0

where  1;  2 D 1; 2; :::; nx and �1; �2 D 1; 2; :::; n� . To simplify equation (17) we have relied on

the fact that the terms h� ; pk�; and pkx� are known to be zero (Schmitt-Grohé and Uribe (2004)).

Again, the important thing to observe is that equation (17) allows us to solve for pk�� . To show

this, we �rst differentiateM with respect to � to get

[M� ] D
�
MytC1

�
�2

�
gx
��2
 2
[�] 2�2

�
�tC1

��2 C �MxtC1
�
 2
[�] 2�2

�
�tC1

��2 : (18)

To �nd an expression for Et [M�� ] we consider the case in which p1�� is reported in the �rst step

of the POP method. Evaluating equation (17) at k D 1 and exploiting the fact that all derivatives

of p0.x; � / are zero gives

Et [M�� ] D
�
p1��
�
Rp
�
p1
�
: (19)

Combining the results in (18) and (19) to evaluate (17) we get

Rp
�
pk
� �
pk��
�
D

�
p1��
�
Rp
�
p1
�
R
�
pk�1

�
(20)

C2
�
MytC1

�
�1

�
gx
��1
 1
[�] 1�1 Rp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
�
MxtC1

�
 1
[�] 1�1 Rp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

CR
�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
pk�1x

�
 1
[�] 1�1 [I]

�1
�2

CR
�
p1
�
Rp
�
pk�1

� �
pk�1xx

�
 1 2

[�] 2�2 [�]
 1
�1
[I]�1�2

CR
�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[h�� ] 1

CR
�
p1
�
Rp
�
pk�1

� �
pk�1��

�
As discussed previously, the derivatives of the stochastic discount factorMytC1 andMxtC1 are

straightforward to compute from the known functional form ofM. Applying a
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log-transformation makes it possible to simplify the above formula to

pk�� D p1�� C p
k�1
�� C p

k�1
x h�� C trace

�
�0pk�1xx �

�
C pk�1x ��0

�
pk�1x

�0
C 2 .�x � �x/��0

�
pk�1x

�0
;

(21)

whenM D ��tC1=.�t� tC1/. Here, � is the discount factor, �t denotes the marginal utility of

consumption, and � t stands for the in�ation rate. We use �x and �x to denote 1� nx matrices of

�rst-order derivatives for �t and � t with respect to x in the steady state, respectively. In this

special case, formula (20) reproduces the second-order expression derived in Hordahl et al

(2008).

2.4 Higher-order approximations

The method described in the previous two subsections naturally generalises to perturbation

approximations of order higher than two. Third-order terms are of signi�cant economic interest

because they allow for time-varying risk premia. We therefore provide explicit formulas for

pkxxx;pkx�� ; and pk���; with the proof of pkxx� D 0 provided in Andreasen (2010b). In the interest

of space, we only report simpler expressions for the log-transformation case in the body of the

text and refer to the appendix for the general solutions corresponding to arbitrary R.�/. As

derived in the appendix

pkxxx .�1; �2; �3/ D p1xxx .�1; �2; �3/ (22)

C
Pnx

 1D1
hx
�
 1; �1

�
hx .:; �2/0 pk�1xxx

�
 1; :; :

�
hx .:; �3/

Chx .:; �1/0 pk�1xx hxx .:; �2; �3/

Chxx .:; �1; �3/0 pk�1xx hx .:; �2/

Chxx .:; �1; �2/0 pk�1xx hx .:; �3/

Cpk�1x hxxx .:; �1; �2; �3/

for k D 2; 3; :::; K and �1; �2; �3 D 1; 2; : : : ; nx . The notation follows that in equation (16).

WhenM D ��tC1=.�t� tC1/; the general formulas for pk��x and pk��� reported in the appendix
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simplify to

pk��x D p1��x � 2 .�x � �x/��
0
�
pk�1x

�0 p1x (23)

C2pk�1x ��0
�
�0x�x � �

0
x�x � �

0
x�x C �

0
x�x C g

�
xx � g

�
xx C p

k�1
xx
�
hx

C2pk�1x ��0
�
�0x�x � �

0
x�x
�

C2 .�x � �x/��0pk�1xx hx

C
Pnx

 1D1
�
�
 1; :

�
�0pk�1xxx

�
 1; :; :

�
hx

Ch0��p
k�1
xx hx C p

k�1
x h��x C pk�1��xhx

and

pk��� D p1��� C p
k�1
x h��� C pk�1��� (24)

C
Pne

�1D1 3
�
� .:; �1/m3 .�tC1 .�1//

�0 �
�0x�x � �

0
x�x � �

0
x�x C �

0
x�x
�
� .:; �1/pk�1x � .:; �1/

C
Pne

�1D1 3
�
� .:; �1/m3 .�tC1 .�1//

�0
.�xx � �xx/� .: :�1/pk�1x � .:; �1/

C
Pne

�1D1 3 .�x � �x/ gx� .:; �1/m
3 .�tC1 .�1//pk�1x � .:; �1/pk�1x � .:; �1/

C
Pne

�1D1 3 .�x � �x/� .:; �1/m
3 .�tC1 .�1//� .:; �2/0 pk�1xx �

�
:; �3

�
C
Pne

�1D1 p
k�1
x � .:; �1/pk�1x � .:; �1/pk�1x � .:;�1/m3 .�tC1 .�1//

C
Pne

�1D1 3p
k�1
x � .:; �1/

�
� .:; �1/m3 .�tC1 .�1//

�0 pk�1xx � .:; �1/

C
Pne

�1D1 � .:; �1/
0 pk�1xxx

�
 1; :; :

�
� .:; �1/�

�
 1; �1

�
m3 .�tC1 .�1//

for k D 2; 3; :::; K . Here, m3 .�tC1 .�1// denotes the third moment of �tC1 .�1/ for

�1 D 1; 2; :::; n� . Notably, formulas (22)-(24) extend the results in Hordahl et al (2008) to

third-order perturbation approximations.

All the formulas derived in this paper are implemented in Matlab and the codes are publicly

available to facilitate their use.

2.5 Extensions

The set-up considered above assumes that the model can be split into two distinct parts: one

containing all equations in which bond prices beyond one-period maturity do not appear and

another consisting entirely of Euler equations for the remaining bond prices. However, the POP
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method may still be useful if this condition does not hold. To see how, consider the case in which

one is interested in the dynamics of the 10-year yield curve but it is only possible to separate out

bond price Euler equations of maturity greater than 5 years. To then apply our method, the model

including bond prices of maturity up to 20 quarters (5 years) needs to be solved in the �rst step of

the POP method. This gives all derivatives of bond prices for k � 20. The remaining derivatives,

for bond prices with maturities between 5 and 10 years, ie k 2 f21; 22; : : : 40g, can then be

computed in the second step by starting the recursions derived in this paper at k D 20.

Andreasen (2010a) presents another extension in which the expected value of future

non-predetermined variables are computed in the second perturbation step, making it possible to

ef�ciently solve for expected future short interest rates, in�ation rates, etc. We also illustrate in

the appendix that the POP method can be extended to the case in which no restrictions are

imposed on the way shocks enter, as considered in Dynare++ or Perturbation AIM (Kamenik

(2005) and Swanson et al (2005)). Furthermore, the scalar example presented in the appendix is

derived using Mathematica and the underlying codes may be used to derive bond price

approximations of orders higher than three.

3 Evaluating the computational gain

This section assesses the speed of the POP method and compares it to that of standard one-step

perturbation. Clearly, both the absolute and relative performance of POP will depend on a

number of factors. Those we focus on in this paper include the maximum maturity of bonds in

the yield curve and the number of state variables in the model.

To illustrate the role played by the maximum bond maturity, we report results corresponding to

nominal yield curves of maturities ranging from 5 to 20 years.11 The relevance of the number of

state variables is shown by reporting computing times for the DSGE model by Rudebusch and

Swanson (2008) with 9 states as well as a version of the model by De Paoli et al (2007) with 15

state variables. Both models are approximated to third order using Dynare++.12

11The case of the 20-year yield curve is seldom considered in the literature, with the 10-year yield curve being the benchmark. However,
from a computational perspective, approximating the 20-year yield curve is equivalent to: i) computing jointly the 10-year nominal and
real yield curves, or ii) computing the 10-year yield curve and the corresponding term premia.
12Our implementation of the POP method does not exploit multi-threading, and we therefore do not use it in Dynare++. Note however,
that by using Matlab to code our routine we are already sacri�cing performance relative to the more ef�cient C++ implementation of
Dynare++.
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The absolute computing times are reported in seconds, while the relative computational gain

from the POP method is measured as

Speed gain D
Computing time using the one-step perturbation method

Computing time using the POP method
:

Table A reports Monte Carlo estimates of the time and the speed gain based on 20 replications

for a third order approximation. The POP method turns out to be 23 times faster than the

one-step perturbation method for the model by Rudebusch and Swanson (2008) with a 10-year

yield curve. This number increases to 139 with a 20-year yield curve. The computational gains

from the POP method in the model by De Paoli et al (2007) are somewhat lower, with the

corresponding �gures equal to 14 and 61, respectively. As shown in Andreasen (2010a), the

speed gains involved are suf�cient to make estimation of medium-scale DSGE models with a

whole yield curve approximated to third order feasible.

Table A: Gain in computing speed from the POP method

This table compares the computing time of the one-step perturbation method to that of the POP method.
The reported numbers are averages from 20 Monte Carlo replications for third-order approximations. Both
DSGE models are solved in Dynare++ and bond prices from the POP method are implemented in Matlab.
All computations are done on an Intel Core 2 Duo P7350 PC with 3.0 GB of RAM running Windows Vista.

5-year 10-year 15-year 20-year
Rudebusch and Swanson (2008)
One-step perturbation method (seconds) 2:43 10:47 32:46 68:87
POP method (seconds) 0:43 0:45 0:48 0:50
Speed gain 5:61 23:09 68:11 138:55

De Paoli et al (2007)
One-step perturbation method (seconds) 7:18 24:53 59:37 111:86
POP method (seconds) 1:72 1:75 1:79 1:83
Speed gain 4:18 14:02 33:11 61:09

4 Comparing solution accuracy

Our proposed POP method is faster to execute than traditional one-step perturbation, but there

are other approximation methods which have become popular, in part due to their speed. This

section compares the accuracy of the POP method to that of three well-known alternatives. In

doing so, we add to the results of Arouba et al (2005) and Caldara et al (2009) by examining the

accuracy of different interest rate approximations.
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The �rst alternative considered is the �rst-order log-normal method proposed by Jermann (1998).

Its accuracy is potentially compromised by the fact that it only includes some second-order terms

in bond price approximations. The next alternative is the second-order log-normal method in

Doh (2007), which extends Jermann's approach by combining second-order perturbation

approximations with bond prices derived from the log-normal assumption. This approach is

subject to similar type of criticisms as Jermann's method, because it only includes some third and

fourth-order terms (see Andreasen (2009)). The �nal alternative considered is the `consol'

method proposed in Rudebusch and Swanson (2008) where consol bonds are used to compute

yields.13 Its accuracy may be adversely affected by the fact that consol bonds and zero-coupon

bonds have very different cash �ows, and matching the �rst-order concept of duration potentially

allows for different higher-order properties of these bond prices.

To assess the accuracy of the aforementioned methods, we use expressions for zero-coupon bond

prices in a consumption endowment model with external habits derived in Zabczyk (2010). We

use a habit-based set-up because it has become a standard ingredient of many consumption-based

asset pricing models. For example, De Paoli et al (2007), Hordahl et al (2008), Bekaert et al

(2010), among others, use habits when studying the properties of bond prices in DSGE models.

Furthermore, while our closed-form solution makes it straightforward to assess accuracy, the

habit model is at the same time suf�ciently �exible to match several salient features of the data.

We proceed by brie�y introducing the habit model in Section 4.1. Section 4.2 then compares the

approximation accuracy of the POP method to that of the three alternatives mentioned above.

4.1 The consumption endowment model with habits

We consider a representative agent with the standard utility function

U0 D
P1

tD0 �
tE0

�
.Ct � hCt�1/1� � 1

1� 

�
;

where Ct is consumption and h 2 [0; 1] controls the degree of external habit formation.

Consumption growth is de�ned as xt :D ln .Ct=Ct�1/, and xt is assumed to follow an AR(1)

process, ie
xt D .1� �/�C �xt�1 C � t (25)

13As shown by Rudebusch and Swanson (2008), prices of consols satisfy simple recursive relationships which make them easy to
approximate.
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where � t � NID
�
0; � 2�

�
. This implies the following expression for the stochastic discount

factor
MtC1 :D �

.CtC1 � hCt/�

.Ct � hCt�1/�
D

�
1� h exp f�xtC1g
1� h exp f�xtg

��
exp f� xtC1g ;

and a closed-form solution for zero-coupon bond prices of the form (Zabczyk (2010))

Pkt D
�
1� h exp.�xt/

�
�k exp

�
�
�
k�C .xt � �/

�.1� �k/
.1� �/

��

�
C1X
nD0

0@ �

n

1A��h�n exp��n�� n.xt � �/�k� kY
jD0
L�
�
�

.1� � j/
.1� �/

� n
� j � 0 j

�

�
:

Here, L� is the Laplace transform of � , and
�
�

n

�
denotes a generalised binomial coef�cient, ie

0@ �

n

1A :D nY
kD1
.� � k C 1/=k; for n > 0 and

0@ �

0

1A :D 1;
where � 2 R and n 2 N .14

The model is calibrated as follows. We let � D 0:9995 and set h D 0:7 based on the �ndings in

Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007). The coef�cients in the

consumption process in (25) are determined from an OLS regression for US non-durable

consumption in the period 1947 Q1 to 2009 Q2. This implies � D 0:0062, � D 0:0633, and

� � D 6:4379� 10�5. Two values are considered for the curvature parameter  . Our �rst choice

is to let  D 1 which corresponds to standard log-preferences. Our second choice is to set  to 5

and serves to explore the effects of stronger non-linearities in the model.

4.2 The accuracy of various approximation methods

Chart 1 plots the benchmark 10-year interest rate as a function of consumption growth when

 D 1. The solid red line represents the exact solution and the other lines correspond to various

approximation methods. Approximated solutions from one-step perturbation and the POP

method are identical and are referred to as `perturbation method' throughout this section.

Furthermore, under our calibration, the functions from second-order perturbations are

14Note that this model can be fairly easily extended to account for persistent habits and exogenous in�ation (eg along the lines of
Binsbergen et al (2010)). The latter would make it straightforward to price nominal bonds and analyse the properties of the nominal yield
curve. However, since this would come at the cost of introducing extra state variables, we leave it for possible extensions.
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indistinguishable from those implied by the second-order log-normal method, and we therefore

only plot the former.

We �rst note that for the range of consumption growth considered, the third-order perturbation

method delivers an approximation which is hard to distinguish from the exact solution. The

second-order perturbation method is also quite accurate, with small deviations from the exact

solution only visible for consumption growth deviations exceeding �0:08. The consol method

generates larger approximation errors with clearer deviations from the exact solution.

Importantly, for  D 1, all of these methods are more accurate than the �rst-order log-normal

method.

Chart 1: The function for the 10-year interest rate: =1

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports
the value of the 10-year interest rate in deviation from the deterministic steady state and expressed in
quarterly terms.
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In Chart 2, we turn to the case of stronger non-linearities with  D 5. Again, the third-order

perturbation approximation is almost indistinguishable from the exact solution. Chart 2 also

shows that the second-order perturbation approximation is fairly accurate. The consol method,

on the other hand, does worse than the �rst-order log-normal method. It is also interesting to note

that moving from a second-order to a third-order approximation in the consol method does not

improve its accuracy.

Chart 2: The function for the 10-year interest rate: =5

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports
the value of the 10-year interest rate in deviation from the deterministic steady state and expressed in
quarterly terms.
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These observations are also con�rmed by Table B which reports the root mean squared errors

implied by the approximations in Charts 1 and 2. For our model and the chosen calibration we

also see that third-order perturbation clearly outperforms all the alternative methods.
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Table B: Approximation accuracy for the 10-year interest rate

The root mean sqaured errors for the approximations are computed for consumption growth at the
following points: -0.1, -0.095, ..., 0.095 , 0.1. The �gures in the table are multiplied by 100.

 D 1  D 5
2nd order perturbation 0:007 0:037
3rd order perturbation 0:001 0:007
2nd order consol method 0:028 0:692
3rd order consol method 0:027 0:769
1st order log-normal method 0:045 0:212
2nd order log-normal method 0:007 0:037

To evaluate the impact of the approximation errors reported above, we now focus on the �rst four

moments of the benchmark 10-year interest rate. These moments are compared in Tables C and

D which correspond to  D 1 and  D 5, respectively. We see that both versions of the

perturbation method and the log-normal method reproduce the correct annualised mean.

However, the consol method overestimates it by approximately 20 basis points when  D 1 and

by 24 basis points when  D 5. The consol method also underestimates the standard deviation by

more than all the other methods. Values of skewness and kurtosis are closely matched by the two

perturbation methods and the second-order log-normal method, but not by the consol and

�rst-order log-normal formulas.

Table C: Moments for the 10-year interest rate: =1

The 10-year interest rate is expressed in annual terms. All moments are computed based on a simulated
time series of 1,000,000 observations.

Mean Standard Skewness Kurtosis
deviation

2nd order perturbation 2:6724 0:1786 0:0815 3:0065
3rd order perturbation 2:6724 0:1787 0:0816 3:0113
2nd order consol method 2:8740 0:1775 0:1337 3:0214
3rd order consol method 2:8740 0:1774 0:1341 3:0332
1st order log-normal method 2:6758 0:1786 0:0000 2:9972
2nd order log-normal method 2:6724 0:1786 0:0816 3:0060
Exact solution 2:6724 0:1787 0:0818 3:0110
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Table D: Moments for the 10-year interest rate: =5

The 10-year interest rate is expressed in annual terms. All moments are computed based on a simulated
time series of 1,000,000 observations.

Mean Standard Skewness Kurtosis
deviation

2nd order perturbation 12:2038 0:8930 0:0815 3:0065
3rd order perturbation 12:2038 0:8935 0:0816 3:0113
2nd order consol method 12:4429 0:8899 0:3402 3:1520
3rd order consol method 12:4429 0:8571 0:3589 3:2342
1st order log-normal method 12:2906 0:8928 0:0000 2:9972
2nd order log-normal method 12:2039 0:8929 0:0816 3:0060
Exact solution 12:2035 0:8935 0:0818 3:0110

Summarising, third-order perturbations � and hence the POP method � approximate the 10-year

interest rate most accurately in the examples considered. The precision of the second-order

log-normal method is very similar to that of the second-order perturbation method, and both

outperform the �rst-order log-normal approximation. We also �nd that the consol method gives a

less accurate approximation, and we show that it may be less accurate, even at third order, than

the �rst-order log-normal formula.

5 Conclusion

This paper proposes a new method of computing bond price approximations. The approach is

applicable to a wide class of DSGE models and uses the perturbation principle sequentially.

While the �nal formulae for bond prices exactly match those derived using the standard one-step

perturbation method, a simulation study documents that execution times can be more than 100

times shorter. In general, the exact improvement in speed depends on the maturity of the

approximated yield curve and the number of state variables in the DSGE model.

The paper also assesses the accuracy of the POP/perturbation method implemented up to third

order in a consumption endowment model with habits. Our results show that the third-order

approximation to the 10-year interest rate is more accurate than those of popular alternatives and

can be hard to distinguish from the true solution. It is also shown that interest rates approximated

from prices of consol bonds can be less precise, even at third order, than those computed using

the �rst-order log-normal approach.
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Appendix A: Third-order terms for bond prices

This appendix derives the third-order terms for bond prices in the framework of Schmitt-Grohé

and Uribe (2004).

A.1 Derivative of pk with respect to .x; x; x/

Applying the chain rule to the de�nition of F k one can show that [Fxxx .xss; 0/]�1�2�3 D 0 equals

Rp
�
pk
� �
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D Mk in the deterministic steady state. Using the expressions for �rst and

second-order derivatives of bond prices derived above, we get, after simplifying, the expression

stated in the body of the text.
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We �nally note that Et
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fact that for k D 1 we have P0 D 1 for all values of .xt ; � / and so all derivatives have to equal

zero. Thus

Rp
�
p1
� �
p1��x

�
�3
D �Rpp

�
p1
� �
p1x
�
�3

�
p1��
�
C Et

�
[M��x]�3

�
R
�
p0
�

m

�
Rp
�
p1
� �
p1��x

�
�3
C Rpp

�
p1
� �
p1x
�
�3

�
p1��
��
=R
�
p0
�
D Et

�
[M��x]�3

�
So for k > 1 we get

Rp
�
pk
� �
pk��x

�
�3
D �Rpp

�
pk
� �
pkx
�
�3

�
pk��
�

C
�
Rp
�
p1
� �
p1��x

�
�3
C Rpp

�
p1
� �
p1x
�
�3

�
p1��
��
R
�
pk�1

�
=R
�
p0
�

C
�
p1��
�
Rp
�
p1
�
=R
�
p0
�
Rp
�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

C2
��
MytC1ytC1

�
�1�3

�
gx
��3
 3
[hx] 3�3 C

�
MytC1yt

�
�1�3

�
gx
��3
�3
C
�
MytC1xtC1

�
�1 3

[hx] 3�3 C
�
MytC1xt

�
�1�3

�
�
�
gx
��1
 1
[�] 1�1 Rp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
�
MytC1

�
�1

�
gxx
��1
 1 3

[hx] 3�3 [�]
 1
�1
Rp
�
pk�1

� �
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
��
MxtC1ytC1

�
 1�3

�
gx
��3
 3
[hx] 3�3 C

�
MxtC1yt

�
 1�3

�
gx
��3
�3
C
�
MxtC1xtC1

�
 1 3

[hx] 3�3 C
�
MxtC1xt

�
 1�3

�
� [�] 1�1 Rp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
�
MytC1

�
�1

�
gx
��1
 1
[�] 1�1 Rpp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
�
MxtC1

�
 1
[�] 1�1 Rpp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1x

�
 2
[�] 2�2 [I]

�2
�1

C2
�
MytC1

�
�1

�
gx
��1
 1
[�] 1�1 Rp

�
pk�1

� �
pk�1xx

�
 2 3

[hx] 3�3 [�]
 2
�2
[I]�2�1

C2Et
�
MxtC1

�
 1
[�] 1�1 Rp

�
pk�1

� �
pk�1xx

�
 2 3

[hx] 3�3 [�]
 2
�2
[I]�2�1

C
�
p1x
�
�3
Rp
�
p1
�
=R
�
p0
�
Rpp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
pk�1x

�
 1
[�] 1�1 [I]

�1
�2

CR
�
p1
�
Rppp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1x

�
 2
[�] 2�2

�
pk�1x

�
 1
[�] 1�1 [I]

�1
�2

CR
�
p1
�
Rpp

�
pk�1

� �
pk�1xx

�
 2 3

[hx] 3�3 [�]
 2
�2

�
pk�1x

�
 1
[�] 1�1 [I]

�1
�2

CR
�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
pk�1xx

�
 1 3

[hx] 3�3 [�]
 1
�1
[I]�1�2

C
�
p1x
�
�3
Rp
�
p1
�
=R
�
p0
�
Rp
�
pk�1

� �
pk�1xx

�
 1 2

[�] 2�2 [�]
 1
�1
[I]�1�2

Working Paper No. 416 March 2011 30



CR
�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1xx

�
 1 2

[�] 2�2 [�]
 1
�1
[I]�1�2

CR
�
p1
�
Rp
�
pk�1

� �
pk�1xxx

�
 1 2 3

[hx] 3�3 [�]
 2
�2
[�] 1�1 [I]

�1
�2

C
�
p1x
�
�3
Rp
�
p1
�
=R
�
p0
�
Rp
�
pk�1

� �
pk�1x

�
 1
[h�� ] 1

CR
�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1x

�
 1
[h�� ] 1 CR

�
p1
�
Rp
�
pk�1

� �
pk�1xx

�
 1 3

[hx] 3�3 [h�� ]
 1

CR
�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[h��x] 1�3 C

�
p1x
�
�3
Rp
�
p1
�
=R
�
p0
�
Rp
�
pk�1

� �
pk�1��

�
CR

�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 3
[hx] 3�3

�
pk�1��

�
CR

�
p1
�
Rp
�
pk�1

� �
pk�1��x

�
 3
[hx] 3�3

For a logarithm transformation R
�
pt;k
�
D Mk; Rp

�
pt;k
�
D Mk , Rpp

�
pt;k
�
D Mk , and

Rppp
�
pt;k
�
D Mk . Using the expressions for �rst and second order derivatives of bond prices

derived above, we get, after simplifying,

pk��x .1; �3/ D �2M�1MytC1gx��0
�
pk�1x

�0 p1x .1; �3/ �2M�1MxtC1��
0
�
pk�1x

�0 p1x: .1; �3/
Cp1��x .1; �3/ C2M�1 pk�1x ��0 .gx/0

�
�
MytC1ytC1gxhx .:; �3/CMytC1ytgx .:; �3/CMytC1xtC1hx .:; �3/CMytC1xt .:; �3/

�
C
Pny

�1D1 2M
�1MytC1

�
1; �1

�
pk�1x ��0gxx

�
�1; :; :

�
hx .:; �3/ C2M�1 pk�1x ��0

�
�
MxtC1ytC1gxhx .:; �3/CMxtC1ytgx .:; �3/CMxtC1xtC1hx .:; �3/CMxtC1xt .:; �3/

�
C2M�1MytC1gx��0 pk�1xx hx .:; �3/ C2M�1MxtC1��

0 pk�1xx hx .:; �3/ Cpk�1x ��0 pk�1xx hx .:; �3/

Cpk�1x ��0 pk�1xx hx .:; �3/ C
Pnx

 1D1
�
�
 1; :

�
�0 pk�1xxx

�
 1; :; :

�
hx .:; �3/ C .h�� /0 pk�1xx hx .:; �k/

Cpk�1x h��x .:; �3/ Cpk�1��xhx .:; �3/

A.3 Derivative of pk with respect to .� ; � ; � /

It is possible to show that F��� .xss; 0/ D 0 implies

[F��� .xss; 0/] D Etf�Rp
�
pk
� �
pk���

�
C [M��� ] R

�
pk�1

�
C3 [M�� ] Rp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
�tC1

��2
C3 [M� ] Rpp

�
pk�1

� �
pk�1x

�
 3
[�] 3�3

�
�tC1

��3 �pk�1x
�
 2
[�] 2�2

�
�tC1

��2
C3 [M� ] Rp

�
pk�1

� �
pk�1xx

�
 2 3

[�] 3�3
�
�tC1

��3 [�] 2�2 ��tC1��2
CR

�
p1
�
Rppp

�
pk�1

� �
pk�1x

�
 3
[�] 3�3

�
�tC1

��3 �pk�1x
�
 2
[�] 2�2

�
�tC1

��2 �pk�1x
�
 1
[�] 1�1

�
�tC1

��1
C3R

�
p1
�
Rpp

�
pk�1

� �
pk�1x

�
 2
[�] 2�2

�
�tC1

��2 �pk�1xx
�
 1 3

[�] 3�3
�
�tC1

��3 [�] 1�1 ��tC1��1
CR

�
p1
�
Rp
�
pk�1

� �
pk�1xxx

�
 1 2 3

[�] 3�3
�
�tC1

��3 [�] 2�2 ��tC1��2 [�] 1�1 ��tC1��1
CR

�
p1
�
Rp
�
pk�1

� �
pk�1x

�
 1
[h��� ] 1 CR

�
p1
�
Rp
�
pk�1

� �
pk�1���

�
g D 0

Working Paper No. 416 March 2011 31



We next use the expression for [M� ] found previously. We also have from differentiation ofM
that
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For a logarithm transformation, it is straightforward to show that
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Appendix B: The POP method when perturbing the state variables and the innovations

Consider the class of DSGE models with the following set of equilibrium and market clearing

conditions:
Et
�
f .ztC1; zt ; zt�1; �ut/

�
D 0

where � is the perturbation parameter. The vector zt contains all the endogenous variables and ut
is the vector of disturbances with the property ut � IID .0; 6/. The general solution is given by
zt D g .zt�1; ut ; � /.

When the approximation is done in levels, the fundamental pricing equation implies
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�
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The recursive solution for a third-order approximation of bond prices is then given by
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where
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An�11 � Pn�1Mz CMPn�1z An�12 � Pn�1Mzz C 2MzPn�1z CMPn�1zz

An�13 � Pn�1Mzzz C 3MzzPn�1z C 3MzPn�1zz CMPn�1zzz

An�14 � Pn�1 .6Mzuu CMz�� /CM
�
6Pn�1zuu C Pn�1z��

�
C6

�
2MzuPn�1u CMzPn�1uu CMuuPn�1z C 2MuPn�1zu

�
CM�� Pn�1z C Pn�1�� Mz C g��An�12

These formulas are derived using Mathematica codes and could easily be extended to higher

approximation orders.
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