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Summary

Economists have a keen interest in understanding what determines changes in attitudes to risk
and how they work through the economy. This in part explains why policymakers analyse the
behaviour of bond and equity prices, as these reflect peoples’ preferences for risk-taking. Such
analyses are often conducted using dynamic stochastic general equilibrium (DSGE) models.
These models use theory to describe how all the actors in the economy behave. The word
‘stochastic’ indicates that there is a fundamental uncertainty pervading the economy, with

different types of random disturbances affecting the dynamics of prices and quantities.

The economic relationships underlying the model uniquely determine the evolution of the
interconnected system, and finding a rule which pins down that evolution is called solving the
model. Unfortunately, in most cases exact solutions are unknown and therefore economists need
to approximate them. This is typically done using linearisation, which often delivers very good
approximations. However, this method ignores the impact of uncertainty on the transmission

mechanism of shocks, and so is inadequate in an asset pricing context.

There exist many alternatives to linearisation, with ‘higher-order perturbation” methods being
one of them. In practice, however, there is a trade-off between accuracy and speed. In the past,
this trade-off has meant that researchers studying prices of long-maturity bonds needed to rely on
at most second-order perturbation approximations. This occurred because it was computationally
very demanding to allow for higher-order effects, which are present in the true - though unknown

- solution to any DSGE model.

The simple aim of this paper is to propose a method which speeds up the process of
approximating bond prices by exploiting the relationships which they satisfy. Our method
comprises two steps. In the first step, standard solution packages can be used to approximate all
the variables other than bond prices. In the second step, we use the fundamental pricing equation
to solve for bond prices recursively, ie using approximations to shorter-term bonds to find those

for longer-term bond prices.

We show that our two step method can reduce the time it takes to solve models by more than 100
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times. This is achieved with the same level of accuracy as using standard perturbation methods.
The paper also compares the accuracy of bond price approximations obtained using perturbation
methods to that of computationally feasible alternatives. It shows that for the models analysed

third-order perturbations generate the most accurate approximations to bond yields.
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1 Introduction

The influential paper by Mehra and Prescott (1985) highlighted issues arising when trying to
simultaneously account for the dynamics of aggregate consumption and asset prices. Much work
has subsequently used variants of Mehra and Prescott’s (1985) consumption-based asset pricing
framework to improve our understanding of the links between financial markets and the
macroeconomy. A large number of models in this literature assume an exogenous consumption
process as in Mehra and Prescott (1985), see for instance Campbell and Cochrane (1999) and
Bansal and Yaron (2004). Another and rapidly growing strand of the literature uses dynamic
stochastic general equilibrium (DSGE) models to endogenize the dynamics of consumption in an
attempt to provide more detailed insights into the nature of macroeconomic risk. Important
contributions are Jermann (1998), Boldrin, Christiano and Fisher (2001), and more recently Wu
(2006), Uhlig (2007), De Paoli, Scott and Weeken (2007), Hordahl, Tristani and Vestin (2008),
Rudebusch and Swanson (2009), Guvenen (2009), and Bekaert, Cho and Moreno (2010).

When using DSGE models to analyse asset prices, an important constraint is that closed-form
solutions are in general unavailable. Accordingly, both the functions capturing state dynamics as
well as those mapping state variables into asset prices need to be approximated. This leaves
researchers with a challenging numerical problem which standard methods are poorly equipped
to deal with. For example, the well-known log-linear approximation is inadequate as it restricts
premia on risky assets to zero, contrary to existing evidence (see Campbell and Shiller (1991) or
Cochrane and Piazzesi (2005)). Higher-order perturbations are the most widely used alternative
(Arouba, Fernandez-Villaverde and Rubio-Ramirez (2005) and Caldara, Fernandez-Villaverde,
Rubio-Ramirez and Yao (2009)), but they may also become impractical when the approximated

model features a yield curve.!

To understand why, consider a quarterly DSGE model with n state variables. Assume further that
we are interested in computing the 10-year interest rate from the price of a zero-coupon bond

with the same maturity. This bond price is a function of 7 state variables and to approximate it to

10ther alternative solution methods include value function iteration, finite elements, and Chebyshev polynomials, but these are typically
considered infeasible for medium-scale DSGE models.
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third order — ie by a third-order polynomial — would require computing

{ + 4 n—+1 n n+1 n+2
n n . n . .
2 2 3
Oth Order Terms lst Order Terms 2nd Order Terms 3rd Order Terms

ieatotal ofn - (n + 1)/2 - (n + 2)/3 distinct coefficients. Typically, the 10-year bond price is
computed recursively along with all 40 intermediate bond prices.> Accordingly, in a quarterly
model, for n corresponding to 5, 10 or 15 years, the yield curve introduces respectively 2,240,
11,440, or 32,640 additional coefficients to be simultaneously computed. This can either make
the problem too large to solve using standard solution packages or significantly increase the time
required to compute the approximation.> While the deterioration in performance might be
tolerable if the model needs to be solved once, it has the potential to make estimation or

sensitivity analysis infeasible as both of them rely on repeated approximations.

The contribution of this paper is to propose a method of reducing the computational burden when
approximating bond prices to arbitrary order. Matlab codes that implement the suggested method
to third order are also provided. We focus on the standard case in which bond prices with
maturities beyond one period do not affect the rest of the economy, but alternatives are also
considered.* The solution we advocate splits the perturbation problem into two steps. In the first
step, standard solution packages can be used to approximate the solution to a DSGE model
without bond prices of maturity greater than one. The second step perturbs the fundamental
pricing equation for bond prices up to the same order. We then exploit the information from the
first step to recursively solve for the coefficients of bond prices, significantly speeding up the
approximation process. On account of this structure, we refer to our method as
perturbation-on-perturbation (POP). It is important to emphasise that the POP method computes

exactly the same expressions for bond prices as the standard ‘one-step’ perturbation routine.

Our proposed method is closest to the one proposed in Hordahl ef al (2008).> They first

approximate a solution to the part of their DSGE model without bond prices to second order.

2 Alternative, non-recursive methods involve creating many auxiliary variables which similarly complicates the approximation problem.

3These packages include Dynare, Dynare++, and Perturbation AIM (see Kamenik (2005) and Swanson, Anderson and Levin (2005),
respectively), and the set of routines accompanying Schmitt-Grohé and Uribe (2004).

4Expressed alternatively, the assumption we rely on is that the model is such that prices of all bonds exceeding one period only appear in
consumption-Euler equations.

SBinsbergen, Fernandez-Villaverde, Koijen and Rubio-Ramirez (2010) independently apply a related method to compute interest rates in
a version of the neoclassical growth model. The method and formulas we provide are not model specific and our approach nests their
procedure.
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Afterwards, all bond prices are solved for using the fundamental asset pricing equations and the
first approximation. Notably, we extend their work along three dimensions. Firstly, we go
beyond second-order and provide third-order accurate formulas for bond prices. These
third-order terms are of economic significance as they allow for time variation in risk premia.
Secondly, we allow for more general transformations of variables in the model than the ‘log’
specification considered in Hordahl ez a/ (2008). Thirdly, we consider a slightly more general
set-up than in Hordahl et al (2008), as we do not introduce restrictions on the functional form of

the stochastic discount factor.

A simulation study is used to document the reduction in computational burden achieved by using
the POP method instead of the standard one-step perturbation. For the DSGE models in

Rudebusch and Swanson (2008) and De Paoli et a/ (2007), the speed gains vary from between 14
and 23 times for a 10-year yield curve to between 61 and 139 times for a 20-year yield curve. As
demonstrated in Andreasen (2010a), the speed gains involved are sufficient to make estimation of

medium-scale DSGE models with a whole yield curve approximated to third order feasible.

We then assess accuracy of the POP method using closed-form solutions for bond prices in a
consumption based model with habits (Zabczyk (2010)). Broadly in line with Arouba et al
(2005) and Caldara et al (2009) we find that a third-order approximation outperforms alternative
methods like the log-normal approach (Jermann (1998), Doh (2007)) and the method using
consol bonds proposed in Rudebusch and Swanson (2008). We also find that the consol method
gives a less accurate approximation, and we show that it may be less accurate, even at third order,

than the first-order log-normal method.

The remainder of this paper is organised as follows: Section 2 describes the POP method,
Section 3 documents the gains in speed (at third order), accuracy is assessed in Section 4 and

Section 5 concludes.
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2 The POP method of computing bond prices

This section presents the POP method to approximate bond prices. For parsimony, we adopt the
same framework as in Schmitt-Grohé and Uribe (2004).° We further assume that the model can
be split into two parts. The first part contains all equations in which bond prices beyond
one-period maturity do not appear. The second part consists entirely of Euler equations for the
remaining bond prices.” Hence, let y, denote the n,, x 1 vector of all non-predetermined variables
except bond prices with a maturity exceeding one period, and let x; be the n, x 1 vector of
predetermined state variables. As in Schmitt-Grohé and Uribe (2004), the solution can be written

as
yi =g(x,0) 1)
X41 = h(x,0) +one,, )

where €,.1 ~ ZZD (0, 1) is a vector of n, innovations, 17 denotes the square root of their
covariance matrix, and ¢ is the perturbation parameter. In the first step of the POP method, the

solution (1)-(2) is approximated to N-th order using standard perturbation methods.

Let P"* denote the price in period ¢ of a zero-coupon bond maturing in k periods with a face
value of one. The price of this bond satisfies the fundamental pricing equation (see Cochrane

(2001))
Pt,k — Et [M x Pt-H,k—l]

fork = 1,2, ..., K where M is the stochastic discount factor. In many applications the focus is
on logarithms of prices rather than their levels. To accommodate this possibility we could rewrite

the equation above as

exp(p"") = E, [M x exp(p™ )]
where p"* = log(P"*) . More generally, since other transformations might be useful when
solving DSGE models (see for example Fernandez-Villaverde and Rubio-Ramirez (2006)), we

introduce an invertible transformation function R (-) € C" and denote p"* = R=!(P"*). The

pricing equation can then be written as

R(pt,k) — E, [M % R(pt+l,k—l)]. 3)

®Extensions to the more general case in which shocks do not necessarily enter additively, as in Dynare++ (Kamenik (2005)) or
Perturbation AIM (Swanson et al (2005)), are straightforward and dealt with in the appendix. Note that when using Dynare++ we only
consider standard perturbation approximations around the deterministic steady state.

7This structure is standard and all macro-finance models listed in the introduction satisfy this assumption.
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Setting R(x) = x gives the original ‘levels’ specification, while letting R(x) = exp(x)
corresponds to the case of a log-transformation. The gross yield-to-maturity in period ¢ of a
k-period bond Y T M** can still be computed and is given by

YT MU = (PYA)~1/k = R(phhy=1/k,

To compute perturbation approximations to p** we exploit two facts. Firstly, the functional form
of the stochastic discount factor M(y, 41, ¥;, X;41, X;) is known.® Secondly, since any bond price
is non-predetermined, it is a function of x, and ¢. We denote this function by p* (x,, o) where k
denotes the maturity of the bond. Where no ambiguity can arise, we omit the function arguments

and simply write p"*. Using these insights and substituting (1) and (2) into (3), we then define
F'(x,0)=E{R(p*(x,0)) =R (P (h(x,0) +ome,,,,0))

x M (g (h(X,O')-FG')’]GH_],O') ,g(x,a),h(x,a)+ane,+1,x)} fork=1,2,..,K. 4)

It follows by construction that F* (x, o) = 0 for all values of x and &. Clearly, this implies that

all derivatives of F* (x, o) must also equal zero, ie
Ff  (x,0)=0 Vx,0,i,j Q)

where F*

xio/

(x, ) denotes the derivative of F* with respect to x taken i times and with respect to
o taken j times. In the following subsections, we show how (5) together with the output from the
first perturbation step (1) and (2) can be used to find derivatives of p* (x, o) of order up to N
evaluated at the deterministic steady state. These derivatives suffice to construct an N-th order

perturbation approximation to p* (x, ¢ ) around the deterministic steady state.
2.1 Notation

To make the subsequent formulas more transparent, we adopt the convention that indices a and y
relate to elements of x, while £ and ¢ correspond to elements of y and €, respectively.

Furthermore, subscripts on these indices will capture the sequence in which derivatives are being
taken. For example, a; corresponds to the first time a function is differentiated with respect to x,

while a, is used when differentiating with respect to x for the second time.

8We assume that the variables in the first block of the model, ie x and y, have also been transformed using R(-). Accordingly, M and all
its derivatives are known functions of the transformed variables. For example, for CRRA utility and R(x) = exp(x) we would have
Mcrs1, 1) = Bexp(—y cry1)/ exp(=y cr).
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In most of the subsequent derivations we follow Schmitt-Grohé and Uribe (2004) and use the
tensor notation. In particular, [ pff]yl denotes the y ;-th element of the 1 x n, vector of derivatives
of p* with respect to x. Similarly, the derivative of h with respect to X is an 7, x n, matrix and
[h],! is the element of this matrix located at the intersection of the y ,-th row and the a;-th
column. Also, [pf~'] [b,])! =377 _ (@ p*~'/0x,,)(0h'1/0X,,) while

71 43}

[p,’z;l]ym[hx]“[hx]zll =0 2 (@ pt /o x, 0x,,)(0 W2 /0%,,)(0 1 /0x,,) where, for

a2

instance, h”! denotes the y -th function of mapping h and x,, is the a,-th element of vector x.

For parsimony, we also use superscripts ¢ and ¢ + 1 on functions p*, h, g, and their derivatives to
indicate the arguments at which they are evaluated. When these superscripts are omitted,

functions are evaluated at the deterministic steady state, ie for (x, o) = (X, 0). For example, for

VACRVZAN 8 )
fri=f (x,0) SH=f K, 0) f =7 (s, 0)
fxt ::(af/ax)l(xl,a) f;:—H ::(af/ax)l(xz+1,0) f" ::(af/ax)l("mo)'

2.2 Finding the first-order derivatives

To find the first-order derivatives of p* (x, o) with respect to x, we start by differentiating

F* (x, o) with respect to x. Exploiting (5) we rewrite [ F¥ (x,,0)] =0as

R, (pk) [p;,k]al_ [My],, R (pt+l,k—1) — MR, (pt+l,k—1) [p’z‘+1,k—1]yl [h; 3'“1 —0 (6)

fora,,y, € {1, 2, ..., n,}. Evaluating (6) in the deterministic steady state gives a set of equations
which determine [[9’,§]0Cl fora; =1,2,...,n,and k = 1,2, ..., K. Given the output from the first

perturbation step, we now show how these derivatives can be solved recursively.

To show this and to establish the recursive argument, consider first the price of a bond with one

period to maturity. The price of a maturing bond is one for all values of (x, o), and all of its

t+1,0

derivatives are therefore equal to zero, ie p

= 0. Accordingly, equation (6) evaluated at the
steady state and for £ = 1 simplifies to

R, (p") [Pi],, = Mila, » %)

where we use R (p®) = P° = 1. The value of R, (p') can easily be computed from its known

functional form and the steady state value of p'. Further, the value of [M,],, evaluated at the
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steady state can readily be found by differentiating M (y,41, ¥, X;+1, X;) and exploiting equations
(1) and (2)

Mo, = My ]y, Lol Il + (M, ], (o]0 + M ], 0+ (M), . @)
along with the fact that gy, h,, and all the derivatives of M are known in the deterministic steady
state. An alternative and slightly easier way of obtaining [M,],, is to report it in the first
perturbation step. However, this often comes at the cost of introducing extra variables into the
state vector which slows down the first step of the POP method. Once the scalar R, ( pl) and

[M],, have been computed, the derivatives [ p,l‘]al are immediately given by (7).

Given that we know [ p,“]al, we can then compute the first-order terms for the remaining
maturities directly from (6). To do that we evaluate (6) in the deterministic steady state. Using
M =R ( pl) and substituting out for [M,],, from (7), we obtain the following system of

equations for p*

Ry (P) [pi],, = [P, Ro (P1) R(P) + R (P) R, (P7) [P7], ITED )
fork=2,3,..,Kanda;,y, €{l,2,...,n,}. Again, R, (pk) 1s a scalar and all the terms on
the right-hand side are known, which makes it straightforward to solve for [ pk ]al. In the special

case of a log-transformation, the expression in (9) simplifies to
pi =p, +pi 'hy, (10)

where p¥ denotes a 1 x n, vector of derivatives of p* with respect to x. This formula reproduces

the first-order expression derived in Hordahl et al (2008).

Expression (9) also suggests that the easiest way to start the recursion is to approximate p' in the
first step of the POP method. This gives the derivative [ p,lﬁ]m1 required to compute the right-hand
side of (9). This procedure does not add extra state variables to the first perturbation step and will
therefore be faster than the alternative of reporting the stochastic discount factor M mentioned
above. Moreover, if the R-transformed level of the one-period interest rate y¢m is already given
in the first perturbation step, then [ p}(]m1 can be computed by differentiating

p"! = R7'(1/R(ytm)). For instance, using a log-transformation it holds that p! = —ytm!.

The first-order derivatives of bond prices with respect to ¢ are found in a similar way.’ That is,

9We know from Schmitt-Grohé and Uribe (2004) that these derivatives are zero. Nevertheless, we solve for these terms to make
subsequent derivations of higher-order derivatives more transparent.
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we exploit the fact that the derivative of F* (x, o) with respect to o evaluated at the deterministic

steady state equals zero, ie
FE 0 = B R, () [14] - M1 R (57)

— MR, (pF1) ([pfi“]yl ([h, 1 + ne.y) + [pg—l]) } —0. (11)
For the one-period bond, this reduces to
Et{Rp (»') [pff]] = EM, (12)

as R (p°) =1, E; [€4+1] = 0, and all the derivatives of p° are zero. The fact that E,M, = 0
implies [p},] = 0. Moreover, h, = 0 and this suffices to show that p’; =0fork=2,3,..,K.

2.3 Second-order terms

This section shows how to compute all second-order terms for bond prices. The procedure is
similar to that used to compute all first-order derivatives of bond prices. In particular, we use
terms computed in the previous section, output from the first step of the POP method, and

second-order derivatives of F* (x, o) evaluated in the deterministic steady state.

Starting with second-order derivatives with respect to the state vector, we obtain
[Fa s O, oy = Rop (P) [PL],, [PV, + Ro (P1) [P, (13)
~ Moo, R (P71) = Moy R, (P77) [471], [sD2
~ Mo, R, (P"71) [257'], [hi!
— MRy, (p"7) [pi7'],, iz [, [
~MR, (P [P, (22 [hal!
MR, (") [A7], il =0

fora,as,7,,7,=1,2,...,n,. To solve for second-order bond price derivatives, we consider
the case where the price of the one-period bond is approximated in the first step of the POP
method and focus on computing p%_given pf=1.1% To evaluate the right-hand side of equation

(13) we need expressions for M, M,, and M. The value of M equals R(p') and M, is given

1OAlong the lines discussed in Section 2.2 for My, the value of My can also be computed by second-order differentiation of M, or
Mxx may be reported directly in the first step of the POP method.
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by equation (7). The expression for M,y can be computed from equation (13) when k£ = 1

Madaa, = Ry (P') [P, o + Row (P1) [25],, [P, (14)

as all derivatives of p°(x, o) are zero. Exploiting these findings in equation (13) gives

Ry (P") [Pis)aray = —Rop (P") [2x],, [2],, (15)
(Ro (0) [Py + R (2') [2],. [£1),.) R (57)
[Pa]., R () Ry (P°7) [27'],, D12
o Ro (P') Ry (P71) [P71],, [
D22 [P ], Dl

()
+R (p) R, (p"7) [Pic], ,, (02 [T,
()

fork=2,3,..,K and fora,,as,y,,7, =1,2, ..., n,. For a log-transformation, the formula in

(15) simplifies to

P = P + WP T+ 370 pT (5 D (55, ). (16)

Here, we have adopted the notation used in Hordahl et a/ (2008) to clearly demonstrate that
equation (15) nests their second-order expression. Using this notation, A(y ;, 75, ..., 7 y)
denotes an element on the intersection of dimensions y ,, y ,, and y 5, in matrix A and colons
refer to entire dimensions. For example, hy (Y, :, ) is an n, x n, matrix of second-order
derivatives of the y |-th mapping of h evaluated at the steady state, and p, is the n, x n, matrix

of second-order derivatives of p* with respect to x.

To find p¥ _, we differentiate F* (x, o) twice with respect to ¢ and evaluate the expression in the
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deterministic steady state. Since this derivative is equal to zero, we get

[Foo (X5, 0)] = Et[ ( ) [ ()‘] + [M,6] R ( ) )

+IMAR, (07 [PE7'], 0T} [es]”
+IMAR, (P [P, [T} [en]”
+MR,, (Pk_l) [Pl;_l]yz ["7]25; [€t+1]¢2 [pl;_l]yl ["7];51l [‘5z+1]¢1

+MR, (P [P 1 [ern]” ) [ecn]”
FAMRy () [P7], Tl M, (57 [ ]] =0

where y ,y,=1,2,...,n, and ¢, ¢, = 1, 2, ..., n.. To simplify equation (17) we have relied on
the fact that the terms h,, p%, and p¥_ are known to be zero (Schmitt-Grohé and Uribe (2004)).
Again, the important thing to observe is that equation (17) allows us to solve for p¥ . To show

this, we first differentiate M with respect to ¢ to get

[Ms]= [MYt+1]ﬁ2 [gx]fz [77]3;5; [€t+1]¢2 + [Mxm]yz [77]3;5; ["3t+1]¢2 . (18)

To find an expression for E, [M,,] we consider the case in which p! _ is reported in the first step
of the POP method. Evaluating equation (17) at £k = 1 and exploiting the fact that all derivatives
of p(x, o) are zero gives

E M) =[ps,] Ry (P)- 19)
Combining the results in (18) and (19) to evaluate (17) we get

R, (P")[pi,] = [ps,]Ry (P") R (P*) (20)
+2[ My, ], [ 15 Ry (P1) [pE1], [l (002
+2 My, ], [l R, (P71 [PE7'], [y NI
+R (p") Ry (P71) [P7], 0232 (P41, I 0005,

R, (P [P, Il [l TU0,

and M

As discussed previously, the derivatives of the stochastic discount factor M

Ye+1 Xt+1

straightforward to compute from the known functional form of M. Applying a
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log-transformation makes it possible to simplify the above formula to

Ph, =i, + iy P g, + trace (n'pl'm) + 0 (BLT) + 2 —m) ' (pX71)
21
when M = B4,,1/(4,m,41). Here, f is the discount factor, 4, denotes the marginal utility of
consumption, and 7, stands for the inflation rate. We use Ay and 7y to denote 1 x n, matrices of
first-order derivatives for 4, and 7, with respect to x in the steady state, respectively. In this
special case, formula (20) reproduces the second-order expression derived in Hordahl et a/

(2008).

2.4 Higher-order approximations

The method described in the previous two subsections naturally generalises to perturbation
approximations of order higher than two. Third-order terms are of significant economic interest
because they allow for time-varying risk premia. We therefore provide explicit formulas for
Pt pt, . and pt __, with the proof of pt _ = 0 provided in Andreasen (2010b). In the interest
of space, we only report simpler expressions for the log-transformation case in the body of the
text and refer to the appendix for the general solutions corresponding to arbitrary R(-). As

derived in the appendix

P (@1, 02,03) = py, (a1, a2, a3) 22)
+ 30 o (y s a) b Goaa) Pl (715 50) e G, as)
+hy (G 00) Pl (G 00, 03)
+hy (a1, 03) i 'y (, a2)
thy (G, a1, a2) Pl 'hy (, a3)

k—1 .
+PX hxxx ('9 a1, A2, OC3)

fork=2,3,..,Kand a;,0,,a3 =1,2,...,n,. The notation follows that in equation (16).

When M = B,41/(A7,41), the general formulas for pf__and p¥__ reported in the appendix
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simplify to
Proy = Pro =20« —m)nm (pi7') p} (23)
+2p5 " (A = Amrx — A+ oy + gl — g + k) hy
+2p5 g (N — N
+2 (A — my) nﬂ/Pi;lhx
+ szlzl n (V 1» :) n/p];;xl (y IERE :) hX
+h;0pl;;1hx + p];_lhoax + p];;ihx
and

Pros = Pogo +P5 Mooo + i, 24)
+205 1 3(m G p)m (611 (1)) (N = Ny = T A+ 7w ) 1 G, 6) L' 1 G 1)
+30% 3G gD m (641 (6) A —m) (¢ PN ()
+25 3 A =) g G g m’ (61 () PY ' G ) DL M (L )

+ 30 3 — )M () m (€ (1) 0 G 62) Pl (52 63)
+ 305 PG gD P G g P M G M’ (e ()

+ 303 G d) (0 G b)) m (e (8))) Pl ' G )
+2 G P (s ) n G e (1 d) md (4 ()

fork = 2,3, ..., K. Here, m> (€,4 (¢,)) denotes the third moment of €, (¢,) for
¢, =1,2,..., n.. Notably, formulas (22)-(24) extend the results in Hordahl et a/ (2008) to

third-order perturbation approximations.

All the formulas derived in this paper are implemented in Matlab and the codes are publicly

available to facilitate their use.
2.5 Extensions

The set-up considered above assumes that the model can be split into two distinct parts: one
containing all equations in which bond prices beyond one-period maturity do not appear and

another consisting entirely of Euler equations for the remaining bond prices. However, the POP
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method may still be useful if this condition does not hold. To see how, consider the case in which
one is interested in the dynamics of the 10-year yield curve but it is only possible to separate out
bond price Euler equations of maturity greater than 5 years. To then apply our method, the model
including bond prices of maturity up to 20 quarters (5 years) needs to be solved in the first step of
the POP method. This gives all derivatives of bond prices for £ < 20. The remaining derivatives,
for bond prices with maturities between 5 and 10 years, ie k € {21, 22, .. .40}, can then be

computed in the second step by starting the recursions derived in this paper at £ = 20.

Andreasen (2010a) presents another extension in which the expected value of future
non-predetermined variables are computed in the second perturbation step, making it possible to
efficiently solve for expected future short interest rates, inflation rates, etc. We also illustrate in
the appendix that the POP method can be extended to the case in which no restrictions are
imposed on the way shocks enter, as considered in Dynare++ or Perturbation AIM (Kamenik
(2005) and Swanson et al/ (2005)). Furthermore, the scalar example presented in the appendix is
derived using Mathematica and the underlying codes may be used to derive bond price

approximations of orders higher than three.

3 Evaluating the computational gain

This section assesses the speed of the POP method and compares it to that of standard one-step
perturbation. Clearly, both the absolute and relative performance of POP will depend on a
number of factors. Those we focus on in this paper include the maximum maturity of bonds in

the yield curve and the number of state variables in the model.

To illustrate the role played by the maximum bond maturity, we report results corresponding to
nominal yield curves of maturities ranging from 5 to 20 years.!! The relevance of the number of
state variables is shown by reporting computing times for the DSGE model by Rudebusch and
Swanson (2008) with 9 states as well as a version of the model by De Paoli et a/ (2007) with 15

state variables. Both models are approximated to third order using Dynare++.!2

1'The case of the 20-year yield curve is seldom considered in the literature, with the 10-year yield curve being the benchmark. However,
from a computational perspective, approximating the 20-year yield curve is equivalent to: i) computing jointly the 10-year nominal and
real yield curves, or ii) computing the 10-year yield curve and the corresponding term premia.

120ur implementation of the POP method does not exploit multi-threading, and we therefore do not use it in Dynare++. Note however,
that by using Matlab to code our routine we are already sacrificing performance relative to the more efficient C++ implementation of
Dynare++.
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The absolute computing times are reported in seconds, while the relative computational gain
from the POP method is measured as

Computing time using the one-step perturbation method

Speed gain =
peed e Computing time using the POP method

Table A reports Monte Carlo estimates of the time and the speed gain based on 20 replications
for a third order approximation. The POP method turns out to be 23 times faster than the
one-step perturbation method for the model by Rudebusch and Swanson (2008) with a 10-year
yield curve. This number increases to 139 with a 20-year yield curve. The computational gains
from the POP method in the model by De Paoli ef al (2007) are somewhat lower, with the
corresponding figures equal to 14 and 61, respectively. As shown in Andreasen (2010a), the
speed gains involved are sufficient to make estimation of medium-scale DSGE models with a

whole yield curve approximated to third order feasible.

Table A: Gain in computing speed from the POP method

This table compares the computing time of the one-step perturbation method to that of the POP method.
The reported numbers are averages from 20 Monte Carlo replications for third-order approximations. Both
DSGE models are solved in Dynare++ and bond prices from the POP method are implemented in Matlab.
All computations are done on an Intel Core 2 Duo P7350 PC with 3.0 GB of RAM running Windows Vista.

S-year 10-year 15-year 20-year
Rudebusch and Swanson (2008)
One-step perturbation method (seconds) | 2.43 10.47 32.46 68.87
POP method (seconds) 0.43 0.45 0.48 0.50
Speed gain 5.61 23.09 68.11  138.55
De Paoli ez al (2007)
One-step perturbation method (seconds) | 7.18 24.53 59.37 111.86
POP method (seconds) 1.72 1.75 1.79 1.83
Speed gain 4.18 14.02 33.11 61.09

4 Comparing solution accuracy

Our proposed POP method is faster to execute than traditional one-step perturbation, but there
are other approximation methods which have become popular, in part due to their speed. This
section compares the accuracy of the POP method to that of three well-known alternatives. In
doing so, we add to the results of Arouba et al (2005) and Caldara et al (2009) by examining the

accuracy of different interest rate approximations.

BANK OF ENGLAND Working Paper No. 416 March 2011 18



The first alternative considered is the first-order log-normal method proposed by Jermann (1998).
Its accuracy is potentially compromised by the fact that it only includes some second-order terms
in bond price approximations. The next alternative is the second-order log-normal method in
Doh (2007), which extends Jermann’s approach by combining second-order perturbation
approximations with bond prices derived from the log-normal assumption. This approach is
subject to similar type of criticisms as Jermann’s method, because it only includes some third and
fourth-order terms (see Andreasen (2009)). The final alternative considered is the ‘consol’
method proposed in Rudebusch and Swanson (2008) where consol bonds are used to compute
yields.! Its accuracy may be adversely affected by the fact that consol bonds and zero-coupon
bonds have very different cash flows, and matching the first-order concept of duration potentially

allows for different higher-order properties of these bond prices.

To assess the accuracy of the aforementioned methods, we use expressions for zero-coupon bond
prices in a consumption endowment model with external habits derived in Zabczyk (2010). We
use a habit-based set-up because it has become a standard ingredient of many consumption-based
asset pricing models. For example, De Paoli et a/ (2007), Hordahl et al (2008), Bekaert et al
(2010), among others, use habits when studying the properties of bond prices in DSGE models.
Furthermore, while our closed-form solution makes it straightforward to assess accuracy, the

habit model is at the same time sufficiently flexible to match several salient features of the data.

We proceed by briefly introducing the habit model in Section 4.1. Section 4.2 then compares the

approximation accuracy of the POP method to that of the three alternatives mentioned above.
4.1 The consumption endowment model with habits

We consider a representative agent with the standard utility function
0 (C,—hC,_)'77 =1
UO:Zt:OﬂtEO[ t lt_ly ’
where C; is consumption and / € [0, 1] controls the degree of external habit formation.

Consumption growth is defined as x, := In (C,/C,_), and x;, is assumed to follow an AR(1)

process, ie
xx=0=p)p+pxii1+¢, (25)

13 As shown by Rudebusch and Swanson (2008), prices of consols satisfy simple recursive relationships which make them easy to
approximate.
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where &, ~ NID (0, 2). This implies the following expression for the stochastic discount

factor © hC) " { o
M = t+1 — t _ — NEXP1—Xs41 _ ’
=l iy \T=heplmxy ) P70
and a closed-form solution for zero-coupon bond prices of the form (Zabczyk (2010))
1 — k
PF = (1 = hexp(—x,))" p* exp[—y (kp+ (o — m%ﬂ

+00 _ " k 1 — j Jj_ Oj
XZ y (—h) exp[—n,u—n(xt—,u)pk]Hﬁg(—y ((1 p’) —n? )
=0 \ 7 =0 —p) P

o
Here, L: is the Laplace transform of &, and (

) denotes a generalised binomial coefficient, ie
n

a 2 o
::H(a—k—i—l)/k, forn > 0 and =1,
k=1

n 0

where o € Randn € V.1

The model is calibrated as follows. We let § = 0.9995 and set # = 0.7 based on the findings in
Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007). The coefficients in the
consumption process in (25) are determined from an OLS regression for US non-durable
consumption in the period 1947 Q1 to 2009 Q2. This implies ¢ = 0.0062, p = 0.0633, and

os = 6.4379 x 107°. Two values are considered for the curvature parameter y . Our first choice
is to let y = 1 which corresponds to standard log-preferences. Our second choice is to set y to 5

and serves to explore the effects of stronger non-linearities in the model.
4.2 The accuracy of various approximation methods

Chart 1 plots the benchmark 10-year interest rate as a function of consumption growth when

y = 1. The solid red line represents the exact solution and the other lines correspond to various
approximation methods. Approximated solutions from one-step perturbation and the POP
method are identical and are referred to as ‘perturbation method’ throughout this section.

Furthermore, under our calibration, the functions from second-order perturbations are

14Note that this model can be fairly easily extended to account for persistent habits and exogenous inflation (eg along the lines of
Binsbergen ef al (2010)). The latter would make it straightforward to price nominal bonds and analyse the properties of the nominal yield
curve. However, since this would come at the cost of introducing extra state variables, we leave it for possible extensions.
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indistinguishable from those implied by the second-order log-normal method, and we therefore

only plot the former.

We first note that for the range of consumption growth considered, the third-order perturbation
method delivers an approximation which is hard to distinguish from the exact solution. The
second-order perturbation method is also quite accurate, with small deviations from the exact
solution only visible for consumption growth deviations exceeding 4-0.08. The consol method
generates larger approximation errors with clearer deviations from the exact solution.
Importantly, for y = 1, all of these methods are more accurate than the first-order log-normal

method.

Chart 1: The function for the 10-year interest rate: y =1

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports

the value of the 10-year interest rate in deviation from the deterministic steady state and expressed in
quarterly terms.
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In Chart 2, we turn to the case of stronger non-linearities with y = 5. Again, the third-order
perturbation approximation is almost indistinguishable from the exact solution. Chart 2 also
shows that the second-order perturbation approximation is fairly accurate. The consol method,
on the other hand, does worse than the first-order log-normal method. It is also interesting to note
that moving from a second-order to a third-order approximation in the consol method does not

improve its accuracy.

Chart 2: The function for the 10-year interest rate: y=5

The x-axis reports consumption growth in deviation from the deterministic steady state. The y-axis reports
the value of the 10-year interest rate in deviation from the deterministic steady state and expressed in
quarterly terms.
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These observations are also confirmed by Table B which reports the root mean squared errors
implied by the approximations in Charts 1 and 2. For our model and the chosen calibration we

also see that third-order perturbation clearly outperforms all the alternative methods.
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Table B: Approximation accuracy for the 10-year interest rate

The root mean sqaured errors for the approximations are computed for consumption growth at the
following points: -0.1, -0.095, ..., 0.095 , 0.1. The figures in the table are multiplied by 100.

y=1 p=5
2nd order perturbation 0.007  0.037
3rd order perturbation 0.001 0.007
2nd order consol method 0.028 0.692
3rd order consol method 0.027 0.769
Ist order log-normal method | 0.045 0.212
2nd order log-normal method | 0.007  0.037

To evaluate the impact of the approximation errors reported above, we now focus on the first four
moments of the benchmark 10-year interest rate. These moments are compared in Tables C and
D which correspond to y = 1 and y = 5, respectively. We see that both versions of the
perturbation method and the log-normal method reproduce the correct annualised mean.
However, the consol method overestimates it by approximately 20 basis points when y = 1 and
by 24 basis points when y = 5. The consol method also underestimates the standard deviation by
more than all the other methods. Values of skewness and kurtosis are closely matched by the two
perturbation methods and the second-order log-normal method, but not by the consol and

first-order log-normal formulas.

Table C: Moments for the 10-year interest rate: y =1

The 10-year interest rate is expressed in annual terms. All moments are computed based on a simulated
time series of 1,000,000 observations.

Mean  Standard Skewness Kurtosis

deviation
2nd order perturbation 2.6724  0.1786 0.0815 3.0065
3rd order perturbation 2.6724  0.1787 0.0816 3.0113
2nd order consol method 2.8740  0.1775 0.1337 3.0214
3rd order consol method 2.8740 0.1774 0.1341 3.0332

1st order log-normal method | 2.6758  0.1786 0.0000 2.9972
2nd order log-normal method | 2.6724  0.1786 0.0816 3.0060
Exact solution 2.6724  0.1787 0.0818 3.0110
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Table D: Moments for the 10-year interest rate: y =5

The 10-year interest rate is expressed in annual terms. All moments are computed based on a simulated
time series of 1,000,000 observations.

Mean Standard Skewness Kurtosis

deviation
2nd order perturbation 12.2038  0.8930 0.0815 3.0065
3rd order perturbation 12.2038  0.8935 0.0816 3.0113
2nd order consol method 12.4429  0.8899 0.3402 3.1520
3rd order consol method 12.4429  0.8571 0.3589 3.2342

Ist order log-normal method | 12.2906  0.8928 0.0000 2.9972
2nd order log-normal method | 12.2039  0.8929 0.0816 3.0060
Exact solution 12.2035  0.8935 0.0818 3.0110

Summarising, third-order perturbations — and hence the POP method — approximate the 10-year
interest rate most accurately in the examples considered. The precision of the second-order
log-normal method is very similar to that of the second-order perturbation method, and both
outperform the first-order log-normal approximation. We also find that the consol method gives a
less accurate approximation, and we show that it may be less accurate, even at third order, than

the first-order log-normal formula.

5 Conclusion

This paper proposes a new method of computing bond price approximations. The approach is
applicable to a wide class of DSGE models and uses the perturbation principle sequentially.
While the final formulae for bond prices exactly match those derived using the standard one-step
perturbation method, a simulation study documents that execution times can be more than 100
times shorter. In general, the exact improvement in speed depends on the maturity of the

approximated yield curve and the number of state variables in the DSGE model.

The paper also assesses the accuracy of the POP/perturbation method implemented up to third
order in a consumption endowment model with habits. Our results show that the third-order
approximation to the 10-year interest rate is more accurate than those of popular alternatives and
can be hard to distinguish from the true solution. It is also shown that interest rates approximated
from prices of consol bonds can be less precise, even at third order, than those computed using

the first-order log-normal approach.
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Appendix A: Third-order terms for bond prices

This appendix derives the third-order terms for bond prices in the framework of Schmitt-Grohé

and Uribe (2004).
A.1 Derivative of p* with respect to (x, X, X)

Applying the chain rule to the definition of F* one can show that [ Fxxx (Xs55 0)],,0,4, = 0 equals

Ry (P") [Passl e = —Romw (P°) [P4),, (P41, [PE),, —Row (P) [PAd] s, [P4],
—Rpy (1) [P5],, [Pl ey =R (P°) [PE],, [Py My R (PF7)
1

+ (R (0) [P, + Row (P1) [P, [20),,) Ro (P4) [671],, DTS
+ (R (0) [Pl + Bow (') [P2],, [P1],,) B (07) [2471], DT
+[pil,, Ro (") /R (P°) Ryp (p") [7'],, D[], ThD:2
+[pxl,, Ro () /R (P°) Ry (P1) [P51],,, [sJE3 T2

+[pil,, Ro () /R (P°) Ry (P1) [2371], ]l

+ (R (P) [P, + R (21) [21],, [211,,) Ro (75) [P5], I
+[ni],, Ry (") /R (P°) Rpp (P*) [PE7'], I3 [PE7'] [N
+[ni,, Ry (") /R (P°) R, (P*7") [P ]m hyJ}; [h]}!

+[pi),, By () /R (P°) Ry (P*71) [PE7'],, bl

+ (2], Ro (") /R (P°) Ry (P*1) [PA7'],, 22 [247'],, [l

+R (pl) Rppp (Pk_l) [Pl; 1]y3 [hx]y3 [ ] X]Zé [ ]y] [hx]éll

+R (p') Ryp (p°7) [PK], G132 [ ]/z[ Pl [h)!

+R (pl)Rpp (pk_l) [pi_l]yz[ xx] 2o [px ] [ ]21‘

+R (p') Ry (P71) [T, 122 [25], [h 12 [hyJ2;

+R (p') Ry (P°71) [257'], [hs1i2 [ 1]yl[ wllla,

+[pi,. Ro (P) /R (P°) R, (") [P5'], ) [nD2 [T

+R (p') Ry (P') [2X7'], I3 [P45], 122 [hi

+R (p') R, (P*) [pxxx‘]ym [hyJ23 [ha]7? [hiD! +R (p ) Ry (P7) [P, D]z, [l
+R (p') R, (P7) [P, Ih02 Tl

+[pa), Bo () /R (P°) R, (1) [PE7'],, sl
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+R (pl) RPP (pk_l)[ ] [h ]y3[ Py ] [h“]gcllaz
+R (p') R, (p*~ )[pxxl]yly hJ}; [hxx]z;az +R (") Ry (P7) [PE7],, T,

Note that we can also eliminate [Myxx],, 4,4, from this expression. Again, the trick is to observe

that for k = 1 we have P° = 1 for all values of (x,, ) and so all derivatives have to equal zero.

Thus

Ry (P') [Praxlsrare, = R (P") [22],, [, [Px]a, = Row (P') [Pia) e, [22],,
—Ry, (') [l [pix]m =Ry (P') [Pa,, [Pac] a1y + M iasdiioas R (P°)

Ry (P") [Pasc)uyans + Rovw (P') [ 23], (2], [P3)s, + Row (P) [Pas] e, [P2],,

Ry (P") [Pi],, [P, + Row (P') [P2),, [P ) = [Missdyaa, because R (p°) = 1.

Thus we get for k£ > 1

R, (P") [P asnas = —Rowow (P) [25],, [PC),, (5 ]., — R (PF) [P2],,0, 2],
) [2:],, (75, oy = Row (P°) [PF],, [PA],o,

pp (p
+(Ry (') [Prcx)yars T Rowow (') [Pe],, [2x], [k, + Riop (P1) [Pie] s [P4],,
+Rpp (P") (i), [Pxc e, + Row (P) [ 23], [Pas)s o) R (p ')
+ (R (1) [Ph s + Row (") [P, P21, ) Ry (P) [PE1], IATE
e (R () [P+ B () [22], [211,) R (49 [, 01
+[pxl,, Ro () /R () Rop (P*71) [P57'], I [PE7'], [0S
+[n,, Ro (') /R (P°) Ry (P*71) [PAC1],.,, [ ()2
+[pi,, Ry (P") /R () R, (P*") [PL71],, Tl
+(Ry (P") [P], + Row (P) [P2],, [2],0) Bo (P) [PE71],, IT
+[pi],, Ry (P") /R (P°) Ry (P71 [PE7'],, 0123 [P47], [T
+[pid,, Ro (p') /R (P°) Ry (P"7) [P57],,,, Thsis TaT)
+[pxl,, Bo (P') /R () Ry (P) [PA7'],, [l
+ [p)li]ag, R, (pl) /R (po) Rpp (pk l) [ ] [hy]2; [ - ]yl [hy]7!
+R (Pl) Rppp (Pk_l) [Pi l]y3 [hy]}: [ 1] [h 132 [ Px ]V1 [hy]7,!
+R (p') Ry (P7) [Pic],,, I3 Tl [px '], [h2
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+R (p') Ry (P"7") [PE7'], iz, [P471], (i)

+R (p') Ry (PF7) [A7'], 12 [PAC], [hx]m [hy],

+R (p') Ry (P) [P47],, 22 [ P4 I]yl[hxx]a:ag

+ [P, Ry (P') /R (P°) ,,( [P, 2 [h

+R (p') Rpp (P*71) [p57'], T2 [PES1] DD [

+R (p') Ry (P*7') [pxx;]y,m [hx]ya[h ]“[hx]“ +R (p ) Ry (P [PE1]) ) Thadi2,, [hidl
+R (p') R, (P71 [p5'], (22 [hl,,

+[pel,, R (P) /R () R (kU[ -, i,

+R (p') Ry (P*71) [P7'], I3 [P, T,

+R (p') R, (P*7") [Pis I]W hyJ7; [hxx]z:az +R (p') R, (P*71) [2x7'], | (had il

With a log-transformation R (p"*) = M*, R, (p"*) = M*, R, (p"*) = M*, and

R,,p (p") = M* in the deterministic steady state. Using the expressions for first and

second-order derivatives of bond prices derived above, we get, after simplifying, the expression

stated in the body of the text.
A.2  Derivative of p* with respect to (o, c, X)

It is possible to show that [ £,y (X, 0)],, = 0 implies

Ed=Ryy (1) [PA],, [Phe] = Ry (P) [Phosl,,

+[Mm]R( )+ Moo 1R, (071 [2371], Tl

+2[Molay Ry () [P27] (02 [€1]”

M Ry () [p7],, I [, T[]

+2[M, 1R, (") [P ]y2y3[x]z;[n] [e,+1]¢2

+ Mo, Ry (P[5 12 (€] [P57] Il [ ]

+MRy, (P*1) [T, [ x]é;[ Py, g [€t+1] [px L [e]”
MR, (P [p51] I2: 02 [ecn ] [p471], D) [,+1]

+ MR, (P7) [P Il (e ] [551], Ddiz D! [ersn]”

+ Mo, Ry (P [51], [02 [€1]™ ! [ei1]”

+MR,, (P) [, I3 [P, [0 [ez+1]¢2 (1] [€1]”
+MR, (p*) [Pﬁy&l]ylym [hy]}: ["7]; [€t+1]¢2 [n1,,! [€t+ ]¢]
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+MR, (P [P I Theo T +MR, (p571) [PE71] [hoosl)!
+ Moy Ry (P471) [P5 ]+ MR, (0°71) [p57'], Tl [5']
+MR, (p") [pioa], I3} =0

R, (P") [PEou)., = —Rop (P1) [PE],, [PE, ] +E IMoo] R (P°)
+[ps [ Ry (P') /R (P°) R, (P*1) [237'],, DD
+2F, ([Mﬂx]a3 R, (P) [PE7'], [et+1]¢)
+2E, (IM,1 Ry, (P1) [247], [, [ [en]”)
+2E, (IMo1R, () [P57], ,, I0ST22 [l [em]”)
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+Mpwdﬁﬁbghwgdxmzmlmz
+[pil,, Ry (P") /R (P°) Ry (P*7") [P71], Thao ]
k

i
+R()(ﬁﬁ[1]mmm+b&3() R (o) R, () [245']
) 1

+R (p') Ry (P [Px7'], ITis (P55 1 +R (PY) R, (P'1) [Pl TDG

where we have used

M =R (p') M, = [pi],, Ro (P") /R (P°) Ei Mool = [ps,] Ry (') /R (P°) -

We now compute the terms with derivatives of o. Here we recall that

[M,]= ([-/\/lym]ﬁl [gX]fi [77]¢1 [€z+1]4Sl + [MXH—I] [77]¢1 [¢5z+1]¢1

So

p (P7) [P, Il [PE7'], Theo 1t +R (p1) R, (PF71) [P, ]2 o ]
0
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2B, (IM Ry (P [P571],, T2 [P, T2 [ ])

=2F, ([Mym] [gx]'fll [n1;, [€l+1]¢l Ry, (P*7') [P ]y3 [hy]7: [p];_l] [77]3;5; [et+1]¢2)

+uzq thmmﬂ@d“RW@“bemeﬁﬂﬁ ', i ka)
[ym][]mmWRW@“Ubfmembfﬂhmh[L

+2 (M, ], [0 Ryp (PP1) [PE71], T2 [P, T TG

and

2B, (IMAR, (P7) [P, Ia1 Tl [ ]™)
:M4M%Jkg[hkmﬁmw“mﬁmMMMMthﬂ
+2E, ([My ], Il [en]” By () [P5571], ,, I0sT22 D02 [ ]™)
=2[ My ]y, (&l ) Ry (p7) [557], ,, Thsl) D12 0015

+2E, [My,, ], Il R, (P) [P57], ,, 022 Il (005

To compute the [M,«],, term, we need to find an expression for [M,],,. Hence

[Morls =

([Mursia o, [ T2+ [ My ] T80+ My, IGEE + [Mysis ], )
x [ 1} [ei]” + My, [g])! I 1) [e1]”
 (Mua], g [0 0+ M ], T80+ [Mae], I+ M ], L)
X ["7]¢l [€t+1]¢1

So

2E; ax]a3 ) [px ] [n]¢2 [€l+l]¢2) -

(
2EA ( iy B18s g"]fz LN [Myt+lyt]ﬁ 55 [gX]ﬂ3 + [Myt+lxt+1]ﬂ1y3 [hy]o; + [MYI+lxt]ﬁ1a3)
@KM]hdﬁmwwnx][m[ﬁq
+ [Mym] [gXX] [h oo [l [€f+1]¢1 R, (P*7") [P% ]y2 (71 [€z+1]¢2
+ ([Mxmym]yl 5 [gx] DI+ (M ], 80+ [Maasa] ) I+ [Mxmx,]m)
xMhhd“&@W[H]mmhd%=
2 ([ v g g, (817 I+ [ My ] (8 + My ] I + [ My, ] ﬁ)
x [g"" [} R, (p) [Pk ]mumz
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+2[ My ], (gl I Dl Ry (0471) [471],, 0oy 100

Bs 5 B 5
+2 ([Mxt+lyt+l]ylﬁ3 [gx]h [hX]gg [Mxt+1yr]ylﬁ3 [gx]m + ['Mxt+lxt+l]y1y3 [hX];}g + [Mxt+lxt]yla3)
x [l R, (P") [PA7'], [n]2 03

We finally note that £, ([/\/lwx]a3) can be solved for and then substituted out by exploiting the
fact that for k = 1 we have P° = 1 for all values of (x;, ¢) and so all derivatives have to equal

zero. Thus

R, (p') [pzlfax]a3 = =R, (p') [pi](n (P50 ]+ Et (IMooxla) R (P°)

(Rp (p") [pal'a'x]a3 + Ry (') [p,l(]m [pflm]) /R (P°) = E; ((Mooxlus)

So for k > 1 we get

Ry (P*) [P5orl., = —Ron (") [P1],, 15, ]
(Ro (P") [PLosl,, + Rop (p) [P1],, [P2]) R (P) /R (1)

[ sol Rp (P') /R (P°) R, (P*) [P471],,, D1

+2 (M L (o] 0T+ [My T, [0+ My ], 6T + My ],
x [g]” 1! R, (P1) [p'], [l 0132

+2[My,, ], [ead) D002 0 R, (P4) [P471], ) D1y [0

+2 ([Mx,ﬂym]m (ool I+ [Ma ], [+ Mo, I+ M, )

x [l Ry (p*) [PE7'] | Il (00

+2[ My, ], [0 05 Ryp (1) 25711, T[], T2 (012

+2 [My, ], [T Ryp (P*71) [PE7'], D22 [1], [ [0

+2[My,, ], [&]) 1) R, (P) [51] ) [GD22 [n]¢j [’

+2E, [My, ], [l Ry (P) [P, [hx]zg 12 [T

+[oxl,, Ro (P') /R (P°) Rpp (P*) [2471], [1 [px ]1[77];11 LA

+R(p") Rppp (P*7') [P k_l] [hx]y3[ l]yz[n]¢2 [P ]1[77]35; [Ilii

+R (p') Ry (p*1) [P ]m[h 122 [l [p'],, [ 100,

+R (p') Ryp (p*) [PE7'], 2 [PES'], . [ ]/3[n]¢f LA

o], R () /R (0°) Ry (541) [ ]m LI

+
+
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+R (p") Ry (P71 [PE1], D012 [P5], Il I I,
+R (p') R, (P*') [pml]ym [hJ}; [n]¢2 [n]¢, A
+[pid., Ro (") /R (P°) Ry (") [P7'],, Thoo

+R (p') Rpp (") [, I3 [237'], Thoo ' +R (P') R, (PF7) [P35, D2 hoo 1

+R (p) Ry (P*) [PA7'], ooxly! + [ 3], Ry (P') /R (P°) Ry (P*') [P55']

+R(P') Rpp (P*7) [P7'], I0JE [P55 T 4R (P1) Ry (P71) [P5],, 022

For a logarithm transformation R (p*) = M*, R, (p"*) = M*, R, (p"*) = M*, and
Ry ( 2 ”‘) = M*. Using the expressions for first and second order derivatives of bond prices

derived above, we get, after simplifying,

Ploy (1, az) = 22M7' My, g’ (p&7") pi (1, a3) —2M7' My, o (pE7) i (1, a3)
P50y (1 a3) £2M7 pl=Inny’ (g0)'

X (My, 1y @b Gy @3) + My, .86 Gy 03) + My, by Gy o) + My, G, as))

+ 200 2MT My, (1 B) P m g (B1s 5 1) iy (s a3) +2M 7 p iy

X (My,, 1y 8xbx G, a3) + My, 1y, 8x G, a3) + My, x s G a3) + My, i, G, a3))
F2MI My, g P s Gy as) F2MT M mn pTha G, o) +pEm p T G, )
o p e Goan) 30 0 (71 ) MR (715 1) e G o) + (hgo) pi Ty G, o)
+p5 Ty oy Gy 03) +p50 s (, a3)

A.3  Derivative of p* with respectto (c,0,0)

It is possible to show that F,,, (X, 0) = 0 implies

[Froo (s, 01 = Ei{=R, (") [Pho0 ] + Mool R (P)

+3 Mg 1R, (P [pE7] [0 [ ]”

+3[M,IR,, (PF7) [p,':-l]h (1 (e ] [P271], (02 [€c]”

+H3IMIR, (P [P ) (e ]” 1) [e1]”

+R (p') Ropp (P*1) [P47], (135 [€41]” [P I, [ [eci]” [k '], [y, e ]”
+3R (Pl) R,y (pk_]) [P];_l]yz [77]3;5; [€t+1]¢2 [P],fx_ ]yly3 [77 b [€t+1]¢3 ["7] [€t+1]¢>1

+R (pl) R, (pk_l) [pfy;l]ylyzh [77];; [Ez+1]¢3 [”I]y2 [‘5t+1]¢)2 [77] [€t+1]¢1

+R(P') Ry (P [PX7'],, hooo ' +R (P') R, () [pm]} =0
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We next use the expression for [ M, ] found previously. We also have from differentiation of M

that

[M,,] =

([Mymym]/; B [gx]ﬁ3 [”I]y3 [‘5t+1]¢3 + [Myt+1x,+1]ﬁ1y3 [77]¢3 [€z+1] ) [gx]fi [77]¢1 [€t+1]¢1

+ My, ], [ ]m 1l [en]” il [ecn]” + [My ], [o]]) Thoo]

+ My, ], [go0]” + My, [200]"

(M, 5, [&]) [l [et+1]¢3+[Mx,ﬂxt+l] (13 [e]™) (1)) [€rs1]”
[h

+ My, ],

Y173

ool

For [M,,,], we exploit the fact P° = 1 for all values of (x,, o) and so all derivatives have to

equal zero. Thus R, (p") [pL,o] = E: {lMoe0l}.

To evaluate the expectations in the term for [F,,, (X, 0)], we define

m? (€41(P) P =Py = s

3
(€r41) =
[ " ]¢2¢3 0 otherwise

where m? (€,41) denotes the third moment of €, (¢,) for ¢, = 1, 2, ..., n.. Notice that m> (¢, )

isan, x ne x n. matrix. Following some simplifications we finally get

Ry (") [P5es] = +Ry (P') [Pros] R (P*)
+3 [Mye ]y g, [ 0132 [l 0130 Ry (047) [ ] [l [m 3<ez+1>]¢¢3
+6[My,+lx,+l]ﬁy3[n] [gx]ﬂl 1. R, (P) [P7], 1 12 [m 3<e,+1>]¢¢3
+3[My, ], el 0 Il R, (0°) [P4], [77] [ 3(€z+1)]¢¢3
[M"H—IXH-I]V y3[77] [, R (P [ ]2[77]¢2[ 3(6f+1)]¢>2¢3
+3 ([My ], [ 00+ [Mu 0 ) [ e[S, Ry (0471) [P, O [P, 2
3 ([My ]y, [ 1) + (M ], 00 [ )]y, Ry (04 [457],, Dl Dl
+R (p') PPP( )[ ] [77] [ ] [77]¢2 e ]1[77];11 [m’ (e’“)]z;%
+3R( Y Ry (P7) [P5'], 12 [P ]m[m%[ I [ en)]),

SR () Ry () [, T 2 Tl [ e,
TR (PY) Ry (P) (A7, Thooo 7 R (P) Ry (P) Pocs

For a logarithm transformation, it is straightforward to show that
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Doy =Pl +3M My ]y (&) i1 (&) Il [P571] I [ (en)]5,
+6M ™ [My, ]y, 00 [gx]ﬁ [l (2371, [yl [m? (et+1)]2¢3
H3MT My, ], (gl 1 Il (267, Il [ e 5,

+3M” ‘[Mx,+1x,+,]y1y3[n] (1! [P, Il [m® (e,
+3IM™ I(Mym 5, L&l T + [M x;+1] [y )[m3 (D)5, [P Il [P [l
+3M : ( YI+1 gx ﬂl [77] [ Xt+l] [T’] ) [m3 (et-i-l)]z;% [pkx ]V2y3 ["7]45; [’r]]gﬁz

+p7'],, g [px gk [n]¢2 [px '], [y, [m? (ez+1)]f§;¢3
+3 [ ] [77]¢2 [pxx ]713’3 [77]¢>3 ["7]y [ : (€t+1)]¢ s
+ [P;]Exx ]V1V2V3 [n ]¢3 ["7]¢2 ["7]3511 [m3 (€t+1)]¢2¢3 [Px ]h [hyos ] + pﬁ;},
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Appendix B: The POP method when perturbing the state variables and the innovations

Consider the class of DSGE models with the following set of equilibrium and market clearing

conditions:
E, [f (1415205 211, O'Mt)] =0

where o is the perturbation parameter. The vector z, contains all the endogenous variables and u,

is the vector of disturbances with the property u, ~ ZZD (0, ). The general solution is given by
z; =g (zi—1,u,0).
When the approximation is done in levels, the fundamental pricing equation implies
P"(zi—1,ui,0) = E; [/Vl(gt (Zi-1,Us,0) 5 Usy1, U)Pn_1 (g (zi—1,Us,0) , Usy1, 0')] .

The recursive solution for a third-order approximation of bond prices is then given by
Pt — Mpn—l +ut guArlt—l +Zt ng7—l

— —— ——

P P P

+iu? (A + g Ay o (AT + guge AT 22 (g AT+ g2 AT
Py, Pl Pl

+30° (P" (EMuu + Moo) +2EM P + M(Zpt + i) + 200 AT
Py,

+é0'3m3 (Mp;’u_ul + 3]?;’;1./\/1u + 3pZ_lMuu + pn_lMuuu)
pn

000

+123 (g AT 4+ 3822 AT + AT 103 (g AT 438G A5+ g AT
P P"

zzz uuu

+%thut (gzzu~/4’11_1 + (zgzgzu + gugzz) Ag_l + g“gzzAg_l)
2l

zZZu

+3200 (G A} + 28ugeu + &:8u) AT + 2 AT
Pn

Zuu

+%0'2ut (guaaAIf_l + guAZ_l) +%0'2Zt (gzaaAT_l + ngZ_l)
P’ P’

oou o0z

where
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A7 = PIM, A+ MPI AL = PIML, + 2M PP+ MPE
A = P M.+ 3M P 4 3MLPET 4 MPES!

zZzZZ

A7 = PP (E M+ Mego) + M (2P + P

+3 @M P+ M+ Mo P 4 2M, P
F Moo P74 PITIM. 4 o A3

These formulas are derived using Mathematica codes and could easily be extended to higher

approximation orders.
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