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Summary

This paper contributes to a body of work that has sought to describe evolutions in the dynamics

of inflation and output in developed economies. That work has been preoccupied with

documenting changes in the volatility of inflation and output, changes in the persistence of

inflation, and changes in the impact of a monetary policy shock, among other questions.

These facts have been deployed to try to diagnose the causes of the Great Moderation; document

evolutions in real and nominal frictions in the economy, and to understand their ultimate causes.

The tool of choice for studies of structural change of this kind has been an econometric model

that views the parameters that propagate shocks as themselves evolving over time, and behaving

as though they were random, but mean-reverting process. This paper applies a very different tool

to the same set of questions. We posit that the parameters that propagate shocks evolve smoothly

and non-randomly, and may not necessarily be attracted back to the mean.

Why the need for a different tool to the industry standard? First, we provide some suggestive

Monte Carlo evidence that models of deterministic structural change do a good job of

characterising that change even when in truth that change is random in origin. Second, whether a

deterministic or random parameter model is the best choice will depend on the nature of the task

in hand. In the macroeconomic dynamics literature that we apply the tool to, there are reasons for

at least studying what this deterministic model generates; economic theory is generally silent

about the true causes of parameter change, so that we cannot choose on those grounds which

econometric tool to use. This theory is however also silent about whether such change should be

mean-reverting, so on these grounds it may be desirable to look at evolving macroeconomic

dynamics through the lens of the deterministic model which allows structural change to be non

mean-reverting.

With these motivations in mind, we take the tools to UK and US data on inflation, GDP and

policy interest rates. We document several findings of interest. First, we note significant

reductions in inflation persistence (using univariate models) and predictability (using multivariate

models). Second, we estimate that changes in the volatility of shocks were decisive in accounting

for the Great Moderations in these two countries. Third, the evidence suggests that the magnitude
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and persistence of the response of inflation and output to monetary policy shocks has fallen in

these two countries.
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1 Introduction

This paper offers a complement to work that has sought to document changes in the time-series

properties of inflation and other macroeconomic variables. Recent contributions in this field

have spanned several strands of thought, including: documenting the increase in the volatility of

inflation in the 1970s and 1980s, and its subsequent decline; work describing the rise and fall of

inflation persistence; work attempting to account for changes in the moments of inflation in

terms of drifting propagation parameters versus drifting volatilities; and work describing the

evolving response of the economy to monetary policy shocks. This body of work derives its

interest from the light it sheds on questions such as the following: the extent to which changes in

macroeconomic performance have been due to good luck or better policy; and the extent to

which inflation dynamics derive from intrinsic real or nominal rigidities, or monetary policy

itself.

Accounts of the time series for inflation have imported techniques for documenting structural

change supplied by the broader time-series literature. One approach has been to assume the

existence of infrequent and abrupt changes in the data generating process. Researchers either

divide up the time series into portions using prior information about, for example, monetary

regimes (eg Benati (2006)); or they test for breaks (eg O’Reilly and Whelan (2004)). If breaks

are tested for, the tests can be conducted conditional on some known potential date (work which

derives from Chow (1960)) or the tests assume no prior knowledge of the break and allow it to be

identified as part of the estimation (see, for example, Brown, Durbin and Evans (1974), Ploberger

and Kramer (1992)). This technique does not explicitly model the cause or the incidence of

structural change, though in the case of inflation persistence and the Great Moderation there is

the implicit association of potential breaks with changes in the monetary policy regime. Recent

work by Kapetanios and Tzavalis (2010) provides a possible avenue for modelling structural

breaks explicitly.

Another strand of work on the time-series process for inflation has deployed stochastic,

time-varying coefficient (hereafter STVC) models. Such models bear resemblance to simple

non-linear econometric models such as bilinear models (see Tong (1990)). STVC models have

been used by Cogley and Sargent (2001), Cogley and Sargent (2005), Sims and Zha (2006),

Benati (2007), Benati and Mumtaz (2007), Stock and Watson (2007) and Cogley and Sargent
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(2010). These models articulate an invariant, parametric process for the coefficients and

volatilities of the inflation process.

Our main contribution in this paper is to document changes in the inflation process using

deterministic time-varying coefficient (DTVC) models. The framework we adopt has a long

pedigree in statistics starting with the work of Priestley (1965). That paper suggested that time

series may have time-varying spectral densities which change slowly over time, and proposed to

describe those changes as the result of a non-parametric process. This work has more recently

been followed up by Dahlhaus (1996) and others who refer to such processes as semi-stationary

processes. A parametric alternative to this approach has been pursued by Robinson (1989) for

linear regression models and Robinson (1991) for non-linear parametric models. Recently, Orbe,

Ferreira and Rodriguez-Poo (2005) extended these results to include time-varying seasonal

effects.

In common with the ‘sample-splitting’ literature, our DTVC model is silent about the process

that governs structural change from one period to the next. But in contrast to it, we impose that

this structural change takes place sufficiently gradually so that our view of the regime at any

particular date can be informed by looking at data from adjacent dates.

Like the STVC models, our DTVC model has time-varying parameters, and will potentially

uncover as many values for the coefficients that define the inflation process as there are data

periods. But this time variation is characterised very differently in the two approaches. To give a

concrete example, suppose we model inflation as a time-varying function of a single lag. The

STVC describes the time variation in the coefficient on that lag as an invariant, parametric

process. Although the coefficient that propagates past inflation into future inflation changes, the

inflation process itself is time-invariant. The DTVC model makes no such assumption; the

relationship between inflation and its lag would be purely data-determined. Depending on the

context, it may or may not be appropriate to impose this time-invariance.

Estimates of STVC models typically impose that coefficients and volatilities follow random

walks to avoid estimating autoregressive terms in these processes, and therefore embody the

assumption that the shocks to the propagation parameters and volatilities are permanent. Our
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DTVC models provide a practical way to avoid imposing this restriction.1 Many applications

combine the random walk assumption with the restriction that the the instantaneous VAR formed

by freezing parameters at a point in time is itself stationary. We avoid that assumption here. We

explain in an appendix that this assumption can be shown to imply that the time series are

stationary. That assumption is desirable because the consistency properties of the maximum

likelihood estimators used rely on stationarity. Once again, depending on the context, it may or

may not be accurate or desirable to characterise the dependent variable as stationary. Our method

at least provides a route to go if a researcher prefers to avoid this assumption.

A final contrast between the approach taken in this paper and the STVC papers is that the latter

have typically chosen to use Bayesian methods. We have adopted a frequentist approach here.

But nothing about the DTVC methods necessitates us doing this. In particular, there is a

considerable literature on non-parametric Bayesian methods, which can accommodate our

approach of modelling time variation, as a deterministic function of time. For a review of such

methods, see Muller and Quintana (2004).

In some cases, prior knowledge may give a strong steer about which of the DTVC or STVC is the

most appropriate tool to use to characterise evolutions in the dynamics of a multivariate time

series. However, we offer some food for thought for those researchers who are convinced that the

true process has parametric, stochastic time variation in its coefficients. A simple Monte Carlo

study shows that DTVC models uncover more accurate descriptions of the evolution of model

parameters not only in the case where the true process is a DTVC model, but also in the opposite

case where the data are generated by a STVC process. This benefit shrinks as the sample size

grows much beyond 1,000 periods, but for the cases considered in recent papers on macro data

(40 years of quarterly data or less) the benefit is quite pronounced.

We put a DTVC model to work to describe changes in the inflation process in the United

Kingdom and the United States up to 2007 Q1. We document statistically significant changes in

both propagation parameters and innovations variances in both univariate and multivariate

models of inflation for both countries. These show up as significant reductions in inflation

persistence (in our univariate models) and in inflation predictability (in our multivariate models).

1It has been suggested to us that in many macroeconomic applications the random walk restriction would be accepted by the data
anyway. In which case the option to relax it in our DTVC framework may not be all that valuable.
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The numerical contribution of changes in innovations variances is decisive in characterising the

rise and fall of inflation volatility. Univariate and multivariate representations of the inflation

process tell the same story in this regard for the United States. For the United Kingdom: the

multivariate account of the Great Stability assigns less weight to changes in innovations

variances. These results serve as a useful footnote to the exchange between between Cogley and

Sargent (2001) and Sims (2001). Cogley and Sargent (2001) had identified significant changes

in propagation parameters, and Sims commented that these changes were an artifice of not

having allowed for evolution over time in the variance of innovations. Cogley and Sargent’s

subsequent papers documented the extent to which significant changes in propagation parameters

survived in the more general model Sims recommended. Following Sim’s prescriptions, we

allow, like the later Cogley and Sargent pieces, for time variation in both parameters and

innovations variances. Both are shown to have changed significantly, though the latter

contributes most to the measured Great Moderation in inflation.

Some previous work has remarked on how different changes in inflation dynamics can look when

models are estimated on different price indices, so we ran our models on both CPI and GDP

deflator data. Unsurprisingly, we find that the story told by our multivariate models is relatively

robust to which index is used. There are some differences between the univariate models. Our

models of CPI tend to show more evidence of instability than the GDP deflator models.

Finally, we study the evolution of the response of inflation and GDP to identified monetary

policy shocks. For both the United States CPI and UK data sets, we find that inflation and GDP

respond by more, and stays a little more persistently away from target, at the beginning of the

sample, than at the end. In modern DSGE models, the persistence of these responses is a

function of the strength of real and nominal frictions (like habits, capital adjustment costs, wage

or price indexation).

What interpretation is to be placed on the finding that reduced-form inflation persistence has

fallen, and that the size and persistence of the response of inflation and GDP to an identified

monetary policy shock has fallen? One interpretation of these results is that, conditional on this

class of models being true, the strength of these rigidities was greater before than now. A

different interpretation would be that the finding that these moments of inflation and GDP change

is evidence that models that have these frictions hard-wired into wages or prices, or in other
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adjustment costs are simply not adequate models of the data.

One final aspect of the contribution made in this paper is methodological. In order to put the

DTVC framework to work to address the questions posed by others of the inflation process we

have developed two minor extensions to the DTVC toolkit that were needed to apply it to our

exploration of inflation dynamics. We have proposed an estimator for a time-varying error

variance-covariance matrix; and implemented new tests for the stability of these error variances.

The rest of the paper is organised as follows. In Sections 2 and 3 we describe the toolkit that we

use to model structural change in the inflation process. Section 2 lays out the model of

deterministic time-varying coefficients and provides a motivating Monte Carlo study. Section 3

describes a sign-restriction method for identifying monetary policy shocks. Readers familiar

with these tools can skip to our results which are set out in the next two sections. Section 4

reports our findings about changing inflation persistence and predictability. Section 5 documents

our findings on the evolving responses of inflation and GDP to monetary policy shocks. Section

6 concludes.

2 A deterministic time-varying coefficient model

In this section, we document the DTVC model that we later take to the data. These tools are

explained more fully in Kapetanios (2008) and Kapetanios (2007), but we draw out the salient

features here.

2.1 Estimating time-varying coefficients

We focus on a VAR-type model of the form

yt =

p∑
i=1

Bit yt−i + ut , t = 1, . . . , T (1)

where yt is an m-dimensional vector of variables and the coefficient matrices are functions of

time in a sense to be defined below. In practice, m will take either the value 1 when we estimate

univariate models for inflation, or 3 when we estimated a VAR with inflation, growth and

nominal interest rates.

Working Paper No. 434 July 2011 9



For the purposes of our empirical analysis we need to provide an assumption on the time varying

VAR matrix of coefficients, denoted by Bt and given by

Bt =



B1,t B2,t . . . Bp,t

I 0 . . . 0

0 I . . . 0
...

...
...

...

0 . . . I 0


We, therefore, have the following natural assumption.

Assumption 1

0 < lim
T→∞

lim
m→∞

∏m
i=1 ||BT−i ||

cm
<∞

for some 0 < c < 1.

This assumption is similar to that used for the method adopted in the STVC models of Cogley

and Sargent (2001) and Cogley and Sargent (2005). We make the assumption because we want to

compute ‘instantaneous’ variances of inflation associated with the values of VAR coefficients and

shock variances observed at each point in time. These variances exist only if we make this

assumption: they require projecting the hypothetical VAR for some data t infinitely far ahead,

hence the restriction on the infinite product of the B ′s. Also this assumption implies mixing

which is a weak dependence condition necessary for the theory on which our estimator is based.

We will estimate our model equation by equation. For the purposes of setting out the details of

our estimation procedure it is convenient to focus on a given equation of the VAR model, which

we will denote by the following:

yi,t = β(t)′xt + ui,t (2)

where yi,t and ui,t are the i-th element of yt and ut respectively, xt = (y′t−1, . . . , y′t−p)
′ and βi(t)

is the i-th column of (B1,t , . . . Bp,t)
′. We define k = mp. ui,t is given by σi(t)vi,t .

We make a number of further assumptions, needed to formally justify the estimator, which are

stated in the appendix but are informally laid out and discussed below. Our main assumption

(Assumption 3) specifies that βi(t) is a smooth deterministic function of time. It is interesting to

note that it depends not only on the point in time t but also on the sample size T . This is
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necessary since in order to estimate consistently a particular parameter one needs the sample size

that relates to that parameter to tend to infinity. This is achieved in this context by allowing an

increasing number of neighboring observations to be informative about β at time t . In other

words we have to assume that as the sample size grows the function βτ stretches to cover the

whole period of the sample. A similar set-up is assumed to hold for the variance of the error term.

This set-up has precedents in the statistical literature. For example, the concept of slowly varying

processes of Priestley (1965) forms an early instance of similar ideas. Assumptions 4 and 5 are

standard temporal dependence and moment conditions for the explanatory variables and the error

term. It is important to note that xt is allowed to be nonstationary. Assumption 4 is easily seen to

be satisfied if yt satisfies Assumption 1. We make a martingale difference assumption for the

error term. Note that this assumption is not crucial and is adopted for simplicity. General forms

of stationary weak dependence for the error term can be accommodated with minimal changes in

the analysis. Finally, Assumption 6 relates to the kernel function, K (.), that will be used for

estimation. Note that Assumptions 2 and 3 are much more general than needed for the purposes

of our empirical analysis since that involves VAR models. However, we choose to provide a more

general setting to illustrate the applicability of the approach.

Following Robinson (1989) and Orbe et al (2005), we propose the following estimator for βi,τ .

β̂i,τ =

(
T∑

t=1

K t,τ xt x ′t

)−1 ( T∑
t=1

K t,τ xt yi,t

)
(3)

where K t,τ = (T h)−1K ((τ − t)/T h). h is known as the ‘bandwidth’. It sets the variance of the

kernel function K which determines how fast we reduce the weight placed on data as we move

further and further from some t of interest. This estimator bears close resemblance to the

standard OLS estimator and it is easy to see that it is the closed form solution of the following

optimisation

min
β(t)

T∑
t=1

K t,τ (yt − β(t)′xt)
2

which is obviously related to the OLS problem of minimising a sum of squared residuals.

Some intuition for what we are doing can be got by observing that we can construct ‘rolling

regressions’ as a special case of our estimator: we would do this by specifying a uniform

function for K and a bandwidth fixed a priori. Our estimator uses adjacent data points to inform

the estimate for each period, where instead of a uniform weighting scheme we will use kernels
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that imply declining weights on data further away. Because we wish adjacent data to be

informative about the coefficient that is obtained in a particular period, we have to assume that

those coefficients move around ‘slowly’. Our assumptions set out above formalise this.

2.2 Estimating time-varying error variances and correlations

In our model, we wish to allow for time variation in the variance of the shocks disturbing our

VAR equations. Since our VARs are reduced-form models, we need also to allow for correlation

between the shocks disturbing different equations in the VAR. It seems desirable to allow for

time variation in these correlations. Here we set out the estimators that we use to do this.

Following estimation of βi,τ we propose the following simple estimator for σ 2
i,τ .

σ̂ 2
i,τ =

∑T
t=1 K h

t,τ û
2
i,t∑T

t=1 K h
t,τ

=

T∑
t=1

K̃ h
t,τ û

2
t (4)

where

ûi,t = yi,t − β̂i(t)′xt (5)

and β̂,(t) = β̂i,t/T . Here, we have assumed that the h used in (3) is the same as that used in (4).

However, they clearly do not need to be the same. Let us denote the parameter h used in (3) by

hβ whereas the parameter h used in (4) is denoted by hσ . Kapetanios (2007) proves that σ̂ 2
i,τ

estimates consistently σ 2
i,τ and that a central limit theorem holds for σ̂ 2

i,τ .

We suggest the following strategy for modeling time-varying correlations that extends the work

of Kapetanios (2007). Let ui,t

u j,t

 =
 σ 2(i, t) ρi, j(t)σ (i, t)σ ( j, t)

ρi, j(t)σ (i, t)σ ( j, t) σ 2( j, t)

1/2 vi,t

v j,t


where ρi, j(t) ≡ ρi, j,t/T ≡ ρi, j,τ denotes the time-varying correlation of ui,t and u j,t . Define

v̂ j,t = û j,t/σ̂ ( j, t). Then, we suggest the following estimator for ρi, j,τ .

ρ̂i, j,τ =

∑T
t=1 K h

t,τ v̂i,t v̂ j,t∑T
t=1 K h

t,τ

=

T∑
t=1

K̃ h
t,τ v̂i,t v̂ j,t (6)

We again allow for a different bandwidth for this estimation. We denote this bandwidth by hρ .

Similarly to βt we assume that ρt is smoothly time-varying (see Assumption 7, in the Appendix).
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Then, it is easy, using the arguments of Theorem 1 of Kapetanios (2007), to show that ρ̂i, j,τ

estimates consistently ρi, j,τ .

2.3 Choice of the bandwidth, h

When a researcher estimates a ‘rolling regression’, a decision has to be made about the size of

the window. The analogue of the window here is the bandwidth h which governs the variance of

the kernel. Roughly speaking, the optimal bandwidth involves trading off efficiency versus bias.

A large h uses more information from data points further away from the period of interest, and is

therefore more efficient. But in an economy with more structural change, information a long

way from the current observation of interest is of less value, so a large h generates bias. Thus the

ideal bandwidth depends on knowing the evolution of the β’s in advance when this is precisely

what we are trying to uncover. The procedure for choosing the bandwidth thus involves

proposing a value for h, obtaining the β’s for this value of h, using this to evaluate an appropriate

criterion function and repeating this process until the criterion function is minimised.

The next step, of course, is to decide on a criterion function to use in this optimisation. For hβ

we suggest using a ‘leave one out’ penalised residual sum of squares objective function. We use

the ‘leave one out’ approach because, in the absence of a penalty, if for some observation t of

interest we left that observation ‘in’ we could fit that observation perfectly by putting no weight

on neighbouring observations at all. This would not be informative. The formal minimisation

used to determine hβ , is given in the Appendix. The penalty term used, is of the generalised

cross-validation form as discussed in Orbe et al (2005). Penalty terms in the context of choosing

h, have a direct analogy to their use for model selection, in the form of information criteria, in the

sense that they penalise the use of too many parameters. Usually, when a penalty term is used

there is less need for a ‘leave one out’ approach as the trivial solution of h = 0 is not optimal due

to the penalty. However, initial empirical work suggests that, in our case, implementing the

‘leave one out’ approach produces smoother results that are more readily interpretable.2 Just as

for hβ , hσ and hρ can be determined respectively, for some ut , by similar minimisations that are

formally stated in the Appendix.

Our decision to estimate the VAR equation by equation allows us to use non-parametric

2Note further that leaving one observation out as in (C-1) is asymptotically negligible in the sense that, by (C-3), Q(β̃)− Q(β̂) = op(1).
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estimation with different bandwidths across equations. An alternative would have been to

estimate the VAR as a system by imposing a fixed bandwidth for all equations in the VAR. The

advantage of our choice is that we allow the data to determine the informativeness of

neighbouring observations about the coefficient at a given point in time. The disadvantage, of

course, is that we lose the efficiency gains that come from estimation of our VAR model as a

system. In principle, it would be feasible to devise a procedure that allowed for system

estimation and bandwidths that varied across equations and therefore get the best of both worlds,

but we leave that for future work.

2.4 Testing structural stability

We wish to test the hypothesis that β(t), σ 2(t) and ρ(t) do not change over time. The null

hypotheses are

H0,β : βτ = β,∀τ H0,σ : σ 2
τ = σ

2,∀τ H0,ρ : ρτ = ρ,∀τ (7)

against the alternative hypotheses that βτ , σ 2(t) and ρ(t) are non-constant and satisfy

Assumptions 3 and 7. To this we use the tests proposed by Kapetanios (2008). We focus on β for

simplicity. Similar analyses are implied for σ 2(t) and ρ(t). Note that Kapetanios (2008) only

discusses the test for β. Therefore, our work on the stability testing of variances and correlations

extends the results of that paper.

Let us denote the estimate of β, under the null as β̃. Depending on the assumptions made about

ut , standard methods can be used to estimate β under the null. One test proposed by Kapetanios

(2008) looks at the difference between the estimates of βt under the two hypotheses. The starting

point for developing the test focuses on a fixed τ . So, the test is based on a statistic which takes

the form

T τ
= (β̂τ − β̃)

′V̂ (β̂τ − β̃)−1(β̂τ − β̃) (8)

This statistic focuses on all coefficients of one equation jointly. Of course, statistics that focus on

individual coefficients are possible. The above statistic can be used to test H0. But to do this, we

need to jointly consider many points in the interval (0, 1) where τ is defined. To conduct this test

we need to use summary statistics for a set of pointwise test statistics. The problem has parallels

with the problem of testing when a nuisance parameter is unidentified under the null hypothesis.

This problem arises in many areas in econometrics such as linearity testing, tests for structural
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breaks and others (for more details see Davies (1977) and Andrews and Ploberger (1994)). Let

the set of points for which test statistics are available be denoted by Tm = {τ1, τ2, . . . , τm}, where

τ1 < τ2 < . . . < τm . Three summary statistics are usually considered. These are given by

TAV E =
1
m

m∑
j=1

T τ j (9)

TSU P = sup j T τ j (10)

TE X P =
1
m

m∑
j=1

e
T
τ j
2 (11)

There is no strong evidence suggesting that one test is more useful than another, so we present

results based on all three. Kapetanios (2008) provides asymptotic analysis for the properties of

tests based on the above test statistics. Given the slow rate of convergence related to

non-parametric asymptotics, it is not surprising to note that asymptotic results may not provide

good approximations to small sample behaviour. This is the case for these asymptotic tests. Note

that the bad performance of tests based on non-parametric asymptotic results is documented in

the literature. In particular, Fan (1995, 1998) show that asymptotic tests have rejection

probabilities that deviate significantly from the nominal significance level.

A solution for this, suggested by Kapetanios (2008), is the bootstrap. For the bootstrap test there

is no need for normalising the test statistic by the variance term V̂ (β̂τ − β̃τ ). Bootstrap theory

suggests that normalising is advantageous, as it results in a pivotal test statistic, but only if the

variance can be well estimated. Since this is not, necessarily, the case for the variances of

non-parametric estimators we choose not to normalise and we, therefore, use the following

modified test statistic.

T̃ τ
= (β̂τ − β̃)

′(β̂τ − β̃) (12)

Below we give the bootstrap algorithm suggested in that paper.

Algorithm 21. Estimate β̂τ using (3) for all points in Tm . Estimate β̃ using OLS if appropriate.

Obtain OLS residuals. Denote the set of OLS residuals by {ût}
T
t=1

2. Generate a bootstrap sample for ut , denoted u∗t , by resampling with replacement from {ût}
T
t=1 to

obtain {u∗t }
T
t=1
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3. Generate a bootstrap sample for yt , denoted y∗t by

y∗t = β̃
′xt + u∗t , t = 1, . . . , T (13)

4. Construct bootstrap version of T̃ τ and T̃ j , j = SU P, AV E, E X P , denoted T̃ ∗,τ and T̃ ∗j ,

j = SU P, AV E, E X P .

5. Repeat steps 2-4, B times to obtain the empirical distribution of T̃ τ and T̃ j ,

j = SU P, AV E, E X P .

One final point worth noting here is the contrast between the approach to testing for parameter

instability here, and that adopted in, for example, Cogley and Sargent (2010). Those authors,

having set out a STVC parameter model, compute the posterior probability of the joint event that

(for example) inflation persistence was high and has fallen. In our framework, there is no

probabilistic dependence of future inflation persistence on today’s inflation persistence, hence the

need to compute joint densities to assess parameter constancy does not arise.

2.5 A Monte Carlo study to motivate the use of deterministic models

In this section we carry out a Monte Carlo study in order to explore the relative performance of

two different estimators of the underlying process of the time-varying coefficient in a dynamic

autoregressive model. The model we entertain is a benchmark time-varying AR(1) model given

by

yt = βt yt−1 + εt . (14)

This model is the basic building block for much more complicated dynamic models that have

been used in the macroeconometric literature to model smooth structural change. These models

include time-varying VAR models for the joint modelling of inflation and GDP growth, among

other variables, and models that allow for unconditional heteroscedasticity and well as change in

the dynamics of the conditional mean. However, focusing on this simple model provides a

parsimonious way to determine the relative merits of alternative estimators of βt . An important

question relates to the nature of βt . The macroeconometric literature assumes uniformly some

parametric stochastic model for βt , which is usually of the form

βt = βt−1 + ut , (15)
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ie it is assumed that the process follows a random walk.

An alternative way to model βt is to assume, as we do in the main body of this paper, that it is a

smooth deterministic process and estimate it using the technology discussed in the previous

subsections. In our Monte Carlo we wish to examine which approach is better in relative terms.

This is of course a difficult undertaking given the radically different philosophies underlying the

generation of βt . We choose to focus on a simple evaluation strategy. We generate βt with both

approaches (stochastic and deterministic). We then estimate β̂t using both estimation procedures.

We then examine which approach has a smaller MSE defined as 1
T

∑T
t−1(β̂t − βt)

2, over Monte

Carlo replications.

Specifying the process under the stochastic paradigm is easy. We simply adopt the random walk

paradigm and generate a sequence β̃t from (15) using ut ∼ n.i.i.d.(0, 1) . We impose the usual

restriction by setting βt = β̃t/maxt(|β̃t |) which ensures that −1 < βt < 1 for all t .

Specifying βt under the deterministic paradigm is of course more difficult. We have little

guidance as to the shape of βt which of course will be radically different for different empirical

settings. We choose to consider three different functions which provide a reasonable coverage of

some simple shapes for βt over time. Letting βt = βt/T and t/T = τ we set βτ = fi(τ ),

i = 1, 2, 3 where

f1(τ ) = −0.5+ τ, (linear),

f2(τ ) =
0.9

1+ e−10+20τ
, (logistic),

f3(τ ) = 0.9 sin(πτ), (sine)

and τ ∈ [0, 1]. For the non-parametric estimation we use the data dependent method to
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determine the bandwidth discussed in the previous section. We set εt ∼ n.i.i.d.(0, 1),

T = 50, 100, 200, 400 and carry out 1,000 Monte Carlo replications for each experiment.

We report two summary statistics of the mean squared errors (MSEs) over the Monte Carlo

replications. The first is the ratio of the average MSE of the non-parametric method over the

average MSE of the method based on the state-space model. This is slightly problematic since

there is potential for large values of the MSE to skew the average MSE and produce spurious

results. So we also use, as a summary statistic, the median of the relative MSE of the two

methods (the non-parametric method is again in the numerator) over the Monte Carlo

replications.

We report results in Tables A and B. They make for interesting reading. Focusing first on the

experiments where the truth is that βt is a deterministic function of time we see that both

summary statistics clearly indicate that the non-parametric method of estimating βt is preferable.

In only one case do we find that the state-space approach is preferred by both summary statistics

and that relative superiority is marginal. On the other hand the non-parametric method dominates

very clearly in most other cases. It is interesting to note that the relative performance is a

function of the true shape of βt as one would expect. The result though that the non-parametric

method is best across all three designs is encouraging and allows us to conclude that our results

may have some generality. In one sense, though, this is not surprising since the non-parametric

method is designed to handle this kind of true process.

As a result we next examine what happens when the parametric random walk paradigm underlies

the true data. Here, we are faced with a very surprising result: the non-parametric method

dominates the state-space method comprehensively. This result clearly indicates that even if the

data are generated from a model where the parameters follow a stochastic persistent process,

using the non-parametric method of estimating βt is preferable. This benefit tails off the greater

the sample size, but for the case studied in this paper (40 years of quarterly data or less) the

benefit is quite pronounced. In ongoing work we are studying the theoretical foundations of this

result, but for the purposes of this paper, we leave the reader with this small piece of evidence to

motivate the use of DTVC models.
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Table A: Results on relative average MSE

True Model/T 50 100 200 400
f1 0.580 0.472 0.799 1.076
f2 0.211 0.461 0.606 0.755
f3 1.552 0.539 0.104 0.141

Stochastic 0.525 0.286 0.477 0.612

Table B: Results on median of relative MSEs

True Model/T 50 100 200 400
f1 0.913 0.731 0.976 1.128
f2 0.824 0.803 0.911 0.778
f3 0.548 0.295 0.262 0.352

Stochastic 0.804 0.866 0.898 0.940

2.6 Instantaneous variances, spectra, predictability measures and our counterfactual

experiments

We describe changing inflation dynamics in terms of shifts in instantaneous variances, spectra

and predictability measures. The discussion focuses on the more complex VAR model but

applies obviously to the AR model as well. To calculate the variances, we consider the

coefficient and error variance values at each point in time t and obtain the variable variances

implied by a VAR(1) with these parameter values. To fix ideas we note that given a VAR(1)

coefficient and error variance matrix estimates given by B̂t and 6̂t respectively at time t , the

vectorisation of the implied variance of a vector variable, yt , following such a VAR(1) is given by

(I − B̂t ⊗ B̂t)
−1vec(6̂t).

Similarly, the implied cross-spectrum for yt at time t and frequency ω is given by

2π−1
(

I − B̂teiω
)−1

6t

(
I − B̂ ′t e

iω
)−1

. The elements of the diagonal of this matrix give the

respective spectra for each element of yt .

Finally, the third means of describing changing inflation dynamics is the use of predictability

measures which, as discussed in Cogley and Sargent (2010), can provide a reasonable measure of

persistence. We follow Cogley and Sargent (2010) and define predictability for the i-th variable
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of yt , at horizon j and time t , as

1−
e′i
∑ j−1

h=1

(
B̂h

t

)
6t

(
B̂h

t

)′
ei

e′i
∑
∞

h=1

(
B̂h

t

)
6t

(
B̂h

t

)′
ei

where ei is a vector whose i-th element is 1 and the rest zero.

We consider two scenarios for the calculation of the variances that allow us to measure the

relative contribution of variation in the error variances to the variability of the data over time. In

the top row of Charts 3, 7 and 11 we report the implied variances allowing both B̂t and 6̂t to vary

freely. In the second row we report variances where we have fixed 6̂t = 6̂ where

6̂ = 1/T
T∑

t=1

(yt − Bt yt−1)
′(yt − Bt yt−1)

In words, we fix the disturbances to the VAR equations at their sample average values. This

counterfactual experiment allows us to disentangle the effect of changing coefficients and

changing error variances on the variance of yt . Note that similar results for the AR model are

reported in the fourth and fifth panel of Charts 1,7 and 13.

3 Structural analysis using sign restrictions

The final objective of our paper is to document changes in the response of inflation and real

activity to identified monetary policy shocks. We do this so that we can use any changes we see

to infer something about the evolution of real and nominal rigidities in the economy. This

section explains our identification strategy. We identify monetary policy shocks in our VAR

following, eg, Canova and De Nicolo (2002). We implement the sign-restriction method a little

differently than others have done and describe our point of departure below.

The expository analysis is, for simplicity, based on the VAR(1) model given by

yt = Ayt−1 + ut

The aim is to factorise the covariance matrix of the n-dimensional reduced-form error, denoted

by 6, as

6 = B B ′

where B is usually either given by a Cholesky factorisation or, in our case, an

eigenvector-eigenvalue one of the form B = P D P ′ where P is a matrix whose columns contain
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the eigenvectors of B and D is a diagonal matrix containing the eigenvalues of B. Of course,

there exist multiple such factorisations since for any non-singular orthogonal matrix Q, we have

6 = B Q Q ′B ′

Traditionally, n(n − 1)/2 restrictions are sufficient to fully specify a unique Q. A number of

schemes deriving from insights from theoretical models have been proposed to specify the

n(n − 1)/2 restrictions. Recently, alternative strategies have been proposed in which Q is

specified so as to imply particular signs for the structural impulse responses (IR) given by the

sequence. {AB Q, A2 B Q, A3 B Q, ...}. There is no closed form solution for this problem.

Further, it is not known whether there exists a suitable Q such that p sign restrictions can be

imposed on the IR sequence when p ≥ n(n − 1)/2. Further, if a suitable Q exists it is not known

whether it is unique or indeed how many Q exist such that each of them satisfies the restrictions.

Of course if p ≤ n(n − 1)/2 the existence of Q is guaranteed, since there is always a Q that

satisfies not just n(n − 1)/2 sign but n(n − 1)/2 exact restrictions. The problem is how to

determine Q. A popular solution is to parameterise Q in terms of Givens rotations. A Givens

rotation is given by

I n
pq(θ) =



1 . . . 0 . . . 0 . . . 0

. . .
. . . . . . . . . . . . . . . . . .

0 . . . cos(θ) . . . −sin(θ) . . . 0
...

...
...

...
...

...
...

0 . . . sin(θ) . . . cos(θ) . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 . . . 1


, 0 ≤ θ ≤ π/2

where p < q denote the positions on the diagonal taken by cos(θ). An obvious property of

I n
pq(θ) is that I n

pq(θ)I
n′
pq(θ) = I . Then, Q is parameterised as

Q(θ) =
n−1∏
i=1

n∏
j=i+1

I n
i j(θi j) (16)

where 0 ≤ θi j ≤ π/2 and θ is the n(n− 1)/2 vector containing all the scalar θi j . It is obvious that

Q(θ)Q(θ)′ = I.

Loosely, researchers using sign restrictions follow variants of the following algorithm: 1)

choose some θi j , a rotation of the Q matrix. Check whether the series of shocks it implies

generate impulse responses that satisfy the sign restrictions at the specified horizons; 2) if it

does, keep it, if not, discard it; 3) go back to step 1. When the search is complete, researchers
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report statistics about the distribution of impulse responses to the many shocks that they have

found, the median, various percentiles, etc. This is exactly what we do. Before we implement

this procedure, however, we make a comment.

Using this algorithm invokes an implicit claim made is that Q(θ) spans the space of

n-dimensional orthonormal matrices. In other words for any n-dimensional orthonormal matrix

Q, there exists θ such that Q = Q(θ). Given that n-dimensional orthonormal matrices have

n(n − 1)/2 ‘free’ parameters and given that θ contains n(n − 1)/2 elements, it is implicitly

conjectured that the above ‘spanning’ indeed occurs. However, there is no proof of this claim to

the best of our knowledge. Since, determining a value for θ such that the signs restrictions hold

cannot be done analytically, a grid search over a subset of

{{θ11 |0 ≤ θ11 ≤ π/2} , ..., {θnn−1 |0 ≤ θnn−1 ≤ π/2}} is usually undertaken and grid points for

which the sign restrictions hold are retained for further analysis. Our experience with this grid

search is that for some IR sequences no solution may be found. We have considered up to 2

million points without finding solutions. This casts further doubt on the possibility that Q(θ)

spans the space of n-dimensional orthonormal matrices, even though an alternative possibility is

that there exists no Q such that p sign restrictions hold if p ≥ n(n − 1)/2. Nevertheless, to

explore our conjecture that the ‘spanning’ may not hold we extend the parameterisation in (16) to

the following

Q(θ (1), ..., θ (m)) =
m∏

s=1

Q(θ (s)) =
m∏

s=1

n−1∏
i=1

n∏
j=i+1

I n
i j(θ

(s)
i j ) (17)

This is obviously a richer parameterisation and indeed considerable experimentation with grid

searching this parameterisation suggests two things. Firstly, in a number of cases, if grid

searching over Q(θ) yields a suitable Q, then grid searching over Q(θ (1), ..., θ (m)) yields a larger

number of suitable Q, for all m > 1. Secondly, there are a number of cases when, if

p ≥ n(n − 1)/2, grid searching cannot produce a suitable Q, grid searching over

Q(θ (1), ..., θ (m)) does produce one or more. In our empirical work we set m = 4. We found no

evidence that higher values of m further improve the outcome of the grid search (in the sense of

generating more Q’s that satisfy the restrictions. This modification of the algorithm used by

others may be useful in other applications that use sign restrictions to identify shocks.

In our data, we find that there are a number of instances where the sign restrictions cannot be

imposed for horizons larger than 1. This as we noted before can occur for three reasons: i) the
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grid search cannot explore effectively the parameterisation Q(θ (1), ..., θ (m)). ii) Q(θ (1), ..., θ (m))

cannot span the space of n-dimensional orthonormal matrices, iii) no suitable n-dimensional

orthonormal matrix satisfying the restrictions exists. We believe that i) is unlikely when the grid

search explores 2 million grid points. Therefore, our strategy is to begin by attempting the

imposition of the sign restrictions for smax horizons, successively reducing the number of

horizons until we can obtain a suitable Q. In a number of instances the number of horizons has to

be reduced to 1 before a suitable Q is found. We set smax
= 5. We start with a higher number of

horizons than we finish on the grounds that we can be more confident that the shock has some

economic content if it satisfies the restriction for more horizons. We reduce the number of

horizons we demand the impulse response to satisfy successively on pragmatic grounds: we

would prefer more restrictions rather than less, but responses that satsify few restrictions have

some economic meaning, and we take those rather than giving up.

To recap on where our procedure overlaps with and where it departs from that adopted previously

in the sign-restrictions literature. Like others, we collect together all shock sequences which

generate impulse responses that satisfy the restrictions we invoke from theory. In our case we

found that the ways of parameterising the space of shocks that others had used generated very

few, sometimes no satisfactory impulse responses. We note that the parameterisations adopted

thus far do not span the space of all possible shocks. We adopt a slightly richer parameterisation

of that space of shocks and find that it generates more impulse responses that satisfy our

restrictions.

4 Documenting and accounting for the evolving volatility and persistence of inflation

In this section we describe our results using the reduced-form time-series models. These

reduced-form models are used to document changes in inflation volatility, persistence and

predictability; and to determine the extent to which the reduction in inflation volatility over our

sample period is due to changes in volatilities or changes in propagation parameters.

4.1 Data and the model

We use the toolkit we have discussed in the previous sections to address this issue. A focal time

series for the phenomenon of the ‘Great Moderation’ is inflation. We therefore carry out both a
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univariate and multivariate analysis of inflation. The univariate model we consider is an AR(1)

with time-varying constant, AR coefficient and error variance. The multivariate model we focus

on is a trivariate VAR(1) model of inflation, real activity and interest rates, where each equation

has time-varying constants, parameters, and innovation variances.

We estimate on de-meaned data. The time-varying constants in our model echo Cogley and

Sargent (2010), who posit a stochastic process for the mean of inflation. Here variations in the

mean are deterministic, but this device allows the same decomposition between long and

short-run components of inflation. As in many other literatures, those scrutinising inflation

dynamics have wanted to be sure not to confuse a rise and fall in the inflation target during the

1970s and 1980s with persistent dynamics around an unchanged mean.

We use three different data sets. For the United States, our first data set comprises the Fed Funds

rate, quarterly GDP growth, and quarterly growth of the GDP deflator. Our second data set

equals the first but with the CPI as the measure of inflation. Here we are motivated by previous

work, for example Benati (2007), which has pointed out that conclusions we draw about both the

level and stability of inflation persistence can depend on which US price index is used to measure

inflation. The sample period is 1955 Q1-2007 Q1.

The third data set is for the United Kingdom. We use GDP growth, the GDP deflator and ‘Bank

Rate’, the instrument of monetary policy. The sample period is 1975 Q1-2007 Q1. In all models

we include only one lag of relevant variables. This was shown to generate residuals free of serial

correlation in most of our models.

All our results are set out in the Appendix. The kernel used is the normal density kernel. Our

tests for the constancy of the objects in our time-series models are reported in Tables 1, 2 and 3.

Charts 1-10 present pictorially the output of our analysis. Charts 1-5 relate to the US data set

using GDP deflator as the inflation measure while Charts 6-10 focus on the UK data set.

4.2 Preliminary tests for misspecification

In Tables 1-3 we include the results of preliminary tests for the validity of our model of choice in

both the AR and VAR cases. Probability values are reported for all tests. The misspecification
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tests we use are applied on the standardised residuals: ie the residuals once they have been

normalised by the time-varying estimated error standard deviation. We report results on three

tests: The LM test for serial correlation using four lags, the LM test for ARCH using again four

lags; and the Lee, White and Granger (1993) test for dynamic neglected non-linearity using one

lag. The misspecification test results are encouraging. There is little evidence of serial correlation

or dynamic neglected non-linearity in any of the data sets we consider, implying that our choice

of one lag for the AR and VAR models is appropriate. There is slightly more evidence for

variation in the conditional variance. As we do not model this aspect of inflation (but only

variation in the unconditional variance) this is possibly to be expected. Further, the evidence is

by no means very strong as it is concentrated mainly on the interest rate equation in all three data

sets we consider. Overall, we feel that given the above evidence our chosen model appears to be

reasonably well specified. We next discuss the rest of the empirical results we have obtained.

4.3 Results: United States

First we look at the results of the AR model, reported in Chart 1. From the top-left and

top-centre panels we observe that despite evident and - on casual inspection - significant

variations in the constant governing inflation, inflation persistence, measured by the coefficient

on lagged inflation, rose sharply from around -0.1 at the start of the sample to about 0.7 in 1970.

Since then, persistence seems to have fallen back to around 0.1, although at this point the

confidence intervals for the parameters are relatively wide.

The top-right panel shows clear changes in the estimated innovation variance. While inflation

persistence is rising through to 1965 or so, the estimated innovation variance is falling: it rises

thereafter to peak in the mid-70s. Note how much more pronounced is the subsequent fall in the

innovation variance from the peak compared to the fall in inflation persistence from its peak.

The bottom-left and bottom-centre panels of Chart 1 report our counterfactual exercise that

attempts to disentangle the effect of changing innovation variances from changing propagation

parameters on the instantaneous variance of inflation. The bottom-left panel computes the

variance of inflation holding the innovation variances fixed at the sample average. The

bottom-centre panel repeats this exercise using our estimated time-varying innovation variances.
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Allowing time variation in the variances generates a peak in inflation volatility that is about 30%

higher; it generates a more protracted period of higher volatility, beginning in in the early 60s and

ending around 1982; finally, with time-varying variances we see that the volatility of inflation is

distinctly lower post-1990 than it was pre-1970, in contrast to the fixed-variance case.

The final - bottom-right - panel of Chart 1 plots the instantaneous spectrum implied by our

time-varying coefficients model. These spectra reveal the increase in variances at short to

medium horizons that took place during the Great Inflation.

We now move on to the VAR model, and compare the story this model tells about the Great

Moderation to the story told by the univariate model. The left-hand column of panels in Chart 2

show that the estimated innovations variances have a pronounced peak around 1980, similar to

what we found with the univariate model. The multivariate model suggests that these variances

were greater at the start of the sample than at the end, in contrast to the univariate model. The

right hand panel shows pronounced movements in the correlation of one equation’s innovations

with another, but we found that these changes are not significant in explaining the changes in the

estimated instantaneous variance of inflation reported in Chart 3.

Chart 3 reports the multivariate version of our counterfactual experiments. The multivariate

model shows an even more marked contrast between the implied variances of inflation when we

allow for time-varying innovations variances compared to when these are fixed. This can be seen

from comparing the top-left (variances varying) to the middle-left panel (variances fixed). In the

top-left, we trace out two pronounced peaks for the variance of inflation around 1970 and 1980.

In the bottom-left panel, we also see two peaks, but these are less than half the size of the peaks

when variances are allowed to be time-varying. The numerical contribution of changing

innovation variances seems to be even greater for the variance of the growth of GDP. By

comparing the central panels, we see that the fixed-variances (bottom-centre) fails to generate the

peak in the variance of output we see at around 1980 in the time-varying variance case

(top-centre). We do not comment on the bottom panel here as this reports result for instantaneous

variances using the structural VAR model discussed in the next section.

In the top panel of Chart 4, we plot a time series of the instantaneous spectrum of inflation

associated with the multivariate VAR. This illustrates how the variance of components at many
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frequencies rose during the Great Inflation.

The bottom panel shows how inflation predictability has changed at all horizons. Predictability is

our multivariate counterpart to the univariate concept of inflation persistence. Inflation

predictability has clearly fluctuated a good deal up to (roughly) the 21 quarter horizon. It is

apparent from the chart that the 1970s was a time when predictability was a little higher at longer

horizons. But the striking contrast between the plot of the spectra and the plot of predictability is

an informal indication that it may be changes in variances that mark out the Great Inflation from

earlier and later periods, rather than changes in parameters: the predictability chart isolates the

contribution of changes in parameters. The spectra include the contribution of changes in the

variances of shocks. Finally, Chart 5 reports two cross-sections for the predictability measures

(1974 Q1 and 2004 Q1) together with 90% confidence bands obtained via a bootstrap procedure.

It is clear that the high predictability measure of the mid-70s lies outside the confidence band of

the low predictability measure.

Table 1 reports our formal tests for the stability of the objects in our univariate and multivariate

models for US GDP deflator inflation. The univariate tests, reported in the bottom panel of the

table, show a fair amount of stability in error variances and parameters. By contrast, the

multivariate model picks up a lot more instability. We reject stability for error variances in the

GDP growth and interest rate equations, and for parameters in the GDP equation.

4.4 Results: United States, inflation measured by CPI

As we noted earlier, Benati (2007) points out that different conclusions can be drawn about the

stability or otherwise of the US inflation process depending on which index we use. Is this

manifest when we view inflation through our DTVC model? For the sake of brevity, we do not

provide figures for CPI-based results, but we offer a short verbal description of our findings and

can supply results on request to those who are interested. In short, we find that there are some

differences when we use a univariate model to characterise the inflation process, but that by

contrast, using a multivariate model leads to very similar results regardless of the inflation index

used. The differences between our univariate models for inflation are: first, our CPI results show

a more marked fall in inflation persistence from its high period, in the 70s, to the recent period.

Second, the CPI results indicate that inflation persistence is clearly lower at the end than at the
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beginning of the sample period, something that was much less evident in the GDP deflator

results. Third, we compute a larger increase from trough to peak in the estimated innovations

variance for the CPI. Fourth, if we look at the time series of the spectra, we see that the peak in

the variance in inflation in 1980 is contributed to much more evenly across the different

frequencies. Fifth, our CPI counterfactual exercise records the contribution of changes in

innovations variances to be greater than we saw for the GDP deflator results. Looking at the

formal tests for stability of coefficients and variances, we find that the univariate model for CPI

shows much more evidence of instability, of both coefficients and variances, compared to the US

GDP deflator model. But evidence for instability in the multivariate model is pretty similar for

the two data sets.

4.5 Results: United Kingdom

Our final data set is for the United Kingdom, with inflation measured by the GDP deflator.

Chart 6 shows results from the univariate model. We observe numerically a large and what looks

- from the confidence intervals in the chart - to be a statistically significant fall in inflation

persistence (top-centre panel) at the same time as we capture a steady fall in the mean inflation

rate (top-left). We find that innovations variances fall markedly throughout our sample period

(top-right). These changes translate into a marked fall in the instantaneous variance of inflation

(bottom-centre) Our counterfactual exercises suggest that the dominant cause of this is the fall in

innovations variances: notice that when we hold the innovations variances flat at the sample

average (bottom-left), the implied instantaneous variance is also relatively flat.

Our multivariate account of the UK inflation process is slightly different. Our counterfactual

exercises are reported in Chart 8. For GDP growth, we see once again that without time-varying

innovation variances, we completely fail to capture the fall in the implied instantaneous variance.

However, the picture is not as dramatic for inflation itself. Here we compute a rise and a fall in

the instantaneous variance of inflation (top-left panel). And this profile is visible too when we

hold innovations variances fixed (bottom-left), albeit that the peak is about 60% of the height of

the peak for the time-varying innovations model.

Chart 9 shows our estimated time series for the spectra and for predictability for the United

Kingdom. It is interesting to see that just as in the univariate model we record a fall in inflation
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persistence (Chart 6, top-centre panel) here we see that predictability has fallen at all horizons in

recent years compared with the 1970s and 1980s. Finally, Chart 10 reports two cross-sections for

the predictability measures (1982 Q3 and 2004 Q1) together with 90% confidence bands

obtained via a bootstrap procedure. It is clear that the high predictability measure of the early 80s

lies outside the confidence band of the low predictability measure.

We report tests for the stability of the objects in our univariate and multivariate models in Table

3. Both sets of models show widespread evidence of instability in both propagation parameters

and innovations variances. (This contrasts slightly with our results for the US data sets where we

tended to find that univariate evidence suggested more stability in the inflation process than did

the univariate models.)

5 Documenting the evolving response to identified monetary policy shocks

In this section we describe our findings using the structural VAR. We document how the

response of inflation and GDP to monetary policy shocks identified using sign restrictions has

changed over time.

We report sequences of impulse responses of inflation, GDP growth and interest rates to a

positive monetary shock defined as one which implies negative impulse response for inflation,

GDP growth over a horizon of s periods and positive impulse response for interest rates for the

same horizon. These restrictions are relatively uncontroversial in that they fit a wide class of

monetary, sticky price, DSGE models currently in use. The reduced-form estimates for the VAR

parameters are taken from our reduced-form analysis that we described in previous sections.

We report the 5% percentile, median and 95% percentile of all the IR satisfying the sign

restrictions as described above for the three data sets we consider in Charts 11-19. We choose a

subset of time periods to report the results: For the United States these are 1966 Q1, 1976 Q1,

1986 Q1, 1996 Q1 and 2006 Q1; for the United Kingdom we choose: 1980 Q1, 1985 Q1, 1990

Q1, 1995 Q1, 2000 Q1 and 2005 Q1. We report all these results in Charts 11-19.

We start our commentary by looking at the response of US CPI inflation to the structural
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monetary policy shock: the starting point is the middle panel of Chart 11 which reports changes

in the median response. The basic finding is that inflation is estimated to respond less, and less

persistently to a monetary policy shock now than in the 1970s. The persistence seems to be at its

highest in the 70s with most of the reduction occurring in the ensuing decade. Thereafter, little

change is observed. The same holds for the impulse responses of GDP to the monetary policy

shock (Chart 12).

The results change somewhat for the GDP deflator data set for both inflation and GDP. For

example, the most persistent response of inflation to the monetary shock is recorded for 2005 Q1;

the largest response on impact is recorded for 1976 Q1.

Our results for the United Kingdom are a pretty close echo of those for the US CPI inflation data.

In Chart 17, we record the median response of inflation to have been the largest on impact in

1990 Q1 and 1980 Q1, and to have been most persistent in 1980 Q1. The impulse response of

GDP to the monetary policy shock is recorded to have been largest and most persistent in 1985

Q1, and substantially more so than the response at the end of the sample.

Taking these findings as a whole, there is suggestive but not overwhelming evidence that the

response of inflation and GDP to a monetary policy shock in the United Kingdom and the United

States is now both less persistent and smaller than in the 1970s and 1980s. In sticky-price DSGE

models, these facts would be consistent with there having been some combination of: (i) a

reduction in the degree of price stickiness, which ought to reduce the impact of GDP to a

monetary policy shock; or some combination of (ii) a reduction in the degree of price or wage

indexation, (iii) a reduction in capital or investment adjustment costs (iv) a reduction in the

strength of consumer ‘habits’, all of which would have the effect of reducing the persistence with

which inflation and GDP respond to a monetary policy shock.

6 Conclusion

We have deployed a model of deterministic structural change to describe changes in the inflation

process in the United Kingdom and the United States. Our intention was that these results

complement the growing body of work that has attempted to make concrete accounts of the

temporary increase in the volatility and persistence of inflation. We characterised that literature
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as using ‘sample-splitting’ models on the one hand, and stochastic, time-varying parameter

models on the other.

Our framework is related to the ‘sample-splitting’ approach in that it deliberately abstracts from

attempting to model the process of structural change. But it departs from it by insisting that the

structural change occurs gradually, and by therefore allowing adjacent data points to be

informative about the regime in any particular period. Our DTVC model mirrors the assumption

in stochastic time-varying parameter models that there are as many values for coefficients and

volatilities as there are data points. But it relaxes the restriction these models embody that there

is an invariant process governing the evolution of these coefficients and volatilities.

With no clear theoretical grounds for choosing one framework over the other, our DTVC model

is therefore offered as a useful complementary tool in documenting changes in the inflation

process. We noted, however, that Monte Carlo analysis suggested that it may well pay to use

DTVC models even when the true data was generated by an STVC model.

We applied the DTVC model to a VAR model for inflation, and report frequentist estimates.

However, the DTVC does not entail these choices. Future work could apply DTVC to a structural

model, performing an exercise analogous to that of Fernandez-Villaverde and Rubio-Ramirez

(2007). Equally, our estimates could be used as inputs to Bayesian posteriors.

A summary of our findings is as follows: for the United States, we find that there have been

significant changes in propagation parameters in the inflation process; that inflation

persistence/predictability rose and then fell over our 1955-2007 sample period. This finding

accords with Cogley and Sargent (2010). This said, we also find a preponderance of evidence

that the dominant cause of the change in instantaneous inflation volatility is changes in the

variance of innovations. This echoes what Benati and Mumtaz (2007) found. Like Cogley and

Sargent (2010), we find that multivariate models of inflation offer sharper evidence of structural

change than do univariate models.

For the United Kingodm, we also find clear evidence of changes in the inflation process. Inflation

was less volatile and less persistent at the end of our sample period (2007 Q1) than in 1974, when

our sample starts. Multivariate models do not seem to sharpen this conclusion relative to the
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univariate model, as they do for the United States. However, the univariate and multivariate

accounts of the causes of this instability in inflation volatility are different. The univariate model

suggests the dominant cause of the decline in inflation volatility is changes in innovations

variances. The multivariate model suggests that both changes in innovations variances and

propagation parameters contributed. Benati (2007) also finds that changes in innovations

variances are the dominant cause of the Great Moderation in the United Kingdom, using an

STVC model.

We also document changes in the response of inflation and GDP to monetary policy shocks

identified from the reduced-form VAR using sign restrictions. The broad thrust of our evidence

on this score is that the responses of inflation and GDP to a monetary policy shock at the end of

the sample are smaller and less persistent than those at the beginning of the sample. This is

consistent with some combination of: more flexible prices; less price or wage indexation; a

reduction in the costs of adjusting capital and/or investment; a weakening of consumer ‘habits’.

It is also consistent with these models being inadequate characterisations of the data; not that

‘habits’ are changing, but that there were no habits in the first place, and that some other deeper

model that develops evolving persistence is required.
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Appendix A: The stationarity of time series impied by STVC models

In this appendix, we explain that the common assumption in the STVC literature that

instantaneous VAR coefficients at each point in time are stationary can imply that the dependent

variables themselves are stationary.

We consider the model

yt = βt yt−1 + εt . (A-1)

βt = βt−1 + ut , (A-2)

discussed in the main text. However, we wish to impose the restriction that |βt | < 1. We can do

this in a variety of ways and without loss of generality we assume that this is done by imposing

the following model on βt .

βt = βt−1 + I (|βt−1 + ut | < 1)ut . (A-3)

and |β0| < 1. Geometric ergodicity for yt can be easily obtained using the drift condition of

Tweedie (1975). This condition states that a process is geometrically ergodic under regularity

conditions satisfied by assuming disturbances with positive density everywhere, if the process

tends towards the centre of its state space at each point in time. More specifically, an irreducible

aperiodic Markov chain, yt , is geometrically ergodic if there exist constants δ < 1, B, L <∞,

and a small set C such that

E [‖yt‖ | yt−1 = ϑ] < δ ‖ϑ‖ + L , ∀ϑ /∈ C, (A-4)

E [‖yt‖ | yt−1 = ϑ] ≤ B, ∀ϑ ∈ C, (A-5)

where ‖·‖ is the Euclidean norm. The concept of the small set is the equivalent of a discrete

Markov chain state in a continuous context. Small sets are compact.

To prove geometric ergodicity of yt in this particular instance, we make use of the drift condition

in (A-4)-(A-5). By (A-3) |βt | < 1. Then,

E [|yt | | yt−1 = ϑ] = |βt yt−1| ≤ |βt | |yt−1| ≤ δ |ϑ |
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for some δ < 1, ∀ϑ . Thus, the drift condition holds with a small set follows immediately by

geometric ergodicity.
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Appendix B: Assumptions underlying the econometric estimator

In this appendix we formally state the assumptions underlying the estimator. These are

informally discussed in the main paper.

Assumption 3 βi(t) = βi,t/T where each element of βi,τ , βi, j,τ , j = 1, . . . , k, τ ∈ (0, 1), is

continuous and twice differentiable on (0, 1). σi(t)2 = σ 2
i,t/T where σ 2

i,τ , τ ∈ (0, 1), is continuous

and twice differentiable on (0, 1).

Assumption 4 xt is an α-mixing sequence with size −4/3 and finite 8-th moments.

E(xis x j t) = mi j,s,t = mi j(s/T, t/T )+ O(T−1) where mi j(., .) is a twice differentiable function

of both its arguments.

Assumption 5 vi,t is a stationary martingale difference sequence with finite 4-th moments which

is independent of xt at all leads and lags.

Assumption 6 The function K (.) is a second-order kernel with compact support [−1, 1] and

absolutely integrable Fourier transform.

Assumption 7 ρ(t) = ρt/T where ρτ , τ ∈ (0, 1), is continuous and twice differentiable on (0, 1).
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Appendix C: Objective functions for the bandwidths

hβ is determined by minimising numerically

Q(β̃) = T−1
T∑

t=1

(
yt − β̃(t)′xt

)2
pβ(hβ) (C-1)

where

pβ(hβ) =

1−
1

T
√

2π

T∑
t=1

x ′t

(
T∑

i=1

K hβ
i,t/T xi x ′i

)−1

xt

−1

(C-2)

and

β̃(t) = β̃t/T =

 T∑
i=1,i 6=t

K hβ
i,t/T xi x ′i

−1 T∑
i=1,i 6=t

K hβ
i,t/T xi yi

 (C-3)

hβ , hσ and hρ can be determined respectively, for some ut , by minimising numerically

T−1
T∑

t=1

(
û2

t − σ̃
2
t/T

)2
p(hσ ) (C-4)

and

T−1
T∑

t=1

(
v̂i,t v̂ j,t − ρ̃i, j,t/T

)2 p(hρ) (C-5)

where, using the Rice criterion (see, eg, Pagan and Ullah (2000)),

p(h) =
(

1−
2

T h
√

2π

)−1

(C-6)

σ̃ 2
t/T =

∑T
i=1,i 6=t K hσ

i,i/T û2
i∑T

i=1,i 6=t K hσ
i,i/T

(C-7)

and

ρ̃2
i, j,t/T =

∑T
s=1,s 6=t K hρ

s,t/T v̂i,s v̂ j,s∑T
s=1,s 6=t K hρ

s,t/T

(C-8)
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Appendix D: Stability and misspecification tests
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Table 1: Structural Stability and Misspecification Tests for US (GDP Defl.)

Structural Stability Test Probability Values

Results for VAR model

Equation Parameter Test Statistics

Average Supremum Exp. Average

Constant 0.141 0.045 0.060

Inflation 0.075 0.025 0.035

Inflation GDP 0.568 0.492 0.492

Int. Rate 0.181 0.156 0.161

Err. Variance 0.136 0.116 0.116

Constant 0.000 0.000 0.000

Inflation 0.427 0.236 0.241

GDP GDP 0.236 0.201 0.206

Int. Rate 0.000 0.000 0.000

Err. Variance 0.035 0.000 0.000

Constant 0.286 0.307 0.307

Inflation 0.563 0.513 0.513

Int. Rate GDP 0.322 0.362 0.362

Int. Rate 0.462 0.347 0.347

Err. Variance 0.000 0.000 0.000

Inflation/GDP 0.000 0.000 0.000

Correlations Inflation/Rate 0.000 0.000 0.000

GDP/Rate 0.005 0.000 0.000

Results for AR model

Constant 0.286 0.085 0.111

AR Coeff. 0.302 0.156 0.241

Err. Variance 0.643 0.543 0.543

Misspecification Test Probability Values

Residual Ser. Correlation ARCH Non-linearity

Univariate 0.037 0.083 0.737

Inflation 0.018 0.218 0.736

GDP 1.000 0.052 0.411

Int. Rate 0.461 0.000 0.000
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Table 2: Structural Stability and Misspecification Tests for US (CPI)

Structural Stability Test Probability Values

Results for VAR model

Equation Parameter Test Statistics

Average Supremum Exp. Average

Constant 0.613 0.553 0.573

Inflation 0.497 0.322 0.362

Inflation GDP 0.447 0.598 0.598

Int. Rate 0.442 0.417 0.427

Err. Variance 0.558 0.497 0.497

Constant 0.000 0.000 0.000

Inflation 0.176 0.106 0.106

GDP GDP 0.231 0.151 0.161

Int. Rate 0.000 0.000 0.000

Err. Variance 0.060 0.015 0.015

Constant 0.608 0.628 0.628

Inflation 0.754 0.784 0.784

Int. Rate GDP 0.442 0.508 0.508

Int. Rate 0.688 0.724 0.724

Err. Variance 0.000 0.000 0.000

Inflation/GDP 0.000 0.000 0.000

Correlations Inflation/Rate 0.000 0.000 0.000

GDP/Rate 0.000 0.000 0.000

Results for AR model

Constant 0.010 0.005 0.005

AR Coeff. 0.005 0.000 0.005

Err. Variance 0.090 0.040 0.040

Misspecification Test Probability Values

Residual Ser. Correlation ARCH Non-linearity

Univariate 0.998 0.079 0.475

Inflation 0.905 0.366 0.167

GDP 0.995 0.068 0.156

Int. Rate 0.390 0.000 0.000
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Table 3: Structural Stability and Misspecification Tests for UK (GDP Defl.)

Structural Stability Test Probability Values

Results for VAR model

Equation Parameter Test Statistics

Average Supremum Exp. Average

Constant 0.161 0.171 0.171

Inflation 0.151 0.065 0.101

Inflation GDP 0.246 0.171 0.176

Int. Rate 0.201 0.236 0.216

Err. Variance 0.261 0.231 0.231

Constant 0.000 0.000 0.000

Inflation 0.101 0.085 0.085

GDP GDP 0.020 0.000 0.005

Int. Rate 0.005 0.000 0.000

Err. Variance 0.000 0.000 0.000

Constant 0.317 0.367 0.367

Inflation 0.246 0.261 0.261

Int. Rate GDP 0.357 0.362 0.362

Int. Rate 0.362 0.392 0.392

Err. Variance 0.000 0.000 0.000

Inflation/GDP 0.000 0.000 0.000

Correlations Inflation/Rate 0.020 0.005 0.005

GDP/Rate 0.095 0.095 0.095

Results for AR model

Constant 0.035 0.005 0.010

AR Coeff. 0.075 0.045 0.050

Err. Variance 0.201 0.090 0.095

Misspecification Test Probability Values

Residual Ser. Correlation ARCH Non-linearity

Univariate 1.000 0.899 0.901

Inflation 1.000 0.000 0.852

GDP 1.000 0.187 0.167

Int. Rate 0.975 0.000 0.013
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Appendix E: Results for the United States

Chart 1: Results on AR inflation analysis: The panels report the constant term, the AR
coefficient, the error variance, the implied variance keeping the error variance fixed, the
implied variance allowing the error variance to vary and the implied spectrum respectively.
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Chart 2: VAR results: estimated error variances
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Chart 3: VAR results: implied variances
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Chart 4: VAR results: implied spectrum and predictability measure for inflation

Working Paper No. 434 July 2011 46



Chart 5: VAR results: predictability measure in 1974 Q1 and 2004 Q1
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Appendix F: Results for the United Kingdom

Chart 6: Results on AR inflation analysis: the panels report the constant term, the AR
coefficient, the error variance, the implied variance keeping the error variance fixed and the
implied variance allowing the error variance to vary and the implied spectrum respectively.
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Chart 7: VAR results: estimated error variances
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Chart 8: VAR results: implied variances
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Chart 9: VAR results: implied spectrum and predictability measure for inflation
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Chart 10: VAR results: predictability measure in 1982 Q3 and 2004 Q1
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Appendix G: Structural results
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Chart 11: Results for US CPI data set: inflation
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Chart 12: Results for US CPI data set: GDP
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Chart 13: Results for US CPI data set: interest rate
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Chart 14: Results for US GDP deflator data set: inflation
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Chart 15: Results for US GDP deflator data set: GDP
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Chart 16: Results for US GDP deflator data set: interest rate
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Chart 17: Results for UK data set: inflation
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Chart 18: Results for UK data set: GDP
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Chart 19: Results for UK data set: interest rate
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