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Abstract

This paper studies the optimal intraday pricing in payment systems and its impact on banks’ payment

behaviour and intraday liquidity management.  A model is developed to compare the performance of

two different mechanisms to reduce payment delay:  a throughput guideline and a tariff that varies over

time, and concludes that a linear time-varying tariff achieves a better outcome unless the payment

system experiences a system-wide liquidity shock.  We show that settlement delay can be socially

efficient, contrary to general understanding of the literature, when it reduces the aggregate cost of

liquidity.  The theoretical model suggests that the tariff eliminates the inefficient settlement delay that

does not contribute to lowering the cost, while leaving the socially efficient delay.
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Summary

Timely and liquidity-ef�cient settlement of payments is an important policy objective for central

banks. Settlement delay is, however, recognised as a potential problem in major payment

systems. This paper studies two possible solutions to the problem of settlement delay, throughput

guidelines and a time-varying tariff, compares their performances, and discusses the design of a

time-varying tariff.

The economics of payment literature generally assumes that early payments are always good.

Banks have an incentive to delay their payments to minimise the cost of liquidity. By delaying

payments until other banks make payments to them, they can free-ride the cash in�ow to make

their own payments. Since every bank delays aiming at the free-riding, no bank can successfully

recycle payment in�ow from others. The `competition of delay' is socially inef�cient. This paper

also con�rms the inef�ciency of the `competition of delay', but �nds that delaying payments is

not always inef�cient. It is socially optimal for a bank with a higher cost of liquidity to delay its

payments and for a bank with a lower cost to make early payments. By doing so, the payment

system can establish an ef�cient role-sharing to minimise the aggregate cost of intraday liquidity.

That is, the low-cost bank prepares more intraday liquidity than a high-cost bank, and the

high-cost bank can recycle the payment in�ows (cash) from the low-cost bank for its payments

for free. The delay need not be long � just until the bank with the higher cost of liquidity has

received funds in.

The typical solution to the delay, the throughput guidelines adopted by the United Kingdom and

others, is to penalise a bank if it fails to make a certain fraction of payments by predetermined

deadlines. The model in this paper shows that these guidelines have potential drawbacks. First,

they do not penalise payment delay until the deadline. As a result, they may create a bunching of

payments just before the deadline, as the guidelines provide greater incentives for banks to make

last-minute payments. Second, they impose the same deadline on all banks in the payment

system even if they have different liquidity costs. This inhibits heterogeneous banks from the

ef�cient role-sharing.

The second solution, the time-varying tariff adopted by Switzerland and others, penalises late

payments in a different way. A payment system with such a tariff charges member banks a fee
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(tariff), which is increasing over time, on each payment. This paper shows that a linear

time-varying tariff can overcome the potential drawbacks of throughput guidelines. The tariff

allows each member bank to determine its optimal payment schedule, according to its cost of

liquidity. The ef�cient delays are retained, while the inef�cient `competition of delay' is

eliminated. The tariff itself is independent of the cost � ie a system operator does not need to

monitor each bank's cost of liquidity, which would be costly or infeasible, to design the optimal

tariff.

We also show that the tariff fails to encourage early payments in the speci�c situation where

banks simultaneously experience a large rise in liquidity cost, as in a liquidity crisis. Otherwise,

the tariff improves the ef�ciencies of the payment system by minimising the aggregate cost of

liquidity and discouraging inef�cient settlement delay, compared with the throughput guidelines.

Working Paper No. 428 May 2011 4



1 Introduction

Timely and liquidity-ef�cient settlement of payments is an important policy objective for central

banks. Settlement delay is, however, recognised as a potential problem in real-time gross

settlement (RTGS) systems, especially.1 Bech and Garratt's (2003) seminal paper describes the

mechanism of delay. In RTGS, banks are required to prepare cash to make payments. Banks can

obtain cash by borrowing from the central bank, or by receiving a payment in�ow from another

bank. The former option allows the banks to make a timely payment, but they have to bear the

cost of liquidity out�ow.2 The latter option gives free cash to the banks, but they have to

postpone their payments until they receive payment in�ows. A delay may also be costly for

banks, because the customers who request the payments possibly prefer timely settlement (Bech

and Garratt denote this as the cost of delay). And if all the banks wait for payment in�ows from

other banks, no payment would be made until the last minute, resulting in signi�cant intraday

settlement delay.

Bech (2008) mentions three possible solutions to the problem. First, central banks can lower the

cost of liquidity. If the cost is negligibly small, their banks have fewer incentives to await

payment in�ows for free cash.

The second one is a throughput guideline. In the United Kingdom, member banks of CHAPS, the

country's large-value payment system, are required on average, over the course of a month, to

settle 50% of the daily value of their payments by noon and 75% by 2.30 pm. There is no de�ned

penalty for violating the guideline in practice, but the violation incurs a small reputation loss,

which is believed to be suf�cient to discipline the banks. CHIPS in the United States has a

similar arrangement.

The third solution is a time-varying tariff, which SIC in Switzerland adopts. Many payment

system operators charge member banks a small fee (tariff) to process each payment.3 Most

operators charge a �xed tariff on each payment, irrespective of the payment timing. The tariff of

1See, for instance, Committee on Payment and Settlement Systems (2005), McAndrews and Rajan (2000), and Armantier, Arnold and
McAndrews (2008).
2The banks have to pledge collateral to the central bank to obtain cash, even though the borrowing rate is normally zero across countries.
The cost of liquidity is one measure of the opportunity cost of the collateral.
3See Manning, Nier and Schanz (2009) for detail of the tariff structure of payment systems (page 172, for example).
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Chart 1: The processing fees (tariffs) of SIC
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SIC, on the other hand, is increasing over time through the day and by the size of the payment

(see Chart 1). The time-varying tariff penalises later payers by charging a higher fee on later (and

larger) payments.

The payments literature has mainly focused on the �rst option, eg in the context of

liquidity-saving mechanisms (see eg Martin and McAndrews (2008); or Willison (2005)). In this

paper, instead, we limit our attention to the latter two: throughput guidelines and time-varying

tariffs. The aim of the paper is to examine whether the time-varying tariff would be more

ef�cient or not comparing with throughput guidelines, and what that tariff could look like. The

following is a summary of the paper's results.

The two options, throughput guidelines and time-varying tariffs, are characterised by their

different natures to penalise late payments. The throughput guidelines are an example of trigger

strategies, which impose a lump-sum penalty on an agent if the agent fails to satisfy a preset

criterion. Time-varying tariffs do not have such thresholds: the tariffs penalise banks

continuously as they delay payments. In reality SIC's time-varying tariffs does not continuously
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penalise late payments as Chart 1 shows, but this paper focus on the case of continuous penalty

to clarify the conceptual difference.

Trigger strategy (throughput guidelines) has several potential drawbacks. First, it does not

penalise payment delay until the deadline, and there is no additional penalty even if a bank keeps

delaying payments after failing to meet the deadline.4 As a result, it may create a bunching of

payments just before the deadline, as the strategy incentivises banks to make last-minute

payments. Second, a settlement agent who operates the system has to choose an appropriate

deadline that maximises the ef�ciency of the system. This may not be an easy task, because the

optimal payment timing of each bank is not observable for the agent. Third, the throughput

guideline enforces an identical (or, at least, similar) payment schedule to all the member banks.

This may be another source of inef�ciency, because each member bank's optimal payment timing

is unlikely to be the same. Theoretically, the central bank may be able to tailor the deadline to

each one of the member banks' cost structures. But this is an unrealistic option because it

requires the central bank to observe each bank's costs of liquidity and delay.

The model in this paper will show that a linearly increasing tariff over the course of the day can

overcome the potential drawbacks of the throughput guideline. A signi�cant bene�t of the tariff

is allowing potentially optimal payment schedules to be achieved by each member bank. If a

bank �nds its cost of liquidity low, then the bank can make payments earlier to save on the cost

of delay and the tariff. On the other hand, if a bank's cost of liquidity is high, it may �nd it

optimal to delay the payments: the bank has to bear a higher cost of delay and the tariff, but has

more chance to receive free cash in�ows from other banks. This paper focuses on the case where

member banks are heterogeneous only in the costs of liquidity and assumes that the banks are

identical in the cost of delay, for the sake of simplicity.

Allowing banks greater �exibility over their payment schedules through a time-varying tariff has

two bene�ts. First, the central bank does not have to know the costs of each member bank. The

central bank still needs to know the average cost of liquidity to determine the slope of the

time-varying tariff, but it can apply the same tariff function to all member banks. Banks modify

their payment timings based on their own cost structure, which is private information. In other

4In the United Kingdom, there are two deadlines at noon and 2:30pm - but it does not change the argument. No further penalty is applied.
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words, the tariff achieves the constrained social optimum, where the central bank cannot observe

all available information.

Second, the �exibility of the tariff not only provides a bene�t to each member bank, but also

improves social welfare. The welfare improvement comes from the incentive to improve

management of intraday liquidity created by the tariff. If there are two banks, which are

heterogeneous in their costs of liquidity, then the aggregate cost of liquidity is minimised when

the bank with low liquidity cost borrows more cash, and the bank with high cost recycles the cash

received from the low-cost bank to make its own payments.

From a policy perspective, settlement systems are normally required to achieve cost recovery.

They should not make a loss, but should not make an excess pro�t either. The throughput

guidelines do not need to consider cost recovery, since these impose a non-pecuniary penalty.

This paper shows that, under a time-varying tariff, there is an easy way to achieve cost recovery,

even though it entails a pecuniary penalty.

Theoretically, the most relevant paper is Walsh (1995), who also studies a linearly increasing

penalty that enables central bankers to commit to the target in�ation rate. While Walsh (1995)

studies how the penalty works in a principal (government) - agent (central banks) relationship,

we initially look at two agents' (banks') competition to show when and how settlement delay

occurs in payment systems. This paper then considers a feasible measure, a linearly increasing

tariff, by which the principal (the central bank) eliminates inef�cient settlement delay.

Other relevant literatures in payment economics are the studies of throughput guidelines and of

two-part tariffs in payment systems. The study of Buckle and Campbell (2003) is an example of

the former. Holthausen and Rochet (2005, 2006) study optimal pricing in a large-value payment

system when the central bank maximises welfare. Holthausen and Rochet (2006) show that a

volume-discounting price policy, ie the per-transaction fee is lowered where participants make a

large number of payments, is optimal, when the central bank cannot observe each participant's

degree of willingness to make payments and the payment system is not allowed to make any

pro�t or loss (full cost recovery). Holthausen and Rochet (2005) study a case when the central

bank provides a public good or service, and show that a subsidy to a public payment system can

Working Paper No. 428 May 2011 8



be optimal when it is competing with a private system, to ensure the appropriate provision of the

public service. This paper also studies a two-part tariff as we will see below, but is different from

the literature in many aspects: eg instead of small payers being penalised by the volume discount,

late payers are penalised in this model. To my knowledge, this is the �rst paper studying intraday

pricing of large-value payment systems and its impact on payments behaviour and intraday

liquidity management, Holthausen and Rochet, however, focus on studying daily pricing across

systems.

Another contribution of this paper is to develop a way of modelling payment behaviour. To date,

payment behaviour has been mainly studied with a simple discrete time scale: mostly two

periods, morning and evening. But in this model, the payment timing is chosen from a

continuous set and a Cournot duopoly game (with two-sided incomplete information) is played.

There are several interesting implications arising from this set-up for payments behaviour in

general (for example, it may suggest the reason why banks have been recently paying earlier in

Fedwire); and signi�cantly it shows that settlement delay is not always inef�cient.

The remainder of the paper is organised as follows. Section 2 describes the model. Section 3

describes the equilibrium of the game when the banks choose their actions at their discretion.

Section 4 provides the socially optimal outcome as a benchmark; and two possible measures to

improve ef�ciency are discussed in Section 5. Section 5 also shows that the time-varying tariff

works better than throughput guidelines. Section 6 provides a holistic discussion of the tariff and

concludes.

2 Payment behaviour: basic model and delay

Suppose that there are two banks 1 and 2 in an RTGS payment system. The banks have many

payment obligations to be settled by the end of the day. It is assumed that their payment

behaviour is summarised by one variable, the delay of these payments (d1 and d2), because it is

infeasible for the banks to manage each one of the payments. The delay of bank i 2 f1; 2g is

denoted as di 2 [0; T ], ie their delays are chosen from the continuous bounded segment: 0

represents a point in time when the bank settles the payment obligations as soon as possible, and

T represents the maximum possible delay. Bank i chooses di before the payment system opens,

and cannot change this during the day.
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A bank determines the delay based on two costs. First, if it delays settling payments, it has to

bear an intraday delay cost that is increasing over time. This partly represents a reputation loss

for the bank when it fails to settle their customers' payments in a timely fashion.

Second, banks can save on their cost of liquidity by delaying their payments. In RTGS, a bank

who pays �rst in the system has to obtain cash at the cost of intraday liquidity. The recipient of

the payment does not have to do so � it can recycle the received cash for its own payment for

free. The liquidity cost is, therefore, a decreasing function of delay, given that the other bank's

delay is �xed: the later a bank pays compared to its the counterparty, the lower its liquidity cost.

2.1 De�nition of the game

Bank i chooses di to minimise the following loss function at the beginning of the day.

min
di
Vi.di/ D l.diI d j ; c C "i/C k.di/

The loss function V is additively separable. l.diI c; d j ; "i/ is the liquidity cost function, which is

assumed to be C2 class. The liquidity cost function has three parameters: c, market-wide

liquidity cost; d j , the counterparty j's delay; and "i , bank i's idiosyncratic liquidity cost. "i for

8i is private information throughout the game, but the distribution is publicly known; "i follows a

uniform distribution on a closed set X , and is identically and independently distributed across

banks. Lastly "i follows a uniform distribution and E["i ] D 0 for 8i , ie "i 2 [�N"; N"]. The banks

are identical except for ": so Vi.�/ D V j.�/ if "i D " j .

k.di/ is the function of intraday delay, which is also C2 class. The delay cost is independent of

the counterparty's delay d j .

For the sake of simplicity and analytical tractability, we approximate the functions by Taylor

expansion up to the second order. By expanding the liquidity cost function at di D d j D 0 and

c C "1 D c, we have:
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l1.d1; d2; c C "1/ ' Ol1.d1; d2; c C "1/

D l1;d1.0; 0; c/ � d1 C l1;d1d2.0; 0; c/ � d1 � d2 C l1;d1"1.0; 0; c/ � d1 � "1

Cl1;d2.0; 0; c/ � d2 C l1;d2"1.0; 0; c/ � d2 � "1

D �d1 C �d1d2 C 
 d1"1 C �d2 C �d2"1 (1)

where � D l1;d1.0; 0; c/ is a �rst-order derivative coef�cient;

@l1.d1 D 0; d2 D 0; c C "1 D c/=@d1. The other parameters are de�ned in the same manner:

� D l1;d1d2.0; 0; c/ D @2l1.d1 D 0; d2 D 0; c C "1 D c/=@d1@d2, 
 D l1;d1"1.0; 0; c/,

� D l1;d2.0; 0; c/ and � D l1;d2"1.0; 0; c/. All the other coef�cients, eg l1;d2d2.0; 0; c/ and

l1.0; 0; c/, are assumed to be zero for the sake of simplicity. We would have a similar result even

if we did not simplify the parameter set. Since the banks are assumed to be identical ex ante,

bank 2 has the same parameters and �: ie l1;d1.0; 0; c/=l2;d2.0; 0; c/ l1;d1d2.0; 0; c/ D l2;d2d1.0; 0; c/

and so on.

The delay cost function k is approximated in the same manner. Bank 2 has the same parameters �

and � as it is symmetric.

k.d1/ ' Ok1.d1/

D k1;d1.d1 D 0/ � d1 C
1
2
� k1;d1d1.d1 D 0/ � d

2
1

D �d1 C
1
2
�d21

The coef�cients of the approximated liquidity cost function, eg li;di D li;di .0I 0; lc/,

li;did j D li;did j .0I 0; lc/ are also de�ned in the same way.
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We impose several restrictions on the derivatives to re�ect the intuition provided above:

A1: � < 0

A2: � > 0

A3: � C � D 0

A4: � < 0

A5: 
 < 0

A6: 
 C � D 0

A7: � > 0 and � D 0

Delaying payments allows a paying bank to lower its liquidity cost, by utilising payment in�ows

from the counterparty for the paying bank's own payment. This is assumption A1. But this is

costly for the counterparty since its net payment position temporarily increases due to the delay

in payment in�ow � the counterparty has to prepare additional cash to make its payments. A2,

� > 0, describes this negative externality.

A3 assumes that relative delay matters. If two banks delay their payments to the same extent, the

liquidity-saving effect � and the negative externality � offset each other. This is not an essential

assumption: see footnotes 5, 6 and 8 for the cases when we do not assume A3.

A4 assumes that the more bank 2 delays its payments, the more bank 1 can save on the cost of

liquidity by delaying payments. If we assume � D 0 instead, the banks choose their optimal

degree of delay di irrespective of their counterparty's delay.

A5 means that banks with higher cost of liquidity (ie larger "i ) �nd payment delay more

attractive. This is an intuitive assumption: if the liquidity cost is high, payment in�ows (a source

of free cash) become more valuable and the paying bank �nds it optimal to delay its payments.

This assumption plays an important role when we consider the welfare effect of various tariffs.

A6 is parallel to assumption A3. � > 0 implies that the negative externality of a counterparty's
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delay becomes larger if the bank's liquidity cost is high. This negative externality and the

liquidity-saving effect 
 (A5) also offset each other: see footnotes 5 and 6 for the cases when we

ease this assumption.

A7 assumes that the intraday delay cost is increasing and convex. As is observed in many

payment system, participants of payment systems aim to settle all payment obligations by the end

of the day. As Committee on Payment and Settlement Systems (1997) notes, banks try to avoid

delays in time-critical transfers. But at the end of the day, most (if not all) payment obligations

become time-critical. This implies an increasing and convex delay cost function k. Furthermore,

if the loss function V is concave, we always have corner solutions at di D 0 or di D T : this is not

an interesting case as we will see below. For the sake of simplicity I further assume � D 0. See

footnotes 5,6 and 8 for the cases when we do not assume � D 0.

3 Discretionary payment timing

The objective functions of banks are de�ned as follows:

min
d12[0;T ]

Ol1.d1; d2; c C "1/C Ok1.d1/� �1d1 � �3.T � d1/

min
d22[0;T ]

Ol2.d2; d1; c C "2/C Ok2.d2/� �2d2 � �4.T � d2/

Oli and Oki are the approximated loss functions and � j are Lagrangian multipliers that ensure

di 2 [0; T ]. The Kuhn-Tucker �rst-order conditions of bank 1 are:

� C �d2 C �"1 C �d1 � �1 C �3 D 0

�1;3 � 0 and �1d1 D �3.T � d1/ D 0
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The best response function d BR1 is then derived:

d BR1 .E[d2]; "1/ D .�1/
�

�
�
�

�
� E [d2.d1; "2/]�




�
� "1 C

1
�
� �1 �

1
�
� �3 (2)

Since bank 1 cannot observe "2, the best response function becomes a function of expected

d2.d1; "2/. The best response function of bank 2 is calculated in the same way.

Here we limit our attention to the internal solutions: �h D 0 for h D f1; 2; 3; 4g. (The cases of

corner solutions are mentioned later.) At any equilibrium, E
�
di.d j ; "i/

�
D E

�
d BRi .E[d j ]; "i/

�
for any i 6D j . The expected best response functions are

E
�
d BR1 .d2; "1/

�
D .�1/

�

�
�
�

�
� E
�
d BR2 .d1; "2/

�
(3)

E
�
d BR2 .d1; "2/

�
D .�1/

�

�
�
�

�
� E
�
d BR1 .d2; "1/

�
(4)

Solving the simultaneous equations, we have

E
�
d BR1 .d2; "1/

�
D E

�
d BR2 .d1; "2/

�
D .�1/ �

�

�C �

Substituting this into the best response functions, we have

d�1 .E[d2]; "1/ D .�1/ �
�

�C �
�



�
� "1

d�2 .E[d1]; "2/ D .�1/ �
�

�C �
�



�
� "2
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Since we assume �h D 0 for h D f1; 2; 3; 4g, d�i .E[d j ]; "i/ 2 .0; T / for any i 6D j . The condition

to have this is, from the complementary slackness condition,

.�1/ �
�

�C �
>




�
� "1

.�1/ �
�

�C �
< T C




�
� "1

Rearranging this, for any i ,
�



�
.�1/ � �
�C �

< "i <
�



�
.�1/ � �
�C �

�
�



� T (5)

We denote the open interval as 4. Since E["i ] D 0 we need the lower bound (the left-hand side

of the equation (5)) to be strictly negative and the upper bound (the right-hand side) to be strictly

positive. These conditions are satis�ed when � < 0 and �C � > 0 (these are the conditions for

the simultaneous equations (3) and (4) to have a unique equilibrium) and when T is suf�ciently

large. Now we have proved the following proposition.5

Proposition 1 If the assumptions A1-7 hold and if �C � > 0, then there exists a unique

pure-strategy Bayesian Nash Equilibrium d�i .E[d j ]; "i/ D .�1/ �
�

�C� �


�
� "i .i 6D j/, where

"i 2 X � 4.

See the appendix for the proof.

An important implication is that there is a constant term of delay .�1/��
�C� > 0 irrespective of the

idiosyncratic liquidity cost "i . This comes from the `competition of delay' between banks: ie

each bank tries to submit payments later than the counterparty. The `competition', theoretically a

variation of Cournot competition, can be clearly seen in the best response function (equation (2)),

in which d BR1 is a positive function of E [d2]. The positive coef�cient of E [d2] comes from the

5The assumptions A3 and A6 are unnecessary for the proposition. The assumption A7, � D 0, can be eased to � � 0, but we need to have
� C � < 0 to ensure the existence of internal solutions.
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assumption A4 which provides an additional incentive for a bank to delay when its counterparty

delays.

Banks postpone payments by .�1/��
�C� owing to a fear that they are preceded by their counterparties

(delaying payments), and choose an additional delay if they themselves �nd it costly to obtain

funds ( 

�
� "i ). Banks shorten the delay if the delay cost is large (large �), or if the liquidity cost is

low (small � or "i ). We will see that the `competition of delay' is socially inef�cient in the

following section.

The constant term `competition of delay' does not diverge to positive in�nity, because at some

stage the marginal bene�t banks can obtain by paying later than their counterparties (�) is

outweighed by the marginal cost of delay, �. This is what the assumption �C � > 0 ensures. If

�C � � 0, instead, banks always �nd it optimal to respond to their counterparties' delay by

delaying even more, and the competition of delay continues until di reaches its upper bound T .

As we will discuss later in Section 6, the corner solution is trivial since "i is irrelevant in

equilibria.

4 Socially optimal payment timing

In the `competition of delay' game, banks delay payments to minimise their loss functions, but in

equilibrium, the delay becomes costly for both. This is because delay by a bank raises the other

bank's cost of liquidity and thus incentivises the other bank's delay as a countermeasure. If both

banks delay, the delay creates a deadweight loss.

In this section, we calculate a socially optimal outcome, minimising the aggregate loss of the

banks, as a benchmark to clarify the deadweight loss. We will �rst derive the �rst-best solution,

where there is no information asymmetry. We then derive another solution, under a more realistic

assumption that a social planner cannot observe "i .
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4.1 First-best solution

A social planner of the economy, which is possibly a central bank or a settlement agent, is

assumed to minimise the aggregate loss of two banks 1 and 2. The social planner can observe "1
and "2. The social planner's loss function is thus de�ned as follows:

min
d1;d2

Ol1.d1; d2; c C "1/C Ok1.d1/C Ol2.d2; d1; c C "2/C Ok2.d2/

��1d1 � �2d2 � �3.T � d1/� �4.T � d2/ (6)

By solving this, we have the following proposition.6

Proposition 2 The �rst-best solution d1sti is determined as follows:

d1sti D max
�




�� 2�
�
" j � "i

�
; 0
�

See appendix for the proof. The proposition gives rise to several important implications. First,

the socially optimal delay is a function of the difference between the two banks' idiosyncratic

costs of liquidity. Even if "1 is large, bank 1 makes the payments earlier if "2 > "1 (note that



��2� < 0). The intuition is straightforward. If bank 1's liquidity cost is cheaper than that of bank

2, it is optimal for bank 1 to obtain more liquidity and to make its payments earlier than bank 2,

in order to allow bank 2 to free-ride on the payment in�ow from bank 1. Bank 1, as a result, has

6If A3 does not hold and if � C � < 0, then E[d1sti ] > 0 when �C 2� > 0 (a slightly stronger condition than the condition of
Proposition 1, since the social planner counts the externality effects of two banks - the intuition of the condition is the same as the
Proposition 1). This is because � C � < 0 implies that the private bene�t of own delay (�) outweighes its negative externality (�). Ie
delay is socially optimal until the (net) bene�t is dominated by the increase of the delay cost (�). We do not consider this case further
since the assumption � C � < 0 is counterintuitive.

If � C � > 0 then d1sti has a negative constant term. It does change the overall argument below. � > 0 also provides a negative constant
term.

Even if A6 does not hold and 
 C � 6D 0, the main arguments below are unchanged as long as � > 0. See appendix for the detail.
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to prepare a larger amount of intraday liquidity, but the aggregate cost of liquidity of the two

banks is minimised since bank 1's liquidity cost is lower than bank 2.

Second, the socially ef�cient expected delay E[d1sti ] is equal to zero. In other words, on average

no delay is socially optimal. This proves that the discretionary payment d�i is not socially

desirable since it has a positive constant term. The suboptimality of the constant term is intuitive.

For a given payment timing of its counterparty, a bank �nds it optimal to delay and free-ride on

the counterparty's liquidity knowing that its own delay increases the liquidity cost of its

counterparty. The counterparty then also �nds it optimal to delay further. The `competition of

delay' game continues until the marginal decline in the liquidity cost is outweighed by the

increase of the delay cost. Since the two banks delay to the same extent in the (discretionary)

equilibrium (Proposition 1), the banks cannot save any liquidity cost because free-riding is not

possible. This is obviously socially inef�cient: the `competition of delay' ends up with a higher

delay cost alone.

These implications tell us that, from an individual bank's point of view and from the social

planner's point of view, settlement delay can be socially ef�cient when banks are heterogeneous

("1 6D "2). The role-sharing arrangement that a bank with a lower funding cost prepares more

liquidity and pays earlier works when banks are heterogeneous. And the socially desirable delay

is a function of the difference of the liquidity cost ("i � " j ). On the other hand, the propositions

above also specify an inef�cient component of settlement delay; the constant `competition of

delay' part.

4.2 When the social planner has imperfect information

The assumption that the social planner can observe individual bank i's idiosyncratic cost "i is,

however, infeasible in most cases. Central banks may be able to observe the average cost of

liquidity among banks, which is the market rate, but it is at least dif�cult, if not impossible, to

monitor the liquidity cost of each one of the banks.

If the idiosyncratic cost "i is unobservable for the social planner, it can at most minimise the

expected cost of the aggregated loss function:
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min
d1;d2

E
h
Ol1.d1; d2; c C "1/C Ok1.d1/C Ol2.d2; d1; c C "2/C Ok2.d2/

i
��1d1 � �2d2 � �3.T � d1/� �4.T � d2/

The solution of the problem is almost identical to the �rst-best case, and we have the following:

Proposition 3 d f easiblei D 0 for any i 2 f1; 2g.

Theoretically, the social planner may be able to design a mechanism that provides an incentive

for banks to reveal their private information ("i ). This may be a better solution than imposing

d f easiblei D 0, but we do not consider this possibility. This is because the social planner would

have to design a complicated system whereby payment timing and the tariff are adjusted based

on banks' announcement of their private information (possibly every day). Considering the

current arrangements in payment systems, such a complicated arrangement is infeasible.

d f easiblei provides a better outcome than the discrete d�i in the sense that d
f easible
i eliminates the

inef�cient `competition of delay', but is less ef�cient than d1sti and d�i in the sense that it ignores

the idiosyncratic factors f"igiD1;2.

5 Incentive mechanisms for early payments

In this section, we seek means to eliminate the inef�ciency identi�ed in the previous section. Two

options are discussed here. The �rst one is throughput guidelines, which force banks to submit a

fraction of their payments by a certain intraday deadline. CHAPS in the United Kingdom,

CHIPS in the United States and some other payment systems adopt this option. The second one

is a time-varying tariff, which charges a higher processing fee for payments that are submitted for

settlement later on the day. SIC in Switzerland and STR in Brazil have introduced this option.

We will compare the options and also �nd the optimal design of the time-varying tariff.
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There are three important assumptions underlying the discussions in this section. First, the social

planner cannot observe "1;2. Second, the social planner cannot enforce the payment action di
directly. Third, the social planner cannot design a mechanism that is a function of "i .

5.1 Throughput guidelines

Throughput guidelines require banks to make some fraction of a given day's payments by certain

intraday deadlines.7 Normally there is no pecuniary penalty for breach of the guidelines.

Reputation loss is considered to be suf�cient to enforce banks' early payments.

By imposing suf�ciently strong penalties for violation, the social planner (a settlement agent or a

central bank ) can enforce d f easible1 . In other words, throughput guidelines can be interpreted as a

system by which the social planner, who is not able to observe "i , aims to maximise the welfare

of the system. The guidelines have some drawbacks, however.

The �rst reason is equivalent to the drawback of d f easible1 discussed in the previous section. Since

the enforced payment timing is independent of bank speci�c factors ("i ), there is no �exibility for

the banks to adjust their payment behaviours based on "i . We have seen in the previous section

that it is socially optimal for a bank with a lower liquidity cost to pay early and for a bank with a

higher liquidity cost to pay later, as this minimises the aggregate cost of liquidity. The throughput

guidelines do not allow for such �exibility.

Second, there is no incentive for banks to make payments well ahead of the deadline. Since there

is no penalty for `last-minute' payments made shortly before the deadline, it is optimal for the

banks to make payments an instant before the deadline: this creates bunching of payments. We

do not discuss this inef�ciency here in order to focus on the �exibility issue: the deadline is

assumed to be di D 0 as shown above, so no `delay before deadlines' can be made.

7To be precise, in the United Kingdom, the member banks are required to satisfy the guideline on a monthly average, not on a daily basis.
But the same argument can be applied to the UK guidelines as well, by assuming that " is unchanged throughout the month (alternatively,
we can interpret the model as studying banks' behaviour on the last day of the month). See Section 6 for further discussion on this issue.
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5.2 Time-varying tariff

An alternative mechanism to incentivise early payments is a time-varying tariff: if banks pay late,

they have to pay a higher processing fee to the system operator. We denote the tariff as a function

t .di/, which is increasing in di . The objective function is now de�ned as follows (we do not

restrict di from above, because it is obviously bounded above):

min
d1
Ol1.d1; d2; c C "1/C Ok1.d1/C t .d1/� �1d1

min
d2
Ol2.d2; d1; c C "2/C Ok2.d2/C t .d2/� �2d2

Solving these, and determining t .di/ to eliminate the constant strategic delay term in Proposition

1, we have the following:8

Proposition 4 An optimal tariff function is t .di/ D t0 � �di . The equilibrium delay is

d��i D max
h
� 

�
"i ; 0

i
.

See the appendix for the proof. t0 is an integral constant.

Since we assume � < 0, t .di/ is increasing in di . � is a decreasing function of c, thus the tariff

should be designed to be steeper (ie the tariff should increase quickly over time) if the average

liquidity cost c is high. And since � is a constant parameter, the tariff should increase linearly

8If � > 0 (easing assumption A7) or � C � 6D 0 (easing A3), the optimal tariff function takes a slightly different form, because the
expected �rst-best solution has a non-zero constant term, as we have seen in footnote 6.

Focusing on the case � C � 6D 0, d1sti has a constant term .�1/.�C�/
�C2� . The optimal tariff function has to incorporate this, so we have the

following:
t .di / D t0 �

n
� � : .�C�/.�C�/�C2�

o
� di

This is still a linear function against di , and the characteristics of the function are unchanged.

Assumption A6 is irrelevant to the proposition.
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over time. This suggest, however, that an exponentially increasing tariff, such as the SNB adopts,

may excessively penalise later payers.

A linearly increasing tariff has several characteristics. First, the tariff eliminates only the delay

coming from the inef�cient `competition of delay' (see Section 2) and allows banks to adjust

their payment timing in accordance with the bank's own idiosyncratic factors "i . Second, the

settlement agent does not have to tailor the tariff for each bank: the same tariff enforces the

different optimal payment timing according to banks' own "i .

Third, there is a straightforward mechanism to help ensuring the cost recovery of the system. The

settlement agent is usually required not to make any pro�t, and also not to make any loss. Cost

recovery can be achieved by adjusting the constant term t0. t0 is an integral constant so any t0
does not change the incentive structure we have discussed. If the system makes an excess pro�t,

the agent can lower t0 (or, return the equivalent value to the member banks).

In addition, if t0 is appropriately chosen to achieve zero pro�t, the time-varying tariff acts as an

income transfer mechanism, from late payers to early payers. This is the essence of the tariff.

The fact that cash can be obtained for free by receiving payment in�ows incentivises settlement

delay in RTGS. The tariff forces the recipient (ie late payer) to pay some liquidity cost of the

payment in�ow to the payer (ie early payer). The recipient who can recycle the in�ow for free

should be happy to pay the fee, as long as its own liquidity cost is higher than the fee: and thus

this transfer from late payers to early payers improves ef�ciency.

5.3 Performance of the two options

The tariff, however, cannot achieve the �rst best (Proposition 2). This is because each bank i

knows its own private information "i alone, and thus cannot determine its payment timing di
based on counterparty j's " j . Furthermore, the social planner needs to design the tariff function

independently of the unobservable variables "1 and "2. Ie the tariff function cannot change the

coef�cient of "i in Proposition 1; nevertheless the coef�cient of "i is different from the �rst-best

case (see Proposition 2).
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In this section, we compare the aggregated loss function associated with the tariff and with the

throughput guidelines, to con�rm the ef�ciency of the tariff. In other words, we will check the

following inequality, meaning that the expected aggregate loss associated with the tariff is

smaller than the loss with the throughput guideline:

E
�
L.d��1 ; d

��
2 ; c; "1; "2/

�
< E [L.0; 0; c; "1; "2/] D 0

where L.d1; d2; c; "1; "2/ D Ol1.d1; d2; c C "1/C Ok1.d1/C Ol2.d2; d1; c C "2/C Ok2.d2/ is the

aggregate loss of the system given payment timings and liquidity costs. The left-hand side is the

loss if the tariff is implemented, and the right-hand side is the loss with the throughput guideline

and the deadline di D 0. Since d��i is not differentiable at di D 0 (ie at "i D 0) we need to

consider four different cases to calculate E
�
L.d��1 ; d��2 ; c; "1; "2/

�
as follows:

E
�
L.d��1 ; d

��
2 ; c; "1; "2/

�
D

Z N"

0

Z N"

0
L.d��1 ; d

��
2 ; c; "1; "2/ ."1/ ."2/d"1d"2 (7)

C

Z N"

0

Z 0

�N"
L.d��1 ; d

��
2 ; c; "1; "2/ ."1/ ."2/d"1d"2

C

Z 0

�N"

Z N"

0
L.d��1 ; d

��
2 ; c; "1; "2/ ."1/ ."2/d"1d"2

C

Z 0

�N"

Z 0

�N"
L.d��1 ; d

��
2 ; c; "1; "2/ ."1/ ."2/d"1d"2

where  is the probability density function of "i . By substituting d��i D max
h
� 

�
"i ; 0

i
, we have

the following proposition.

Proposition 5 The expected aggregate loss under the tariff E
�
L.d��1 ; d��2 ; c; "1; "2/

�
is strictly

smaller than the one under the throughput guidelines E [L.0; 0; c; "1; "2/].

See the appendix for the proof. The proof has some interesting implications for the mechanism

of the tariff. Equation (A-1) in the appendix shows that the tariff can underperform the

throughput guidelines if "1 and "2 are both positive and take a similar value. Suppose that
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"1 D "2 > 0. Two banks delay their payments expecting that their counterparties pay earlier, but

they cannot save the liquidity cost because both delay to the same extent. In this case, the tariff

can be worse than throughput guidelines which simply force the banks to make payments at

di D 0. Even if "1 and "2 are both strictly positive, the tariff can improve ef�ciency if the distance

between "1 and "2 is large. This is because the main bene�t of the tariff lies in allowing a �exible

role-sharing arrangement when banks are heterogeneous.

A potential inef�ciency comes from the assumption that banks cannot observe their

counterparty's idiosyncratic cost of liquidity "i . In the �rst-best solution, delay is a function of

the difference of the idiosyncratic costs and thus the possibility of inef�cient delay is eliminated.

If the signs of "1 and "2 are different, the tariff works better than the throughput guidelines for

sure. This is because the different signs ensure the heterogeneity of the banks.

The tariff underperforms most when both "1 and "2 take a similar large positive value. This could

happen when the banks are experiencing a large-scale liquidity shortage, in other words, a

liquidity crisis. In these circumstances, the tariff fails to encourage early payments. Potential

policy options during crises are discussed in the following section.

6 Discussion

6.1 How the tariff works

The policy implications of this paper are summarised as follows.

The model shows that the time-varying tariff works better than throughput guidelines. This is

because the tariff allows for ef�cient delay, ie the role-sharing arrangement between

heterogeneous banks, while the guidelines do not. Both however eliminate the inef�cient

`competition of delay' component. In other words, the tariff leads to better intraday liquidity

management. By making banks choose their payment timings, the social planner (eg the central

bank) can allow ef�cient delay conditional on each bank's liquidity cost, which is unobservable

for the planner. It is, however, not the �rst-best solution with symmetric information, because
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each bank can observe only its own cost and thus assumes that the counterparty's hidden

idiosyncratic cost is zero (the expected value of the cost). Especially when two banks are nearly

identical, the optimal tariff creates inef�cient delay in some cases. This is because banks delay to

a similar extent and fail to save the liquidity cost, while their delay costs increase. The optimal

tariff, however, works better on average than throughput guidelines since the welfare

improvement in the cases when the banks are heterogeneous dominates the welfare loss in the

cases of nearly homogeneous banks.

The optimal tariff has simple features that make it easier to implement. First, it should increase

linearly over time, as long as the loss function is convex. (If the loss function is concave, a wide

variety of incentive mechanisms can be optimal and the curvature of the tariff does not matter.) A

convex tariff may excessively penalise late payers. Second, the constant term of the tariff

function, t0, can be freely adjusted to help ensure cost recovery (zero pro�t) for the settlement

agent, which is normally required (as discussed in Section 5.2). Third, the same tariff function

can be applied to all (possibly heterogeneous) banks. The same function can support different

optimal payment timings, in accordance with their hidden idiosyncratic liquidity costs. The

social planner needs to consider the market-wide (average) liquidity cost c alone.

There is a situation, however, where the tariff underperforms throughput guidelines. As shown in

the previous section, if both of the banks experience a large hike of their idiosyncratic liquidity

costs, the tariff cannot work properly to eliminate the inef�cient delay. In the worst cases where

the costs are extremely high, the banks' optimal payment timing di reaches to the closing time T

of the payment system, which can be labelled as `gridlock'.9

There are two conceivable options to the gridlock. The �rst option is a steeper tariff that

incentivises some banks to obtain intraday liquidity to resolve the gridlock, although changing

tariffs during a day may not be feasible. Another option is to provide more intraday liquidity.

Since the slope of the tariff is a function of the market-wide liquidity cost c, the necessity of a

steeper tariff means that the market-wide intraday liquidity cost is increased during the gridlock

period. The social planner can lower this cost by providing intraday liquidity.

9See Bank for International Settlements (1993), for example, for the detail of gridlock. This paper does not speci�cally study gridlock, a
corner solution, since the assumption made at the Proposition 1 ensures internal solution.
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The tariff is the second-best solution in this model. It is inferior to the social planner's �rst-best

d1sti , because the tariff only utilises a bank i's own idiosyncratic cost of liquidity, "i and assumes

the counterparty j's cost is zero, which is the expected value of " j . The �rst-best solution is a

function of the difference of the costs. But as Proposition 5 shows, the tariff is superior to the

throughput guidelines because the guidelines ignore the idiosyncratic costs. But all of these

options are better than the discretional payment behaviour in the Proposition 1, since the

`competition of delay' increases the cost of delay without reducing the cost of liquidity, which is

inef�cient.

An important issue in the implementation of the tariff is how to determine the optimal slope.

Since Proposition 4 tells the optimal slope of the tariff is a function of the cost of intraday

liquidity, the optimal slope can be approximated from the interest rate of intraday liquidity. There

are several empirical studies on this. Fur�ne (2001) estimates that increasing the duration of the

US Federal funds loans (uncollateralised) by one hour raises the interest rate by 0.9 basis point.

Baglioni and Monticini (2008), using an Italian tick-by-tick payments data, estimate that the

hourly price (annualised) of money is 0.44 basis point. Kraenzlin and Nellen (2010) obtain a

similar number (from 0.4 to 0.5 basis point), using Switzerland's data. On a related issue,

Fedwire charges 36 basis point (annualised, 24 hours basis) for a daylight overdraft. This hourly

fee (annualised) is obtained by 36 � 124 D 1:5 basis point.
10 As Fur�ne (2001) argues, the hourly

cost of intraday liquidity is unlikely to be higher. This is because the obtained hourly fee ignores

exemption (see footnote 13), and the fee structure is asymmetric (charged only for positive

overdraft balance, zero for the negative balance).

Using these estimates and Fedwire data, we can provide an illustrative example of the

liquidity-saving effect resulting from delaying a payment. Assume that a bank postpones a

$4 million payment (the average size of payments in Fedwire in the last decade) from 9 am till

noon (3 hours) and assume further that the bank can free-ride on a payment in�ow from a

counterparty for the same amount ($4 million). If the hourly cost of intraday liquidity is 0.4, 0.9

and 1.5 basis point, the liquidity-saving effect of the three hours delay is $1.3, $3.0 and $4.9

respectively, which approximate the marginal tariff it should increase from 9 am till noon.

10To be precise, the actual fee paid is the gross fee minus a lump-sum exemption, so the effective hourly fee is smaller than 1.5 basis
point.
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Since the Fedwire's per-item fee for each domestic payment is $0.3,11 the constant term of the

optimal tariff (t0) may be a negative number for cost recovery if the tariff increases by $1.3, $3.0

or $4.9 in 3 hours as illustrated above. Since the liquidity-saving effect of delay becomes larger

as the size of payments increases, the optimal tariff would be negative in the morning and

positive in the evening for some payment systems settling signi�cantly large-value payments.

The early payers, as a result, look like they are making money by joining the payment system �

but it is an appropriate compensation of early payments (in other words, early payers are losing

money without such kinds of tariffs). If a payment system mainly settles small-value payments

such as SIC, the optimal tariff would take a small positive value in the morning and slowly

increasing during a day. Another implication is that the tariff could be charged for the value of

payments, not for the number of payment items, because the cost of liquidity is a function of

value, not volume.

Another important outcome of the time-varying tariff is the prioritisation of smaller payments, as

Rochet and Tirole (1996) argue. Since payment systems normally charge fees for each payment,

independent of the size of these payments, banks �nd it optimal to make small payments �rst and

large payments later under time-varying tariffs, as is observed in SIC. Rochet and Tirole (1996)

regard this `pre-sorting' as a bene�cial liquidity-saving arrangement. But the model discussed

here cannot capture the `pre-sorting' mechanism, since the set of payments is abstract in the

model.

6.2 Implications of the model

The model shows that settlement delay is not always inef�cient, contrary to general

understanding of the literature. If banks in a payment system are heterogeneous in terms of their

liquidity costs, it can be socially ef�cient for banks with a higher liquidity cost to delay

payments. Banks with a lower cost of liquidity can obtain more intraday liquidity and pay earlier,

while the high-cost banks can free-ride on the cash received from low-cost banks. The delay by

the high-cost banks therefore improves social welfare. In other words, the settlement delay by

high-cost banks allows for a socially ef�cient role-sharing between high-cost banks and low-cost

banks.

11For the �rst 14,000 transfers per month.
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On the other hand, as discussed in Section 4, the `competition of delay' (the constant term of

Proposition 1) is socially inef�cient, because banks cannot save any liquidity cost when they

delay while the delay costs increase. Eliminating this component improves social welfare.

In addition, the equilibrium payment timing is not a corner solution. Previous two-period models

of payment systems implicitly focus on corner solutions (the beginning of the morning and the

end of the evening). Since the equilibrium in this paper is an internal solution, the optimal

payment timing is �exibly adjusted as the costs of liquidity and delay change. This feature is

convenient when we study, for example, how payment timing can be adjusted by a fall of

liquidity cost.

If we have a corner solution, eg because �C � � 0, changes of " no longer matter � the optimal

d is 0 or T , irrespective of the level of "i . In this case, we do not need to consider an optimal

mechanism to incentivise early payments. We just need to force d D 0 by all means. We do not

discuss the case further since it is non-interesting.12

6.3 Directions for future study

There are several possible extensions. The paper assumes that banks know the amount of their

payment obligations ex ante, and thus can determine the delay index d for sure. But if there are

some unexpected payments requests during a day, banks cannot perfectly control d: d may have

a random error in this case. For instance, the delay d would be determined by the bank's choice Od

plus a white noise term s. With noise, a trigger strategy (by which the violation of a

predetermined deadline triggers a �xed penalty), such as throughput guidelines, may work well,

as Walsh (2002) shows for instance. This is left for future study.

Another potential extension would be to assume that breaches of the throughput guidelines are

penalised only when a bank repeatedly violates the guidelines in a month, as currently CHAPS

does in the United Kingdom. This feature also may give some �exibility to banks in the system

because they can pay later one day and pay earlier another day according to their situations. This

12The corner solution can be considered to be similar to Bech and Garratt (2003) in continuous time scale.
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extension is more dif�cult to model from a pure-theoretical point of view (see, eg, Matsushima

(2004)).

From a policy perspective, it is an interesting question how the optimal tariff changes when a

central bank introduces a liquidity-saving mechanism or a new scheme for intraday liquidity

provision is introduced as the Fed is currently working on. The model discussed here provides

several implications on these. Liquidity-saving mechanisms are likely to reduce the cost of

intraday liquidity, the optimal slope of time-varying tariff would be �atter. If a new policy for

intraday liquidity provision raises the cost of liquidity, the optimal slope will be steeper. A

detailed study is needed, however, to discuss these issues further.
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Appendix: Proofs

Proof of Proposition 2

Ol1 D �d1 C �d1d2 C 
 d1"1 C �d2 C �d2"1

Ol2 D �d2 C �d2d1 C 
 d2"2 C �d1 C �d1"2

The �rst-order conditions of the function (6) are:

� C �d2 C 
 "1 C �d1 C � C �d2 C �"2 � �1 C �3 D 0

� C �d1 C 
 "2 C �d2 C � C �d1 C �"1 � �2 C �4 D 0

Solving these:

d1 D
.�1/�
�

�
�

�
�



�
"1 �

�

�
"2 �

2�
�
d2 C

�1 � �3
�

d2 is de�ned in the same way. Substituting these and assume � j D 0 for all j 2 f1; 2; 3; 4g, we

have:

d1 D
.�1/ .� C �/

�
�



�
"1 �

�

�
"2 �

2�
�

�
.�1/�
�

�
�

�
�
�

�
"1 �




�
"2 �

2�
�
d1
�

Solving for d1,

d1 D
.�1/ .� C �/
�C 2�

C
2�
 � ��
�2 � 4�2

"2 C
2�� � �

�2 � 4�2

"1

From A3 and A6, we have:

d1 D
2�
 C �

�2 � 4�2

"2 C
�2�
 � �

�2 � 4�2

"1

D



�� 2�
."2 � "1/

The �rst-best solution is, therefore,

d1st1 D max
�




�� 2�
."2 � "1/ ; 0

�
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��2� < 0 thus d

1st
1 is a positive function of "1 and a negative function of "2. �1 and �2 can be

non-zero if d1st1 D 0: the derivation of these is skipped. Since we have assumed a suf�ciently

large T , �3 D �4 D 0 in any case.

Proof of Proposition 4

We keep the assumptions made in Proposition 1, which ensures internal solutions, but we still

need to formulate the Kuhn-Tucker conditions because we have the tariff function.

� C �d1 C �d2 C 
 "1 C
@t
@d1

� �1 D 0

�1 � 0 and �1d1 D 0

The best response function d BR1 is then derived.

d BR1 .E[d2]; "1/ D .�1/
�

�
�
�

�
� E [d2.d1; "2/]�




�
"1 �

1
�

�
@t
@d1

� �1

�
Substitute this into the equation E[d BR2 .E[d1]; "2/], which is de�ned in a similar way, and we

have:

E[d BR2 .E[d1]; "2/] D
.�1/�
�C �

C
�

�2 � �2

�
@t
@d1

� �1

�
�

�

�2 � �2

�
@t
@d2

� �2

�
Likewise, we have:

E[d BR1 .E[d2]; "1/] D
.�1/�
�C �

C
�

�2 � �2

�
@t
@d2

� �2

�
�

�

�2 � �2

�
@t
@d1

� �1

�
We will design the function t to eliminate the source of deadweight loss .�1/�

�C� , so we have the

following simultaneous equations:

�

�C �
D

�

�2 � �2

�
@t
@d2

� �2

�
�

�

�2 � �2

�
@t
@d1

� �1

�
�

�C �
D

�

�2 � �2

�
@t
@d1

� �1

�
�

�

�2 � �2

�
@t
@d2

� �2

�

By solving these equations, we have

@t
@d1

� �1 D
@t
@d2

� �2 D .�1/�

Integrating these, and �i � di D 0, we have:

t .di/ D t0 � �di

Working Paper No. 428 May 2011 31



Proof of Proposition 5

The welfare of the system under the tariff t .di/ for given "1 and "2, L.d��1 ; d��2 ; c; "1; "2/, is

de�ned as follows:

L.d��1 ; d
��
2 ; c; "1; "2/

D � �max
�
�



�
"1; 0

�
C � �max

�
�



�
"1; 0

�
�max

�
�



�
"2; 0

�
C 
 �max

�
�



�
"1; 0

�
� "1

C� �max
�
�



�
"2; 0

�
C � �max

�
�



�
"2; 0

�
� "1 C

1
2
� �max

�
�



�
"1; 0

�2
C� �max

�
�



�
"2; 0

�
C � �max

�
�



�
"2; 0

�
�max

�
�



�
"1; 0

�
C 
 �max

�
�



�
"2; 0

�
� "2

C� �max
�
�



�
"1; 0

�
C � �max

�
�



�
"1; 0

�
� "2 C

1
2
� �max

�
�



�
"2; 0

�2

If "1 > 0 and "2 > 0, we have:

L.d��1 ; d
��
2 ; c; "1; "2/ D �

�


�
"1 C �

�


�
"1
�


�
"2 C 


�


�
"1"1

C�
�


�
"2 C �

�


�
"2"1 C

1
2
�

�
�


�
"1

�2
C�
�


�
"2 C �

�


�
"2
�


�
"1 C 


�


�
"2"2

C�
�


�
"1 C �

�


�
"1"2 C

1
2
�

�
�


�
"2

�2
D 2

�
 2

�2
"1"2 � 2

�


�
"1"2 �

1
2

 2

�
"21 �

1
2

 2

�
"22

� .� C �/



�
"1 � .� C �/




�
"2

From A3 (� C � D 0) and A6 (
 C � D 0), we have:

L.d��1 ; d
��
2 ; c; "1; "2/ D 2
 2

� C �

�2
"1"2 �

1
2

 2

�
"21 �

1
2

 2

�
"22

D

 2

�

�
2
� C �

�
"1"2 �

1
2
"21 �

1
2
"22

�
(A-1)
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Notice that L.d��1 ; d��2 ; c; "1; "2/ can be positive when
�C�
�
> 1

2 and "1 ' "2 > 0. If "1 > 0 and

"2 � 0, L.d��1 ; d��2 ; c; "1; "2/ is:

L.d��1 ; d
��
2 ; c; "1; "2/ D �

�


�
"1 C 


�


�
"1"1 C

1
2
�

�
�


�
"1

�2
C�
�


�
"1 C �

�


�
"1"2

D
�


�
.� C �/ "1 �

1
2

 2

�
"21 C �

�


�
"1"2

From A3 (� C � D 0) and A6 (
 C � D 0), we have:

L.d��1 ; d
��
2 ; c; "1; "2/ D


 2

�
"1"2 �

1
2

 2

�
"21

� 0

Since the banks are symmetric, we have a similar welfare for the case "1 � 0 and "2 > 0.

L.d��1 ; d
��
2 ; c; "1; "2/ D


 2

�
"1"2 �

1
2

 2

�
"22

� 0

If "1 � 0 and "2 � 0, L.d��1 ; d��2 ; c; "1; "2/ is trivially zero.

Substituting these into the equation (7):

E
�
L.d��1 ; d

��
2 ; c; "1; "2/

�
D

Z N"

0

Z N"

0

�
2
 2

� C �

�2
"1"2 �

1
2

 2

�
"21 �

1
2

 2

�
"22

�
 ."1/ ."2/d"1d"2

C

Z N"

0

Z 0

�N"

�

 2

�
"1"2 �

1
2

 2

�
"21

�
 ."1/ ."2/d"1d"2

C

Z 0

�N"

Z N"

0

�

 2

�
"1"2 �

1
2

 2

�
"21

�
 ."1/ ."2/d"1d"2
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The �rst term can be written as follows:

Z N"

0

Z N"

0

�
2
 2

� C �

�2
"1"2 �

1
2

 2

�
"21 �

1
2

 2

�
"22

�
1
4N"2
d"1d"2

D

Z N"

0

�

 2
� C �

�2
"1"

2
2 �

1
2

 2

�
"21"2 �

1
6

 2

�
"32

�N"
0

1
4N"2
d"1

D
1
4N"2

�
1
2

 2
� C �

�2
"21 N"

2 �
1
6

 2

�
"31 N" �

1
6

 2

�
"1 N"

3
�N"
0

D
1
24

 2

�

�
3
� C �

�
� 2

�
N"2

The second term is:

Z N"

0

�
1
2

 2

�
"1"

2
2 �

1
2

 2

�
"21"2

�0
N"

1
4N"2
d"1

D
1
4N"2

�
1
6

 2

�
"31 N" �

1
4

 2

�
"21 N"

2
�N"
0

D
1
48

 2

�
.�1/ N"2

The third term is equivalent to the second one. Now we have:

E
�
L.d��1 ; d

��
2 ; c; "1; "2/

�
D

1
24

 2

�

�
3
� C �

�
� 2

�
N"2 C 2 �

1
48

 2

�
.�1/ N"2

D
1
24

 2

�
N"2
�
3
� C �

�
� 2� 1

�

Since � < 0, �C�
�
< 1 and it is suf�cient to show the following:

E
�
L.d��1 ; d

��
2 ; c; "1; "2/

�
< 0

Since the aggregate loss under the throughput guidelines, E [L.0; 0; c; "1; "2/] is obviously zero

(d1 D d2 D 0 for any cases), now we complete proving that the aggregate loss under the tariff is

smaller than the loss under the throughput guidelines.
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