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Abstract

When settling their own liabilities and those of their clients, settlement banks rely on incoming

payments to fund a part of their outgoing payments.  We investigate their behaviour in CHAPS, the

United Kingdom’s large-value payment system.  Our estimates suggest that in normal times, banks

increase their payment outflows when their liquidity is above target and immediately following the

receipt of payments.  We use these estimates to determine the robustness of this payment system to two

hypothetical behavioural changes.  In the first, a single bank stops sending payments, perhaps because

of an operational problem.  In the second, it pays out exactly what it previously received, relying

exclusively on the liquidity provided by other system members.  Using the observed uncertainty around

our estimated behavioural equations, we derive probabilistic statements about the time at which the

bank’s counterparties would run out of liquidity if they followed their estimated normal-time behaviour.
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Summary 
 
Intraday liquidity requirements in large-value real-time gross payment systems can substantially 
exceed the liquidity that its direct members hold overnight on their accounts with the central 
bank. As an illustration, UK banks’ aggregate holdings of reserve balances with the Bank of 
England fluctuated around £30 billion in 2008, while the daily amount of liquidity that banks 
pass through the United Kingdom's large-value payment system, CHAPS, was in the order of 
£250 billion. To be able to process these payments, banks borrow additional liquidity intraday 
from the central bank, and recycle liquidity during the day: that is, they partly rely on incoming 
funds to settle their outgoing payments.  
 
Banks contribute liquidity to the system by sending more payments than they received. We 
empirically investigate the effects that a hypothetical change in a single bank’s payments 
behaviour has on the liquidity position of its counterparties. Our objective is to highlight the 
consequences for system-wide risk if these counterparties do not adapt their normal-time 
behaviour to the changed behaviour of this bank. To this effect, we first estimate banks’ 
payments behaviour: that is, we attempt to find in the data a ‘payments rule’ that relates a bank’s 
outgoing payments to its available liquidity and incoming payments. We then combine these 
rules to simulate payments behaviour in the system. In particular, we are interested in the effects 
that a change in a single bank’s payments rule would have on the liquidity position of its 
counterparties.  
 
We investigate two such hypothetical changes. First, a bank simply stops sending payments – 
perhaps because of an operational problem. If its counterparties continue to send payments to 
that bank, they transfer liquidity without receiving any in return from the bank that stops 
sending payments. Their liquidity buffer may shrink in response. Following our estimated 
payment rules, the counterparties reduce the value of payments they make, in turn causing the 
liquidity buffer of their counterparties to fall. We incorporate these spillovers in our simulation 
and compute, for each counterparty, the time and probability with which it is likely to run out of 
funds. Assuming that its counterparties do not deviate from their estimated rule, we find that the 
probability of at least one counterparty becoming liquidity constrained within the first hour is 
substantial. (In practice, the probability might be smaller, as banks’ liquidity management is 
more sophisticated than we can capture with our model.)  
 
The second change assumes that a bank stops providing additional liquidity to the system – 
perhaps because it finds itself short of liquidity, or because it becomes concerned about the other 
banks’ ability or willingness to add liquidity to the system. Instead, it only sends out exactly 
what it has received. We show that such a tit-for-tat strategy would also reduce its 
counterparties’ available liquidity. Again, we compute the time and probability with which the 
counterparties are likely to run out of funds, assuming that they continue to follow our estimated 
payment rules. We find that the probability of at least one counterparty becoming liquidity-
constrained within the first hour is still substantial, although lower than in the previous case. 
 
Finally, we attempt to identify factors that explain why changing some banks’ payments 
behaviour has a greater effect on their counterparties than changing the behaviour of other 
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banks. A possible reason is that some banks are larger than others, or that they occupy more 
important positions in the interbank network. In our case, size appears to explain most of the 
variability of the average effect on the counterparties. More detailed information about the 
network helps to identify which counterparties are most at risk. 
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1 Introduction 
 
We investigate how banks that are direct members of the United Kingdom’s large-value 
payment system, CHAPS, manage their liquidity in CHAPS intraday. CHAPS handles nearly all 
large-value same-day sterling payments between banks, other than those relating specifically to 
the settlement of securities transactions. Every day, about £270 billion worth of payments are 
settled using the system. In such real-time gross settlement systems, these direct members – also 
referred to as settlement banks – rely to some extent on incoming payments to fund their own 
payments: in 2006, five settlement banks settled £5-£10 worth of payments for each pound of 
liquidity they had available at the start of the day, and five other banks settled even more than 
£10. 
 
In CHAPS, as in other large-value payment systems, settlement banks fund their payments from 
two sources: first, from the central bank via a collateralised intraday loan at the start of each 
day; and second, from liquidity obtained from incoming payments. We empirically investigate 
the form these receipt-reactive strategies take.  
 
Section 2 provides an overview of related literature. We hope to make an original contribution 
to the growing literature on banks’ intraday liquidity management in payment systems (see 
Manning et al (2009) for an overview), and perhaps, via our method, to the wider literature on 
networks and prudential liquidity regulation.  
 
In Section 3, we estimate a ‘payments rule’ for each bank: that is, the parameters of a (linear) 
function that relates a bank’s outgoing payments to a measure of its liquidity position, allowing 
for the most recent changes to available liquidity to enter the function separately. We measure 
the bank’s liquidity position as the deviation from what the bank would expect to have at that 
time of the day. The idea is that if the bank has more liquidity than it expected, it is more likely 
to send payments. We add the most recent changes in its liquidity position as a separate 
regressor because of anecdotal evidence that liquidity managers abide by liquidity limits when 
scheduling payments. When a bank is operating at its limit, balance changes are likely to be 
mean-reverting. Becher et al (2008) also found evidence for recent changes to play a role.  
 
In Section 4, we combine these rules to simulate payments behaviour in the system. In 
particular, we are interested in the effects that a change of a single bank’s payments rule would 
have on the liquidity position of its counterparties. In our first scenario, we assume that a bank 
simply stops sending payments – perhaps because of an operational problem. This reduces its 
counterparties’ liquidity, and the value of payments they make in the following round. We 
incorporate these and further spillovers in our simulation and compute, for each counterparty, 
the time and probability with which it is likely to run out of funds.  
 
In the second scenario, we assume that a bank stops providing additional liquidity to the system 
– perhaps because it is running short of liquidity. Instead, it only sends out exactly what it has 
received. We show that such a tit-for-tat strategy would also reduce its counterparties’ available 
liquidity. Again, we compute the time and probability with which the counterparties are likely to 
run out of funds, assuming that they continue to follow our estimated payment rules. 
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In Section 5, we argue that size explains nearly all of the variability of the average effect on the 
counterparties. Our simulations help quantify this effect, and, because it uses detailed 
information about the structure of the payments network, helps identifying which counterparties 
are most at risk. 
 
Section 6 contains a discussion of our method and compares it with related studies that use 
either a pure simulation framework with exogenous payment strategies, or an agent-based 
learning approach. The paper is, to out knowledge, the first attempt to estimate the robustness of 
an entire system of banks to changes in the behaviour of a single bank on the basis of estimated 
behavioural equations: how long it might take until other banks experience liquidity shortages; 
and which banks are most likely to experience such shortages.  
 
2 Related literature 
 
We first provide a brief overview of our methods and results to facilitate the comparison with 
the existing literature. We start by estimating a parsimonious model of banks’ payments 
behaviour parametrically on the basis of their observed average behaviour, controlling for time-
of-the-day effects. We then use the estimated equations in a simulation exercise, in which one 
bank’s estimate behaviour is replaced by an exogenous ‘payments rule’ – for example, the afore-
mentioned ‘tit-for-tat’ strategy. We explore how this change in behaviour affects the liquidity of 
the affected bank’s counterparties and determine the time at which these counterparties are 
likely to run short of liquidity, assuming that they retain their normal-time behaviour. 
 
A number of papers investigate optimal timing of payments in payment systems. In Bech and 
Garratt (2003), liquidity managers trade off the liquidity savings achieved when recycling 
incoming payments with the costs of delaying the execution of own payment instructions while 
waiting for incoming payments. Mills and Nesmith (2008) and Merrouche and Schanz (2010) 
extend their framework to study optimal timing when banks may be unable to send payments, 
perhaps because of an operational problem. Merrouche and Schanz (2010) also estimate the 
behaviour of that bank’s counterparties during the operational outage non-parametrically and 
find that the stricken bank’s counterparties reduce the payments to the stricken party in an 
attempt to save liquidity. Our paper estimates banks’ payments behaviour parametrically on the 
basis of banks’ average payments behaviour. This may underestimate counterparties’ reaction 
when a bank is unable to send payments but provides a useful benchmark for hypothetical 
changes to a bank’s payments behaviour. 
 
McAndrews and Rajan (2000) and Becher et al (2008) estimate simple payments rules for the 
US and the UK large-value payment systems, respectively. Their studies show that payments 
behaviour is affected by the central bank’s pricing schedule for intraday loans. If the central 
bank charges for these loans on a pro-rata basis, banks attempt to co-ordinate their payments to 
keep the duration of their loan as short as possible. If the central bank’s charges are independent 
of the duration of the intraday loan, the incentive to co-ordinate is smaller. Nevertheless, Becher 
et al (2008) find some evidence that a bank’s outgoing and incoming payments are positively 
correlated. They do not, however, control for time-of-the-day effects. Because they only observe 
when payments are settled, but not when the sending bank received its instruction to settle the 
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payment, this correlation is may be only an artefact of an exogenously changing flow of 
payments instructions during the day. They also do not control for serial correlation of 
payments, giving rise to concerns that their parameters are not estimated consistently.  
 
We also do not observe the arrival time of payment instructions. However, we attempt to avoid 
the pitfalls of Becher et al (2008) by normalising the value of payments made at a given time by 
the average value of payments that banks usually make at this time of day. This removes serial 
correlation of payments and should exclude the effects of potential variations in the flow of 
payment instructions on our estimates.  
 
A number of simulation studies tested a payment system’s ability to withstand shocks to one of 
its participants. Beyeler et al (2007) develop a stylised model in which banks employ simple 
rules to determine whether to make or delay a payment. They then explore the dynamics of 
liquidity recycling in the system with alternative initial conditions for system-level liquidity and 
different assumptions about the availability of a market for intraday interbank liquidity sharing. 
Renault et al (2007) extend this framework to a setting in which two large-value payment 
systems are linked via banks that participate in both systems, investigating how this can lead to 
spillover of shocks from one system to the other. We hope to add to these studies by estimating 
the rules that banks employ. 
 
The rules that banks use in Beyeler et al (2007) and Renault et al (2007) are set using plausible 
assumptions rather than empirical estimates. Galbiati and Soramäki (2008) introduce agent-
based learning into their model and allow the simulated banks to vary their behaviour over time. 
They show that strategies converge to a Nash equilibrium. We do not show that our estimated 
rules form a Nash-equilibrium of the ‘game’ that banks ‘play’ during the day. However, we 
allow banks’ strategies to be more flexible: their form is inspired by previous studies; their 
parameters estimated by the data. We are also able to make probabilistic forecasts of the 
system’s behaviour. 
 
The paper is also related to the literature that investigates systemic liquidity risk at a longer 
horizon (up to several weeks). As in our paper, the question is how a single bank’s decisions can 
lead to liquidity shortages at its counterparties. However, over a longer horizon, banks have 
more options to increase their liquidity: not rolling over loans; raising new funds in various 
markets; and selling various types of assets. Models that attempt to capture longer-term liquidity 
risk therefore only incorporate a very stylised description of a bank’s behaviour: they rank the 
different options the bank has, and link the availability of these options to, for example, the 
bank’s solvency position. See, for example, Aikman et al (2009) and van den End (2008).  
 
Finally, our simulation takes the structure of payment flows in the United Kingdom’s large-
value payment system into account. Becher et al (2009) investigate this network in much more 
detail in a descriptive exercise; Soramäki et al (2007) conduct a similar exercise for Fedwire, a 
US large-value payment system. Wetherilt et al (2009) exploit the UK data to investigate 
changes in the sterling overnight loan market during 2006-08 using similar network concepts. 
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3 Bank-by-bank estimates of intraday liquidity management 
 
We assume that three factors determine how a bank manages its liquidity intraday: its cost of 
obtaining liquidity from the central bank; how the level of its available liquidity compares to its 
target level of liquidity; and finally, how its available liquidity changed just ahead of its decision 
to send payments. 
 
The first factor, cost of liquidity, seems the most obvious and is a key variable in the theoretical 
literature on payments behaviour. However, the marginal cost of intraday liquidity is not only 
low but also very similar for the banks in our sample. The Bank of England provides liquidity in 
the form of central bank money against collateral (mostly government bonds) during the day at 
no interest if this loan is repaid before the end of the day. And the marginal cost of pledging 
collateral with the Bank of England is small, as banks have so far been permitted to pledge 
securities they have to hold for prudential purposes, and prudential requirements only had to be 
fulfilled at the end of each day. (These arrangements are currently under review.1) The low cost 
of pledging collateral, together with the fact that banks receive funds from their counterparties 
during the day, caused our estimates of the influence of banks’ cost of liquidity to be 
insignificant. We would only expect the cost of liquidity to play a role if each bank had to 
pledge an amount of securities sufficient to settle all its payments independently of incoming 
liquidity. 
 
The second factor, the target level of liquidity, turns out to have more predictive power. Intraday 
liquidity targets are likely to be influenced by the desire to have sufficient liquidity to meet 
urgent payments to ancillary payment and settlement systems (such as CLS); by the bank’s 
customer structure and business composition (which influences the typical profile of payment 
instructions and expected payment inflows); and by the time of the day (where the bank may be 
less willing to incur large overdrafts with the central bank at the end of the day). Furthermore, 
intraday liquidity targets are influenced by expected inflows, so that each bank’s target is also 
determined by its counterparties’ desire to hold a buffer and their business composition. Had we 
set up a game-theoretical model, targets would be well described by equilibrium payments 
behaviour. We make the standard assumption that banks’ observed average behaviour 
corresponds to their equilibrium behaviour. Their (time-dependent) liquidity target can then be 
estimated as the average amount of central bank balances the bank had at a given point in time 
during the day, where the average is taken across all days in our sample.2  
 
The third factor captures the receipt-reactive element in banks’ payment behaviour. The more 
liquidity a bank has received from its counterparties, the more it is willing to pay. Liquidity 
managers suggest an interesting reason for this behaviour. Even though marginal costs of 
liquidity appear low at current liquidity levels, there is a risk that a bank might try to free-ride on 
the liquidity that its counterparties provide to the system. This free-riding could substantially 
increase the marginal cost of liquidity for its counterparties. By making its outgoing payments 

                                                 
1 Financial Service Authority (2008), Strengthening liquidity standards, Consultation Paper 08/22. 
2 Notice that we retain variation in the target despite controlling for typical intraday patterns of payments. Incoming and outgoing 
payments have different normalisation bases: in each case, payments are normalised by the sending bank’s average payment flows. We 
do not normalise liquidity balances. 
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conditional on incoming payments, each bank controls the amount of liquidity it contributes to 
the system. (There is an analogy to a game in which players contribute to a public good: see, for 
example, Manning et al (2009), Section 4.1.2.)  
 
 
The following sections describe the data and the model we use to estimate each bank’s 
behaviour. System-wide estimates are provided in Section 4. 
 
3.1 Data 
 
Our data set comprises payments aggregated in intervals of 10 minutes from the opening (06:00) 
to the closure (17:00) of the United Kingdom’s large-value payment system, CHAPS. For each 
interval, the information is presented in a matrix, with payers in rows and payees in columns. 
Each cell contains the number of payments sent, their total value, and information about the 
distribution of the value (the number of payments pertaining to a certain value band). We only 
exploited information about the value of payments bank i receives in time interval (t-1,t] on day 
d, In

tdiPay ,, , and the value contemporaneous payments i sends, Out
tdiPay ,, . We exclude observations 

before 7:00 and after 16:00 because only comparatively few payments are made in these 
intervals. 
 
Table 1: Summary statistics  
  Typical large bank Typical small bank 
Average value of payment made, £mn  £                  817   £                201 
Average value of payment received, £mn  £                  818   £                200  
Maximum value of payment made, £mn  £             15,764   £              2,219  
Maximum value of payment received, £mn  £             14,490   £              3,043  
Note: All values calculated on the basis of 10-minute aggregates. Large banks are those with the largest average daily payment values. Minimum 
values of payments were generally close to zero. 

 
We study payments exchanged between the seven largest banks in CHAPS between 01/01/2007 
and 31/12/2007. (We chose this interval to identify changes in payments behaviour during the 
first months of the financial crisis but could not identify any: intraday liquidity remained ample.) 
Banks are identified in our sample; however, for confidentiality reasons, we only provide 
anonymised results. Out of a total of 13 commercial settlement banks, we chose to include only 
the seven largest because the smaller banks make substantially fewer payments, which would 
lead to many ‘zero’ entries in our data set.3 For obvious reasons, we also excluded the Bank of 
England and CLS, the former being a central bank, and the latter following a pre-determined 
schedule of payments. Table 1 provides summary statistics for our data set, separating the four 
largest banks from the three other banks. Figures 1 and 2 show the distribution of payment 
values and volumes during the day for a typical small/large bank. 
 
Figure 1 shows that the value of payments made follows a similar pattern, independently of the 
bank’s size, while the volume pattern differs. Generally, a large number of small payments are 
made at the start of the day: Values (Figure 1) are low at the start of the day, while volumes 
(Figure 2) are comparatively large, in particular for small banks (left panel). 
 
                                                 
3 We capture about 80% of all payments made in CHAPS in our sample. 
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Figure 1: Intraday pattern of payments values for typical small bank (left) and 
typical large bank (right)  

  

Notice: The average values of payments were calculated based on the total multilateral payments in the sample, conditional on the 
time of the day (7:00-16:00), over the different days of the sample. 

 
Such small payments are settled early because they have comparatively little impact on a bank’s 
liquidity balance but would nevertheless be costly to delay should the bank be temporarily 
unable to make payments because of operational problems. Total value peaks just before 10:00, 
before falling back and reaching its top at the end of the day. To some extent, this shape can be 
explained by settlement conventions in the markets where the obligations arise that are 
subsequently settled in the payment system, and by the settlement times in ancillary systems, 
such as retail payment and security settlement systems.  
 

Figure 2: Intraday pattern of number of payments for typical small bank (left) and 
typical large bank (right) 

 
Each bank’s balance – initial liquidity at the start of the day d, plus the difference between 
payments received and made – can then be computed as follows:  
 

tdiPay

tdiPay

PayPaydayBaldayBal

Out
tdi

In
tdi

t
Out

di

t
In
diditdi

 intervalin  day on  bank by sent amount  Total  -

  intervalin  day on  bank by  receivedamount  Total  - 

,,

,,

1
,,

1
,,0,,,, 











   (1) 
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The initial value of the balance is the sum of a bank’s overnight holdings of central bank money 
on their reserve accounts with the Bank of England, plus any central bank money borrowed 
from the Bank of England at the start of the day. Incoming/outgoing payments are those 
received from/sent to all other banks in our sample.  
 
Our empirical models relate a bank’s (normalised) outgoing payments, Out

tdiPay ,, , to previous 
changes in the level of its balance. Section 3.2 presents first a simple model of ‘short-term’ 
liquidity management, which relates outgoing payments to balance changes that occurred in the 
preceding 20 minutes, and then a model of ‘long-term’ liquidity management, which relates 
outgoing payments additionally to deviations from the bank’s target level of liquidity. 
 
A technical remark before we proceed. For two reasons, our variable dayBal does not fully 
coincide with the liquidity banks have available. First, we exclude payment flows to and from 
the smaller banks. This should be immaterial because these flows only make up a small 
proportion of the value and volume of all payments. Second, we exclude inter-system transfers 
of liquidity. The reason is as follows. All CHAPS settlement banks for whom we estimate 
payment rules are also settlement banks in the UK securities settlement system, CREST. Banks 
can transfer liquidity between these systems. These transfers are large but infrequent and only 
occur mostly in the early morning and late afternoon on each day. In our estimation of payments 
behaviour, the corresponding large, rare changes in dayBal would have distorted our estimation 
results: effectively, they are outliers.  Intra-system payments could also be treated as an 
additional explanatory variable: when a bank is short of liquidity in one system, it may decide to 
transfer liquidity from another system in which it has excess liquidity. For this paper, we 
decided to leave the inclusion of intra-system payments for future research.  
 
 
3.2 Our hypotheses: models of intraday management of liquidity 
 
The purpose of presenting two models is to test whether banks primarily adapt their payments 
behaviour to short-term changes in their balances, or whether they adopt a slightly longer-term 
horizon and manage their liquidity throughout the day, taking into account deviations from their 
target level of liquidity.  
 
Our first model only includes a term that describes reactions to balance changes within the 
previous 20 minutes. This term, shortBali,d,t, is defined as  

 

  nLagsPayPayshortBal
nLags

Out
tdi

In
tditdi /

1
,,,,,, 


 


    

ie, excluding payment flows in interval t. We set the number of lags, nLags, to two, after which 
correlations die out. (Our results turn out to be robust to the choice of lags.) Our model of 
‘short-term’ liquidity management is given by  
 

tditdiii
Out

tdi shortBalPay ,,
*

,,
*

,,          (2) 
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(Stars indicate that the variables use normalised variables, see Section 3.3.) We expect αi and βi 
to be positive: αi because some payments are likely to be made independently of incoming 
liquidity; and βi because the higher the net amount of payments the bank received during the 
previous intervals, the more inclined it should be to make a payment.  
 
In our second model, we investigate how the strength of the receipt-reactive behaviour depends 
on how much liquidity banks have available: in particular, how much more liquidity they have 
during the time interval under consideration compared to what they would expect to have at that 
time of the day. We therefore extend the specification to  
 

      tditditdiiitdiii
Out

tdi shortBalZZPay ,,
*

,,,,2,
2

,,1,
2*

,,       (3) 

Zi,d,t is the relative deviation by which liquidity holdings as measured by dayBal at the start of 
period t  exceed bank i’s target for the end of period t.  

  tititditdi ettettdayBalZ ,,1,,,, arg/arg    

Bank i’s target is taken to be the bank’s average end-of-period-t liquidity holding, where the 
average is taken across all days of our sample:  

  



nDays

d
tditdidti nDaysdayBaldayBalEett

1
,,,,, /arg  

Figure 3 shows the typical pattern of the variable target, where the opening balance is 
normalised to zero. (Recall that our sample starts only one hour after the opening, so that the 
first observation in the figure is unequal to zero.) In practice, banks’ opening balance is not zero, 
as they hold reserves with the central bank overnight. As mentioned above, banks also obtain a 
secured credit line from the central bank to settle their payments. In addition, as we explained 
for the construction of dayBal, the measure ignores intra-system transfers, and payments 
between banks included in the sample and those that are not. What the figures reveal, however, 
is that banks are willing to contribute liquidity to the system during the first hours of the day, 
allowing their balance to fall, and absorb liquidity towards the end of the day, ensuring that they 
thereby ‘repay’ any intraday loan the central bank provided. 

 

Figure 3: Intraday pattern of our estimated average value of liquidity for a 
typical small bank (left) and typical large bank (right) in the sample. 

  

 

For the model in (3), we expect  2
i  and  2

i to be positive for the same reasons as αi and βi in 
Model 1. We expect both 1,i  and 2,i  to be positive as well: a bank is more willing to make 
additional payments – both autonomously and in response to incoming payments – if its balance 
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is above target. Notice that the right-hand side variables shortBal and Z predict payments 
behaviour in [t-1,t) and are defined with respect to payments that occurred in or before interval 
[t-2,t-1), helping us to avoid endogeneity problems. 
 
3.3 Results 
 
Before estimating Models 1 and 2, we normalise the payment values by each bank in each time 
interval by the average amount of payments made in this interval. Figure 4, which presents the 
auto-correlogram of payments made and received, illustrates the reason: payments behaviour 
does not change rapidly during the day, and is similar during the same interval on different days. 
We remove this seasonal effect to be able to identify receipt-reactive payments behaviour.  
 

Figure 4: Auto-correlogram of the value of payments made and received for a 
typical bank in the sample, before and after normalisation. 

  
Notice: Each point in each chart measures the (auto-)correlation between payments sent during interval t and during interval t-x 
(green line), and correspondingly for payments received (blue line). For example, the autocorrelation between the values of 
payments received in two adjacent intervals is about 0.32 before normalisation (left panel), and 0.12 after normalisation (right 
panel).  

 
Before normalisation, the auto-correlogram shows comparatively high correlation for the first 
five lags (that is, the previous hour of the same day), and for lags 50-55 (that is, for the 
subsequent hour on the previous day). After the normalisation, the autocorrelations are 
insignificant. 
 
We estimate Models 1 and 2 bank by bank using OLS.4 Table 2 contains the results for Model 1. 
The mean value of payments made, which is estimated by αi, is virtually equal to 1 after the 
normalisation because the mean value of shortBal – the change in the payer’s balance during the 
two preceding intervals – is virtually equal to zero. More interestingly, the βi are significant at 
the 1% or 5% level for all but one bank and have the expected signs. We conclude that liquidity 
managers typically increase the amount of payments they make when they have received more 
than they sent during the preceding 20 minutes. The mean (unweighted) reaction coefficient is 

£13.07/  i . This means that, for each additional pound sterling that a bank receives more 

than it sent during the previous 20 minutes, it sends5 out on average an additional of £0.13. 
 

                                                 
4 Notice that even though the regression models form a system (what one bank sends is received by another), all dependent variables are 
lagged. Our model therefore has a vector autoregressive (VAR) representation (see Appendix 3) and the OLS solution delivers efficient 
estimates. 
5 See Appendix 2 for the derivation of the parameter’s interpretation. 
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While all parameters are significant at the 5%-level, the adjusted R2 values in Table 2 are 
comparatively small. One explanation is that settlement banks appear to pass on most payment 
instructions immediately to the settlement system unless their liquidity balance falls below a 
limit, in which case they wait for incoming payments before releasing further payments. 
Outgoing payments are therefore likely to follow the random arrival process of payment 
instructions for most of the time. Only when the liquidity balance hits its lower bound, outgoing 
payments are dependent on incoming payments.6 This also explains why empirically, the most 
recent contributions appear to have an influence on the bank’s decision to make payments. 
 
Table 2: Dependent variable is Out

tdiPay ,, , the value of payments made 

 i̂  
i̂  

2
adjR  

Bank 1 1.00*** 0.14*** 1.6% 
Bank 2 1.00*** 0.22*** 2.2% 
Bank 3 1.00*** 0.17*** 1.9% 
Bank 4 1.00*** 0.05* 0.2% 
Bank 5 1.00*** 0.23*** 2.1% 
Bank 6 1.00*** 0.01** 0.0% 
Bank 7 1.00*** 0.07*** 0.2% 

Note: The estimated equation is 
tditdiii

Out
tdi shortBalPay ,,

*
,,

*
,,     (equation (1)). α should be interpreted as the 

autonomous payments made in each interval; β as the value of payments made in response to recent changes in the 
liquidity balance. Newey West's covariance matrix has been used to compute standard errors. *** indicates 
significance at the 1% level, ** at the 5% level, and * at the 10% level. 

 
 
Table 3 shows the corresponding results for Model 2. The deviation of actual liquidity from the 
bank’s target – that is, from its typical liquidity holding at the given time of day – generally adds 
to the explanatory power of Model 1. The coefficients have the expected signs. Compared to 
Model 1, the values of the βi remain broadly unchanged. The i  are also positive, indicating that 

a bank is more willing to make additional payments – both autonomously and in response to 
incoming payments – if its balance is above target. For example, suppose a bank makes, on 
average, a payment of 100£7 in each time interval. If this bank’s balance exceeds the target by 
1%, the average bank sends8 an additional £587/100 1,  i  independently of incoming 

payments, and an additional £32.07/2,  i  in response to a £1 increase in shortBal – the 

change in the payer’s balance during the two preceding intervals. All but two coefficients are 
statistically significant at the 1% or 5% level. 
 

                                                 
6 We have attempted to identify these limits directly in the data. On some days, they appear to be clearly identifiable. However, they 
appear to vary with the time of the day: a bank may decide to immediately settle an urgent payment, even if that falls below a previously 
set limit. Also, limits may be set on a bilateral and on a multilateral basis. We found it impossible to reliably separate limits from 
observed minimum balances, and opted instead for including our ‘target’ measure as a determinant for outgoing payments. 
7 This is equivalent to     £100,,,,  tdi

Out
tdi AEPayE . 

8 See Appendix 2 for derivations. 
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Table 3: Dependent variable is Out
tdiPay ,, , the value of payments made 

  2ˆi  1,i   2ˆ
i  2,i  2

adjR  

Bank 1 0.97*** 0.98*** 0.14*** 0.78*** 1.6% 
Bank 2 0.99*** 0.06* 0.21*** 0.23*** 1.8% 
Bank 3 0.97*** 1.50*** 0.11*** 0.50*** 2.2% 
Bank 4 0.98*** 0.37* 0.05** 0.48*** 0.5% 
Bank 5 0.99*** 0.39*** 0.17*** 0.07 2.6% 
Bank 6 0.99*** 0.25*** 0.01 0.11 0.1% 
Bank 7 1.00*** 0.53*** 0.04*** 0.03 0.7% 

Note: The estimated equation is       tditditdiiitdiii
Out

tdi shortBalZZPay ,,
*

,,,,2,
2

,,1,
2*

,,    , where Z is the 

relative deviation of a bank’s balance from its target (equation (2)). α should be interpreted as the autonomous 
payments made in each interval; β as the value of payments made in response to recent changes in the liquidity 

balance. 1,i  measures the extent to which autonomous payments are larger when the bank’s liquidity exceeds its 

target; 2,i  the extend to which its reaction to recent changes in the liquidity balance changes when its liquidity 

exceeds its target. Newey West's covariance matrix has been used to compute standard errors. *** indicates 
significance at the 1% level, ** at the 5% level, and * at the 10% level. 

 
  
4 System-wide estimates of banks’ liquidity management 
 
In this section, we use the estimated equations of Model 1 to simulate the properties of the 
interbank network. In particular, we are interested in the external effects of two plausible 
modifications of a bank’s strategy compared to its estimated behaviour in normal times: in the 
first scenario, it stops sending payments altogether (a common result of operational problems); 
in the second, it adopts a non-cooperative behaviour, stops sending autonomous payments, and 
only sends exactly what it receives – perhaps as a result of an unanticipated liquidity shortage. 
This changed behaviour is assumed to start at the beginning and to remain in place until the end 
of the simulation.  
 
4.1 A system-wide model of payments made and received 
 
To simulate the behaviour of the payment system, we need  

 a ‘balance rule’ describing the evolution of each bank’s balance, and an initial value for 
these balances; and 

 a ‘payments rule’ describing how much each bank pays to whom. 
 
Equation (1) describes the behaviour of bank’s balances and is reproduced here for easier 
reference (we drop the index d to economise on notation):  





t

Out
i

t
In
iiti PayPaydayBaldayBal

1
,

1
,

^

0,,





  

where the initial value of the balance is estimated using the sample average of the bank’s 
available liquidity: 





T

t
tii dayBal

T
dayBal

0
,

^

0,

1
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Using the average balance rather than the initial balance provides us with a time-independent 
start of our simulation.9 Notice that we do not normalise payments in the simulation: we only 
needed to do this in the estimation step in order to consistently estimate the parameters of the 
payments rule i . 

 
Equation (2) provides the basis for the payments rule we use in the simulation. It needs to be 
complemented by two additional ingredients. First, we need to ensure that the payments rule is 
feasible: a bank’s payments cannot exceed its available liquidity. Equation (4) contains that rule, 
using the estimates obtained in Section 3. Because we work with the original data in our 
simulation, we scale up the intercept i̂  by bank i’s average payment value  Out

iPayE  , .10  

 

 
 
   if                                                       0            

   if      ˆˆ

,1,,

,1,,,,,
,














In
titi

Out
ti

In
titi

Out
ti

payOut
titii

Out
iiOut

ti
PaydayBalPay

PaydayBalPayshortBalPayE
Pay

    (4) 

 
Equation (4) describes each bank’s aggregate payment outflows, but not its inflows. Had we 
estimated equivalents to equation (2) on a bilateral basis, we could construct inflows from 
outflows. However, the coefficients of the bilaterally estimated payment rules had different 
signs and were occasionally not significant. We therefore simply assume that out of its outgoing 
payments, bank i sends in each interval a constant11 share γi→j  to each of its counterparties j. We 
estimate these shares by simple average payment shares over the sample period: 




















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




T

t
nBanks

ik

Out
tki

Out
tji

ji

Pay

Pay

T 1
,

,1̂                                                      (5) 

Payment flows to bank i are simply the sum of its counterparties’ total payments times these 
payment shares: 





nBanks

ij

Out
tjij

In
ti PayPay ,, ̂                                                      (6) 

4.2 Simulation procedure 
 
In each of the following scenarios, we substitute an exogenous payments rule for the estimates 
rule (4) for a single bank k (all else remains unchanged).  
In Scenario 1, where a bank k is unable to pay (but still able to receive payments), we modify (4) 
to  

 0, Out
tkPay            (4)’ 

                                                 
9 An interesting extension would be to draw out the effects of a shock that hits the system at a specific time of the day. 
10 See Appendix A2 for the derivation. 
11 Allowing for time-varying shares and taking into consideration the uncertainty of their estimates in the simulation is left for future 
research. 
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for all t>0, and one k at a time. In Scenario 2, where a bank k pays exactly what it received in 
the current12 interval, we modify (4) to  

 ,,
In

tk
Out

tk PayPay            (4)’’ 

In each case, we are interested in the effect of the change in behaviour on the other banks’ 
available liquidity, assuming that these banks continue to follow their estimated payments rule 
(4). In particular, we want to determine when they would run out of liquidity under these 
behavioural assumptions.  
 
We undertake a deterministic and a stochastic simulation. In the deterministic simulation, we 
compute recursively each interval the level of liquidity each bank has available, setting the error 
in (4) to zero. In the stochastic simulation, we sample from the error distribution of payOut

ti,  in the 

system of equations given by (4) to derive the probability with which one, two, or even more 
banks would run out of liquidity if they did not change their estimated behaviour. In order to 
obtain a better impression for the properties of the system, we let both simulations run over 20 
hours.13 In reality, liquidity holdings are ‘reset’ at the start of each day when banks pledge new 
collateral to the Bank of England, which lasts for 10.5 hours in CHAPS. Thus, any result 
showing a bank running out of liquidity only after 10.5 hours effectively means that we would 
not expect to observe any bank running out of liquidity in reality, even if the shock hit at the 
start of the day. 
  
4.2.1 Scenario 1: deterministic simulation 
 
To give an impression of the strength of links between the banks in the system, Table 4 shows 
the immediate effect of bank i’s (in columns) changed payment rule on the other banks’ 
expected balances in the subsequent ten-minute interval.14 Numbers are expressed relative to the 
other banks’ balances at the time of the change in i’s payment rule. For example, the first 
column shows the effect of bank a ceasing to send payments on its counterparties’ liquidity: 
bank b’s available liquidity is reduced by 0.2%, bank c’s by 1%, and so on. How strong the bank 
is affected depends on the structure of the payment network, that is, on ji ̂  (equation (5)), and 
on the size of the bank that stops sending payments. We re-label the banks randomly in this 
table for confidentiality reasons.  
 
But there are indirect effects as well, which Table 5 does not capture. Smaller receipts reduce 
the inclination of the bank’s counterparties to send payments: in (4), shortBalj,t+1 falls compared 
to base case. The effect of the bank’s changed payments rule therefore cascades through the 
system over time.  
 
 
 

                                                 
12 That is, we assume that bank k pays ‘at the end’ of the interval, having observed what it received during the interval. There is no 
indeterminacy problem as the other banks’ strategies depend on the change in their balance up to, but not including, the current interval. 
Alternatively, we could have assumed that bank k pays what it received during the preceding interval. 
13 That is, we have  6 ten-minute intervals over 20 = 120 iterations of the algorithm. 
14 The mathematical derivations for the expected liquidity shortfall are in Appendix 1. 
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Table 4: Immediate expected effect of a bank’s failure to send payments 

  

Bank that stops sending payments 

Bank a Bank b Bank c Bank d Bank e Bank f Bank g 

B
an

ks
 th

at
 c

on
tin

ue
 to

 
fo

llo
w

 th
ei

r 
pa

ym
en

t r
ul

es
 

Bank a   -0.5% -0.2% -0.1% -1.6% -1.5% -0.3% 

Bank b -0.2%   -0.5% -0.3% -2.3% -2.2% -0.7% 

Bank c -1.0% -6.0%   -1.4% -15.6% -14.5% -4.8% 

Bank d -0.1% -1.7% -0.6%   -3.1% -2.6% -0.7% 

Bank e -0.5% -3.2% -1.5% -0.7%   -6.6% -2.0% 

Bank f -0.6% -3.3% -1.6% -0.6% -6.8%   -2.0% 

Bank g -0.1% -1.0% -0.5% -0.2% -2.1% -2.1%   

 
 
Despite this reduced inflow of payments, the other banks do not commensurately reduce their 
outflows in our simulation: the estimated payments rule showed that banks make a substantial 
proportion of their payments independently of preceding balance changes. As a result, the other 
banks only risk running out of funds some time after bank 1’s failure to send payments. Figure 5 
plots these results. Each line of the chart plots the expected number y of illiquid counterparties x 
hours after i stopped sending payments to them. (The y-axis ranges from 0 to 6 counterparties; 
the x-axis from 0 to 20 hours.) 
 
For an example, consider bank 7. About 2.5 hours after bank 7 stopped sending payments, one 
of its counterparties would become illiquid if it continued to follow the payments rule that it 
follows in normal times. About 6 hours after it stopped sending payments, two counterparties 
would be illiquid, and so on. 
 

Figure 5: Effect of failure of bank i to send payments on its counterparties  

 
Notice: Each line of the chart plots the expected number y of illiquid counterparties x hours after i (see legend in figure) stopped 
sending payments to them. The y-axis ranges from 0 to 6 counterparties; the x-axis from 0 to 20 hours. 

 
Clearly, the consequences of a bank’s failure to send payments on its counterparties depend on 
that bank’s properties. Broadly, there are two groups of banks: the failure of a bank in the first 
group (banks 2, 5, 6 and 7) to make payments causes the illiquidity of at least two other banks 
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within the first six hours of the change in behaviour. For the remaining three banks, the external 
effects are smaller. 
 
To reiterate, these expected times at which the counterparties become illiquid have been derived 
assuming that the counterparties do not deviate from their payments rule. In practice, banks’ 
liquidity management is more sophisticated than we can capture with our model. Merrouche and 
Schanz (2010) provide evidence that banks also monitor their bilateral balances, and reduce 
their payments to a counterparty from which they do not receive funds. However, there are only 
few instances in which banks experience sufficiently long operational problems that prevent 
them from sending funds. (Merrouche and Schanz (2010) investigate eight instances.) We were 
therefore forced to estimate our payment rules on data that primarily included days in which no 
bank experienced operational problems, and could not find systematic evidence for bilateral 
receipt-reactive behaviour. Thus, our payments rules (4) only relate payments to a bank’s total 
(multilateral) changes in liquidity, and therefore tends to underestimate a counterparty’s reaction 
to a bank’s inability to send payments. Finally, the payment system control announces 
operational problems of a bank to all its counterparties to support counterparties’ efforts to 
adjust their payments behaviour. 
 
4.2.2 Scenario 2: stochastic simulation of an operational failure 
 
While the deterministic simulation was used to compute expected times of illiquidity, the 
stochastic simulation predicts the likelihood of counterparties’ illiquidity. These probabilistic 
estimates are presumably more useful for risk-assessment purposes because they include model 
uncertainty: that is, the error that our estimated payments rule makes when predicting actual 
payments behaviour.  
 
To construct the probabilistic estimates, we take, for each simulated ten-minute interval over a 
total of 50 hours, independent samples from the distribution of the sample errors of the payment 
rule (4):15  
 

  tii
Out
ii

Out
ti

payOut
ti shortBalPayEPay ,,,,

ˆˆˆ    . 
 
With these error terms we constructed one simulated path of balances for all banks – as in the 
deterministic case, the only difference being that in the deterministic case, the error term was set 
to zero. We repeated this procedure 5,000 times to construct 5,000 such paths for payments 
made, received and the corresponding balances for each of the seven banks in sample. For each 
interval of the simulated path, we then computed the proportion of simulations paths for which 
zero, one, two, etc… banks were illiquid. (We call a bank ‘illiquid’ when, according to its 
estimated payment rule, it should make a payment, but cannot because it lacks the necessary 
funds (see the case distinction in the definition of the payments rule (4).) This proportion is then 
interpreted as the probability that zero, one, two, etc… banks would indeed become illiquid. 

                                                 
15 Notice that we neglect any serial correlation of the error terms when sampling errors. We know that the cause of serial correlation is 
the intraday pattern (see Figure 3). However, for this paper, we are interested in explaining the part of payments behaviour that cannot 
simply be explained by the time of day. Therefore, we chose to ignore this pattern in our simulations. The variance of the residuals in 
our model is correspondingly larger. The inclusion of a time dependency in the simulation is left for future research. 
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This procedure is similar to the usual impulse response analysis in a VAR model (see Greene 
(2003), page 593). 
 
To obtain an impression of the impact of uncertainty on these estimates, it is useful to first 
analyse our system for the case that all banks follow their normal payments rule (4). Figure 6 
shows that even in this case, there is a non-zero (about 25%) likelihood that a bank becomes 
illiquid within the first hours of the operations of the payment system.  
 

Figure 6: Probability of banks becoming illiquid if their estimated payment rules 
are disturbed randomly  

Notice: Each line of the chart plots the probability with which the corresponding bank will become illiquid when each payment 
rule is shocked in each interval of the iteration, x hours after the first shock. 

 
The reason for the simulated non-zero likelihood of failure is that some banks have an 
apparently relatively small liquidity reserve in the payment system and manage their payments 
correspondingly tightly. Our payment rules, however, are only estimated with a substantial 
error. In the simulations, this error shows up as large random deviations from the bank’s 
deterministic payment rule. In reality, a bank with an apparently relatively small liquidity 
reserve would, of course, attempt to avoid such random errors – and they would ultimately also 
change their payments rule to avoid illiquidity. Finally, notice that the cumulative probability 
distributions become successively flatter because the uncertainty in our payment rule adds up 
over the intervals over which we project the system into the future. 
 

Figure 7: Probability of a number of counterparties becoming illiquid if a small 
(large) bank stops making payments (systemic risk) 

Notice: For each chart, each line plots the probability with which one, two, three, etc, of bank i’s counterparties become illiquid x 
hours after bank i stops sending payments. The x-axis shows the time since i changed its payments behaviour (from 0 to 50 
hours). All counterparties are assumed to follow their normal-time payments behaviour. 
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Now back to Scenario 1, in which one bank does not send any payments during the entire 
simulation. For Figure 7, we picked a small bank (left panel) and a large bank (right panel) out 
of our sample and assumed that it would not send any payments during the simulation period. 
Figure 7 plots the likelihood that one (blue line), two (green), three (red), etc… of its 
counterparties become illiquid, again assuming that they follow a noisy version of their 
estimated payments rule. 
 
Figure 7 shows that with near-certainty, one bank will become illiquid within the first six hours 
after a small bank’s failure to send payments (within the first four hours after a large bank’s 
failure to send payments); see the blue lines. For this large bank, three counterparties would 
become illiquid after approximately four hours with a probability of about one third (red line). 
Again, recall that these results were derived under the assumption that banks follow a noisy 
version of our estimated payment rules.  
 
4.2.3 Scenario 2: stochastic simulation of a free-riding strategy 
 
We now turn to the stochastic simulation of the consequences of a bank reverting to a 
(deterministic) tit-for-tat strategy (4)’’ at the start of the simulation: it sends out exactly the same 
value of payments that it received in the same interval.16 A bank might revert to this strategy if it 
becomes concerned about the other banks’ ability or willingness to return liquidity, or because it 
itself experiences a surprise shortage of liquidity. Ex ante, it is not clear whether the tit-for-tat 
strategy leads to lower or higher payments by the bank that plays according to (4)’’: on the one 
hand, no autonomous payments would be made; but on the other, more payments may be made 
in response to incoming payments.  
 

Figure 8: Probability of counterparties becoming illiquid if a small (large) bank 
reverts to a tit-for-tat strategy 

Notice: For each chart, each line plots the probability with which one, two, three, etc, of bank i’s counterparties become illiquid x hours 
after bank i reverts to a tit-for-tat strategy. The x-axis shows the time since i changed its payments behaviour (from 0 to 50 hours). All 
counterparties are assumed to follow their normal-time payments behaviour. 

 
Figure 8 shows the results of the simulations, assuming that the same banks that stopped sending 
payments in Scenario 1 instead revert to the receipt-reactive strategy (4)’’. It reveals that this 
bank indeed sends less liquidity than if it had followed the original rule (4): the likelihood of a 

                                                 
16 We do not report the less interesting case of the deterministic simulation. 
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certain number of its counterparties becoming illiquid lies in between the cases in which all play 
according to (4), and Scenario 1, in which the bank followed (4)’. 
 
For risk-assessment purposes, these results may be more important than those in Scenario 1. The 
reason is that receipt-reactive behaviour is less easily detectable for the bank’s counterparties 
than complete failure to pay. And the bank that uses such a strategy would not be under the 
obligation to inform system control of its changed behaviour. Thus, our assumption that the 
other banks adhere to their standard payment rules (4) is more realistic than in Scenario 1. Of 
course, it remains reasonable to assume that the counterparties would divert from that strategy 
once their available liquidity has substantially fallen. 
 
5 Size versus network attributes 
 
In the preceding sections, we often contrasted large and small banks. ‘Large’ banks’ failure to 
send payments, or their adoption of a tit-for-tat strategy, had larger external effects on the rest of 
the system. In theory, size is not the only network attribute that determines the degree to which 
shocks to the payments behaviour of a single bank are amplified throughout the system. The 
structure of the network matters as well.17 Star networks depend on the operational availability 
of the central node. Fully connected networks are more robust unless shocks become very large. 
But, beyond that, a well-connected system can flip: interconnections can provide the mechanism 
that allows losses to cascade across all institutions.  
 
The structure of a network can be described by a large number of variables, measuring, for 
example, how large the banks in the network are, and how they are linked.  A recurring question 
in this context is whether size can more or less completely explain the influence of a bank in the 
network – in our case the effect of a changed payments rule. The number of banks in CHAPS is 
too small to investigate this hypothesis formally. In our simulation, the scaled intercepts in (4) 
essentially measure the size of the bank’s average payment flows. But they are also a measure of 
the value of payments a bank makes independently of the payments it receives, and therefore a 
key component of the impact that a change in counterparty’s payments rule has on the bank’s 
available liquidity. (More precisely: the smaller the slope coefficient, the better the intercept 
describes the impact.) Our measures of size and impact are therefore closely correlated.  
 
Admittedly, the small errors that such a univariate prediction would make would add up over 
time as banks repeatedly apply their payment rules to react to previous incoming payment flows. 
However, in practice, payment rules might not remain constant, and are more likely to change 
the more time banks have to become aware of bank i’s original change in behaviour. The quality 
of a prediction that takes additional network characteristics may not improve. 
 
However, a more detailed knowledge of the network structure has advantages. It helps predict 
bilateral relationships: suppose bank i becomes unable to send payments, which counterparty is 
most likely to suffer first? And how long would its liquidity last? Figure 9 provides examples, 
again choosing the same pair of banks for which Figures 7 and 8 were constructed.  Contrast 

                                                 
17 Aikman et al (2009) analyse the amplification of  liquidity shocks in a quantitative, simulation-based model of systemic stability 
based on the network of UK banks. Haldane (2009) emphasises the analogies between financial network with biological networks. 
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Figures 7 and 9: Figure 7 shows the system-wide impact of a small (left panel) and a large (right 
panel) bank failing to make payments, while Figure 9 shows the vulnerability of a specific bank 
to a small bank (left panel) and a large bank (right panel) failing to make payments. 
 

Figure 9: Probability of specific counterparties becoming illiquid if a small 
(large) bank stops making payments (bank-specific risk) 

 
Notice: For each chart, each line plots the probability with which bank i’s counterparties become illiquid x hours after bank i 
stops sending payments. The x-axis shows the time since i changed its payments behaviour (from 0 to 50 hours). 

 
Clearly, the size of the bank that changes its payments rule again determines the general shape 
of the picture. However, while the left panel could suggest that bank 2 is considerably less 
vulnerable to a small bank stopping to make payments than bank 1 (the green line lies 
considerably below the blue), the right panel shows that they are about equally vulnerable to a 
large bank stopping to make payments (the green line lies close to the blue). Predictions purely 
based on the size of the bank that originally changed its behaviour could be misleading. 
We conclude that a detailed knowledge of the network of payment flows between banks can 
help predict the likelihood with which a bank becomes illiquid if one of its counterparties 
deviates from its typical payments behaviour.  
 
 
6 Comparison of our approach with existing simulations 
 
This section compares our approach with other simulation methods that have been used to study 
the robustness of payment systems, drawing out their relative advantages and disadvantages.  
 
Several sources of information, and diverse sets of analytical tools, can be used to assess the 
robustness of a payment system to exogenous liquidity shocks (cf. Manning et al (2009)). The 
key question is how to best model banks’ behaviour. Researchers using game-theoretic 
techniques are often required to abstract significantly from reality to be able to solve their 
models and are often constrained by the sometimes strong assumptions required to deliver 
analytically tractable solutions. Another possibility, which we chose, is to allow for a more 
complex environment but restrict the strategies that banks can follow.  
 
One option is to specify banks’ strategies exogenously – both their form and their 
parameterisation. Examples include Beyeler et al (2007) and Renault et al (2007). Their base 
case is that banks make payments whenever they have sufficient liquidity. The authors can then 
test the robustness of their results by varying the strategies. This comparatively simple treatment 
permits the description of the system to be relatively complex. (For example, Renault et al 
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(2007) model liquidity flows between two interlinked payment systems.) On the other hand, it is 
more suited to deliver qualitative rather than quantitative predictions of actual behaviour.  
 
Another option is to specify only the form the payment rules take and leave its parameterisation 
open. We are aware of two variants in the payments literature: the first employing agent-based 
modelling techniques; the second using econometric estimates to determine the parameters. 
 
In the first variant, which uses agent-based modelling techniques, the parameters are determined 
by a learning algorithm. Banks are given a simple objective function – for example, to minimise 
both the delay between receipt of a executing payments. The system is then simulated for an 
initial set of parameter values, which banks are able to adjust following an exogenous 
adjustment rule once an entire path has been simulated. Galbiati and Soramäki (2008) use this 
method. Its advantage is that once a sufficient number of paths has been simulated and the 
parameter values have converged, one may be able to show that the resulting strategies form a 
Nash-equilibrium, that is, that they are mutually optimal (subject to the form of the payments 
rule and the objective function). The disadvantage is that the form of the decision rule has to be 
simple to allow the optimal behaviour to be determined; that the objective function may not be 
correctly specified; and that computational requirements are substantial. In particular, the 
dimensionality of the problem would increase substantially if the aim was to derive probabilistic 
statements. 
 
We employ the second approach, which uses econometric techniques to estimate banks’ 
payments rules, and then use these rules to forecast the system’s behaviour. Compared to the 
agent-based approach, the link to actual, observed behaviour is closer. However, it is less clear 
to what extent behaviour that we observe in normal times also describes behaviour in unusual 
situations, such as during operational outages, or when one bank adopts a tit-for-tat strategy.  
 
Relatedly, we do not verify whether our estimated payments rules would be optimal in a 
theoretical model of payments behaviour. This, combined with the comparatively small 
explanatory power of our regressions, might reduce confidence in the validity of the estimated 
payment rules. However, because the numerical complexity of simulating the system’s 
behaviour is smaller, we can provide probabilistic forecasts. For these, we do not rely on 
distributional assumptions but sample directly from the errors of the estimated payment rules. 
Probabilistic forecasts should be particularly useful for risk assessment purposes. 
 
Finally, a few remarks on how our approach relates to a classic VAR model. One can think of 
our payment rules forming a VAR, with the auto-regressive terms given by shortBal, where the 
coefficients of the two lags are constrained to be identical. In order to obtain impulse-response 
functions, we could simply have traced the effect of a shock to one of the equations through the 
system. For example, a negative shock to one of the equations would have corresponded to a 
reduction the payments the respective bank makes. Shocking the system in this way would, 
however, not have taken an important constraint into account: that is, that a bank cannot make a 
payment if it lacks liquidity. In our simulation, we integrate this constraint in equation (4). 
(Figure 5 showed the results.) In addition, our main interest lies in the effect of specific changes 
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to a bank’s behaviour – the inability to send payments, or the adoption of a tit-for-tat strategy. 
These cannot be satisfactorily described by a shock to the payments rule. 
 
In summary, we have most confidence in our forecasts of the system’s behaviour when we 
investigate small shocks to a bank’s payments rule which are difficult to detect for other banks. 
Other banks would then be unlikely to change their behaviour from the one we estimated in 
normal times. Our results of Scenario 2, where a bank simply becomes stingier with liquidity 
but does not entirely stop paying, may therefore be more robust than those we derived in 
Scenario 1. 
 
 
7 Conclusions and further research 
 
When settling their own liabilities and those of their clients, settlement banks rely on incoming 
payments to fund a part of their outgoing payments. We investigate their behaviour in CHAPS, 
the United Kingdom’s large-value payment system. Our estimates suggest that in normal times, 
banks increase their payment outflows when their liquidity is above target and immediately 
following the receipts of payments. We use these estimates to determine the robustness of this 
payment system to two hypothetical behavioural changes. In the first a single bank stops 
sending payments, perhaps because of an operational problem.  In the second, it adopts a free-
riding strategy, paying out exactly what it previously received.  
 
Using the errors of the estimated behavioural equations, we derive probabilistic statements about 
the time at which the bank’s counterparties would run out of liquidity if they followed their 
estimated normal-time behaviour. In both cases, we show that there is a considerable likelihood 
that at least one counterparty will become illiquid within the first hour after the change in 
behaviour if it continues to follow our estimated payments rule. The impact is larger the larger 
the bank that changes its behaviour, and larger when the bank stops sending payments.  
 
Importantly, our payment rules are estimated across days during which such changes to 
payments rules were rare. (In fact, we only know about times when a bank stopped sending 
payments.) Because our estimates average over normal days and those were the payments rule 
changed, it presumably underestimates the receipt-reactive part of the payment rule and 
exaggerates the impact of a sustained change of that bank’s behaviour. We have more 
confidence in our forecasts of the system’s behaviour when we investigate small shocks to a 
bank’s payments rule which are difficult to detect for other banks, such as the adoption of a free-
riding strategy. 
 
There are at least two interesting avenues for further research. The first is a less parsimonious 
description of banks’ behaviour. For example, one could use the extended payments rule in the 
simulation, which also takes the deviation of a bank’s actual liquidity holdings from its target 
into account. Alternatively, one could estimate two payment rules, one that applies once a 
behavioural change of a counterparty becomes known to other system participants, and the other 
describing behaviour in normal times. Ideally, intra-system transfers should be integrated in the 
estimated payments behaviour, as an additional explanatory or as a dependent variable.  
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The second extension could be to add further scenarios to our simulation. For example, we could 
investigate the effects of the time of day at which a change of payments behaviour occurs on 
other banks’ liquidity position.18 Or we could allow behaviour to revert to the original estimated 
payments rule after some time – a good description of a temporary operational problem.  
 

                                                 
18 Merrouche and Schanz (2010) show that shocks to payments behaviour which occur in the morning have a greater effect than those 
that occur in the afternoon.  



 

 
 Working Paper No. 427 May 2011 27

Appendix 1: Derivation of the expected liquidity shortfall  
Given failure to pay of bank m for time t, ensuring that bank i is unaffected for time t+1 implies 
that the balance process for t+1 is unchanged in between the cases. Formally: 
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In (A.1.1), *

1, tidayBal  is the balance process for bank i for time t+1, given that bank m is unable 
to make a payment at time t. The value of 1, tiC  is the amount that would have made both 
process equal, that is, the impact of bank’s m failure towards bank’s i balance in t+1. 
Expanding the last equation with expectations: 
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The last result is intuitive as the difference between the scenarios is just the different amount of 
money bank i would have received in t+1. By expanding the last equation we get: 
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Now, realising the property that: 
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 we have the final result: 
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Appendix 2: Interpretation of coefficients in estimated payment rules 
 
Our first regression model is: 
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Expanding equation (A.2.1), we get: 
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In (A.2.2) the terms tiA ,  and tiB ,  are, respectively, the intraday means of payments sent and 

received. We can rewrite this as: 
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Similarly, the effect of a small change in the average payment made in the past is: 
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For the interpretation of the overall effect of *

,, tdishortBal in Out
tdiPay ,, , one can simply assume that 
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banks pay and receive the same total amount of money in different times of the day. This is not 
far from empirical estimates. With this simplification, we get: 
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For the second regression model, the derivation is very similar, with the results: 
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Now, for the simulation of the models, we again use the simplification 1
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Therefore, the final equation that we use for the simulations is: 
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Correspondingly, for the second model, following similar steps as Model 1, we have: 
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Appendix 3: How our simulation model could be written as a VAR 
 
Defining: 
 

],[ nm
X    - a matrix with m rows and n columns 

   - Matrix multiplication operator 
I    - Identity matrix  

*  - Scaled alpha vector 
*   - Scaled beta vector 

 
The process for payments in matrix notation, using nLag=1, is: 
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This implies that: 
 

],1[],[

*

],[],[],1[
1

],1[

*

],1[

],1[],[

*

],1[
1

],[],1[
1

],1[

*

],1[

* *

* *

nBank
t

nBanknBanknBanknBanknBanknBanknBank

Out
t

nBanknBank

Out
t

nBank
t

nBanknBanknBank

Out
t

nBanknBanknBank

Out
t

nBanknBank

Out
t

IPayPay

PayPayPay


















 















  (A.3.2)  

 
Therefore, using standard VAR notation, the regression model can be specified as: 
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