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Abstract

We examine the role of macroeconomic fluctuations, asset market liquidity, and network structure in

determining contagion and aggregate losses in a stylised financial system.  Systemic instability is

explored in a financial network comprising three distinct, but interconnected, sets of agents — domestic

banks, overseas banks, and firms.  Calibrating the model to advanced country banking sector data, this

preliminary model generates broadly sensible aggregate loss distributions which are bimodal in nature.

We demonstrate how systemic crises may occur and analyse how our results are influenced by fire-sale

externalities and the feedback effects from curtailed lending in the macroeconomy.  We also illustrate

the resilience of our model financial system to stress scenarios with sharply rising corporate default

rates and falling asset prices.
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Summary

The complex and opaque nature of modern �nancial systems poses a considerable challenge for

the analysis of systemic resilience. An intricate web of claims and obligations links households

and �rms to a wide variety of �nancial institutions such as banks, insurance companies, and

investment �rms. The rapid development of securitisation and credit derivative markets has also

made exposures between agents more dif�cult to assess and monitor in the absence of trade

repositories. The global �nancial crisis illustrates how intertwined the �nancial network has

become, while also making clear the potential for widespread losses and instability.

Recent efforts by central banks to measure and assess systemic risk have emphasised the

important role played by network effects, �re-sale externalities, and funding liquidity risk in

�nancial stability. A general insight is that these factors generate `fat tails' in the distribution of

aggregate losses for the banking system. That is, the �nancial system may incur very large losses

with small probabilities.

Central bank studies typically rely on highly detailed, and relatively static, balance sheet data to

establish precise linkages between banks in the domestic �nancial system and to derive banking

system losses. This can be constraining when true linkages are not known (such as with credit

risk transfer or off balance sheet activity) or when shocks strike �nancial institutions external to

the core banking system. The pre-de�ned balance sheet interlinkages in these models also

preclude analysis of how network structure matters for system resilience. The crisis has

emphasised how network linkages and interactions between �nancial institutions are critical to

understanding systemic risk. And the growing importance of `stress-testing' exercises in the

policy debate about �nancial stability points to the need for analyses that help overcome such

limitations.

In this paper, we set out a general framework to gauge systemic risk in circumstances when data

about the reach of �nancial exposures are limited and shocks are international in nature. We

present a statistical model of a �nancial system involving a diverse set of �nancial agents,

namely domestic banks, overseas banks, and �rms, which are linked together by their claims on

each other. We calibrate the model to advanced country banking sector data to illustrate how

macroeconomic �uctuations, asset market liquidity and network structure interact to determine
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aggregate credit losses and contagion. Although the calibration is deliberately broad brush so as

to emphasise the qualitative nature of the results, we obtain plausible loss distributions and can

quantify, within the context of our model, the size of the macroeconomic or �nancial sector

shock that may be necessary for system-wide failure to occur.

The model highlights how shocks are propagated through the direct interlinkages of claims and

obligations among (and between) domestic banks and overseas banks. But it also shows how

defaults across the network are ampli�ed by asset �re sales and curtailed lending in the

macroeconomy as `credit crunch' effects take hold in the event of distress. In addition, we

illustrate how greater heterogeneity of bank balance sheets leads to more realistic outcomes,

characterised by the failure of some � but not all � banks in extreme scenarios. We also

demonstrate how the model can be used to `stress test' the banking system. The results obtained

are entirely illustrative and only intended to demonstrate the usefulness of the framework.
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1 Introduction

The complex and opaque nature of modern �nancial systems poses a considerable challenge for

the analysis of systemic resilience. An intricate web of claims and obligations links households

and �rms to a wide variety of �nancial institutions such as banks, insurance companies, and

investment �rms. The rapid development of securitisation and credit derivative markets has also

made exposures between agents dif�cult to assess and monitor in the absence of trade

repositories. The global �nancial crisis of 2007�08 illustrates how intertwined the �nancial

network has become, while also making clear the potential for widespread losses and instability.

Recent efforts by central banks to measure and assess systemic risk have emphasised the

important role played by network effects, �re-sale externalities, and funding liquidity risk in

�nancial stability.1 A general insight, highlighted by Alessandri, Gai, Kapadia, Mora and Puhr

(2009), is that these factors generate `fat tails' in the distribution of aggregate losses for the

banking system. This is consistent with recent analytical work which suggests that �nancial

systems, like other complex networks, have `tipping points' and display a `robust-yet-fragile'

tendency � with sharp discontinuities emerging following some unexpected shocks, with other

shocks resulting in benign effects (May, Levin and Sugihara (2008); May and Haldane (2011);

Gai and Kapadia (2010); Gai, Haldane and Kapadia (2011)).

Central bank studies typically rely on highly detailed, and relatively static, balance sheet data to

establish precise linkages between banks in the domestic �nancial system and to derive banking

system losses. This can be constraining when true linkages are not known (such as with credit

risk transfer or off balance sheet activity) or when shocks strike �nancial institutions external to

the core banking system. The pre-de�ned balance sheet interlinkages in these models also

preclude analysis of how network structure matters for system resilience. The crisis has

emphasised how network linkages and interactions between �nancial institutions are critical to

understanding systemic risk. And the growing importance of `stress-testing' exercises in the

policy debate about �nancial stability points to the need for analyses that help overcome such

limitations.

1See, for example, Elsinger, Lehar and Summer (2006) for the Austrian banking system, Aikman, Alessandri, Eklund, Gai, Kapadia,
Martin, Mora, Sterne and Willison (2009) for the United Kingdom, and Gauthier, Lehar and Souissi (2010) for Canada. Foglia (2009)
provides a detailed overview of systemic risk assessment models being developed by central banks. Cifuentes, Ferrucci and Shin (2005)
and Morris and Shin (2009) offer analytical accounts of �re-sale effects and funding liquidity risk.

Working Paper No. 458 July 2012 5



In this paper, we set out a general framework to gauge systemic risk in circumstances when data

about the reach of �nancial exposures is limited and shocks are international in nature. We

present a statistical model of a �nancial system involving a diverse set of �nancial agents,

namely domestic banks, overseas banks and �rms,2 which are linked together by their claims on

each other. We calibrate the model to advanced country banking sector data to illustrate how

macroeconomic �uctuations, asset market liquidity and network structure interact to determine

aggregate credit losses and contagion. Although the calibration is deliberately broad-brush so as

to emphasise the qualitative nature of the results, we obtain plausible fat-tailed (bimodal)

aggregate loss distributions and can quantify, within the context of our model, the size of the

macroeconomic or �nancial sector shock that may be necessary for system-wide failure to occur.

The model highlights how shocks are propagated through the direct interlinkages of claims and

obligations among (and between) domestic banks and overseas banks. But it also shows how

defaults across the network are ampli�ed by asset �re sales and curtailed lending in the

macroeconomy as `credit crunch' effects take hold in the event of distress. In addition, we

illustrate how greater heterogeneity of bank balance sheets leads to more realistic outcomes,

characterised by the failure of some � but not all � banks in extreme scenarios.

We also demonstrate how the model can be used to `stress test' the banking system. We draw on

current best practice in stress testing to examine the consequences for bank failure in our model.

The results obtained are entirely illustrative and only intended to demonstrate the usefulness of

the framework. Speci�cally, we consider a scenario in which a default rate on corporate

exposures of around 4.5% is accompanied by a 20% fall in equity prices as a result of �re sales.

Faced with such stress, and with the simplifying assumption of 100% loss given default (LGD),

approximately one quarter of our model banking system is pushed into default. The assumption

of 100% LGD suggests this estimate sets a conservative upper bound on bank failures.

Our analysis complements recent work that draws on techniques from network science and

statistical physics to study credit contagion and model credit risk losses in banks' portfolios

(Giesecke and Weber (2004, 2006); Horst (2007); Hatchett and Kuhn (2009); Gai and Kapadia

(2010); May and Arinaminpathy (2010)). But the networks in these models typically involve

2Our notion of overseas banks speci�cally refers to banks that are headquartered in foreign countries rather than necessarily
transnational. For exposition, we choose to interpret the domestic banks as the largest banks in the United Kingdom and the overseas
ones as overseas banks with cross-border exposures to the United Kingdom. Moreover, we focus on banks for ease of exposition. Our
approach could easily be extended to capture other intermediaries.

Working Paper No. 458 July 2012 6



homogeneous agents � a �rm or a bank � and do not capture the twin effects of macroeconomic

and �re-sale feedbacks.

Our analysis also relates to the literature which seeks to obtain analytical valuation results for

complex portfolio credit derivatives by considering default correlation and credit contagion

among �rms in a dynamic setting (see Errais, Giesecke and Goldberg (2010); Longstaff and

Rajan (2008)). In contrast to these papers, clearly speci�ed bank balance sheets are central to our

approach, with bilateral linkages precisely de�ned with reference to these. And our differing

modelling strategy, which focuses on the transmission of contagion along these links, re�ects the

greater structure embedded in our network set-up.

In choosing to model the complexity of a heterogeneous �nancial system with feedback effects,

we eschew formal optimising behaviour and strategic interactions by the agents in our �nancial

network. Instead, we allow for plausible `rules of thumb' that permit banks to curtail lending and

dispose assets in a �re sale. The size and structure of �nancial linkages is kept constant as default

cascades develop. While this assumption may be defensible in the midst of a rapidly developing

crisis, it is clearly at odds with recent work on �nancial networks (Leitner (2005); Castiglionesi

and Navarro (2007)) that builds upon the seminal contribution of Allen and Gale (2000).3 The

stylised nature of these models means, however, that they cannot be used for systemic risk

assessment. So our paper should be viewed as a very preliminary �rst step towards an integrated

model of systemic risk that both takes complexity seriously and incorporates rules of thumb that

go some way towards capturing plausible behavioural responses.

The paper proceeds as follows. Section 2 provides an informal discussion of our approach and

explains how shocks are propagated and ampli�ed in a stylised �nancial system comprising

diverse agents. Section 3 describes model calibration and discusses a novel approach to deriving

the distributions of balance sheet exposures in environments when data are limited. Section 4

presents the baseline aggregate loss distribution obtained from stochastic simulations and

considers how liquidity risk and macroeconomic feedbacks might affect system stability. Section

5 presents an example of how the model can be used for a banking system stress test. A �nal

section concludes. Formal details of the model and a description of how distributions of

exposures are obtained from maximum entropy techniques are presented in the appendices.

3See Allen and Babus (2008) for a survey of network-theoretic approaches to modelling �nancial issues. Jackson (2008) provides
detailed discussion of strategic behaviour on networks.
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2 A stylised �nancial system and the transmission of shocks

The �nancial system in our model can be viewed as a core-periphery structure with three

interconnected layers � domestic banks, overseas banks and �rms. While we do not model

lending to households in this structure, the framework could easily be augmented to include a

role for them in a similar way to the treatment of �rms.

A network of core domestic banks sits at the centre of the system. A distinguishing feature of this

group is that each bank interacts with all other banks, ie the (sub) network of domestic banks is

complete. This structure re�ects the importance of core banks within money markets in national

�nancial structures.4

Beyond this group of core banks lies a group of overseas banks, ie banks operating and

headquartered in other countries and peripheral to the core domestic �nancial system. Unlike

domestic banks, the (sub-) network of overseas banks is incomplete and exhibits a `small-world'

property � each overseas bank interacts with institutions in its immediate vicinity and only

interacts with more distant institutions with some probability. The sparseness of the links

between overseas banks relative to the complete network of domestic banks re�ects the much

greater diversity of activities and institutions in this sector, both in terms of activity and location.

It is also consistent with recent evidence from von Peter (2007) on the �nancial linkages between

international banking centres.

The outer-most layer of the �nancial system is comprised of �rms in the economy. Firms are

assumed not to lend to each other and do not own shares in one another. They are, thus, not

connected to each other in any way. This assumption is made for tractability. Firms are, however,

assigned an exogenous credit rating (investment or speculative grade), are subject to common

aggregate economy-wide shocks, and exposed to the risk of restrictions in bank credit. The

performance of different �rms across the economy is therefore correlated following a shock to

the �nancial system.

Although the three layers of the �nancial system are distinct, each group is linked to the others.

Domestic and overseas banks can lend to, and borrow from, each other. They are also able to lend

to, and own shares (direct investments) in, �rms. The �nancial relationships across layers are

4Our data on lending between UK banks corroborates this assumption.
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Chart 1: The stylised �nancial system where the �lled circles - nodes - represent banks/�rms,
and the links between nodes depict credit or equity relationships. There are three distinct
layers: (i) a core of domestic banks; (ii) a peripheral layers of overseas banks; and (iii) an
outer layer of �rms

modelled as random graphs. In other words, entities belonging to different layers are linked to

each other with a given probability. These probabilities are independent between pairs of entities,

and the random links mean banks can differ in terms of lending to, and equity holdings in, �rms.

Chart 1 illustrates the �nancial system. Our use of random graph techniques to model the

interlinkages between different types of agent can be viewed as a metaphor for the opacity and

reach of modern �nancial instruments. Policymakers frequently highlight the way in which

�nancial innovation has enabled �nancial intermediaries to `slice and dice' credit risks to the

peripheries of the �nancial system (Bank of England (2007); Trichet (2008)). The value of

instruments such as credit derivatives and their related exposures are dif�cult to monitor as a

result, justifying the probabilistic treatment adopted here.

As Chart 1 shows, banks and �rms are represented as nodes in a network. Although not

illustrated, links between nodes re�ect credit or equity relationships and the network is directed,

with incoming links representing assets (ie monies owed to an entity by a counterparty or shares

in the case of banks' relationships with �rms) and outgoing links representing liabilities. Chart 2

presents the typical balance sheet of a bank in our model �nancial system. Total assets comprise

loans to �rms, loans to other banks (domestic and overseas), shares in �rms, and government

securities. The liability side of the balance sheet includes customer deposits, interbank

borrowing, and the bank's capital buffer. Our balance sheet structure is suf�ciently simple to be

tractable while including enough granularity to be interesting.
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Chart 2: Typical balance sheet of a bank in the �nancial system

Chart 3: Structure of the model
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Appendix A provides a formal presentation of the model. It speci�es banks' balance sheets and

shows how our assumptions about connectivity allow the �nancial system described above to be

cast in convenient matrix form. It also speci�es how shocks give rise to crisis dynamics and

contagion.

An informal sense of the mapping from shocks to systemic risk can, however, be readily gleaned

from Chart 3. Macroeconomic disturbances can trigger �rm defaults, leading to credit losses and

losses on holdings of �rm equities at some banks. These shocks can trigger the default of a

�nancial institution and generate a default cascade among banks that are directly linked.5 But as

the losses at an individual bank mount, approaching a critical fraction of capital, it is also likely

to take defensive action to try to protect itself from failure. Speci�cally, it is likely to sell equities

once in distress and cut back on its lending to �rms.6 The �re sale of equities and resultant price

decline gives rise to mark-to-market losses, forcing other banks to write down the value of their

assets and potentially enter into their own �re sales and tighten their own lending to �rms.

Meanwhile restrictions in credit increase the probability of default of �rms, magnifying the initial

shock. Direct contagion is, thus, reinforced by �re sales and macroeconomic feedback effects.

We assume that the banking sector is the sole provider of credit for �rms who do not have direct

access to credit markets or any other channel of credit. Our focus and assumption is a stylised

attempt to capture macroeconomic feedback loops from the �nancial system to the real economy.

Moreover, one may expect our assumption to be qualitatively true during periods of �nancial

crisis, where due to a con�uence of high capital search costs and a hoarding of liquidity by all

institutions, ie a credit crunch, the probability of default for �rms increases, which exacerbates

the �nancial crisis.

In the mechanistic setting adopted here, banks follow rules of thumb when confronted with

distress. Although plausible, these rules have no micro-foundations. But they can be viewed as

being consistent with rational, optimising and myopic behaviour. Facing a highly uncertain

recovery rate and timing of economic recovery in the midst of crisis, banks are likely to assume a

worst-case scenario and be willing to pull credit lines.7 These channels are subsumed with other

5Alternatively, a �nancial institution may fail for idiosyncratic reasons without there being a macroeconomic shock.
6Our approach does not model the dynamic restructuring of balance sheets. In other words, the actual transfer of equity from one bank to
another as a result of the �re sale is absent. We motivate this stylised assumption by qualifying our �re sale as an anticipated �re sale.
Once a bank's capital falls below the critical threshold, all other market participants will anticipate that the bank will perform a �re sale
in the near future. It is this anticipation that results in the fall of equity prices.
7For simplicity we do not assume an explicit link between a fall in equity prices and the default probabilities of �rms.
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factors that collectively raise the credit risks of �rms.

3 Model calibration

We attempt to characterise the state of a modern �nancial system prior to the onset of a �nancial

crisis. Although we draw upon United Kingdom data for much of our calibration, our choice of

parameters is intended to be purely illustrative and does not purport to quantify systemic risk in

the United Kingdom. Our intention, instead, is to showcase how the model can usefully generate

plausible measures of systemic risk and clarify the interplay between macro-�nancial shocks,

market liquidity, and network structure within a �nancial system. Since some of the exposure

data are con�dential in nature, we describe qualitatively how we calibrate some of the key

statistics necessary for our maximum entropy procedure. These exposure statistics are, however,

reported in detail where the data are publicly available.

The network consists of 17 domestic banks, 240 overseas banks, and 50,000 �rms. Seventeen

domestic-owned banks accounted for 95% of banking assets in the United Kingdom at end-2007,

while three quarters of foreign exchange turnover during 2004 was accounted for by some 240

non-UK banks located in 20 countries according to the Bank for International Settlements (2008)

Consolidated Banking Statistics Report, which publishes aggregate statistics on cross-border

loans and explicitly excludes non-bank �nancial entities such as insurance companies and hedge

funds.8 As we discuss later, these data allows us to estimate interbank linkages and hence explore

interbank contagion across international borders. Our choice of the number of �rms is based on

the UK Department for Business, Innovation and Skills' press release on Small and Medium

Enterprise Statistics. At the beginning of 2008 they recorded approximately 33,000 �rms in the

United Kingdom with 50 employees or more. Our choice of 50,000 �rms is broadly illustrative

of this statistic. Clearly, the number of overseas banks and �rms can be much larger, so our

choice simply indicates the situation facing an economy with a highly developed and integrated

�nancial sector.

Given the paucity of data about exposures between banks internationally, and between �rms and

overseas banks, we rely on deriving distributions of exposure sizes and the number of links

between the three types of agent from a limited data set. We use quarterly time-series data on

8While the BIS report includes data from 29 countries, we focus on the 20 largest countries in terms of foreign exchange turnover against
UK banks.
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balance sheets over a four-year horizon (2004-07) to �t least biased distributions. These establish

the �nancial connections of our network. Appendix B shows how empirical constraints observed

in the data are accounted for in selecting a least biased distribution that also maximises

information content.

A novel feature of the calibration is our use of the principle of maximum entropy to estimate the

distributions of exposures between different participants. Speci�cally, we use the principle of

maximum entropy to approximate the empirical distribution of exposures. The entropy, which is

a function of the probability distribution, is a measure of the predictability of exposures. When

the entropy is large, there is greater uncertainty on our current state of knowledge and it is harder

to predict typical exposure values. In this case, the distribution of exposures is broad. On the

other hand, when the entropy is small, the distribution is sharply peaked around a small range of

exposures, thereby improving the predictability. The principle of maximum entropy postulates

that subject to known constraints (knowledge of the �rst few moments from the empirical

distribution, for example), the probability distribution that best represents our current knowledge

and that is least biased is the one with maximal entropy. Importantly, the principle does not

require the modeller to make prior assumptions on the shape of the probability distribution. We

implement our maximum entropy procedure using the algorithm provided by

Mohammad-Djafari (1991).

Our approach is distinct from the maximum entropy methods used in central bank analyses of

interbank networks (see for example Elsinger et al (2006); Upper (2011)). These studies estimate

realisations of exposure matrices whose entropy is as close as possible to a reference matrix. The

entropy here is a function of the exposure matrices themselves, which have been suitably

re-scaled to satisfy properties of probability distributions.

3.1 Structure of balance sheets

We use end-2007 published accounts data for the 17 UK banks and corresponding data for

overseas banks reported in BankScope to characterise the balance sheets used in the model. The

average total asset size for UK and overseas banks are £400 billion and £150 billion respectively.

Speci�cally, the mean for the overseas banks is calculated by aggregating equally over all banks.

By virtue of the large sample size and heterogeneity across countries, we obtain a lower mean for

the overseas banks. Furthermore, the larger mean for UK banks captures the relatively dense
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concentration of the domestic banking sector, which includes some of the largest global banks.

For UK banks, equities, loans to �rms and interbank assets (the sum of claims against both

overseas and other UK banks) made up 10%, 80% and 10% of assets respectively, on average.

The data from Bankscope suggest a similar picture for overseas banks' balance sheets, so we

adopt the same composition for these balance sheets as well.

3.2 Distribution of exposure sizes between banks

We calibrate the distribution of interbank loans between domestic (UK) banks using con�dential

quarterly data on regulatory large exposures for 17 banks between 2004-07. The empirical mean,

standard deviation and skewness for the bilateral claims between our domestic banks were

calculated and form the constraints in calculating the maximum entropy probability density

function (PDF). Chart 4 plots the maximum entropy PDF (solid line) against the data (circles) on

a Y-logarithmic scale.9 For comparison, we also plot a �tted log normal distribution (dashed

line). Both the maximum entropy and log-normal distributions �t the empirical distribution fairly

well.

To establish the distribution of loan sizes between domestic and overseas banks, we suppose that

the 240 banks originate from the 20 most �nancially advanced countries that accounted for three

quarters of foreign exchange turnover during 2004 against UK banks, and for which data are

readily available in the Bank for International Settlements (2008), Consolidated Banking

Statistics Report. We use this information to establish the sterling claims of UK banks on other

countries' banking systems and vice versa. We assume that all claims from overseas banks are

channeled uniformly through the 17 core domestic banks and the 12 banks in each foreign

country. We approximate the individual bank-to-bank claims by dividing the aggregated claims

of all domestic banks by the number of UK banks (17) and the number of overseas banks per

country (12).

Empirical means, standard deviations and skewness statistics were also calculated for claims held

by the domestic banks against overseas banks. For those held by overseas banks against domestic

banks, the mean, standard deviation and skewness were £0.28 billion, £0.67 billion, and 4.56.

Chart 4 plots the maximum entropy and �tted log-normal PDFs of loans sizes between overseas

9The PDF for the actual data was obtained by binning the bilateral exposures and normalising the weight attributed to each bin. The
circles in Chart 4 correspond to bin centres.
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Chart 4: Empirical distributions (circles) for the interbank asset sizes on a Y-logarithmic
axis, ie the probability has a logarithmic scale. We plot against the empirical distribution
both the maximum-entropy distribution (solid line) and the �tted log-normal distribution
(dashed line).
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and domestic banks. There is again reasonable agreement between the actual and �tted PDFs,

although the maximum-entropy PDF seems to capture the fat-tailed nature of the distribution

somewhat better.

The overseas banks in our system, of course, also lend to each other as well as to banks within

their own jurisdictions. Data on interbank lending within foreign banking systems is not

available, however. So we suppose that each overseas bank lends to ten of its local

counterparties10 and that lending between these banks follows the same statistics as interbank

lending within the United Kingdom.

In order to calibrate the distribution of exposure sizes between overseas banks in different

countries, we make use of cross-border claims data from the BIS. The mean, standard deviation,

and skewness of each exposure is £0.25 billion, £0.81 billion, and 6.84 respectively. The �tted

maximum entropy distribution in Chart 4 provides a reasonable description of the data, including

the fatness in the tail.

3.3 Connections between banks

In addition to exposure sizes, we also need to establish the number of links between banks to

construct the �nancial network. To obtain the maximum entropy distribution for the number of

links that a bank has against other banks, we use the results of Bianconi (2009) that for

uncorrelated networks, the maximum entropy distribution for the number of links is a Poisson

distribution. Uncorrelated networks are those where the degrees of nodes are not correlated. To

argue that our �nancial network may be modelled by an uncorrelated network we assume that

domestic banks are owned by domestic shareholders only. If, on the other hand, domestic banks

were owned by foreign shareholders, this would lead to bias in the structure of links between

domestic and overseas banks. This assumption holds for our selection of domestic banks. And

since we do not know the identities of the other overseas banks, our assumption serves as a null

hypothesis for the structure of linkages.

To construct this distribution for our �nancial system, we need the average number of links

between agents � banks or �rms � of type X against those of type Y, denoted hcXY i. This implies

10As made clear below, to utilise the `small-world' network algorithm of Watts and Strogatz (1998) the number of local counterparts for
each overseas bank must be even.
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that the probability that any link is present between two banks is pXY D hcXY i
NY , where N

Y is the

total number of banks of type Y. So the problem reduces to estimating the average number of

links between the various types of banks.

We take the domestic banking network as being completely connected. The average number of

connections for claims held by domestic banks against overseas banks is obtained by taking the

average total interbank assets of a domestic bank, subtracting the average total assets held against

other domestic banks, and dividing by the average size of an exposure between a domestic and

overseas bank. This suggests that each domestic bank is exposed to 52 overseas banks.

To establish connections between overseas banks, we assume that each overseas bank is

connected, on average, to four domestic banks. In this case, the fraction of domestic banks that

each overseas bank has loans with (4/17) is roughly equal to the fraction of overseas banks that

each domestic bank has loans against (52/240). Each overseas bank lends to ten other banks in its

own country. We model the network of all overseas banks as a `small-world' network, where

each overseas bank is linked to those in immediate proximity (banks in the same country) and

has occasional `long-range' connections to banks in other countries. The means that the number

of `immediate-neighbour' connections (between overseas banks in the same country) is 2� D 10.

We obtain the average number of `long range' connections by taking average total interbank

assets (10% of £150 billion), subtracting the average assets held against domestic banks (4�

£0.28 billion) and those held against other banks in the same country, and dividing this quantity

by the average size of an exposure between overseas banks in different countries (£0.25 billion).

This gives approximately seven `long-range' connections. De�ning the `long-range' wiring

probability as p, the average degree for each node is 2�.1C p/, implying that p D 0:7.

As Chart 5 illustrates, we arrange the nodes of overseas banks in a ring, connecting each to its

immediate (local) neighbours, and then randomly (with probability p) allowing an overseas bank

to form connections with another bank overseas that is chosen from a uniform distribution over

all overseas banks. This procedure is iterated over all overseas banks.

3.4 Distribution of loans to �rms and equity holdings

In the absence of data on individual bank lending to �rms, we use our breakdown of banks'

balance sheets to suppose that each loan and equity holding is, on average, £100 million and £10
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Chart 5: The small-world nature of cross-border �nancial interlinkages. Starting with a
regular lattice where each bank is connected to its two nearest-neighbour banks (one on
either side), we add `long-range' links at random (with probability p) between banks to get
the small-world network.

million, respectively for domestic banks and £12 million and £1.2 million for overseas banks.

The data on average balance sheet size and contributions from loans and equities allow us to infer

the connections between domestic (D) and overseas banks (I) and �rms (F). These are

hcDFi D 3200 and hc I Fi D 3200 for loans, and hdDFi D 4000 and hd I Fi D 4000 for equities.

3.5 Corporate default probabilities

Our calibration of corporate sector default probabilities is based on a study of US investment and

speculative grade �rms by Schuermann and Hanson (2004). They use credit rating data from

Standard and Poor's over the period 1981-2002 to establish Gaussian density functions for

annual default probabilities in each grade. We base our default probabilities upon these

parameterised density functions. Speci�cally, we treat the default probability in investment (A)

grade category as having a mean and standard deviation of hPD IGi D 8:65� 10�5 and

� IG D 2� 10�5, respectively. The non-investment grade (BB) category has a mean and standard

deviation of hPDN IGi D 6:3� 10�3 and � N IG D 6:1� 10�4; respectively. The proportion of

�rms that are investment grade (speculative grade) within the system is 0.7 (0.3). We take the

�rm LGD to be 35%.

The probabilities of default for all �rms are also in�uenced by an common economy-wide shock
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�G . The larger �G , indicating a worsening of the macroeconomic outlook, the higher are the

probabilities of default for all �rms, irrespective of their rating grade. We do not calibrate �G ,

instead we use it as a variable in order to explore how large a macroeconomic shock needs to be

in order to `tip' the �nancial system into a systemic crisis.

3.6 Additional parameters

Our model also makes use of some additional parameters that are critical in determining the

extent of feedback effects following a shock to the �nancial network.11 Speci�cally,

� Ratio of capital to assets (leverage ratio), � : we initially set banks' (unweighted) capital

buffers to be a uniform � D 4% of total assets, a �gure drawn from the 2005 published

accounts of a range of large overseas banks. In Section 4.4, we relax the assumption of

uniform capital buffers allowing them to vary in the range 4%� 24%.

� Trigger rule for �re sales, � : once a bank's losses from the combined effects of corporate

defaults, mark to market losses on its equities, and interbank losses amount to 50% of its initial

capital buffer, the bank will decide to put its own tradable assets � equity � up for sale. This

trigger level of 50% amounts to setting the parameter � D 0:5.

� Liquidity discount parameter, � : we set � D 0:7 to re�ect the fact that once 10 % of equity is

put up for sale, the equity price q.t/ will fall by 7%. Our parameterisation of the price impact

of a �re sale is, to a large extent, arbitrary since evidence on the price impact of �re sales is

scarce. Mitchell, Pedersen and Pulvino (2007) analyse �re sales of US convertible bonds by

hedge funds in 2005, and suggest that price discounts were around 3% when some 5% of the

market was sold. This would correspond to a value of � D 0:57 in our model. Given this

estimate is based upon a period of relatively low stress in the �nancial system, we adopt a

value for � consistent with a more signi�cant price impact.

� Macroeconomic feedback parameter,  : since the literature has not yet settled on an estimate

of the macroeconomic feedback, we (somewhat arbitrarily) set  D 6:25� 10�5 as a working

hypothesis12. This implies, fairly plausibly, that if a bank reduces the volume of credit it issues

to �rms by 20% this will increase the probability of default equally for all �rms that have

pre-existing loans against the bank, irrespective of whether the bank is domestic or overseas.

11A complete mathematical account for how these various parameters in�uence a bank's state is provided in Appendix A.
12Our results are robust to changes in the macroeconomic feedback and liquidity discount parameters. For example, setting
� D 0:7� 0:1 and  D .6:25� 2:00/ � 10�5 does not change our qualitative �ndings.
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Speci�cally, we set  D 0:2=
�
hcDF iChcI F i

2

�
. Thus, if all banks have more loans, on average, the

impact of one bank tightening its credit conditions is mapped into a smaller rise in the

probability of default of �rms. The trigger rule for a bank to tighten lending conditions is

identical to that for �re sales and is governed by the ratio � of losses to the capital buffer.

4 Credit events, aggregate losses, and feedback effects

We now present a plausible aggregate loss distribution for the calibrated �nancial system and

evaluate its response to adverse credit shocks. Standard models of systemic risk do not consider

the complexity implied by cross-border �nancial linkages and are typically limited in their

characterisation of the feedback effects from asset �re sales and tightening credit conditions in

the macroeconomy. The extent to which these factors combine to generate fat tails in the

aggregate loss distribution is important to the assessment of �nancial system resilience. Our stark

feedback assumptions are made for tractability and to highlight our �ndings, but can be readily

relaxed without affecting the spirit of the results. Given both this and the broad-brushed nature of

the more general calibration, the results presented below should be taken as purely illustrative

rather than as a precise measure of systemic risk in the �nancial system.

4.1 The baseline aggregate loss distribution

We perform a series of stochastic simulations to obtain an aggregate loss distribution under a set

of baseline assumptions that asset �re sales have no price impact (� D 0), there are no

macroeconomic feedback effects ( D 0/, nor an aggregate macroeconomic shock to �rms

(�G D 0/. For each simulation, we generate balance sheets where exposures are drawn from the

connectivity and asset size distributions described in Section 3. Next, through a series of

Bernoulli trials, we set some of the �rms to default. These defaults are registered on banks'

balance sheets, possibly prompting defaults, �re sales or credit crunch feedbacks. Once the shock

has run its course through the network and asset prices have adjusted, we measure the fraction of

failed banks and the balance sheets of all banks in the system. We perform 1,000 such

simulations and create a distribution for �nancial system assets lost.

The inset of Chart 6 presents the normalised histogram for the number of defaulting �rms from

the initial credit shock. The number of failures from subjecting �rms to a shock is characterised
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Chart 6: Distribution of losses relative to system assets for the entire banking network (red)
and the domestic banking network (blue) for the baseline scenario. In the insert we show the
corresponding normalised histogram for the number of defaulted �rms.
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by a Bernoulli distribution function (see description in Appendix A). The typical defaulting �rm

is small in relation to the overall �nancial system � the average size of a defaulting �rm is

0:003% of total system assets. In the baseline, 150 �rms default on average in each simulation.

Chart 6 presents the aggregate loss distribution for the �nancial system, as a fraction of total

banking system assets, for the domestic bank network and the overall �nancial system. The

idiosyncratic defaults on the scale described above have very little impact on system resilience �

there are no bank defaults. Average system losses as a result of the idiosyncratic shocks are some

0.17% of the domestic banking system and 0.16% of the overall system. In other words, both

domestic and overseas banks are similarly affected following idiosyncratic corporate failures.

4.2 Macroeconomic shocks

Aggregate macroeconomic shocks to the �nancial system have an adverse effect on �rms and

enter the model via the parameter, �G , increases in which drive higher levels of �rm default.

We begin by attempting to identify the scale of �rm default, absent any feedback effects from �re
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Chart 7: The average fraction of failed banks as a function of the aggregate macroeconomic
shock, �G . The initial instance of total system breakdown is indicated by the downward-
facing triangle. The dashed line represents the case with  D 6:25 � 10�5 and � D 0. The
upward-facing triangle indicates the corresponding �rst instance of total breakdown.
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sales or a credit crunch, that triggers the �rst instances of complete �nancial system failures (ie

the failure of all domestic and overseas banks). The results reported for each �G are compiled

from performing 500 draws of the shock and letting them run their course through the system.

The initial instance of system-wide failure occurs at �cG D 0:078: This point is depicted in Chart

7 by a downward-facing triangle, and is associated with the default of 2,700 �rms on average.

For �G < �cG , we only observe cases where at most one overseas bank fails. At �cG , by contrast,

we observe that there are no bank failures 99.5% of the time, one bank failing 0.1% of the time,

and in the remainder 0.4% of cases the entire system fails. In these instances of complete

network failure, the initial macroeconomic shock reduces the capital buffer for banks holding

loans and equity against the defaulting �rms, triggering the direct failure of a few banks.

Interbank linkages then lead to direct contagion, as the similarity among banks in their ability to

absorb shocks leads to a starkly bi-polar result in which all banks fail once widespread contagion

has broken out. At the critical value �cG , the loss distribution becomes bimodal for the �rst time.

Chart 7 also shows the average fraction of failed banks (solid line with squares) as a function of

�G : Due to the assumed homogeneity in banks' ability to withstand shocks, each square

represents the probability the �nancial system will collapse for a given level of macroeconomic

shock. As �G approaches 0:09, the probability of system failure accelerates towards unity. There

is an in�ection point associated with �G � 0:085: Here, the probability mass is equally
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Chart 8: Loss distributions for the stressed aggregate macroeconomic shock scenario where
� D 0:078.
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distributed between the two modes of the aggregate loss distribution, representing the `phase

transition' or `tipping point' of the �nancial system. For macroeconomic shocks above this level,

the �nancial system will always collapse.

Chart 8 plots the aggregate loss distribution for the entire banking system for the stressed

scenario where �G D 0:078. As can be seen, the losses under the adverse scenario are an order of

magnitude greater than those in the baseline and the distribution is bimodal. The probability

mass is concentrated around: (a) small losses of around 3% of system assets; and (b) a few

extreme instances where around 11% of system assets are lost. In these extreme cases, the entire

�nancial system collapses.

4.3 Feedback effects

We now investigate the effects of asset �re sales and the withdrawal of bank lending to �rms on

the aggregate loss distribution. When banks are in distress and losses mount in excess of a trigger

threshold, �; of their capital buffer, they sell their holdings of equities and simultaneously tighten

their lending to �rms. The withdrawal of credit from remaining �rms increases their probability

of default. As further credit losses mount, the feedback effects of reduced bank lending amplify
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Chart 9: The average fraction of failed banks as a function of �G . The black line represents
the case where � D 0:7 and  D 0. The downward-facing triangle indicates the �rst instance
of total system breakdown. The dashed blue line is for � D 0:7 and  D 6:25 � 10�5. The
upward-facing triangle indicates the �rst instance of total breakdown for these parameters.

0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µG

Fr
ac

tio
n 

of
 fa

ile
d 

ba
nk

s

the losses to banks and, together with the mark-to-market effects of �re sales, contribute to

further �nancial instability.

We initially focus on the pure macroeconomic feedback effect of a credit crunch and abstract

away from the possibility of any distress �re sales. So that � D 0 and  D 6:25� 10�5. In this

case we �nd no shift in the tipping point �cG D 0:078. However, as Chart 7 indicates, the average

fraction of failed banks is higher, as indicated by an upward shift of the curve in Chart 7. In the

case of a pure �re-sale effect, ie  D 0 and � D 0:7, Chart 9 shows the minimum critical

quantum of credit risk necessary to instigate system collapse is brought forward sharply to

�cG D 0:037: The average fraction of failed banks again shows the probability of system-wide

failure.

Allowing for the possibility that banks both tighten credit conditions and engage in �re sales

when in distress, further brings forward the �rst instance of system failure. Our calibration

suggests that �cG D 0:031 in this case and, as Chart 9 shows, the probability of system failure is

greater for all values of �G . The intuition is straightforward. In the �rst round, the tightening of

credit by banks pushes further �rms into bankruptcy, amplifying the extent of credit losses

among banks. The ensuing distress of some banks leads to further �re sales and a second round

of credit tightening that further raises the probability of �rm default. The cycle only terminates
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once the entire banking system fails.13

Under this calibration of our model, macroeconomic feedbacks are less substantial than �re

sales. But both are dif�cult to calibrate meaningfully. While our �re-sale calibration is based on

Mitchell et al (2007), research on the appropriate calibration of macroeconomic feedbacks is

limited. While it may well be that this feedback is more substantial than we assume, the

combined effects of both the �re-sale and macroeconomic feedbacks appear plausible. A

thorough calibration of these mechanisms is beyond the scope of this paper and is an avenue for

future analysis.

4.4 A more realistic setting - heterogeneity of capital buffers

Our depiction of �nancial fragility has been extremely stark � a change in the size of a credit

shock around a critical value determines whether the entire network collapses or not. More

realistically, one might expect situations in which intermediate outcomes obtain, in which only

some banks fail but the rest of the system continues to function.

We therefore relax the assumption that all banks have the same capital buffer, and allow it to vary

from institution to institution. The capital-asset ratio, � , is now drawn from a uniform

distribution with support [0:04; 0:24], more representative of the variation in buffers seen in

practice in some countries.

Chart 10 depicts a much richer set of results. We note, for example, that for �G D 0:0375, on

average 2.8% of banks default. The banks that fail are both foreign and domestic. In particular

instances of the simulations, 219 banks collapsed (85% of the the total system), while the few

remaining, by virtue of higher capital buffers did not. As �G increases to 0.0475 a similar

conclusion is drawn. On average 91% (or 234) of banks in the system collapse. Once again, a

few banks are found to be suf�ciently well capitalised to survive the shock and feedback effects.

The highest default rates between 1920 and 2006 were, 1.7% for investment grade � ratings class

A � �rms and 11.1% for speculative grade � ratings class Ba � �rms (Moody's (2007)). These

higher default rates were witnessed, in particular, during the Great Depression, which was a

13Our results are robust to changes in the macroeconomic feedback and liquidity discount parameters. For example, setting
� D 0:7� 0:1 and  D .6:25� 2:00/� 10�5 does not change our qualitative �ndings.
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Chart 10: The average fraction of failed banks as a function of �G , where � D 0:7,  D
6:25� 10�5 and � is random and uniformly distributed in the interval [0:4; 0:24].
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period of widespread bank failures. In our model, these �gures correspond to a probability of

default for the average of 4.5%, which is generated by taking �G D 0:045. With liquidity and

macro-feedback effects switched on and allowing banks to have heterogenous levels of capital in

our model, we �nd that with �G D 0:045 a signi�cant fraction (89%) of the entire �nancial

system collapses, on average.

5 `Stress testing'

In the wake of the global �nancial crisis, policymakers have subjected banking systems to `stress

tests'. While we cannot hope to do full justice to such exercises, out model is well versed to

provide a caricature of tests that include both macroeconomic feedback and asset �re sales.

Moreover, our use of a random graph structure sidesteps the challenge faced by regulators of

assessing the true scale of network connections due to complex �nancial products.

Speci�cally, we may ask how well domestic banks absorb �rm exposure loss rates of around

4.5% (�G D 0:044) and a 35% haircut of equity exposures stemming from a 20% equity price fall

(� D 0:37). Under this scenario we �nd that there are no bank failures in 67% of the simulated

instances. However, in the remaining 33% of cases we have, on average, 200 (78%) overseas and
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domestic banks failing. This implies that an overall average of 25% of banks fail. In the instances

where no banks default, the losses solely due to �rm defaults amount to 1.8% of total system

assets. However, in the remainder of instances, we have, on average, 19% of all assets being lost.

The high average percentage of bank failures may be due to the dif�culties of calibrating

macroeconomic and �re-sale feedback loops. These elements exacerbate shocks to the banking

system, as discussed in Sections 4.2 and 4.3, thereby heightening the fragility of the �nancial

system. Secondly, we take a 100% LGD on interbank exposures. This assumption is stark and

intended to be purely illustrative. Actual LGDs are likely to be low.14 Taking, as we do, a loss

rate of 100% ampli�es losses due to bank defaults, which further contributes to the degradation

of systemic stability. A �nal exacerbating factor is that �rm and banking sector losses are

incurred instantaneously in our model, while in real �nancial systems these would crystalise over

a period of time, giving banks time to offset their losses with earnings.

6 Conclusion

Modern �nancial systems are characterised by complex interlinkages and a diverse set of agents.

Our paper develops a general framework to gauge system stability in the presence of such

linkages and heterogeneity. Calibrating the model using data based on advanced country banking

sectors that are largely public, we illustrate how macroeconomic �uctuations, asset market

liquidity, and network structure interact to determine aggregate credit losses and contagion.

Although our calibration is broad-brush in nature to emphasise the qualitative aspects of the

model, the results show how system stability might begin to be quanti�ed in a statistical fashion,

particularly when data about the reach of modern �nancial instruments are limited and shocks are

international in nature.

A thorough understanding of both the qualitative and quantitative features of aggregate loss

distributions in the banking system is important for policymakers concerned with systemic risk.

Our �ndings indicate that macroeconomic shocks and asset price feedback effects intertwine to

generate fat tails in these distributions and show how large-scale �nancial disruption may be

possible. We also show how the heterogeneity of bank balance sheets gives rise to more realistic

situations in which some banks fail, but the overall system remains resilient. Higher capital

14For instance, published results on loss rates (eg James (1991)), report a loss rate of 40% for banks. Relatedly, Altman and Kishore
(1996) estimate the recovery rates (100-LGD %) on defaulting bonds of �nancial institutions between 1978-95 to be about 36%, on
average. However, recovery rates vary by type of institution: mortgage banks 68%, �nance companies, 46% and commercial banks, 29%.
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promotes stability in our model. However, as we abstract away from the cost of capital, our

model cannot comment on the welfare implications of such a policy. Nevertheless some recent

proposals on appropriate capital levels for globally systemically important banks (eg Basel

Committee on Banking Supervision (2011)) are broadly in line with our �ndings.

The model clearly illustrates how complex �nancial systems are vulnerable to system-wide

breakdown of the type observed during the recent global �nancial crisis. It can also be used to

inform stress-testing exercises. Drawing on the types of scenarios and shocks typically used to

gauge �nancial sector resilience, we �nd the model generates outcomes that are broadly

plausible. In particular, the default rates in the corporate sector necessary to trigger a systemic

�nancial event in the model are comparable to those witnessed during the Great Depression.

Our model imposes several simplifying restrictions on connectivity; principally that they are

static and do not evolve over time. Relaxing these restrictions and altering the topology of the

network may affect risk-sharing and change the degree to which shocks are dispersed safely

across the �nancial system. A thorough evaluation of changing the network linkages between

and among different types of agent is a task we leave for future research. An even greater

challenge is to incorporate optimising behavioural responses into this type of network model,

while retaining the complexities in its structure.
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A A statistical model of the �nancial system

Financial relationships between different types of agent

The �nancial system consists of N agents who belong to one of three types: (1) N D domestic

banks, (2) N I overseas banks and (3) N F �rms15, where N D N D C N I C N F .

Each agent is represented by a node on a directed graph and linked to each other through their

assets, liabilities, and equity holdings. Speci�cally, for an agent i , an incoming link from agent j

represents an asset - either loans or equities - on i's balance sheet. Let the value of loans and

equities from agent i to j be Ai j ; Qi j 2 RC, respectively. Outgoing links respresent an agent's

liabilities with value L i j 2 RC.

Connections between agents of different types are formed randomly. The variables

ci j ; di j 2 f0; 1g denote whether agent i holds a loan or equity assets against agent j . This, we

write

Ai j D ci j Si j (A-1)

and

Qi j D di jTi j (A-2)

where Si j ; Ti j 2 RC are random variables that describe the extent of the exposure.

The statistics of our random variables are governed by the type of the lending and borrowing

agents; ie whether one or the other is a domestic or overseas bank or a �rm. We de�ne �DI .Si j/

as the probability density function (PDF) of loans from domestic bank, labelled i , to the overseas

bank, labelled j . Similarly, we can de�ne the PDF � I F.Ti j/ of equity holdings between the

15We furthermore denote by @D , @I and @F the set of domestic banks, overseas banks and �rms, respectively.
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overseas bank i and �rm j . Considering all possible combinations of agent types, and hence

lending arrangements, the statistics for sizes of loan and equity holdings is governed by 18

different probability distributions.

For the connnectivity coef�cients ci j and di j as well we can apply a similar procedure to de�nee�DI .ci j/ as the probability mass function (PMF) for the presence (or absence) of a loan from
domestic bank i to overseas bank j . Similarly,e� I F.di j/ de�nes the PMF determining the
probability with which overseas bank i holds equity of �rm j in our �nancial system. The

�nancial relationships between different types of agent can now be given a convenient matrix

form. Their interactions are summarised by the matrix

F D

26664
ADD ADI ADF

AI D AI I AI F

AFD AF I AFF

QDD QDI QDF

QI D QI I QI F

QFD QF I QFF

37775 (A-3)

where AXY and QXY are matrices of exposures from type X agents to other type Y agents, whose

elements are ci j Si j and di jTi j , respectively, with i 2 @X and j 2 @Y .

The form used for our exposure PDFs and connectively PMFs are spelt out in the calibration

section.

Financial relationships between agents of the same type

We here assume that all core domestic banks hold assets against every other domestic bank.

Hence in matrix ADD we have that ci j D 1. This forms a complete network of the core banks

through their lending relationships. Firms do not hold assets or equity against each other or

against domestic and overseas banks. Moreover, banks only hold equity of �rms. Hence the

matrices AFD, AF I , AFF , QDD, QDI , QI D, QI I , QFD, QF I and QFF are all equal to zero.

Interactions between overseas banks take place on a small-world network. Such networks are

characterised by: (i) their clustering coef�cient, which re�ects the clique-like relationship

between a node and its nearest neighbours; (ii) long-range links between `distant' nodes which

result in a short average path length (ie a short average number of links between any two nodes).
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The connectivity coef�cients between overseas banks, ie ci j , with i; j 2 @I , are constructed using

the algorithm proposed by Watts and Strogatz (1998). Pictorially, we arrange the nodes of

overseas banks in a ring and connect each node to its 2� nearest neighbours. Next, starting with

the �rst bank, we add with probability p a `long-range' link to another bank outside its

nearest-neighbourhood. We perform this random draw and `long-range' link addition with

probability p a total of 2� times for the �rst bank. This procedure is iterated over all overseas

banks. The total number of `long-range' links is N I2� p.

Taken together, our assumptions on connectivity lead to a restricted matrix and imply that our

�nancial system can be represented as

F 0 D

24 ADD ADI ADF QDF

AI D AI I AI F QI F

35 (A-4)

Bank balance sheets

We now describe the bank balance sheets depicted in Chart 2 formally. The total assets of bank i ,

which may be either domestic or overseas, is

Ai D
X
j2@Di

Si j C
X
j2@Ii

Si j C
X
j2@Fi

Si j C
X
j2=Fi

Ti j C Bi (A-5)

where

@Xi D
�
j 2 @Xni jci j D 1

	
(A-6)

and

=Fi D
�
j 2 @Fni jdi j D 1

	
(A-7)

and Bi denotes the level of government bonds. The set @Xi denotes the set of institutions j (type
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X ) against whom bank i holds an asset. Similarly, =Xi denotes the set of �rms j whose shares

bank i owns. The total liabilities are

L i D
X
j2e@Di

S j i C
X
j2e@Ii

S j i C Ki C Di (A-8)

where Di denotes external liabilities such as customer deposits and the initial capital buffer

Ki D � Ai is a �xed fraction � 2 .0; 1/ of assets on the balance sheet. As before,e@Xi D �
j 2 @Xni jc j i D 1

	
denotes the set of banks j (type X ) to whom bank i has a liability.

If the initial assets of each bank drawn from the asset distribution exceeds initial liabilities, the

liability-side of the balance sheet is `topped' up by customer deposits to ensure that total assets

are equal to total liabilities. Conversely, if liabilities exceed assets, the difference is accounted for

on the asset side by holdings of government bonds.

Crisis dynamics

In our simulations, a bank will default if its total losses are greater than its capital buffer. We

consider a two-state model; ie during each instance of the internal simulation time t 2 N, bank i

is either solvent (vi.t/ D 0) or it has defaulted (vi.t/ D 1). De�ning the total losses incurred by

bank i as Li;tot.t/ � 0, we obtain the following update rule:

vi.t C 1/ D 2
�
Li;tot.t/� Ki

�
(A-9)

where 2.�/ is the Heaviside function. In what follows, we specify the various components that

contribute to bank losses.

A crisis is instigated by shocks to �rms. We model �rm default using a Bernoulli model, of the

sort widely used in the credit risk literature (Gordy (2000)) and in the risk management industry.

Similar to that of banks, we de�ne the state of �rm ` as being solvent (�`.t/ D 0) or defaulted on

its loans to banks (�`.t/ D 1). Furthermore, �rms are classi�ed according to their

creditworthiness, which is quanti�ed by a probability of default PD`.t/ 2 .0; 1/, for �rm ` at
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time t . All �rms fall into one of two categories: (i) investment-grade (IG); or (ii)

non-investment/specultative grade (NIG). The probability of default PD�` .t/ for �rm ` (of grade

�) at time t is given by

PD�` .t/ D R`.�/C �G C  

0@X
i2W D

i

�i.t/C
X
i2W I

`

�i.t/

1A (A-10)

where R`.�/ 2 .0; 1/ is drawn from the distribution of ��.PD/ for �rms in grade �. The second

term �G re�ects an aggregate economy-wide shock to all �rms. The �nal term in the equation

above re�ects the macro-feedback loop. The indicator variable �i.t/ denotes whether bank i's

intent to perform a �re sale (�i.t/ D 1) or abstain (�i.t/ D 0) from such drastic action. If bank i

is forced to perform a �re sale, the action is accompanied by the bank cutting back in its lending

to �rms. This act leaves �rms more vulnerable to default, thereby resulting in an increase of their

PD by an amount  . Thus for each bank (domestic and overseas) performing a �re sale, against

whom �rm ` has borrowed (denoted by the set W X
` D

�
i 2 @X jci` D 1

	
, there will be a  

increase to the �rm PD.

Firms default according to a series of Bernoulli trials, ie starting with all �rms being solvent, at

speci�c time t�, each �rm ` will default independently of others with probability PD�` .t�/. These

times t� occur each time the PDs of �rms are incremented by factors of  due to the cutting back

of lending by the banks.

Default severs the connections (loans and shares) between banks and �rms. We take the �rm loan

recovery rate to be � and assume that share prices of the defaulted �rms drop to zero.16 Thus,

losses from �rms for bank i are

L j;c.t/ D
X
k2@Dj

S jk�k.t/C
X
k2@Ij

S jk�k.t/ (A-11)

Contagion may also spread indirectly as a result of mark-to-market losses on balance sheets

brought on by �re sales of assets by banks in distress. As any individual bank incurs losses, it is

16The stylised zero recovery rate assumption simpli�es the mathematical structure of the model. And, though we adopt it in our
simulations, the framework allows for this assumption to be relaxed in a straightforward manner.
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likely to take defensive actions to protect itself from failure. One option, exercised by some

institutions since the advent of the current �nancial crisis, is for the bank to sell assets.

Therefore, we allow banks to sell equities when they are in distress (we suppose that debt is

completely illiquid and therefore cannot be sold). Speci�cally, banks engage in �re sales of

equities once losses mount above a certian fraction � 2 .0; 1/ of their capital, ie

� j.t/ D 2
�
L j;c.t/C L j; f .t/� �K j

�
(A-12)

Let Q.t/ � 0 be the equity held by banks participating in a �re sale at time t , ie

Q.t/ D
X
i2@D

�i.t/

 X
`2=F

Ti`

!
C
X
i2@I

�i.t/

 X
`2=F

Ti`

!
(A-13)

and Q > 0 be the total equity held by all banks. The dynamics of the equity price, q.t/ � 0, are

determined by a form of `cash in the market' pricing (Allen and Gale (2005); Cifuentes et al

(2005)), where the price is reducing in the ratio of the equities for sale to the quantity of equities

not being sold, a proxy for non-distressed potential buyers. We therefore write

q.t C 1/ D q.t/
�
1� �

Q.t/
Q � Q.t/

�
(A-14)

where � 2 RC is a parameter that measures the price impact of a �re sale.17 If the market is

extremely liquid, � D 0 and there is no price impact from asset sales, whereas � > 0 implies that

equity prices fall sharply for a given amount of distressed assets on the market.

When the equity price falls, banks incur mark-to-market losses on their equity holdings. Bank j's

total losses at time t are thus given by

L j;tot.t/ D L j;c.t/C L j; f C
X
k2=F

T jk .q.0/� q.t//
�
1� �k.t/

�
(A-15)

17While the prescribed form of equity price captures an acceleration in price fall as more equity is dumped onto the market, we must
explicitly demand that negative prices are not allowed. This may be achieved by multiplying the right-hand side of equation (A-14) by
2.q.t//.
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where the last term refers to losses incurred due to a fall in equity prices of �rms that did not

default from the initial shock.

When one bank has defaulted, related counterparty and mark-to-market losses may cause other

banks to default. This process continues iteratively, with continually updating counterparty and

mark-to-market losses, until no further banks are pushed into default.18

18Eisenberg and Noe (2001) demonstrate that, following an initial default in such a system, a unique vector which clears the obligations
of all parties exists.
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B Principle of maximum entropy

Let us de�ne P.X/ to be the probability distribution for the random variable X 2 N. We shall for

the moment concentrate on the case of discrete random varaibles but the theory may be readily

generalised to the case of continuous random variables.

Suppose we can observe and empirically measure the �rst M raw moments of the distribution,

which we write as

�n D
X
x�0
xnP.X D x/, n D 0; 1; :::;M (B-1)

The n D 0 case simply re�ects that the probability distribution must be normalised, ie �0 D 1.

Our goal is to �nd the least biased form for P.x/ that satis�es the constraints given by equation

(B-1). The principle of maximum entropy states that the distribution we seek is the one that

maximises the information entropy. We can solve for this distribution from the Lagrange function

S[P] D �
X
x�0
P.x/ log P.x/C

MX
nD0

�n

"X
x�0
xnP.X D x/

#
(B-2)

where �n 2 R indicate the Langrange multipliers that we must solve for. The �rst term in

equation (B-2) gives us the information entropy. Our maximal entropy distribution is given by

solving @S[P]=@P.x/ D 0, which yields

P.x/ D exp
�
�
�
�0 C �1x C �2x2 C � � � C �MxM

��
(B-3)

where

�0 D log Z
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D log
X
x�0
exp

�
�
�
�0 C �1 hxi C �2



x2
�
C � � � C �M



xM
���

(B-4)

enforces the normalisation of the probability distribution and the Langrage mutlipliers are given

as the solutions to the set of M C 1 equations

�n D

Z
dx xn exp

 
�

MX
mD0

�mxm

!
, n D 0; 1; :::;M (B-5)

Closed form analytical expressions for the distributions are available only when M � 2. For

M D 0, we only specify that the probability distribution must be normalised. This corresponds to

Laplace's principle of indifference, which dictates that if we have no prior information to

distinguish between different states of a system we must associate equal probability to each state.

For M D 1, we impose that the distribution must be normalised and specify its mean. If the mean

is positive then we get an exponential distribution. Finally, when M D 2 and the support for the

random variable is the entire real axis, we obtain the Normal distribution function. For higher

values of M there is no closed form analytical expression and we must rely on numerical

methods to solve for the distribution. In particular, we follow the method proposed by

Mohammad-Djafari (1991) for the estimation.
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