
Working Paper No. 455
Estimating probability distributions 
of future asset prices:  empirical
transformations from option-implied 
risk-neutral to real-world density functions
Rupert de Vincent-Humphreys and Joseph Noss 

June 2012

Working papers describe research in progress by the author(s) and are published to elicit comments and to further debate.  
Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state
Bank of England policy.  This paper should therefore not be reported as representing the views of the Bank of England or members
of the Monetary Policy Committee or Financial Policy Committee. 



Working Paper No. 455
Estimating probability distributions of future 
asset prices:  empirical transformations from
option-implied risk-neutral to real-world 
density functions
Rupert de Vincent-Humphreys(1) and Joseph Noss(2)

Abstract

The prices of derivatives contracts can be used to estimate ‘risk-neutral’ probability density functions

that give an indication of the weight investors place on different future prices of their underlying assets,

were they risk-neutral.  In the likely case that investors are risk-averse, this leads to differences between

the risk-neutral probability density and the actual distribution of prices.  But if this difference displays a

systematic pattern over time, it may be exploited to transform the risk-neutral density into a ‘real-world’

density that better reflect agents’ actual expectations.  This work offers a methodology for performing

this transformation.  The resulting real-world densities may better represent market participants’ views

of future prices, and so offer an enhanced means of quantifying the uncertainty around financial

variables.  Comparison with their risk-neutral equivalents may also reveal new and useful information 

as to how attitudes towards risk are affecting pricing.

Key words: Asset prices, derivatives, expectations, options, option-implied density, risk premia,

probability density forecasting, probability measure.

JEL classification: G10, G12, G13.

(1)  Bank of England.  Email:  rupert.devincent-humphreys@bankofengland.co.uk

(2)  Bank of England.  Email:  joseph.noss@bankofengland.co.uk

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.  We are grateful

to Jens Larsen, Stephen Taylor, Olaf Weeken, Peter Westaway, Robert Woods and Chris Yeates for useful comments.  

This paper was finalised on 2 May 2012.

The Bank of England’s working paper series is externally refereed.

Information on the Bank’s working paper series can be found at

www.bankofengland.co.uk/publications/Pages/workingpapers/default.aspx

Publications Group, Bank of England, Threadneedle Street, London, EC2R 8AH 

Telephone +44 (0)20 7601 4030  Fax +44 (0)20 7601 3298  email mapublications@bankofengland.co.uk

© Bank of England 2012

ISSN 1749-9135 (on-line)



 

 Working Paper No. 455 June 2012 2 

 

Contents 

 

Summary ......................................................................................................................................... 3 

1 Introduction ............................................................................................................................. 5 

1.1 Assessing systematic differences between distributions .................................................. 6 

1.2 Removing systematic differences between distributions .................................................. 9 

2 Methodological overview ...................................................................................................... 11 

2.1 General framework ......................................................................................................... 11 

2.2 The beta distribution as a calibration function ............................................................... 12 

2.3 Risk-neutral density estimation ...................................................................................... 14 

2.4 The data .......................................................................................................................... 16 

2.5 Parameter estimation ...................................................................................................... 19 

3 Results ................................................................................................................................... 19 

3.1 The estimated calibration functions ................................................................................ 20 

3.2 The estimated real-world densities ................................................................................. 21 

3.3 A measure of the risk premium ...................................................................................... 24 

4 Robustness checking ............................................................................................................. 25 

4.1 A comparison to a mean-shift calibration ....................................................................... 26 

4.2 Evolution of estimated beta parameters .......................................................................... 28 

5 Conclusion ............................................................................................................................. 32 

Appendix 1: The beta PDF and the transformations it affords ..................................................... 34 

References ..................................................................................................................................... 37 

 



 

 Working Paper No. 455 June 2012 3 

Summary 

 

There is a strong tradition of central banks and other policymakers extracting information from 

the prices of financial securities. Derivatives contracts can provide information on the expected 

future path of their underlying asset’s price that goes beyond its central expectation. They 

therefore offer an insight into the level of uncertainty surrounding future cash flows. The Bank 

of England regularly estimates probability density functions (PDFs) from options prices in order 

to obtain an indication of the weight investors place on different future prices. 

 

However, such option-implied PDFs may not provide a true indication of the actual probabilities 

investors ascribe to certain outcomes. This is because such PDFs give an indication only of the 

probabilities investors would have in mind if they were ‘risk-neutral’, and did not consider the 

uncertainty around an asset’s future pay-offs in assessing its value. In the likely case that 

investors are averse to this risk, this would lead to differences between the risk-neutral densities 

backed out of options prices, and the true ‘real-world’ probability densities considered by 

investors. 

 

The resulting estimated ‘real-world’ PDFs offer a number of advantages over their risk-neutral 

counterparts. First, they afford an insight into market participants’ actual views on future asset 

prices, and offer an improved quantification of the uncertainty around financial variables. 

Second, a comparison of the risk-neutral and estimated real-world PDFs reveals new information 

as to how investors’ risk preferences are affecting derivatives prices. Finally, estimated real-

world probability densities are directly comparable with other forecasts considered by 

policymakers that are not based on derivatives prices, for example those of GDP growth and 

inflation. 

 

The approach examined here is empirical in that it compares the risk-neutral distribution 

generated directly from options prices to the actual distribution of prices as they are later 

observed. To the extent that the two show a systematic disparity over time, this may be exploited 

to adjust the risk-neutral densities over as yet unobserved future prices to estimate the agents’ 

real-world expectations.   

 

This work offers a robust means of transforming risk-neutral densities obtained from options 

contracts on the FTSE 100 and short sterling. The resulting real-world probability densities offer 

a superior average fit across the distribution of observed prices than their risk-neutral 
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counterparts. The resulting parameters appear stable over time, at least until the end of our data 

sample in June 2007. To the extent that this remained the case when the methodology was 

applied to prices since, it could form the basis of an operational method to better predict their 

future prices and enhance conjunctural analysis. It could also form the basis of more advanced 

work that aimed to condition this transformation on some other (macroeconomic) observable 

variable which may increase the method’s predictive power. 
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1 Introduction 

 

Uncertainty pervades the economy and monetary policy making must take account of that.  

Financial asset prices may reveal useful information about likely future states of the economy,  

of which central banks have long made use. In particular, the probability density functions 

(PDFs) derived from options prices are a key tool for quantifying the amount and directional bias 

of uncertainty around future asset prices, and hence to the economic outlook.1

 

  

The Bank of England regularly estimates PDFs from option prices for a wide range of assets.  

However, option-implied PDFs may be a biased indicator of the actual probabilistic view held by 

market participants.  This is because such PDFs correspond to the probabilities that an investor 

would have if they were risk-neutral, but the agents that price the options might in fact be risk-

averse.  If that were the case, risk premia would lead to differences in the location and shape of 

risk-neutral densities (RNDs) and real-world densities (RWDs). 

 

Estimates of RWDs could enhance our analysis in two respects.  First, such PDFs would better 

represent market participants’ actual views on future asset prices, and for quantifying uncertainty 

around key financial variables.  Second, and perhaps more importantly, a comparison of the risk-

neutral and real-world PDFs could reveal new and useful information about how attitudes 

towards risk are affecting pricing.  For instance, a term structure of the equity risk premium 

could be derived, on a daily basis, from equity index PDFs for different horizons.  

 

Estimated RWDs may also provide a measure of risk that is directly comparable to that 

contained in the Monetary Policy Committee’s GDP growth and inflation forecasts, making it a 

more relevant tool for quantifying uncertainty around key financial variables.  Information on the 

evolution of agents’ risk preferences could add insight to our understanding of their likely 

behaviour.   

 

This work offers a means of estimating RWDs that can be applied to options of different 

underlying assets, and of different maturities, on a daily basis.  Previous Bank of England 

research has examined methodologies based on utility-function transformations of the RNDs 

                                                 
1 Breeden and Litzenberger (1978) observed that the risk-neutral probability density of an asset’s future price is  
proportional to the second derivative of the price of options written upon it with respect to their strike prices. This 
has now become a standard technique adopted by central banks for extracting information on the future course of 
asset prices from options contracts. See Clews et al (2000) for the implementation used by the Bank of England. 
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(Bliss and Panigirtzoglou (2004)) and estimating the RWD directly with a threshold-GARCH 

simulation of the underlying price process (Gai and Vause (2005)). 

 

This study takes an empirical, density-forecasting approach to estimating the RWDs.  Probability 

densities that reflect rational agents’ real-world expectations should, on average, be unbiased 

predictors of the eventual outcomes.  If risk-neutral PDFs are biased, the difference between the 

RND and the estimated RWD of prices as they are later observed provides an indication of the 

degree and nature of risk-aversion of the representative agent. To the extent that this difference 

displays a systematic pattern over time, it may be exploited to adjust the RNDs over as yet 

unobserved future prices to estimate the agents’ real-world expectations.  This paper follows 

Fackler and King (1990) in using the highly flexible, yet parsimonious, beta distribution function 

to deliver that calibration.   

 

This section illustrates how such systematic differences between risk-neutral and real-world 

distributions can be identified, and reviews the existing literature on how these can be removed.  

A methodological framework is introduced in Section 2. Section 3 applies this to three-month 

options on two important UK financial instruments: FTSE 100 and short sterling.  The results of 

these transformations yield time-series estimates of the equity risk premium and the term 

premium at that maturity.  Section 4 examines the robustness of these results, and the stability of 

the estimated parameters over time; this is important if these parameters are to be relied upon to 

forecast RWDs of future prices. A final section concludes. 

 

1.1 Assessing systematic differences between distributions 

 

Much of the recent literature on density forecasting is based on the probability integral transform 

(PIT), a method of testing the hypothesis that a sample of data are drawn from a particular 

candidate distribution (Rosenblatt (1952)).2

 

  The PIT of the realisation xt is defined as: 

 

 

 

(1) 

where ft is the candidate probability density function. 

 

If observations {xt} are independent and the candidate PDF is identical to the true PDF, then the 

PIT, yt, will be independently and uniformly distributed.  Therefore, testing whether the observed 
                                                 
2 This is also known as the inverse probability transform (IPT). 
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data was drawn from the candidate distribution is equivalent to testing whether the transformed 

data was drawn from the uniform distribution.  

 

A quantile-quantile (q-q) plot of the PIT provides an intuitive means of assessing visually any 

systematic difference between the candidate distribution and the true, unknown distribution from 

which the sample was drawn.  Such a q-q plot shows the proportion of observations less than the 

nth percentile of the candidate distribution. 

 

Chart 1 If the candidate distribution 
understates the mean
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The key concept underlying a q-q plot is that, if the candidate distribution accurately describes 

the true distribution from which observations are drawn, then the proportion of observations less 

than the median of the candidate distribution should tend to one half, as the sample size 

approaches infinity.  More generally, the proportion of out-turns less than the nth percentile of the 
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candidate distribution should tend to n%, as the same size increases.   So if the candidate 

distribution and the true distribution coincide, then the q-q plot will be a straight line of gradient 

one. Alternatively, if the candidate distribution understates the mean of the true distribution, then 

the proportion of observations less than the nth percentile will tend to a value less than n%, so the 

q-q plot will sag below the gradient-one line. This is illustrated in Charts 1-4. 

 

Chart 5 If the candidate distribution 
overstates the variance
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Chart 7 … then there will be fewer 
outcomes in the tails observed 
than expected … 

Chart 8 … so the q-q plot of the PIT 
will bend around the straight 
line of gradient one. 

0.0

0.1

0.2

0.3

0.4

0.51st 
quartile

proportion of outturns
2nd 

quartile
3rd 

quartile
4th 

quartile

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
candidate cumulative probability

0.25
0.09

proportion of outturns

 
If the candidate distribution overstates the variance of the true distribution, then there will be 

fewer extreme outcomes than the candidate distribution suggests.  This means that the proportion 

of observations less than the nth percentile will initially tend to a value less than n%; after the 

median it will tend to a value greater than n%.   So the cumulative PIT form an ‘S’-shape, 

bending around the gradient-one line. This is illustrated in Charts 5-8. 
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Fackler and King (1990), which forms the foundation for this paper, use q-q plots to illustrate 

that option-implied RNDs provide a poor probabilistic description of agricultural commodity 

price out-turns.  Liu et al (2007) also employ q-q plots to compare the PIT to a uniform 

distribution, which as previously explained is equivalent to checking whether the empirical 

distribution function of the PIT lies on the gradient-one line.  

 

1.2 Removing systematic differences between distributions 

 

There are two main strands to the literature on adjusting option-implied RNDs to produce an 

estimate of the RWD.   

 

The first of these seeks to estimate the utility function agents use when assessing uncertain 

outcomes. The estimated parameters of this utility function determine investors’ preferences 

towards risk. Bliss and Panigirtzoglou (2004) establish that option-implied RNDs do not provide 

good forecasts of future realisations of either the S&P 500 or the FTSE 100. They then examine 

RWDs that had been adjusted under the assumption of investors’ preferences are represented by 

both power utility and exponential utility functions.  The parameters of those utility functions 

were selected such that forecasting performance was optimised.  These utility adjustments were 

successful in that they failed to reject the hypothesis that the adjusted RWDs were an unbiased 

predictor of future realisations. 

   

Alonso et al (2006) apply the analysis of Bliss and Panigirtzoglou (2004) to the Spanish IBEX-

35 index, and extend the analysis to include habit-based preferences and time-varying risk 

aversion.  Anagnou-Basioudis et al (2005) study RNDs for the S&P 500 and the sterling-dollar 

exchange rate estimated using four different methodologies: generalised beta, normal inverse 

Gaussian, a combination of two lognormals and a smoothing-spline.  They find that option-

implied RNDs are both biased and inefficient predictors of realised distributions, and that the 

bias cannot be removed by a simple mean adjustment.  Such a mean shift would correspond to a 

constant risk premium, and is the risk-neutral to real-world transformation of the Black-Scholes 

option-pricing paradigm. However, once the RNDs are adjusted using a power utility function 

they are unable to reject the assumption of no bias and efficiency, which corroborates the 

findings of Bliss and Panigirtzoglou (2004). In contrast, Weinberg (2001) fails to reject the 

hypothesis that a simple mean adjustment adequately removes the bias in the distributions 

formed from S&P 500 options. 
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The second strand of the literature also seeks to transform the observed RNDs into the RWD but 

does not require the function performing the calibration function to be a utility function 

purporting to represent investors’ risk preferences. This approach is more empirical, in that it 

seeks the function that best fits the RNDs obtained from a given set of observed data, without 

insisting that this function fit an underlying model of agents’ behaviour. That this approach is 

less ambitious in its aims seems sensible, given that we do not observe the states of the world 

that determine a given asset’s price, only the price itself to one of many states of the world has 

given rise. A complete model of investors’ risk preferences, which would be capable of pricing 

any asset, would require these individual states of the world to be observed, as it is levels of 

consumption in these different states of the world over which investors have preferences. It is 

therefore more realistic to attempt to find a means only of calibrating a RND to its real-world 

equivalent for a given asset class, rather than an all encompassing model of investor preferences. 

 

Fackler and King (1990) find that the CDF of a beta distribution can be used to calibrate the 

RND to observed outcomes, removing the systematic difference between the two. They find the 

CDF of the beta distribution offers a parsimonious yet flexible calibration function.  Although it 

depends on only two parameters, it nests many simple forms of transformation such as a mean 

shift, mean-preserving changes in variance, and changes involving mean, variance and skewness. 

A more detailed exposition of the various transformations that the beta CDF can deliver is 

presented in an appendix.  Shackleton et al (2010) also use more sophisticated methods based on 

the model of price dynamics in Heston (1993) to obtain densities at multiple horizons. This 

includes the use of nonparametric calibration functions. 

 

While the approach of Fackler and King (1990) does not aim to restrict itself to estimating 

transformations of the RND to the RWD that represent investors’ preferences, Liu et al (2007) 

derive conditions under which the parameters of the beta CDF could represent the preferences of 

a risk-averse representative agent. They estimate the parameters of the calibration function and a 

power-utility function, based on a series of non-overlapping option contracts with one-month 

maturity. So the calibrations that result from the empirical approach may be compatible with 

those arising from a coherent model of investor preferences, even if the strength of the approach 

lies in how it is flexible enough to consider a broad class of calibration function that impose no 

such restriction.   
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2 Methodological overview 

 

2.1 General framework 

The calibration approach estimates real-world probabilities as some function of the risk-neutral 

probabilities.  That function is called the calibration function.  Equation (2) expresses this 

general relationship in terms of cumulative real-world and risk-neutral cumulative probability 

density functions FP and FQ (cumulative counterparts to the probability density function f in (1)): 

 ( ) ( )( )xFCxF QP = . (2) 

Equation (2) shows that the choice of calibration function, C(), must be restricted to functions 

which are themselves cumulative probability functions, ie have a range [0,1] and are non-

decreasing.  It can be recast in terms of probability densities: 

 ( ) ( )( ) ( )xfxFCxf QQP '=  (3) 

The multiplicative form of equation (3) is consistent with that of the fundamental asset pricing 

equation, which states that an asset’s price at time t, pt, is equal to the expected product of its 

pay-off at time t+1 across different states of the world, xt+1, and stochastic discount factor mt+1, a 

measure of investors’ willingness to delay consumption: 

 [ ]11 ++= tt
P
tt xmEp . (4) 

Using the definition of covariance, and noting that the expectation of the stochastic discount 

factor, mt+1 is the reciprocal of the risk-free rate, this can be immediately rewritten as, 

 [ ] ( )111 ,cov1
+++ += ttt

P
tft xmxE

R
p  

(5) 

so that the price of an asset is its expected pay-off , discounted at the risk-free rate, plus a risk 

premium coming from the covariance of the pay-off with the stochastic discount factor. 

 

Alternatively it may be rearranged thus: 

  
 

pt+1 
 
     

      

where  

  
 

  

 

 

 

(6) 
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The function Q
sπ (s) defines a new probability measure: the risk-neutral measure.  It is termed 

‘risk-neutral’ because under this measure the market-clearing price of assets is such that an 

investor is indifferent between the asset and a certain payment equal to the asset’s expected pay-

off, discounted with the risk-free interest rate.  This defines a risk-neutral agent.  Equation (7) 

links these actual (real-world) probabilities and their risk-neutral probabilities. 

 

 

 

(7) 

This ‘state-dependent’ stochastic discount factor, mt+1,s , allows for the pricing of any claim that 

delivers pay-off xt+1,s. at time, t+1, in each possible state of the world s.  

 

In practice, we observe only the price of assets, rather than states of the world that give rise to 

them. This underlines an important limitation on the information we can hope to recover from 

those prices. Multiple states of the world may lead to identical asset prices. And two agents with 

similar yet different preferences might buy derivative contracts at the same prices, giving rise to 

identical calibration functions, if their preferences happen to be identical over the subset of states 

of the world we observe. It is therefore only possible to recover a calibration function, and 

corresponding estimated RWD, that is specific to a given asset, not a general calibration function 

that can be used on any asset.  

 

Put in terms of equation (4), we are able to recover a stochastic discount factor, mt+1,x, that is the 

discount factor expected across all states of the world that lead to that observed price; that is  

[ ]1,1 ++= txt
P
tt xmEp  where [ ]1,1,1,1 | ++++ == tststxt pxmEm . 

This stochastic discount factor therefore contains less information than the general version in (4); 

in particular it does not represent the risk preferences of any particular observable agent or 

investor in the underlying asset.  

 

2.2 The beta distribution as a calibration function 

 

We follow Fackler and King (1990) and impose that the calibration function is a beta 

distribution.  This has a number of distinct advantages.  Since the beta distribution nests the 

uniform distribution, it allows for the risk-neutral and real-world measures to be identical 

without imposing any transformation.  This would correspond to the testable restriction that 

j = k = 1, in the case that the RNDs genuinely describe the real-world. In addition, while being 

parsimonious – there are only two parameters to be estimated – the beta functional form nests 
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within it a range of simple transformations, such as shifts in the mean of the distribution, mean-

preserving changes in its variance, and adjustments to its skew. Of course, with only two degrees 

of freedom, the transformation is unable to affect all three of these moments independently; see 

Appendix 1 for an assessment of how changes in these three moments are related.    

 

The standard beta PDF, given in equation (8), is defined over the finite interval [0,1]; the 

parameters j and k are the shape parameters.   

 ( ) ( ) ( )
( ) 0,

,
1,

11

>
−

=
−−

kj
kjB

zzkjzf
kj

 
(8) 

Because any CDF is, by definition, defined over the bounded interval [0, 1], the use of the 

standard beta PDF has become popular in the literature.3 ( )xFz Q
t τ,=  In the case when , the 

option-implied risk-neutral cumulative probability, at time t for options expiring at time τ, the 

standard beta PDF and CDF are given by equations (9) and (10). 

 
( )( ) ( )( ) ( )( )

( ) 0,
,

1
,

1
,

1
,

, >
−

=
−−

kj
kjB

xFxF
kjxFf

kQ
t

jQ
tQ

t
B ττ

τ  
(9) 

 
( )( ) ( )( )

( )kjB
kjxFB

kjxFF
Q

tQ
t ,

,
, ,

,
τ

τ =  
(10) 

The term B(j, k) is the beta function, given in equation (11); the incomplete beta function is given 

in equation (12) 

 

 ( ) ( )
( ) ( )
( )kj

kj

duuukjB kj

+Γ
ΓΓ

=

−= ∫ −−1

0

11 1,
 

(11) 

 ( )( ) ( )( )
∫ −− −=

xF kjQ
t

Q
u duuukjxFB τ

τ
,

0

11
, 1,  (12) 

 

Combining the form of the calibration function given in equation (2) with equation (9) the real-

world PDF becomes: 

 ( ) ( )( ) ( )xfkjxFfxf Q
t

Q
t

B
t

P
t ττττ ,,,, ,=     (13) 

where ( )kjxf B
t ,,τ is the PDF of the beta distribution.  

 

                                                 
3 See Fackler and King (1990) and Liu et al (2007). 
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Estimating the RWDs from the set of historical RNDs and price out-turns therefore amounts to 

estimating the parameters j and k of the beta distribution.   

 

2.3 Risk-neutral density estimation 

 

In this paper, the RNDs are estimated using a refinement of the non-parametric method set out in 

Bliss and Panigirtzoglou (2004).4

 

  That method exploits the result of Breeden and Litzenberger 

(1978), which relates the RND to the curvature of the call price function, that is  

( ) ( )
2

2

,
,,,

K
tTKSC

eKf trQ
t

f

∂
∂

= − τ
τ . 

(14) 

Where: S is the price of the asset, K is the strike price of the option, τ = T – t is the option’s time 

to maturity and rf is the ‘risk-free’ rate.5

 

 

However option prices, and therefore the call price function, are observed only for a discrete set 

of strike prices.  So in order to use this result, those discrete points must first be used to generate 

a call price function that is a twice-differentiable function of the strike price.  

 

The procedure for estimating RNDs consists of five stages.  First, the observed option prices are 

filtered to remove those prices that violate the no-arbitrage restrictions of monotonicity and 

convexity (Chart 9).6

                                                 
4 This has become the standard technique for estimating RNDs adopted by other central banks (see de Vincent-
Humphreys and Puigvert (2012)).  For further details see Clews et al (2000). 

  The data are then translated from (strike, price) into (delta, implied 

volatility) using the Black-Scholes formulae, as in Malz (1997).  This does not assume that the 

Black-Scholes option-pricing paradigm holds true.  Rather, this transformation should be viewed 

as purely for numerical convenience, which facilitates the third stage: fitting a natural smoothing 

spline through the transformed data (Chart 10).  The parameter which controls the trade-off 

between smoothness and goodness-of-fit was set to 0.98.  The spline is evaluated at 1,000 delta 

values and transformed back into (strike, call price) space before a numerical algorithm is used 

to compute the second derivative (Charts 11 and 12).   

5 We use three-month Libor as the risk-free rate for FTSE PDFs, for short-sterling PDFs we assume rf = 0. 
6  Violation of those no-arbitrage restrictions in settlement prices does not imply a riskless profit opportunity, once 
bid-ask spreads are taken into account.  It would, however, lead to negative probability densities.   
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Chart 9: FTSE option prices on 15 June 2001, 
expiry Sep 2001.  No prices violate monotonicity or 
convexity. 

Chart 10: Volatility smile for the option prices 
in Chart 9.  A natural smoothing spline has 
been fitted through the 63 observed prices. 
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Chart 11: Estimated call price function: the 
transforming of the volatility smile of Chart 10 
back into (strike, price) space 

Chart 12: Estimated FTSE RND, the second 
derivative of the call price function in Chart 11 
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2.4 The data 

 

2.4.1 FTSE 100 Index 

 

Options on the FTSE 100 equity index are traded on the London International Financial Futures 

and Options Exchange (LIFFE) with expiry dates of the third Friday of March, June, September 

and December of each year, plus additional months such that the nearest four calendar months 

are always available for trading.   RNDs were estimated for each expiry date, using data on 

options expiring at the following expiry date.  At this three-month horizon, the FTSE data set 

comprises 60 non-overlapping observations spanning the period March 1992 – June 2007. We 

leave as further work an extension up to the present day; for further details see Section 5. 

 

Chart 13 shows the evolution of the FTSE 100 over the sample period; Chart 14 shows the 

corresponding three-month log returns.  As an example, Chart 15 shows the RND estimated from 

option settlement prices on 15 June 2001, for out-turns on 21 September 2001; the value of the 

underlying index at the time of the option’s expiry is also indicated. Over that time, the FTSE 

100 fell from 5723 to 4434.  Chart 16 recasts the data in terms of cumulative probability, 

according to the option-implied distribution estimated from options three months previously. 

This time series passes a test for serial independence, with auto correlations that do not deviate 

from zero, at a 95% significance level (Chart 17). 

 

Chart 18 plots the corresponding q-q plot, which shows that over this sample the option-implied 

PDFs overstated the probability of out-turns below the median, and understated the probability 

of out-turns above.  This, like the stylised example shown in Charts 1-4, is consistent with the 

candidate distribution understating the mean of the true distribution, and with investors requiring 

a positive premium to compensate them for bearing the risk of holding equities. 
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Chart 13: FTSE 100 price history Chart 14: FTSE three-month log-returns 
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Chart 15: FTSE RND estimated using 15 June 
01 option prices for 21 Sep 2001 out-turns 

Chart 16: Cumulative risk-neutral 
probabilities of FTSE out-turns, according to 
the RND estimated three months previously 
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Chart 17: Auto correlation of cumulative risk-
neutral probabilities of FTSE out-turns 

Chart 18: q-q plot of three-month FTSE out-
turns Mar 1992 – Jun 2007 
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2.4.2 Short sterling 

 

Options on short sterling futures contracts are also traded on LIFFE, with the same quarterly 

expiry schedule as FTSE options.  The short sterling data set comprises of 80 observations 

spanning the period 1987– 2007.  Out-turns of the three-month Libor over this period are shown 

in Chart 19, and in terms of their risk-neutral cumulative probability, in Chart 20.  The short 

sterling q-q plot, presented in Chart 21, lies closer to the gradient-one line, suggesting that for 

this asset and maturity, option-implied RNDs may be a better representation of the true 

distribution prior to transformation, than those of the FTSE 100. 

 

Chart 19: Three-month short sterling spread 
history 

Chart 20: Cumulative probabilities of Libor 
out-turns, according to the RND estimated 
three months previously 
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Chart 21: q-q plot of three-month Libor out-
turns Mar 1992 – Jun 2007 
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2.5 Parameter estimation 

Recasting (13) in terms of cumulative density functions, the real-world CDF, ( )xF P
t τ, becomes 

( ) ( )( )kjxFFxF Q
t

B
t

P
t ,,,, τττ =  (15) 

where FB is the CDF of the beta distribution. If this candidate distribution function accurately 

describes the distribution from which the data, xi, are drawn, it follows that: 

( ) ( )( ) ( )1,0~,,,, UkjxFFxF i
Q

t
B

ti
P

t τττ =  (16) 

so that ( )i
Q

t xF τ, is beta-distributed with parameters j and k. Our problem therefore reduces to 

estimating the parameters j and k that give rise to a beta distribution that ‘best fits’ the 

cumulative risk-neutral probabilities.  

 

These parameters are estimated via the maximum likelihood method applied to the available 

sample of data. This selects the parameter values that produce the beta distribution that is ‘most 

likely’ to have resulted in the observed data.7

(j,k) = arg max

 The parameters that lead to the highest mean value 

of the beta PDF when it is taken over the observed data; that is: 

( ) ( )
( )∑∑

=

−−

=

−
==

N

i

ii
N

i
i kjB

YYYkjLYkjL
1

11

1 ,
1log;,log);,(log

βα

,  (17) 

where the beta function, ( )kjB , , is given by ( ) ( )∫ −− −=
1

0

11 1, duuukjB kj . This optimisation is 

achieved by a numerical procedure that tries alternative parameter values, stopping when a 

maximum is found. The CDF of the beta distribution that results is the beta distribution function 

that, on average, best transforms the CDF of the risk-neutral distribution into that observed 

empirically.  

 

3 Results 

 

Data are sampled at a frequency of three months, equal to the maturity of the options. The period 

between each observed option price and the observed price of the underlying asset therefore do 

not overlap, so that observations are independent of each other. Results this way are better suited 

to hypothesis testing (see Section 4.1), as they are free of serial correlation that would be induced 

by overlapping observations, as would be the case if prices of options with a year to maturity 

were sampled at, eg, a quarterly frequency.  
                                                 
7 For further background, and a sample application of this technique, see Liu et al (2007). 
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Using these non-overlapping observations does however reduce the number of available data 

points. This reduces the efficiency of the parameter estimates obtained via maximum likelihood 

estimation,8

 

 and decreases the power of the statistical tests we apply to assess how well our 

calibrated distribution fits that of the data. The 20 years of data available for the two markets 

considered here, options on the FTSE 100 and short sterling, mean that we are left with over 60 

non-overlapping observations. However were this approach to be applied to some assets for 

which the options market is relatively nascent, for example, foreign exchange rates, this reduced 

sample size could be more problematic. If the methodology described here were being used 

operationally, overlapping observations could be used in order to maximise the available data. 

3.1 The estimated calibration functions 

The estimated calibration function is the CDF of a beta distribution, estimated by finding the 

parameters of beta distribution that transforms the CDF of the option-implied distribution into 

the CDF of the distribution that maximises the likelihood of the realised returns.  It is these 

transformed distributions that we term the estimated real-world densities (RWDs). 

 

For options on the FTSE 100 with a three-month maturity, the estimated beta parameters were j 

= 1.56 and k = 1.31.  A plot of the corresponding density function (Chart 22) illustrates exactly 

how this calibration function affects the option-implied RNDs.  Chart 22 shows that the beta 

PDF is asymmetrical, and takes values greater than one between 0.3 and 0.9.  That means that 

the actual (ie real-world) probability of price out-turns with an option-implied cumulative 

probability between 0.3 and 0.9 is understated by the option-implied RND.  Consequently, the 

calibration process augments such probabilities, increasing the mean of the candidate distribution 

(as in Charts 1-4).   Because all probability densities must integrate to one, the calibration 

process reduces the option-implied probability of price out-turns outside that range. Chart 23 

adds the estimated beta CDF to the FTSE 100 q-q plot. Another way of viewing the calibration 

function estimation is finding the line of best fit – out of the class of beta functions – through the 

empirical q-q plot.   

                                                 
8 It is a well-known property of maximum likelihood estimators that they converge in probability to their true value 
as the number of observations increases. 
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Chart 22: Estimated calibration function for 
three-month FTSE (a beta PDF, j=1.56 and 
k=1.31) 

Chart 23: Estimated beta CDF overlaid over 
q-q plot of three-month FTSE out-turns Mar 
1992 – June 2007              Proportion of out-turns 
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Chart 24 – Estimated calibration function for 
three-month short sterling (a beta PDF, j=0.05 
and k=0.08) 

Chart 25 – Estimated beta CDF overlaid 
over q-q plot of three-month Libor out-turns 
March 1992 – June 2007   Proportion of out-turns 
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For three-month short sterling, the estimated beta parameters were j = 0.05 and k = 0.08. The 

calibration function is plotted in Chart 24. This contrasts to that obtained for the FTSE 100 in 

that it is close to one over the majority of its domain, broadly symmetrical, and has spikes in its 

tails. This suggests that the risk-neutral density does not differ significantly from the estimated 

real-world density around the median of the distribution; but that it underestimates the actual 

probability of outcomes in its tails. The effect of the transformation of the short sterling RND is 

therefore concentrated at the tails of the distribution, whereas that for the FTSE 100 is focused 

more at its central moments, shifting its mean and, to some extent, its variance. The 

corresponding beta CDF is overlaid on the q-q plot in Chart 25.  
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3.2 The estimated real-world densities 

 

The RWDs are generated through the point-wise multiplication of the calibration function and 

the option-implied RND (equation 13).  The RNDs and RWDs are compared in solid and dashed 

lines in Chart 26.  

 

While the unconditional estimation of (j,k) means that the beta PDF is constant across the 

entirety of the sample data on which it is calibrated, the function performing the transformation 

of each RND will vary within this. This is because when used as a calibration function, the 

argument of the beta PDF is the cumulative risk-neutral probability, and this will vary with the 

shape of the option-implied PDFs. This is illustrated in Chart 27, which plots the two radically 

different RNDs in Chart 26 (solid lines), alongside their associated calibration functions (dashed 

lines). A given set of parameters for an asset class can therefore give rise to different calibration 

functions, dependent on the shape of the RND. 

  

Chart 26: Risk-neutral and real-world 
probability densities 

Chart 27: Two risk-neutral densities and 
their calibration factors 
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solid lines represent 
option-implied RNDs

dashed lines represent 
calibrated RWDs

  
 

Once the set of RWDs have been estimated, the moments of those distributions can be computed 

numerically.  Charts 28-31 compare the means and variances of the calibrated RWDs and the 

option-implied RNDs. Note that in Chart 28, the means of the RN and RW distributions for short 

sterling are close to indistinguishable over much of the data, as the transformation leaves the 

mean close to unchanged. Their sharp widening on 16 September 1992 (Black Wednesday) 

likely reflects the speed with which risk premia were changing, and so risk-neutral prices derived 

from the prices of options at their inception, differ more markedly from the actual out-turn. 
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Difference in price Difference in price 

Difference in price 

Chart 28: Time-series mean of RNDs and 
RWDs for three-month FTSE 
 

Chart 29: Time-series variance of RNDs 
and RWDs for three-month FTSE 

  
Chart 30: Time-series mean of RNDs and 
RWDs for three-month short sterling 
 

Chart 31: Time-series variance of RNDs 
and RWDs for three-month short sterling 
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Since this spike in 1992 however, the risk premia resulting from the short sterling contracts 

appears more stable than that for the FTSE, and this stability appears to have grown over time up 

to 2007. This difference is perhaps surprising, given that you might expect some drivers of risk 

premia to be common to both markets. This greater stability of risk premia derived from short 

sterling may, however, reflect the greater uncertainty around equity prices than those of short-

horizon fixed-income instruments.  
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3.3 A measure of the risk premium 

The means of the RNDs and RWDs can be combined to provide a measure of the risk premium 

embedded in the price of a futures contract.  The current price of a security can be written as the 

discounted expectation of a future spot price, under different probability measures, provided that 

each expectation is discounted at the appropriate rate.  The risk-neutral measure must be 

discounted using the risk-free rate, and the real-world measure discounted at a premium over the 

risk-free rate: 

 [ ] [ ]T
PTr

T
QrT SEeSEeS )(

0
µ+−− == . (18) 

That risk premium can therefore be recovered once the expectations (means) of the two measures 

have been estimated: 

 [ ]
[ ]









=

T
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T
P

SE
SE

T
ln1µ . 

 

(19) 

Chart 32 plots this measure of the risk premium, estimated from three-month FTSE PDFs.  This 

measure pertains to the remaining lifetime of the option, so because options of different 

maturities trade simultaneously, this method can be used to produce a term structure of the 

equity risk premium Chart 33. This slopes upwards, reflecting the higher degree of uncertainty 

over prices further into the future, and hence the higher risk premium demanded by investors. 

The risk premium derived from the twelve-month contract is absurdly high; however we are 

cautious of reading too much into this result as it is derived from only three contracts that are 

available at this long-maturity and so may be spurious. 

Chart 32: Three-month equity risk premium 
estimate for the FTSE 100 

Chart 33: Term structure of equity risk 
premia for the FTSE 100 (19 Mar 2004) 
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Two other indicators of an equity risk premium are the estimates available from a dividend 

discount model (DDM)9

 

 and FTSE at-the-money implied volatility.  Chart 34 compares these 

two indicators to the measure derived from PDFs. The similarity of estimated risk premium with 

at-the-money implied volatility is striking, as is the correlation of their first differences in Chart 

35. However this is perhaps unsurprising: at-the-money implied volatility is commonly taken as 

a simple measure of the level of risk around the current price of options’ underlying asset and so 

captures risk aversion. The risk premia from the DDM is rather different. Most strikingly, it falls 

in 1998/99 when both measures of risk premia rise sharply, perhaps in response to the events of 

LTCM’s failure and the Asian crisis. However, this may be due to the shortcomings of the DDM, 

particularly its use of analysts’ earnings forecasts that are not always updated swiftly in response 

to news. The comparison with the DDM also does not compare like with like: the PDF-derived 

measure is a short-term risk premium over a horizon of one year. In contrast, since the DDM 

includes forecasts of future dividends over a longer range of future time periods, the risk 

premium from the DDM is over a far longer horizon.   

Chart 34: Other measures of the equity 
risk premium 

Chart 35: First differences of three-
month risk premium estimates versus 
implied volatility 
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4 Robustness checking 

 

Two checks on the robustness of the above results are presented here. Firstly, that results of a 

similar quality – in terms of their success at producing an estimated distribution that matches the 

observed distribution – cannot be produced by using a simpler methodology. One such 

                                                 
9 The DDM finds the discount rate at which expected future dividends must be discounted in order for the resulting 
equity price to equal that observed in the market. The difference between this discount rate and the risk-free rate is 
the resulting equity risk premium. For further details see Inkinen et al (2010). 
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methodology might simply be to ‘shift’ the RND by the average amount by which its mean 

differs from that of the observed distribution of prices.  

 

Second, we assess how parameter estimates evolve over time when estimated over an expanding 

window of data. That the estimated parameters are stable over time is important if this approach 

is to be used operationally. Our discussion here has involved finding the parameters that best 

adjust RNDs to the RWDs corresponding to a sample of observed prices. In practice, if this 

approach were to be used to forecast the RWD of future as yet unobserved prices, then it would 

only be likely to improve that forecast if the ex post parameters, estimated once those out-turns 

are known, were not significantly different to the ex ante parameters previously estimated from 

the sample without those out-turns.  In other words, the ability of this method to improve our 

density forecasts depends on the estimated parameters being stable over time. 

 

4.1 A comparison to a mean-shift calibration 

A simpler method for transforming risk-neutral option-implied distributions into real-world 

distributions is to simply ‘shift’ the RND by the average difference between the means of the 

RND and the RWD.  This ‘mean-shift’ transformation is embodied in the Black-Scholes option-

pricing framework that assumes that the underlying price is log-normally distributed (see 

Girsonav (1960). While displacing each RND by the average excess return would, by 

construction, improve its fit to the existing data to which it is calibrated, it may not improve its 

fit to out-of-sample data generated in future.   

 

The mean shift is nested within the transformation afforded by the beta calibration function, and 

can be effected by imposing the restriction that j = 0 in the estimation procedure described in 

Section 2.5. 

 

The q-q plots in Charts 36 and 37 compare the relative success of the two methods at matching 

the observed distribution. Unsurprisingly, the central percentiles of the distribution are closer 

matched under the mean shift, and lie closer to the diagonal. However, away from the mean the 

fit is far poorer, with a systematic bias in the tails of the distribution with points lying above or 

below the diagonals of the q-q plot. This is unsurprising because it is only the first moment 

which has been altered. In contrast, the beta-shifted distribution gives a much closer average fit 

of the percentiles across the entire distribution. Although compensating for a constant risk 

premium improves the performance of the mean as a point forecast it does not improve the 

performance of the distributional forecast.   
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Chart 36: q-q plots for RND, under 
beta transformation 

Chart 37: q-q plot under mean shift 
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These observations are confirmed in the summary statistics compared in Table 1. While the root 

mean-squared forecast error for the mean-shifted sample was reduced from 379.04 to 375.59, the 

joint log-likelihood was reduced from -424.55 to -426.54, reflecting how the mean shift produces 

a transformation that is less close in likelihood terms. The log-likelihood ratio marginally fails to 

reject the null hypothesis that two distributions coincide at the 10% significance level. 

 

Table 1: The results of the beta versus the mean-shift calibration 
(P-values are given in brackets) 
 RND Beta calibration Mean-shift 

Log likelihood -427.87 - 424.55 - 426.54 
Root mean square error 375.59 379.04 375.59 
Log-likelihood test statistic  3.98 (0.1367) 
Kolmogorov-Smirnov test statistic 0.15689 (0.3990) 0.0865 (0.9678) 0.0851 (0.9722) 
Cramer-von-Mises test statistic 0.3090 (0.7180) 0.0445 (0.9963) 0.1304 (0.9736) 
 

In assessing the relative fit of the beta calibration versus the mean-shift transformation, we first 

consider the well-known Kolmogorov-Smirnov (KS) test statistic: the maximum deviation 

between the percentiles of the distribution. This is the maximum deviation from the diagonal 

over the points of the q-q plot. As, for this data, the maximum deviation between the two 

quantiles occurs close to the mean of the distribution (visible around the centre of Chart 35), the 

mean shift actually produces a lower KS statistic than the beta calibration.  

 

As we are seeking to optimise the fit across the entirety of the distribution, however, not just 

their maximum deviation, we prefer the Cramer-von-Mises (CvM) test statistic.10

                                                 
10 See Anderson (1962) for the implementation used here. 

 This is the 
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average squared deviation between the quantiles of the two distributions. This is perhaps a more 

salient test statistic, as it considers the average distance from the diagonal across all the points of 

the q-q plot, and is reduced, from 0.1304 to 0.0445, by using the beta calibration compared to the 

mean shift. This test is therefore able to formalise the improvement we observe visually in the q-

q plot in Chart 35 compared to Chart 36. 

 

Whilst the CvM test statistic is greatly reduced by the use of the beta calibration instead of the 

mean shift, neither it nor the KS test fails to reject the hypothesis at a 10% significance level that 

the distribution obtained from the mean-shift transformation, and that of the data, are identical, 

with both test statistics giving p-values in excess of 0.97. Neither test has sufficient power, when 

used with a sample of only 60 observations, to distinguish between the two distributions. This is 

a consequence of the using non-overlapping observations of options prices and realised prices. 

Using overlapping observations would vastly increase the size of the sample, but would 

introduce auto-correlation into the data that would hinder our ability to carry out meaningful 

statistical tests.  

 

The estimation of the calibration function, and therefore, the RWDs, is unconditional.  It is based 

on the premise that, over time, investors do not make systematic errors in their own RWD 

forecasts.  It is informed only by past out-turns, and how they are distributed across the option-

implied RNDs.   The next section assesses how sensitive the calibration function estimated using 

the data on the FTSE 100 and short sterling options, is to the particular sample of past out-turns 

used.  

 

4.2 Evolution of estimated beta parameters 

 

The main assumption underlying this methodology is that there is a systematic difference 

between the RND and RWD, which is both stable over time, and can be adequately described by 

a beta function.  If this is true, then as the sample of price out-turns increases, the estimate of that 

systematic difference should become more precise.  In other words, the estimated beta 

parameters should converge to some constant values. 
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That has important implications, one practical, one economical.  First, if the approach were to be 

used operationally, it would require the adjustment of a RND whose actual out-turn had not yet 

been observed. This adjustment would therefore have to be made using the parameters obtained 

from past calibrations. Were the parameters to show a large degree of variation over time, this 

would frustrate forecasters’ ability to determine this choice of parameters reliably. 

 

Second, if the results of such a risk-neutral to real-world transformation process are to be used to 

inform our economic understanding of the past, the arrival of new data about the very recent past 

should not materially alter our understanding of the more distant past.  For instance, it would be 

undesirable if estimates of the implied risk premium were to be substantially revised a number of 

years later, if the estimated calibration parameters for that larger sample turned out to be 

materially different to the calibration parameters previously estimated. 

 

4.2.1 Evolution of estimated beta parameters: FTSE 100 

 

The evolution of the estimated beta parameters (j, k), as the data estimation window expands, are 

presented in Chart 38. For each date, this chart plots the (j, k) values estimated using all quarterly 

data from March 1992 up until that date.  So the first plotted points for March 2000 are estimated 

using the 31 observations until that date, whereas the final data points are estimated using the full 

sample of 61 observations.   

 

Chart 38: The evolution of the estimated 
beta parameters for FTSE 100 over time 

 

0.0

0.5

1.0

1.5

2.0

2.5

Mar 92 Mar 95 Mar 98 Mar 01 Mar 04 Mar 07

i

j

 

 

Although the estimated beta parameters may now be starting to show signs of stabilisation (Chart 

38), expanding the estimation window had previously led to noticeable fluctuations.  That 

variation can be better understood by considering the transformation of the beta parameters 
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(σ(j,k), µ(j,k)), defined below. These can be thought of as representing an adjustment to the 

location and shape of the distribution.   

 

location adjustment: µ = j – k 

shape adjustment: σ = 1 – k     

 

These measures are shown in Chart 38, alongside the cumulative probability of each out-turn, 

according to the RWD estimated three months previously.  The cumulative probabilities are 

summarised in the four PIT q-q plots in Chart 40, constructed using the out-turns from March 

1992 to each of the four vertical dashed lines in Chart 39.  Between March 1992 and March 2000 

the majority of out-turns were drawn from the upper half of the RNDs, so the RNDs appeared to 

understate the mean and overstate the variance of the RWDs.  Note how the March 2000 line in 

Chart 40 sags far below the gradient-one line, and also the kink around a risk-neutral cumulative 

probability of 0.5.  The optimal calibration needed to map this sample of out-turns onto the 

RNDs therefore needs to increase the means of the RNDs (large positive µ) and decrease their 

variances (sufficiently negative σ).   

 

Chart 39: The estimated beta parameters 
and cumulative probabilities of the FTSE 
out-turns according to the RND estimated 
three months previously  

Chart 40: q-q plots of three-month 
FTSE out-turns expanding periods 
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However, adding the March 2000–June 2002 out-turns changes the pattern of past out-turns 

notably.  In contrast to the earlier period, the majority of these additional out-turns were less than 

the median of their corresponding option-implied RND.  This means that, on average, the 

dispersion of out-turns across the quantiles of the option-implied RNDs becomes a lot more 

balanced.  That is reflected in the PIT q-q plot: the pink line in Chart 40 lies much closer to the 
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gradient-one line, nor is the kink as stark.  The magnitude of both the mean and variance 

correction therefore decreases.  Similarly, the addition of June 2002–September 2004 data, 

which are clustered around the median, tend to increase the extent to which RNDs, on average, 

overstate the true variance.  Therefore, the estimated calibration must deliver a stronger variance 

reduction. 

 

What matters more, however, is the sensitivity of the calibrated RWD to this variation in the 

estimated beta parameters.  Chart 41 illustrates how the prevailing estimate of the 17 March 

2000 three-month FTSE real-world PDF changes as the estimate of the beta calibration 

parameters is updated.  Changes in the mean of the estimated RWD translate into changes in the 

estimate of the option-implied risk premium.  Chart 42 therefore shows how the historical 

option-implied risk premium series changes for the different estimates of the beta parameters.  

Although the change in the estimated beta parameters from Mar 2000 to Jun 2002 corresponded 

to a marked revision of the historical risk premia series, more recent updates of those parameters 

had less of an impact.   

Chart 41: RWD estimates for the 
FTSE 100 over different estimation 
windows 

Chart 42: Variation in estimated ERP series, 
depending on beta parameter estimation 
window 
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4.2.2 Evolution of estimated beta parameters: short sterling 

 

The evolution of the three-month short sterling beta parameters are shown in Chart 43. The 

corresponding location and shape adjustment is shown in Chart 44. These appear more stable 

than those for the FTSE 100, suggesting that the nature of the transformation required to obtain 

the RWD from the RND changes less over time. This may suggest that short-term interest rate 

markets are less susceptible to changes in investor preferences and risk premia, resulting from 

market developments, than equity markets. 
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As might be expected, this does not generate material revisions to the estimate of a past RWD 

(Chart 45). 

 

Chart 43: The evolution of the estimated 
beta parameters for short sterling over 
time 

Chart 44: The estimated beta parameters 
and cumulative probabilities of the FTSE 
100 out-turns according to the RND 
estimated three months previously 
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Chart 45: RWD estimates for short 
sterling over different estimation windows 
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5 Conclusion 

 

This study offers a means of transforming the risk-neutral probability densities of future asset 

prices obtained from derivatives contracts into estimates of the ‘real-world’ probability densities 

that might better reflect the probabilities considered by market participants. The approach taken 
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is ‘empirical’ and uses a beta CDF to transform the risk-neutral density into that which best fits 

observed prices at the contracts’ expiry.  

 

The methodology is applied to options contracts on the FTSE 100 and short sterling, but is 

highly flexible and could be applied to derivatives contracts on any underlying asset. The 

resulting real-world probability densities offer a superior average fit across the distribution of 

observed prices than their risk-neutral counterparts. Besides offering an improved insight into the 

perceived uncertainty surrounding future prices, a comparison of risk-neutral and real-world 

probabilities reveals new information as to how attitudes towards risk affect asset prices, and 

allows a measure of investors’ risk aversion to be backed out from the difference in the means of 

the two distributions. The resulting calibrations also appear fairly robust when applied to an 

expanding data set of prices that is updated in light of new observations, up until June 2007. 

 

We leave as further work the extension of our results beyond June 2007 up to the present day. 

Such an extension may need to consider how best to ‘operationalise’ the method so that the day-

to-day calculation of real-world PDFs can be used for policy purposes. Given the volatility of 

financial markets in the intervening period, and the possible volatility, therefore, of the estimated 

parameters that control the calibration of the risk-neutral to the real-world density, this may 

warrant some consideration of whether to ‘condition’ the parameter estimates on some other 

observable variable – for example that relating to the real economy. Doing so may increase the 

method’s predictive power. 
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Appendix 1: The beta PDF and the transformations it affords 

 

This appendix gives examples of the various transformations afforded by the PDF of the Beta 

distribution. Though it uses only two parameters, it nests many simple forms of transformation 

such as a mean shift, mean-preserving changes in variance, and changes involving mean, 

variance and skew. 

 

These are illustrated in the charts of Figure 1. Charts in the left-hand column plot the beta CDF 

resulting from different combinations of its j and k parameters; the right-hand column contains 

plots of the corresponding resulting transformations of an example RND. 
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Figure 1: The transformations afforded by the beta CDF function 

Calibration function Risk-neutral/real-world transformation 

j = k > 1; mean preserving, variance 

decreasing 

  

 

 

j = k < 1; mean preserving, variance increasing 

 

 

 
Various 

 

 

 



 

 Working Paper No. 455 June 2012 36 

 

j = 1, k <1; mean shift (increasing) 

 

 

 
Mean shift (decreasing) 
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