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Summary

Two natural questions to ask about monetary policy are `what would happen to in�ation if

interest rates were a bit higher than forecast?' and `what are the implications of interest rates not

changing for some period of time?'. Satisfactory quantitative answers to both of these questions

are, perhaps surprisingly, hard to come by. With many widely used forecasting models, this is not

a problem. For example, the commonly used vector autoregression (VAR) � a system of

equations explaining a set of interrelated variables � would allow us to simply impose a path for

one of the variables with no practical consequences. But for policy we need to have a proper

economic understanding, and one way of acquiring that is via a `structural' model, which a VAR

is not. Moreover, modern economics recognises the importance of forward-looking behaviour

and expectations. Models where the forward-looking behaviour of agents helps explain the

dynamic evolution of all variables in a coherent, equilibrium way are known as rational

expectations (RE) models. Using an RE model to answer the questions just posed requires a

forecaster to solve a number of quite dif�cult conceptual problems.

Using a general equilibrium RE model it is dif�cult to formalise how a higher (or indeed a �xed)

interest rate is achieved. This is because such models are usually solved incorporating a

monetary policy rule. These rules are conditional, and react to variables policymakers care about.

Often, they are versions of the well-known Taylor rule that feeds back from in�ation and growth.

Departing from these rules to induce interest rates that are different from those already implied is

hard to manage, and even if the technical problems are overcome it can be that the results

sometimes seem perverse. Essentially, we cannot just `�x' interest rates, as we can with VARs.

In a structural model we have to have a coherent explanation of why interest rates follow the path

they do (rather than what is implied by the policy rule embedded in the model). And the problem

is compounded by the fact that behaviour in the model depends on what agents expect to happen

after the �xed-rate path ends.

But the questions we began with are good ones that need reasonable answers. This paper

explores a number of potential resolutions to modelling partially �xed interest rates in a common

framework. These include imposing a sequence of anticipated or unanticipated interest rate

`shocks' that deliver the desired path, using a shock for each period the path is �xed, which
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seems a natural way to handle things. Unfortunately, when the strengths and weaknesses of

different existing methods are compared they are all found wanting, either because they imply

excessively volatile or counterintuitive forecasts. So a new approach is developed that restores

more normal behaviour; but at the cost of introducing a new problem.

The new approach takes as a starting point that permanently �xed interest rates imply a well

de�ned trade-off between in�ation and output growth, but do not imply any particular level of

in�ation. This is a well-known problem but (as we show) does not automatically apply in �nite

horizon problems, the case relevant for policymakers who publish �xed interest rate forecasts.

Although at �rst sight the approach may seem somewhat perverse, the paper shows how to make

sure it does apply for such problems. It can again be done by setting shocks, but using one more

than the number of periods the rate is �xed; or by using a rule that speci�cally targets the interest

rate, again for one period longer than the �xed-rate period. This restores intuitively sensible

paths; but at the cost of introducing an equilibrium selection problem. This arises because when

we use more shocks than we `need' to �x rates, there are an in�nity of well-behaved solutions

that the forecaster must choose between. Equivalently, there are an in�nity of rules we could use.

A degree of arbitrariness in the selected solution is then inevitable. This is not as bad as it seems,

though, as some paths are more `sensible' than others (eg, a path that is close to that implied by a

Taylor rule). Nevertheless, the paper concludes that there is no easy solution to the �nite horizon

problem, and any answer to the questions we started with must inevitably be strongly caveated.
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1 Introduction

This paper sets out to answer a simple question. How do we �x the interest rate in a rational

expectations macromodel at a given value for a set number of periods? A seemingly innocuous

question, with � it turns out � many answers, and correspondingly many implications for the

paths of in�ation and output. These are related to the observation that a New Keynesian model

with �xed nominal interest rates is indeterminate � there are in�nitely many solutions that satisfy

the equations of the model that do not imply divergent paths, a result familiar since Sargent and

Wallace (1975) and seemingly robust to model speci�cation. One might reason the following.

Surely it must be that there is some (possibly quite short) horizon for simulating a particular

model with �xed rates at which it switches from being determinate to indeterminate? We ask the

same question slightly differently: what does our understanding of the behaviour of

indeterminate, permanently �xed interest rate models, tell us about �xing the interest rate over a

�nite horizon?

This is not the �rst analysis of the �xed interest rate problem. Since Waggoner and Zha (1999), it

has been commonplace to implement conditional forecasting using exogenous shocks to achieve

a target path.1 Leeper and Zha (2003) suggested a `modest interventions' procedure, that can be

interpreted as imposing an interest rate path by using shocks that are unanticipated by agents in

the model. The model is then solved recursively, and agents are continually surprised by the �xed

interest rates. If the shocks required to maintain the �xed path are `modest' then it can be argued

that a simulation is relatively unaffected by agents being deceived (and not learning). Laséen and

Svensson (2011) suggest instead using anticipated shocks, which has the bene�t of treating

agents in the model as fully rational, but turns out to have some perhaps undesirable side effects.

Nor is this the �rst analysis of �xed interest rates that questions the determinacy properties of

such models. Galí (2011, 2009) studies monetary policy rules that are both determinate and

imply an exogenous path for interest rates. This somewhat puzzling result that �xed nominal

interest rates can be determinate is reinterpreted here and made consistent with more

conventional analysis. In so doing we extend his analysis and develop targeting versions of his

and other rules that �x the nominal interest rate over a �nite horizon and can also be exactly

1It used to be equally commonplace to do such exercises on older-generation, pre-New Keynesian rational expectations models. In
Appendix A we compare the shock-based approach with `old fashioned' Type 1 and Type 2 �xes.
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replicated by an appropriate choice of anticipated shocks.

Our analysis of �xed interest rate models combines, extends and simpli�es all of the previous

approaches. We suggest several methods for �xing the interest rate, all of which are variations on

two basic approaches which we show to be equivalent. These are:

1. Effectively exogenising both the interest rate and the initial value of some other variable by

adding in a sequence of rationally understood monetary policy shocks such that the ex post

interest rate is set to its target value. This generalises the results in Laséen and Svensson

(2011).

2. Employing a `two-part rule' where the policymaker follows a targeting rule which implies a

�xed rate for a set number of periods and then reverts to a conventional Taylor-type rule. This

generalises the results in Galí (2011, 2009).

It turns out that these two approaches � or seemingly innocuous variations � do not necessarily

give the same answer for what appears to be the same question. Understanding when they do

give the same answer � and how we can ensure they give the same answer � is the key to

understanding the �nite horizon �xed interest rate problem. The contrasting approaches give an

important insight into how policy models behave and how we should think of indeterminacy with

`partially exogenous' interest rates.

The paper is organised as follows. In the next section we show an analytic solution to the general

�nite horizon problem where we use shocks to achieve a particular target path different from that

implied by the policy rule. This replicates the Leeper and Zha (2003) and Laséen and Svensson

(2011) analysis in a common, simple framework and illustrates the implications using the

standard New Keynesian model. In Section 3 we demonstrate how using one extra anticipated

shock makes the model behave like an indeterminate one even though we retain determinacy,

using the model from Section 2. In Section 4 we develop a new method based on targeting rules

that replicates the analysis in Section 3 without shocks, which reconciles the approaches of

Laséen and Svensson (2011) and Galí (2011). In Section 5 we illustrate all the methods

developed using a model with more complicated dynamics derived from Lindé (2005). In a �nal
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section we suggest a strategy for deriving a satisfactory simulation design. Two brief appendices

cover some technical issues.

2 Fixed rates for n periods using n shocks

We begin with a rather general representation of a model and a policy rule. Write a general

model as 24 zt
x etC1

35 D A
24zt�1
xt

35C G"t C B� t (1)

where zt is a vector of predetermined variables, xt is a vector of expectational or jumping

variables, "t is a vector of mean zero unforecastable shocks, and � t is a scalar monetary policy

shock in period t . We will allow � t to be forecast rationally, and is modelled as a policy

intervention.

We will use speci�c models below, but all we need for the analysis to make sense at the general

algebraic level is that we include as one of the variables in the zt vector an equation for the

nominal interest rate, usually:

it D 
 it�1 C .1� 
 / .�� t C � yt/C � t (2)

the standard Taylor rule with smoothing (we ignore constants without any loss of generality).

The other equations do not matter for the principle, but will matter for the dynamics. We will use

the canonical New Keynesian model, to be outlined below, as one of our examples; in the

meantime readers may �nd it helpful to keep such a model in mind.

Before turning to the solution of the model it is worth noting that to permanently keep interest

rates �xed is usually thought to render a rational expectations model such as we have outlined

indeterminate. Thus there would be many solutions to the model for which expectations were

ful�lled and the model was not explosive. However, Galí (2011, 2009) suggests some policy

rules that �x the interest rate at some arbitrary value without indeterminacy. Using one of these

rules removes any need to consider policy interventions as the interest rate will already be at the

desired rate, but this approach does bring along some other problems. We will return to such

rules below, as one way to resolve any indeterminacy issues.
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Equation (1) can be solved using the formula (see Blanchard and Kahn (1980)):

xt D �M�1
22 M21zt�1 � M

�1
22 3

�1
u M2G"t �

1X
iD0
M�1
22 3

�i�1
u M2B� tCi

D Nzt�1 C P"t C
1X
iD0
L i� tCi (3)

when A is diagonalised such that MA D 3M , where M D

24M1
M2

35 D
24M11 M12
M21 M22

35. 3u is a
diagonal matrix comprising of the unstable roots of A, N D �M�1

22 M21, P D �M
�1
22 3

�1
u M2, L i

is de�ned as �M�1
22 3

�i�1
u M2B for all i � 0 and we assume that the dimension of xt matches the

number of unstable roots.2 The predetermined variables can be written in reduced form as:

zt D .A11 C A12N / zt�1 C .G1 C A12P/ "t C B1� t C
1X
iD0
A12L i� tCi

D eAzt�1 C eG"t C 1X
iD0

eBi� tCi (4)

where eA D A11 C A12N , eG D G1 C A12P with eB0 D B1 C A12L0 and eBi D A12L i for i > 0.
Note that L i ! 0 as i !1 and hence so does eBi .
Remember, one of the zt variables is assumed to be the nominal interest rate. What if we wished

to use a sequence of monetary policy shocks to set the interest rate to some value (or values) over

a given horizon of, say, n periods? (We assume a zero value for target interest rates with no loss

of generality.)

We can write (4) for a particular value of n, say 4, as:2666664
I 0 0 0

�eA I 0 0

0 �eA I 0

0 0 �eA I

3777775

2666664
z1
z2
z3
z4

3777775 D
2666664
eB1 eB2 eB3 eB4
0 eB1 eB2 eB3
0 0 eB1 eB2
0 0 0 eB1

3777775

2666664
�1

�2

�3

�4

3777775C
2666664
eA
0

0

0

3777775 z0 C
2666664
eG
0

0

0

3777775 "0 (5)

where we also assume that we have m D 4 policy interventions at our disposal. Inverting the

left-hand side and multiplying all the terms on the right gives:

z D 4� C8z0 C 0"0 (6)

2In Appendix B we describe the computational approach we use. In general eigenvalue decompositions should be avoided where
possible for numerical reasons, and a Schur decomposition is used in practice with no consequences.
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where:

4 D

2664
eB1 eB2 eB3 eB4eAeB1 eAeB2 C B1 eAeB3 C eB2 eAeB4 C eB3eA2eB1 eA2eB2 C eAB1 eA2eB3 C eAeB2 C eB1 eA2eB4 C eAeB3 C eB2eA3eB1 eA3eB2 C eA2eB1 eA3eB3 C eA2eB2 C eAeB1 eA3eB4 C eA2eB3 C eAeB2 C eB1

3775

8 D

2664
eAeA2eA3eA4
3775 , 0 D

2664
eGeAeGeA2eGeA3eG
3775 , z D

2664
z1
z2
z3
z4

3775 and � D
2664
�1
�2
�3
�4

3775

If we further de�ne a selector matrix � such that �z D �

2666664
z1
z2
z3
z4

3777775 D
2666664
i1
i2
i3
i4

3777775 D i , then using the selector
matrix and denoting OX D �X we can write:

i D O4� C b8z0 C O0"0. (7)

The optimal value of � for m � n minimises i 0i . This is:

� D �
�
O40 O4

��1
O40
�b8z0 C O0"0

�
(8)

or more simply:

� D � O4�1
�b8z0 C O0"0

�
(9)

to solve it exactly when m D n and there are as many shocks as periods of `zero' interest rates, as

in (5). This also indicates that we now have a condition for when the solution is unique: if we use

n policy shocks to set interest rates on an arbitrary desired path (in this case zero) for n periods

then this solution is unique as long as O4 is non-singular. This is the exercise conducted in Laséen

and Svensson (2011) for example.

Uniqueness is unequivocal. (7) de�nes the set of values that can solve the problem, and (9) the

solution. If we look at the structure of O4 we would probably expect it to be non-singular for very

long �xed-rate horizons: many models will never become `indeterminate'.

A further advantage to this set up is that it enables us to easily derive the Leeper and Zha (2003)

modest interventions solution. This amounts to agents in the model assuming Bi D 0 for all
Pi > 1 for every period of the simulation. The necessary shocks for this can be calculated using
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the above formulae with this imposed, ie instead of (6) use:2666664
z1
z2
z3
z4

3777775 D
2666664
eB1 0 0 0eAeB1 B1 0 0eA2eB1 eAB1 eB1 0eA3eB1 eA2eB1 eAeB1 eB1

3777775

2666664
�1

�2

�3

�4

3777775C
2666664
eAeA2eA3eA4

3777775 z0 C
2666664
eGeAeGeA2eGeA3eG

3777775 "0 (10)

Any model simulation must then be solved under the same assumptions, but actually this

amounts to a standard simulation where all future shocks are simply ignored despite the fact that

we already know what they are.

A further possibility is one considered (and indeed recommended) by Laséen and Svensson

(2011), where the real rather than the nominal interest rate is �xed. Then instead of using a

selector matrix to isolate the nominal rate we use one that selects the included equation for the

real rate, rt , which we denote r D �r z, so then denoting OXr D �r X

�r D � O4
�1
r

�b8r z0 C O0r"0
�

(11)

is the path of anticipated shocks required to �x real interest rates.3

All of these solutions are potentially unique: there may be some models for which the relevant O4

is singular over some policy-relevant horizon, but not for the examples we investigate in this

paper.4 We now turn to what these approaches imply for a particular model, which allows us to

replicate Leeper and Zha (2003) and Laséen and Svensson (2011) using our method.

2.1 Application 1

We apply these solutions to the simplest entirely forward-looking New Keynesian model (for

details see Galí (2008)):

yt D yetC1 � �
�1rt (12)

� t D ��
e
tC1 C � yt C gt (13)

rt D it � � etC1 (14)

gt D �gt�1 C "t (15)

3This now becomes a Type 2 �x. See Appendix A.
4For example, the model used in the next section with �xed interest rates for 80 periods (for the calibration this implies 20 years) gives a
unique answer.
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Chart 1: Canonical New Keynesian model closed with Taylor rule; no policy shocks; unit
cost-push shock
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where (12) is the dynamic IS curve, (13) the Phillips curve, (14) the Fisher de�nition of the real

interest rate and (15) de�nes a persistent cost-push shock. The parameters of the model can be

micro-founded in the usual way, with 0 < � � 1 and �; � > 0. In what follows, the shock "t is

taken to be an unforecastable, mean-zero disturbance term. Model parameters used in the

simulations are � D 0:99, � D 1, � D 0:05 and � D 0:8. We use the policy parameters of

� D 1:5, � D 0:5 and 
 D 0:8 which are representative of those often employed. All of the

parameters of the model and policy rule have been varied considerably as a robustness check

with no impact on the qualitative conclusions obtained.

This model is initially closed by appending (2). We assume a unit shock for "0 and simulate the

model with various values of � t for the �rst n periods. With no policy shocks the model

responses are as shown in Chart 1.

The responses are familiar: output falls and in�ation rises, with nominal interest rates rising by

less than in�ation in the short run due to the smoothing term. Interest rates then rise for the �rst

few periods before falling back as in�ation and output both converge back to zero. The output

gap follows a similar but opposite sign path, reaching its lowest level in the third period after the

shock. By the end of the �ve-year simulation horizon the responses have all but smoothly died

away. Policy smoothing plays an important role here, as without it all variables jump to their
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Chart 2: Canonical New Keynesian model; unit cost-push shock; n policy shocks
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maximum deviations immediately and converge back to base at the same rate, �, as the shock.

Now what happens if we calculate an anticipated time series of shocks that places it D 0 over

some initial interval? In Chart 2 we plot the result of applying the formula (9) to the model over

an initial interval of up to n periods, for n ranging from one to thirteen. At no point is the matrix
O4 singular. The top left panel shows the response of interest rates, with the �xed period followed

by a jumping-up of rates by successively smaller amounts as the horizon lengthens. The bottom

right panel shows the shocks required to achieve this. The policy interventions start small and get

progressively larger (the lower bound of the graph in the panel shows the thirteen-period

intervention and a lone circle top left the single period one).

The results are more than a little alarming. Over even quite modest horizons of �ve to six

periods, the jump in both in�ation and output is positive and very large. The results are

essentially nonsense: whilst the equations of the model all hold, the jumps in output and in�ation

are implausibly large by a factor of �ve to ten and of less-than-intuitive sign. Interest rates, by

contrast, never get far from zero even after the Taylor rule on its own `kicks in', as the other

variables rapidly get back close to base.
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Of course the moves in in�ation and output do make sense: along the path the growth in output

needs to be minus the in�ation rate, as the IS curve with zero interest rates implies �1yt D �� t .

If in�ation increases in response to the shock (which might be expected with �xed nominal

interest rates) then output must also jump up for this to hold so future growth rates can be

negative.

To the casual observer the model might appear indeterminate, the responses seem so extreme;

perhaps it is simply one of many solutions that has been selected, and the one selected is

unsatisfactory. But we cannot select another as we have established uniqueness.5 What appears

to be a perfectly sensible future monetary policy rule goes along with extreme variation in the

immediate simulation response.

What should we make of this? It seems that uniqueness is not necessarily a virtue; good policy in

the future goes along with disproportionate volatility in the short run. A policy rule that gives

good, intuitive responses without �xing the interest rate in the initial periods can be completely

the opposite with quite a short period of �xed rates.

If indeterminacy is not an issue, the simulation responses would seem to rule out any `usable'

solution to the �nite horizon problem. Indeed, this is the conclusion reached by Laséen and

Svensson (2011), who suggest instead that �xing the real interest rate path should be used for all

but the shortest horizons. In their example models, �xed real interest rate simulations seem less

prone to such problems. In Chart 3 we show the responses for our model with �xed real rates.

These look much more sensible, but have two drawbacks. First, they now imply quite large

nominal interest rate movements (the negative of the expected in�ation rate), which was

something the procedure was intended to avoid. Second, output dynamics are now governed by

unit root behaviour because with zero real rates yt D yetC1 from (12). Consequently, yt is �at until

real rates move, and for a long �xed real rate horizon stay quite close to zero. The path of the

policy interventions, � t , is very similar for every horizon, and is just truncated when the �x stops.

Finally, turning to the Leeper-Zha method we obtain Chart 4. If interest rates are �xed for

5We do have an extra `degree of freedom' as after the �xed-rate period the Taylor rule takes over. It could be that the responses are very
sensitive to the rule. In fact, changing it changes the responses by a little, although very unconventional terminal rules can make this
more marked.
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Chart 3: Canonical New Keynesian model; �xed real interest rate; unit cost-push shock
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thirteen periods as before, the resulting simulation is just the envelope of the plotted responses.

This seems very counterintuitive. The promised interest rate increase is suf�cient to bring

in�ation down as effectively as the Taylor rule proper, but the actual (much lower) real interest

rate stimulates activity. This leads to a rather incredible pro�le for output, supported by a

strongly autocorrelated sequence of unanticipated shocks, which for every horizon now lie on top

of each other in the graph. This re�ects that by contrast to anticipated shocks, all shocks up to the

�xed-rate horizon are unaffected by the horizon length. This simulation is dif�cult to support as

one where modest interventions are being used; the responses are dominated by the simulation

procedure itself.

These simulations are for one model with one calibration, and it may, of course, be that it

generates extreme results when other models and calibrations do not. However, we have found

this to be very typical for this particular model. We �nd that varying the calibration has little

qualitative effect, and the results are consistent with the �ndings of Laséen and Svensson (2011)

(and indeed Galí (2011)), although perhaps a little more pessimistic.

We require another approach. We know that models with permanently �xed nominal interest
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Chart 4: Canonical New Keynesian model; �xed nominal interest rate using Leeper-Zha;
unit cost-push shock
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rates are indeterminate. Such models can be made to always have sensible simulation properties

by use of an appropriate selection criterion, as in Lubik and Schorfheide (2004). Can we �nd a

similar `�xed interest rate' solution that yields predictable answers in the sense that they are

similar to the usual responses, and essentially replicate the results that we would expect for

indeterminate models?6 It turns out that we can. We suggest two possible approaches to

designing `regimes' which essentially generate indeterminacy under partially �xed interest rates,

either using additional policy interventions or using a time-varying policy rule. First, and in the

next section, we give ourselves an `extra' shock.

3 Fixed rates for n periods using n C 1 shocks

What, then, can we do to restore a greater degree of predictability to the simulation responses

with anticipated shocks? We suggest two possible approaches, but they will generate the same

result in the end. The �rst of these is to augment the problem with an explicit target for one of the

jump variables, the second to use a time-varying policy rule.

6We have already seen that unit root behaviour seems tied down by the real interest rate simulations.
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Before we describe these two different ways of recovering more normal behaviour, we should

emphasise it is at the expense of returning to something akin to a `conventionally' indeterminate

model. This implies that there are in�nitely many rational solutions to the model that cannot be

distinguished between on stability grounds alone: the Taylor principle is no longer suf�cient.

In models with a permanently �xed nominal interest rate this is a familiar property. In practice

this means that we can select a solution by, say, arbitrarily either choosing an initial value for one

of the jump variables or setting the trade-off between in�ation and output in the �rst period.

Lubik and Schorfheide (2004) do the latter, and choose the trade-off that most closely

approximates a Taylor rule-based alternative. (As we show below, in our framework any such

additional rule is simple to incorporate.) Once we have done this, then the solution is unique. But

we must specify something other than asymptotic stability to determine the solution, the initial

condition for (a combination of) some jump variable(s).

We did not need to concern ourselves with this before. As we have seen, if the interest rate is

�xed for only n periods then the solution is unique given the non-singularity condition implied

by (9) and the use of n policy shocks. However, we did not like what that implied. Instead we

treat the model as if it were indeterminate, so we need to select some equilibrium. To do this we

pick an initial value for a jump variable as well as set it to zero, and use a similar non-singularity

condition that guarantees that we can satisfy these n C 1 conditions by using n C 1 expected

shocks.7

We outline the procedure by setting up a representative problem. Say we wish to choose an initial

value of the j th jump variable, x j0 . We can use the j th row of (3) to write it as a function of

variables known at time 0. Modify (6) to include x j0 , written:

7This is now a multivariate version of a Type 2 �x.
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where O� j now selects both the equations for it , t D 1; 2; 3 and the j th jump variable.8 Written

this way, where we have dropped i4, we have as many targets,
h
x j0 i1 i2 i3

i0
, as instrumentsh

�1 �2 �3 �4

i0
.9 We now have a way of �xing the interest rate for n periods whilst at the

same time selecting an initial value for one of the jump variables.

3.1 Application 1 revisited

So what does this imply for model simulation responses? In Chart 5 we choose � 0 D 0, and now

vary the number of shocks (n C 1) from two to thirteen, �xing the interest rate for one to twelve

periods respectively. In each case this should �x the interest rate for n periods and set �0 D 0.

Looking at the results (and despite achieving all our targets) �rst impressions are not good.

Output collapses because in�ation is forced negative and growth must therefore be positive; the

results look as unusable as before. However, on the good side (and as we might expect), the

solution now homes in on a long-horizon equilibrium, rather than exploding. This is the in�nite

horizon solution that would be obtained from the indeterminate model starting at � 0 D 0 (a result

we establish later). The �nite horizon solution is unique; our chosen initial condition and n

periods of �xed interest rates are determined by simple algebra. The policy interventions now

follow a path that is very similar for every period except for the shock in period n C 1, where

there is a large jump up every time.

However, if we choose a different initial jump for �0� or for y0�we obtain a different

response, again uniquely. In Chart 6 we choose the value of y0 D 0 instead, and this looks much

better with qualitatively acceptable simulation results. Again it homes in on the steady-state

response, that which obtains for �xing the interest rate for all time and with the imposed jump in

8Targeting arbitrary values for the initial jump is a simple extension, as indeed is targeting linear combinations, which we will use later.
9Alternatively, we can keep the n C 1 targets and apply the least squares solution (8). There is now a question of a trade-off between the
interest rate versus the other target. A weighted least squares approach could be usefully adopted.
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Chart 5: Canonical New Keynesian model; �xed nominal interest rates; � 0 D 0; unit cost-
push shock
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y0. This is happening for all the early responses by about a horizon of ten periods of �xed interest

rates. Rationally anticipating what follows in the paper, we should now be con�dent that there is

no indeterminacy for the model solved this way. Even after 120 periods O4 remains non-singular.

Clearly for this model, the n C 1 periods needed for the n C 1 targets to `home in' on the same

solution at time t D 0 is around the maximum of the horizon we use for our simulations. Past

this, the �rst six or eight periods are qualitatively the same. The policy shocks are qualitatively as

before, with a very similar path up to period n with a marked jump up for the period n C 1

intervention.10

We noted above that we can choose a combination rather than a �xed value of a jump variable. In

Chart 7 we choose the value of � y0 D �� 0. (Why will become clear in the next section.) As

� D 1 this implies that the jump in y0 should be equal but opposite in sign to the jump in �0.

This is apparent in the graphs, and replicates the sign of the impact effect of the shock when the

model was closed by a Taylor rule (compare Charts 1 and 7).

10If we had used only n policy shocks to �x the interest rate for n periods and pick an initial value for one of the jump variables then
although this cannot be satis�ed (if it were our uniqueness condition would be violated) this rapidly starts to look like the previous
solution for most of the simulation period as we extend n. Simulations for this case are not shown but can be supplied on request.
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Chart 6: Canonical New Keynesian model; �xed nominal interest rates; y0 D 0; unit cost-
push shock
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Chart 7: Canonical New Keynesian model; �xed nominal interest rates; � y0 D �� 0; unit
cost-push shock
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We close this section with the following observation. If we use n C 1 policy shocks we can

generate in�nitely many `well-behaved' solutions for the endogenous variables and �x the

nominal interest rate for n periods. We can thus replicate the same indeterminate behaviour that

characterises permanently �xed interest rates by the addition of a single extra policy shock. This

is as it should be. We have translated an n-instrument, n-target non-singular problem into an

.n C 1/-dimensional non-singular problem, where we are free to choose the .n C 1/th dimension.

4 Fixed rates for n periods using a �xed-rate rule for n C 1 periods

Instead of working from a determinate solution and �nding how to replicate an indeterminate

one, we now turn to doing the same the other way round. We begin from effective indeterminacy

and replicate the results we have just obtained by �xing the interest rate over a �nite horizon. It

has been shown by Galí (2011, 2009) that there exist policy rules that generate �xed interest rates

over an in�nite horizon, but there are many of them. We will take these rules (actually a

generalisation of them) and use them for a �nite period before switching back to more

conventional policy.

We sketch how the Galí (2011, 2009) rules work for an in�nite horizon. To do this we need to

understand the structure of any particular model, so we illustrate how to do this by example

rather than a general algebraic approach. Take the following somewhat unconventional rule:

it D � .rt�1 C � t/ (17)

We can show easily that this yields a zero interest rate for all time when used to close our model.

Equation (17) implies that the expected interest rate next period is i etC1 D �
�
rt C � etC1

�
. From

equation (14) this implies that i etC1 D �it . If j�j > 1 this is explosive unless it D 0, 8t . It is easy

to show that � is also an eigenvalue of the model11 so all that is required to ensure determinacy

and a zero interest rate is to choose an appropriate unstable value for �. In order to understand

what follows and why this rule is not a unique way of �xing nominal interest rates, we need to

see what the rule implies for the behaviour of in�ation and the output gap. What does (17) imply

when the model is perturbed away from equilibrium? As then r�1 D 0 it must be that in the face

of any shock 0 D � .r�1 C �0/ implies �0 D 0. This immediately means we should be able to

11In fact the implied equation
�
rt C �etC1

�
D � .rt�1 C � t / de�nes both an eigenvalue and an eigenvector of the model. These jointly

de�ne it as a canonical variable that must jump to zero for stability.
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compare the results of this experiment directly with Chart 5 where we chose the initial value for

in�ation as zero.

But there are many more rules with similar �xed interest rate properties. Consider instead the

policy rule:

it D � .�1yt C � t/ (18)

Leading this and taking expectations now implies i etC1 D �
�
�1yetC1 C � etC1

�
which together with

(12) again implies i etC1 D �it . However now 0 D � .�1y0 C � 0/, so assuming y�1 D 0, the

implies � y0 D ��0, an initial period trade-off between output losses (gains) and in�ation

(disin�ation). Given these proportions, we should expect to be be able to compare these results

with those in Chart 7.

These two rules are investigated in Galí (2011); we now derive another one with similar

properties. Take (18) and substitute out for � t using (13) lagged one period, ie

� t D �
�1.� t�1 � � yt�1 � gt�1/. This gives the rule:

it D �
�
�1yt C ��1.� t�1 � � yt�1 � gt�1/

�
: (19)

This can easily be shown to again imply i etC1 D �it (substitute the Phillips curve back in) but,

following the same argument as before with all lagged values equal to zero, it must be that

y0 D 0, as we imposed in Chart 6.

Our analysis already extends Galí (2011) both by adding another candidate rule but more

signi�cantly by recognising that (17), (18) and (19) have predictably different implications for

the initial values of y0 and � 0. In what follows we generalise his approach in three further

directions. First, we further extend the number of possible �xed rate rules from three to in�nity.

Second, we develop a targeting rule approach as an alternative to the instrument rules above.

Third, we show how to apply these rules to the �nite horizon problem (and, indeed, why we need

the targeting-rule approach).

Beginning with the last of these, an obvious approach would be to take one of the �xed rate rules

just derived and combine it with a Taylor rule. Combining (17) and (2) would yield, for example,

the following time-varying linear rule:

it D .1� Dk/ � .rt�1 C � t/C Dk .
 it�1 C .1� 
 /.�� t C � yt// (20)
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where Dk takes the value 0 before some given switch point k and 1 after. But this would not �x

the interest rate at zero. As itC1 D �it in the initial periods, the interest rate must follow an

unstable path until the Taylor rule takes over. Effectively the model follows the rule:

it D .1� Dk/ �it�1 C Dk .
 it�1 C .1� 
 /.�� t C � yt//

from the initial condition �0 D 0, assuming r�1 D 0. The predicted path for interest rates must

be such that it D ��1itC1 to join up with the path to equilibrium implied by the Taylor rule.12

Choosing a large value for � is an approximate solution, but there is a better one. We can instead

use a two-part rule which is part instrument rule and part targeting rule13 which exactly implies

�xed rates. To do this we �rst derive an appropriate targeting rule to replace the instrument rule.

In the limit, it must be that:

lim
�!1

it D � .rt�1 C � t/) 0 D rt�1 C � t (21)

so the instrument rule (17) is replaced by the targeting rule 0 D rt�1 C � t . If the model is closed

by this targeting rule in every period would have an in�nite eigenvalue, consistent with

�!1.14

Now we derive a two-part rule to replace (20). This uses (21) for the �rst n C 1 periods (we

discuss why n C 1 in a moment) followed by the Taylor rule for all subsequent periods. The

model is therefore closed by a mixture of a targeting and an instrument rule such that:

0 D rt�1 C � t for t � n C 1 (22)a

it D 
 it�1 C .1� 
 /.�� t C � yt/ for t > n C 1. (22)b

Notice that (22)a implies for periods s D 1; : : : ; n that the equations:

0 D rs C � sC1 (23)a

is D rs C � sC1 (23)b

ie the targeting rule and the Fisher identity, must simultaneously hold. This implies that is D 0

for s D 0; : : : ; n � 1. For s D 0 all variables are predetermined except for � 0. This implies

� 0 D 0 if the simulation begins from equilibrium with r�1 D i�1 D 0. So the addition of n C 1

equations enforces the n C 1 restrictions is D 0; s D 0; : : : ; n � 1 and �0 D 0.

12The mechanism by which the rules join up is reminiscent of the analysis (in a different context) of Wilson (1979).
13For a discussion of instrument versus targeting rules see Rudebusch and Svensson (1999).
14This also re�ects the well-known property of targeting rules that they typically imply an in�nite eigenvalue.
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If instead we consider the pair of equations:

0 D �.ysC1 � ys/C � sC1 (24)a

is D �.ysC1 � ys/C � sC1 (24)b

where now a targeting rule and the IS curve should simultaneously hold. Then, as before, this

implies that is D 0 for s D 0; : : : ; n � 1. But now beginning from equilibrium (so that

y�1 D i�1 D 0) this implies � y0 D �� 0. Now the addition of n C 1 equations enforces the n C 1

restrictions is D 0; s D 0; : : : ; n � 1 and � y0 C � 0 D 0.

One more targeting rule replicates (19), by substituting out for � sC1 in (24)a and (24)b:

0 D �.ysC1 � ys/C ��1� s � ��1� ys (25)a

is D �.ysC1 � ys/C ��1� s � ��1� ys: (25)b

As before, is D 0 for s D 0; : : : ; n � 1 but it should be obvious from (25)a that now y0 D 0 for

y�1 D ��1 D 0.

Just as substituting out for a variable using some other equation of the model, it must be that

adding in something that is always zero can have no effect either, so now augment (24)a and

(24)b:

0 D �.ysC1 � ys/C � sC1 � .1C � C ��/
�
� sC1 � �

�1� s � �
�1� ys � gs

�
(26)a

is D �.ysC1 � ys/C � sC1 � .1C � C ��/
�
� sC1 � �

�1� s � �
�1� ys � gs

�
(26)b

where .1C � C ��/
�
� sC1 � �

�1� s � �
�1� ys � gs

�
is added in. The last bracketed term is the

Phillips curve in implicit form, so is always zero. The term .1C � C ��/ will allow us to generate

any trade-off between initial in�ation and output by choice of �. Collecting terms this gives:

0 D � .ysC1 � .1C �/� sC1/C ��1.1C � C ��/� s C
�
��1.1C � C ��/� � �

�
ys (27)a

is D � .ysC1 � .1C �/� sC1/C ��1.1C � C ��/� s C
�
��1.1C � C ��/� � �

�
ys: (27)b

Written this way we now have a rule that can be used to generate an in�nity of equilibria. For any

�nite15 � the implication of this rule is that (of course) is D 0 for s D 0; : : : ; n � 1 and that:

y0 D .1C �/ �0: (28)

15Note that too large a value would not work, as this would effectively remove the �rst two terms in (26)a so that the targeting rule
element is lost that implies �xed nominal interest rates.
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We can consider the implied values for y0 and �0 for any choice of �.

For example (and always assuming lagged values are zero):

� � D �1: This implies y0 D 0 as the equation straightforwardly reduces to (25)a.

� � D �1C�
�
: This reduces (27)a to (24)a, implying � y0 D �� 0.

� � D �2: This implies y0 D �� 0, so in�ation and output are exactly traded off in the �rst

period, whatever the value of � .

� � D 0: This implies y0 D � 0. This implies an equal jump in in�ation and the output gap.

� j�j � 0: A large � (either positive or negative) implies � 0 D 1
1C� y0 � 0; but notice that (27)a

does not imply (21) for large j�j. It does still imply is D 0 for s D 0; : : : ; n � 1 and � 0 � 0,

almost the same as would happen by implementing the targeting rule (23)a, and is an

equivalent limiting case.

Varying � therefore generates the in�nity of solutions consistent with indeterminacy. Increasing

(decreasing) it will make y0 larger (smaller) in absolute terms than �0. Note that the sign of

responses is not implied by (28), merely the proportions.16 Effectively � indexes all of the

possible equilibria.

4.1 Equivalence with the n and n C 1 shock approaches

As we established above, adopting the targeting rule (27)a for n C 1 periods �xes the nominal

interest rate for n periods plus an additional initial condition determined by �. We deliberately

chose the initial conditions for � 0 and y0 imposed by n C 1 shocks in Section 3 to re�ect the

initial conditions implied by three speci�c rules: Chart 5 and rule (22)a, Chart 6 and rule (25)a

and Chart 7 and rule (24)a.

16There are actually discontinuities in the responses of the model in Application 1. For the cost-push shock, as � is increases y0 rises
until a point when y0 and �0 suddenly become very negative, but then rise again until �0 � 0. Such discontinuities can be predicted
from the implied identical behaviour as � becomes either very positive or very negative.
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We now have a full toolkit to replicate any simulation that we obtain with �xed interest rates over

n periods either by choosing n C 1 shocks or by choosing an appropriate two-part rule. Actually,

we can replicate the n anticipated shock results in four different ways. These are:

1. Direct application of the optimal `n shocks' formula (9).

2. The trivial application of the optimal `n C 1 shocks' formula (9) based on (16), now choosing

the shocks to replicate the jump generated by the n shock simulation, which of course will be

the same n shocks and an extra zero.

3. Adding n equations of the form is D 0 (ie a Type 1 �x).

4. Adding n C 1 equations of the form (27)a and choosing � to replicate the jump generated by

the n shock simulation.

Of course, for the second and fourth of these we need to know what the jump we wish to

replicate is.17 Looked at in this way the n shock result is simply a speci�c n C 1 shock problem

with a particular initial condition imposed. (We should not forget we know that this problem has

a unique solution.) Equally, we can view the �rst and third methods (essentially the n anticipated

shock case) as simply generating one of the in�nity of solutions available.

We have now established that rather than calculate n C 1 policy shocks we can simply use an

appropriate time-varying rule and, or course, vice versa. We could, for example, use the

�xed-rate rule to calculate the paths of the endogenous variables and then calculate the implicit

shocks using the standard policy rule.

That we can �x interest rates in an in�nity of different ways, each associated with a different path

for output and in�ation is just the indeterminacy problem, only in another guise. We are simply

selecting a missing initial condition, just as we did explicitly when we allowed ourselves n C 1

shocks. For the in�nite horizon problem, the implication is that using any of (17), (18) or (19)

does not solve the indeterminacy problem despite the fact that each of them is a determinate rule.

It simply relocates it to the choice of � when the �xed-rate rule (27)a is used in every period. For

�nite horizon problems, some choice of � maps directly to every x j0 in (16).

17For example, in Chart 2 by �xing nominal rates for six periods with six shocks generates �0 D 6:45 and y0 D 14:86. This would imply
� D 14:86

6:45 � 1 D 1:3, equivalent to setting 0 D y0 � 2:3�0.
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4.2 Application 1 revisited with rules

For completeness we replicate our previous simulation responses with rules rather than

anticipated shocks. In Chart 8 we plot four graphs by way of comparison. In every case the

solution uses a stacked Newton approach, rather than the analytic Blanchard-Kahn one.18 The

simulation is as before, but we only depict the case where the rule changes at n D 13. In the top

left panel, the standard Taylor-type response using (2) is plotted, and in the top right panel the

response when the model is closed using the rule (17). As we noted above, this is a fairly extreme

experiment, as it implies that in�ation must start at zero which exaggerates the downward push

on output. When we use a mixture of the two rules when we revert to the Taylor rule after

thirteen periods, we obtain the bottom left panel. Thirteen periods is clearly enough for the

results to essentially mimic the `zero rule' results, except for the blip when the Taylor rule takes

over. In the bottom right panel, the model with the Taylor rule is solved using stacked Newton (as

in the top left panel) but this time including anticipated shocks that we obtained analytically by

solving the model using the approach outlined in Section 2. This is identical to the two-part

solution depicted in the bottom left panel.

If we use a different policy rule to �x the interest rate we can get a completely different response.

For example, it is a simple matter to replicate Chart 6 using the correct time-varying rule, ie (25)a

and (25)b or Chart 7 using (24)a and (24)b. In Chart 9 we plot the responses for the three

different rules that imply these different initial conditions for the jump variables. They replicate

exactly the results we had before.

Thus we replicate the indeterminacy of the model associated with the in�nite horizon �xed

nominal interest rate problem at any �nite horizon. We replace the unique but mostly

unpredictable results associated with �xed nominal rates with an in�nity of solutions, some of

which are much more predictably behaved. The �nite horizon solution becomes a problem of

equilibrium selection.

18The models were all simulated for 120 periods, considerably further than the simulation horizon by which time all responses have died
away, with the �nal 99 periods dropped from the graphs.
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Chart 8: Canonical New Keynesian model; stacked Newton solutions; unit cost-push shock
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Chart 9: Canonical New Keynesian model, stacked Newton solutions of two-part rules
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Chart 10: Lindé model; Taylor rule with smoothing in all periods; unit cost-push shock
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5 Application 2

We now investigate the different approaches on a second model; it could be that the chosen

method does not matter too much for models with predetermined state variables. As a check (and

because it reveals some interesting further features of the solutions) we repeat our analysis with

one of the models used by Laséen and Svensson (2011), which takes parameters from Lindé

(2005). It is a modi�cation of the canonical model above with a backwards/forwards

speci�cation for both the IS and Phillips curves. These are:

yt D 0:425yetC1 C .1� 0:425/yt�1 � 0:156rt (29)

� t D 0:457� etC1 C .1� 0:457/� t�1 C 0:048yt C 0:05gt (30)

As before, the model comprises of �ve equations, which are now the IS curve (29), the Phillips

curve (30), the autoregressive cost shock (15), the Fisher identity (14) and a Taylor-type policy

rule (2).

The model subject to the same cost-push shock as before exhibits the responses in Chart 10.19

These are, of course, somewhat similar to our earlier example, but now exhibit strong cyclicality.

Whilst output is predominantly below base, it is not always (indeed not on impact). Similarly,

19Laséen and Svensson (2011) investigate the impact of changing the target interest rate rather than the response to an exogenous shock.
This is simple to replicate using our analysis which can be easily extended to include a target nominal rate. We are able to compare our
results to the `Taylor rule in every period' alternative which we will also use in equilibrium selection later.
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in�ation is predominantly positive, but again goes below base. Both start quite close to zero, as

the impact effects are considerably smaller than the maximum. Interest rates follow a similar

path to in�ation.

We report �ve �xed-rate policy experiments with this model. They are:

1. Fixed nominal interest rates as in Laséen-Svensson.

2. Fixed real interest rates following Laséen-Svensson's alternative suggestion.

3. Fixed nominal interest rates using Leeper-Zha.

4. Fixed nominal interest rates with the initial values of output and in�ation constrained to be

� 0 D 0:

5. Fixed nominal interest rates with the initial values of output and in�ation constrained to be

� 0 D �
0:425
0:156 y0:

We use three-dimensional graphs to better explain the dynamics, as the cycles make

two-dimensional graphs rather hard to read. We use the same simulation horizon and �xed

interest rate intervals as before. The �rst experiment (Chart 11) illustrates nicely the problems

that Laséen and Svensson found; changing the �xed-rate horizon from four to �ve periods, the

interest rate jump in the �rst free quarter goes from positive to negative. This is manifested as a

red `cliff' in Chart 11. Then if the period of �xity is from seven to eleven periods, interest rates

� and all the other variables � barely move, before suddenly becoming active again if the �xity

period exceeds that, with another sign change. Output and in�ation exhibit wild cycles (including

over the period of �xed interest rates) or almost no movement at all with small variations in the

number of periods of �xed interest rates.

If we instead �x the real interest rate (Chart 12) everything is much better behaved, but perhaps

no more satisfactory. Real rates are �at, but so is output. This should not be much of a surprise;

for the �rst n periods the IS curve is now:

yt D 0:425yetC1 C .1� 0:425/yt�1.

For long horizons, the jump in y0 turns out to be zero because now we have to satisfy a

second-order difference equation that gives a stationary value, unlike the �rst-order one we had
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Chart 11: Lindé model; �xed nominal interest rates with n shocks; unit cost-push shock
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Chart 12: Lindé model; �xed real interest rates; unit cost-push shock

24
681012

0
10

20

­0.1
0

0.1

r

24
681012

0
10

20

­0.4
­0.2

0

y

24
681012

0
10

20

0
0.2
0.4
0.6

π

24
681012

0
10

20

­0.1
0

0.1
0.2
0.3

ν

Working Paper No. 454 May 2012 30



Chart 13: Lindé model; �xed nominal interest rates using Leeper-Zha; unit cost-push shock
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before. Responses are smooth and relatively small, but perhaps no more credible, if we compare

them with the Taylor rule.

Smoothness is also a property of the Leeper-Zha experiment (Chart 13). However, relatively little

happens to either in�ation or output until close to the end of the period of �xity, and both output

and in�ation are always positive whilst interest rates are �xed. The responses seem quite

counterintuitive and again are unsatisfactory.

In Chart 13 we �x nominal rates and choose the initial value of in�ation to be zero, ie we use rule

(22)a�(22)b or the calculated policy shocks as illustrated. Now the responses, whatever the �xed

interest rate horizon, are qualitatively similar to the Taylor rule ones in Chart 10. A major

difference is that in�ation immediately falls, whereas output dynamics are similar to the

unconstrained case. Once interest rates are free they now typically jump up.

If we instead constrain in�ation and output to be proportional to each other using the hybrid
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Chart 14: Lindé model; �xed nominal interest rates; �0 D 0; unit cost-push shock
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Chart 15: Lindé model; �xed nominal interest rates; y0 D �0:37�0; unit cost-push shock
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targeting/instrument rule:

0 D 0:425yt � yt�1 C .1� 0:425/yt�2 C 0:156� t for t � n C 1

it D 
 it�1 C .1� 
 /.�� t C � yt/ for t > n C 1

obtained from (29) so that yt D �0:156
0:425� t we get Chart 15. This is little different from �xing � 0

alone, and re�ects the small initial jump in both variables seen in Chart 10.

What are we to make of these simulations? They broadly con�rm the earlier picture; just �xed

nominal or indeed �xed real rates are dif�cult to sustain both conceptually and practically.

Simulations where we pick an initial condition are much more satisfactory from either a forecast

or policy analysis point of view, but they need some additional judgement to be applied.

6 Conclusions and implications for simulation design

The main message of this paper is that �xing nominal interest rates for a few periods by dropping

the monetary policy rule is often not a good idea. This is not because at some horizon models

become indeterminate, but mostly because just �xing it has unforeseen consequences.

Indeterminacy may `kick in', but at very long �xed-rate horizons, and model responses may be

effectively unusable a long way before this is reached. By contrast, we can make a virtue out of

indeterminacy and instead make any model behave as if it were indeterminate at these short

horizons. Properly done, this restores the intuition to the responses, but at the cost of introducing

a selection problem.

One of the innovations in this paper is showing how to do this, and to essentially replicate the

properties of a model with permanently �xed nominal interest rates. This can be achieved by

either using more shocks than periods to �x the interest rate or, conveniently, by using a properly

designed two-part rule. The drawback to this is that there is an in�nity of such solutions � many

seemingly well behaved � and some external mechanism needs to be used to choose between

them.

The appropriate equilibrium choice for a given simulation experiment is likely to vary, but for the

cost-push shock considered here we have a natural, relatively judgement-free, contender.

Following a similar approach to Lubik and Schorfheide (2004), we could choose from the
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Chart 16: Canonical New Keynesian model; y0 D �0:1�0; unit cost-push shock
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Chart 17: Lindé model; y0 D 0:5�0; unit cost-push shock
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indeterminate solutions by in some way mimicking the behaviour of the Taylor rule.20 For our

canonical New Keynesian model, the initial trade-off between output and in�ation that the Taylor

rule implies is y0 � �0:1�0 (Chart 1). In Chart 16 we impose this for all of the �xed-rate

horizons. After a very few periods where there is some (but not much) variation in simulation

behaviour; the qualitative responses are the same. For our modi�ed New Keynesian model, the

trade-off between output and in�ation shown in Chart 10 is y0 � 0:5� 0. In Chart 17 we

demonstrate an extraordinary degree of coherence across periods of �xity for this choice of �rst

period output-in�ation trade-off.

The experiment we have just conducted and the resolution suggested (replicating Taylor rule

behaviour) will not always be the solution to the equilibrium selection problem. Often this will

need to re�ect the reason for doing the �xing in the �rst place. This could imply that we would

wish to minimise the volatility of in�ation or output (or some other variable), or impose a

different trade-off between them. Throughout the paper we have argued that �xing interest rates

over a �nite horizon often results in model simulations that can be dif�cult to interpret and

heavily dependent on the way the �xed interest rates were achieved. Applying existing methods

all seem to have signi�cant drawbacks, often with counterintuitive results. The novel approach in

this paper transforms the model responses to ones which are better behaved but at the cost of

introducing the new problem of equilibrium selection.

20Indeed Galí (2011) goes as far as to describe the Taylor rule responses as the `actual' values, with the implied criticism that the �xed
rate simulations are unsatisfactory because they are different.
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Appendix A: Shocks, Type 1 and Type 2 �xes

In some conventional macroeconometic models there is a natural correspondence between

certain variables and a particular residual or shock, through an equation that is typically

normalised on that variable. A VAR, for example, is naturally set up this way, but even models

with concurrent simultaneity may have an obvious association. In our models the natural

correspondence is between the Taylor rule and the policy shocks. This, of course, is not

necessary in general, but for such models where it does `�xing' a variable at a given value is

often achieved in one of two ways. These are sometimes described, for example in Wallis,

Andrews, Bell, Fisher and Whitley (1985), as Type 1 and Type 2 �xes.

Consider for a moment static models without expectations. A Type 1 �x to achieve some desired

value of an endogenous variable just sets the residual in a particular equation equal to minus the

endogenous prediction in, say, the equation:

yt D xt� C "t (A1)

so whatever the value of xt , the residual is adjusted to achieve yt D y�t . In this paper, we treat the

desired value as zero, so "�t D �xt�. A Type 2 �x would instead manipulate xt so that for our

equation x�t D �
�1y�t . We then need to �x xt at x�t by an appropriate Type 1 �x as before, so the

`shock' to a second equation is effectively used. In practice, it is not necessary to do any

complicated calculation for a Type 1 �x, as the implied value of "t is most conveniently

calculated by `skipping' (A1) and setting yt D y�t directly, and then calculating "�t from:

"�t D y
�
t � xt� (A2)

using the endogenously calculated value of xt . This is only feasible for a Type 1 �x, where we

can identify the equation to skip.

For models with rational expectations, the assumed shocks in future periods matter, but for the

problem of �xing the nominal interest rate for n periods with n shocks the same logic holds, and

we can just skip the Taylor rule in periods 1 to n. The solution to equation (16) is probably best

described as a `multivariate Type 2 �x', which, of course, subsumes both Type 1 and Type 2 �xes.
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Appendix B: Note on computation

All reported calculations are in Matlab, and were checked in WinSolve for errors. Two solution

methods are used in Matlab to produce the results. The simple Blanchard-Kahn relationships (3)

and (4) are implemented using a real Schur decomposition for numerical stability. The optimal

interventions calculated both by solving the analytic expression (9) and setting up a direct

minimisation problem solved using the Matlab fminunc routine as an additional robustness

check. These all give the same answer.

The time-varying rule simulations are easiest to do using a stacked Newton approach (see

Armstrong, Black, Laxton and Rose (1998)) which for small enough models can be coded in a

few lines, and can take advantage of Matlab's sparse array handling. Two models with common

state variables are stacked together at the appropriate point to generate the time-varying rule.

These are easy to check against the other methods as it is apparent when they should produce the

same result. An appropriate stacked Newton solution was also used to calculate the analytic

coef�cients obtained from the Blanchard-Kahn solution as yet another cross-check. All results

for all directly comparable methods are identical with either three or four different methods used

for each simulation experiment.

Matlab codes for the two models and all solution methods reported are available from the author.
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