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Summary 
 
Policymakers have in the period since the crisis been discussing how to regulate banks in ways 
that reflect the potentially different contributions banks make to systemic risk in the financial 
system in the event of their failure. One aspect of how an individual bank’s failure could 
contribute to systemic risk could be defined in terms of whether its failure is considered to be 
pivotal in tipping the banking system from a state of stability to a state of instability.  Based on 
this idea, we develop an approach that can be used to calculate the marginal contributions of 
individual bank failures to systemic risk.   
 
The approach is based on a measure originally introduced by the mathematician and economist 
Lloyd Shapley.  The so-called Shapley value is a way of allocating the output produced by a 
group among its members in a way that reflects fairly their individual contributions.  In this 
paper we apply the Shapley value to the situation where the group is a set of banks that fail due 
to shocks to the values of their assets and the good they produce is in fact something bad – in 
this approach the bad is the failure of a set of banks tipping the system from a state of stability to 
one of instability. 
 
The framework requires two key inputs:  the values of banks’ exposures to different asset 
classes; and the levels of banks’ capital available to absorb losses on their asset holdings.  The 
banking system can be hit by a range of shocks, which are defined in terms of the extent to 
which they reduce the value of the different asset classes.  The shocks are assumed to occur with 
equal probability.  For each possible shock, banks can be lined up in the order that they would 
fail as a result of that shock.  Banks with asset portfolios weighted more towards the assets 
affected more by the shock, and/or have lower levels of capital, tend to be higher up the order of 
failure.  The pivotal bank is the one that, when it is added to the banks that fail before it, causes 
the value of the failed banks’ assets to move above a critical threshold value – this is defined as 
a systemic event.  The pivotal bank receives a score of one (and other banks receive a score of 
zero).  By taking an average of a bank’s score over the range of possible shocks we calculate a 
measure of a bank’s contribution to systemic risk.  We illustrate, using simple examples, how 
banks’ contributions depend on their asset portfolio compositions and their capital levels as well 
as on the calibration of the critical threshold that defines a systemic event. 
 
We outline several ways in which the framework could be extended to consider: different 
definitions of a systemic event; adjustments to the values of banks’ asset exposures to reflect the 
riskiness of those exposures; and the possibility of interbank contagion.  We conclude by 
identifying some possible key next steps and further extensions of the approach.  A key next 
step will be to apply the approach to bank data so that it could be used as a risk assessment tool.   
Since our approach applies to circumstances in which the system is in a state of instability, it 
would be natural to use our approach as part of a reverse stress-testing exercise.  
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1 Introduction 
 
Systemic risk in a banking system can arise when banks' losses tend to move together in 
response to shocks because of their common exposures to particular asset classes. A bank might 
be defined as contributing to systemic risk if its losses in response to shocks push losses for the 
system as a whole above a critical threshold. (1) The failure of such a bank is thus pivotal for the 
transition of the system from stability to instability – a situation in which a bank failure has 
system-wide consequences beyond the scope of the particular bank (e.g. asset fire sales, bank 
runs, and funding freezes).  The practical problem is how to assess the contributions of bank 
failures to systemic risk. In some cases the failure of a single bank may be enough to trigger a 
transition to instability in the system, while in other cases it may take multiple failures. Given 
that banks individually and/or collectively have the ability to create a crisis the question is, how 
do we assign individual responsibility for the associated risk? 
 
The problem has much in common with the question of how to allocate the total ‘value’ created 
by members of a group. In this case, however, the value generated by the group is something 
bad (a systemic event) rather than something good.  An intuitive and computationally pragmatic 
way to allocate gains or losses produced by a group is the Shapley value (Shapley (1953)). In 
this context, where we are interested in the losses that can be generated by various combinations 
of bank failures, the Shapley value averages over the marginal contributions of each individual 
failure to the (negative) value generated by each possible subgroup of failed banks. 
 
A special case of the Shapley value applies to situations where there are only two possible group 
outcomes. Shapley and Shubik (1954) developed their ‘power index’ as a measure of the power 
of a party in a coalitional bargaining game. In their context, the value of a coalition equals one if 
the members of the coalition control a majority of the votes, otherwise the value of the coalition 
is zero. A player's marginal contribution to a coalition is positive if and only if it is pivotal in 
turning an existing coalition from a losing one into a winning one. This paper contends that the 
power index is well suited to capturing contributions of bank failures to systemic risk. In this 
paper, a systemic event occurs if the combined share of all failed banks' assets exceeds a 
prescribed threshold value.  
 
The power index delivers, for each bank, the frequency with which its failure is pivotal in 
causing a systemic event.  But crucially, applying the power index on a standard (symmetric) 
basis would assume that all orderings of bank failures are equally likely. This is not true in 
practice. Rather, orderings depend on the compositions of banks' assets and their capital 
holdings. Some should even be ruled out as they are not economically possible (absent the 
possibility of an idiosyncratic shock to a bank like fraud). For example, for two banks with 
identical portfolios but different capital ratios, it should not be possible for the better capitalised 
bank to fail while the less well capitalised bank does not. Shapley (1977) provides us with a 
procedure for incorporating additional information about the probability distribution over 
orderings of bank failures into the computation of the power index. The resulting asymmetric 
indices that we calculate in this paper can be interpreted as the likelihood that the failure of each 

                                                 
(1) See Lehar (2005, Section 5.1). 
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particular bank will be pivotal in causing a systemic event, taking into account differences in 
bank balance sheets. 
 
Asymmetric power indices for a system of banks can be calculated by first defining banks' 
positions in an l-dimensional ‘leverage’ space, where l denotes the number of distinct asset 
classes. We choose to define positions in terms of leverage – asset exposures relative to capital – 
because the ordering of bank failures in response to a particular type of shock ought to depend 
not only on the sizes of banks’ exposures to that shock, but also on their ability to withstand it. 
In this paper, we consider a two-dimensional leverage space, although the model could be 
extended to more than two assets classes. Each bank is therefore represented as a point in a two-
dimensional Euclidean space with coordinates defined by the ratio of holdings of each asset 
class to capital. 
     
The ordering of bank failures is determined by random shocks to the value of assets. A 
particular shock is represented by a direction in the leverage space. That is, we do not consider 
the magnitude of shocks. Rather, all that matters is the type of shock; is it biased more towards 
one asset than the other? For each type of shock, there is an implied order in which banks would 
fail. This is based in part on the proximity of the asset position to the shock (banks with asset 
mixes that are similar to the shock fail first) and in part on the distance of the asset position from 
the origin (banks with high ratios of assets to capital fail first). These two aspects determine the 
overall ordering of bank failures. Given a probability distribution over shocks, we thus generate 
a probability distribution over different orderings of bank failures. This in turn is used to 
compute the power index for each bank.  Taking banks' asset mixes as exogenous and fixed, we 
explore the impact on power indices of changes to banks' capital, asset portfolios and the critical 
threshold that defines whether there is a systemic event.  
 
The power index of each bank equals its share of responsibility for the instability state as 
computed from an ex ante perspective, before the nature of the actual shock that causes the 
system to switch from a state of stability to instability is known.  If one were to compute the 
expected costs of being in the instability state and attribute to each bank its individual 
responsibility for this cost, then our measure of power indices could serve as a cost-allocation 
rule.  Many studies advocate the desirability of the Shapley value for this purpose (e.g. 
Littlechild and Thompson (1977)).  A theoretical justification in terms of bargaining theory is 
provided by Roth and Verrecchia (1979), who state that cost allocation determined by the 
Shapley value ‘is consistent with the objectives of fairness, equity, and neutrality suggested by 
accounting theory’ (page 296).  
 
Banks’ power indices could also be used as a risk assessment tool.  These indices identify which 
banks are most likely to be pivotal in moving the system into a state of financial instability and 
hence, they could be used as a reverse stress-testing tool to help identify scenarios of bank 
failures that could lead to systemic risk crystallising. (2)   
 

                                                 
(2) We thank Jamie McAndrews for drawing the analogy to reverse stress-testing. 
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The paper proceeds as follows. Section 2 reviews several existing approaches to calculating the 
contributions of banks’ distress to systemic risk based on the Shapley value concept. Section 3 
describes how the effect of bank failures on systemic risk is measured in this paper using the 
Shapley’s asymmetric power index. We compute power indices for a simple three-bank system 
and then illustrate the role of balance sheet strength and diversification using extreme examples. 
We also illustrate the impact on power indices of introducing extra banks into the system and 
discuss how the power of individual banks changes as we vary the critical threshold. Section 4 
presents some extensions of the approach.  Section 5 concludes.  
 
2 Literature 
 
Since the recent financial crisis, a number of approaches have been developed for assessing the 
effects individual bank failures have on systemic risk.  A number of these share a common basis 
in the Shapley value concept.(3)  Tarashev, Borio and Tsatsaronis (2010) were the first to 
demonstrate how the Shapley value concept can be used to measure banks' contributions to 
systemic risk. They derive results for two measures of systemic risk that can be applied to any 
subset of banks in the system: value-at-risk (VaR) and expected shortfall (ES).  The VaR 
approach defines the ‘worth’ of a collection of banks as the xth percentile of the subsystem loss 
distribution, while the ES approach looks at the expected value of these tail losses. Under their 
approach, a bank’s Shapley value is equal to the average change in VaR or ES for a subsystem 
that results from adding this bank to a smaller subsystem. Tarashev et al demonstrate their 
approach using numerical examples. Gauthier, Lehar and Souissi (2012) compute a Shapley 
value measure in the same way using data from the Canadian banking system. 
 
The effect that a bank failure has on systemic risk could depend on a bank’s interconnections 
with other banks in the system.  Drehmann and Tarashev (2011) extend the Tarashev et al 
approach to include interbank linkages. In particular, they account for exposures banks have 
with other banks in the system and the possibility that one bank failure can lead to another. They 
show how taking into account the potential for interbank contagion changes banks’ Shapley 
values.  
 
Staum (2010) applies a Shapley value approach to allocate the costs of financing a deposit 
insurance scheme among participating banks.  Staum generalises the methods used in the other 
papers to derive so-called Aumann-Shapley values (Aumann and Shapley (1974)).  By 
computing these Aumann-Shapley values, the authors allow for the possibility that  a bank 
participates in a subsystem of the banking system to some degree between zero and one (zero 
implying no participation and one means full participation) rather than a bank either 
participating or not (as in Tarashev et al and in Drehmann and Tarashev).  Liu and Staum (2010) 

                                                 
(3) Other papers develop approaches to assessing banks’ contributions to systemic risk outside the Shapley value framework. Lehar 
(2005) uses stock market information to estimate the joint dynamics of banks’ asset portfolios and computes the expected shortfall of 
each bank in case of default. Adrian and Brunnermeier (2010) and Acharya, Pedersen, Philippon and Richardson (2010) also follow a 
portfolio-based approach that emphasizes aspects of tail risk. The former looks at how imposing large losses on each individual bank 
increases the value-at-risk of the entire system while the latter computes each bank’s share of the expected shortfall associated with a 
systemic event. Webber and Willison (2011) use a similar approach to determine the level and distribution of capital across banks in a 
system that delivers a level of systemic risk that a policymaker targets.  
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show how Aumann-Shapley values can be derived in a banking system with a network of inter-
bank linkages.       
 
The use of the Shapley value concept in this paper differs from how it is used in these other 
papers in two crucial respects.  The first is that we focus on the notion of a pivotal bank, i.e., one 
that tips system losses over a prescribed threshold, rather than looking at tail risk.  One way to 
justify the focus on the pivotal bank is to think in terms of each bank’s contribution to the 
expected cost of a bailout. Since a bailout is triggered by the pivotal bank, only that bank adds to 
the expected indemnity.(4) The second is that we use bank capital and the composition of asset 
portfolios explicitly to restrict attention to bank failure scenarios that are economically 
congruent. Bank capital and portfolios play a role in some of the other papers, but they are not 
used to determine the order in which banks would fail or the subsystems they analyse in order to 
calculate Shapley values. 
 
3 Measuring contributions to systemic risk 
 
The set of banks is denoted by 1, … ,  and banks' assets are divided into two classes, 
domestic ( ) and foreign ( ). (5)  Each bank is represented as a point in a two-dimensional 
Euclidean leverage space with coordinates defined by the ratio of each type of asset to capital 
( ). That is, the position of bank  is a point , , where /  and 

/ . (6) Types of asset shocks are characterised by two-dimensional, unit-length, vectors 
 that span the two-dimensional leverage space , , centred on the origin. (7), (8) To 

determine the order of failure for a given shock and a given vector of bank positions we follow 
Shapley (1977) and assume that bank  fails before bank  if: (9) 
 

· ·  (1) 

 
The order of bank failures is therefore determined by the relationship between the banks' 
positions in the leverage space and the type of asset shock.  In particular, equation (1) holds if 
and only if cos cos , where  denotes the distance of  from the origin 

and  denotes the angle between  and .  So, holding the angle between its position and the 
shock fixed, a bank will fail earlier in the overall ordering if its capital is decreased (i.e.  is 
increased).  Likewise, holding the distance from the origin fixed, a bank fails earlier if the 
direction implied by their asset mix is closer to the direction of the shock (i.e. the angle  is 
smaller).  Note that equation (1) implies that the order of arrivals of bank failure will be the 
same for any shock  that lies on the same ray from the origin.  Shocks can therefore be 
distinguished only by their direction, not their magnitude. 

 
In this paper, each bank's power index is measured by the proportion of shocks for which its 
failure is pivotal in causing a systemic event. A bank failure is pivotal when its inclusion in a 

                                                 
(4) We thank Chen Zhou for suggesting this. 
(5) We use these asset names for convenience – other ways of splitting banks’ assets into classes could, of course, be used. 
(6) In reality, a bank’s total assets equals the sum of a bank’s capital and its other liabilities; i.e.  or 1.   
(7) So, generally , √1  such that | | 1. 
(8) One could instead assume ; i.e. consider shocks that increase the value of a bank’s holdings of an asset class as well as shocks 
that decrease the value.  
(9) As indicated by Shapley (1977), other methods of ordering bank failures could be used. 
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group of already-failed banks causes a systemic event. We define a systemic event to be one in 
which the total assets of failed banks ∑  exceeds a pre-defined fraction of banking system 
assets , where the vector of weights , … . ,  reflects banks' shares of total system 
assets: (10), (11) 
 

∑
 

(2) 

 
Each subgroup of banks  has a value 1 if ∑   and 0 otherwise. 
This is our so-called ‘characteristic function’. (12) 
 
Let  denote an ordering of the banks (i.e. an order in which banks fail).  For each bank 

1, … ,  let :  denote the set of players preceding  in the order .  The 
marginal contribution of bank  in order  is . 
 
We assume that asset shocks occur randomly with respect to a uniform distribution over all 
possible shocks (i.e. over all vectors ). (13)  Then, for each possible order of banks , we 
can compute the probability  that the random shock  generates the order . 
 
The contribution of each bank’s failure to systemic risk is given by: 
 

; , ,  (3) 

 
The term in square brackets in equation (3) takes a value of one or zero. These risk measures 
have the property that ∑ 1. 
 
3.1 Three-bank example 
 
This section illustrates how the power index for each bank is calculated, for a system of three 
banks. Suppose banks' asset holdings are as specified in Table 1 and that banks' positions in a 
two-dimensional leverage space are as shown in Chart 1 with coordinates , .  Types of 
asset shock are represented by directional arrows.  It is straightforward to show that the ordering 

                                                 
(10) Our premise is that total assets of failed banks beyond this amount trigger a systemic crisis that could induce a costly policymaker 
intervention. Hence, this critical threshold would have to be determined by the policymaker. Other weighting schemes could have been 
considered which reflect additional characteristics of a bank (other than size) that mean its failure has system-wide consequences, such 
as the extent of interconnectivity with other financial institutions, extent to which its services are not readily substitutable and the 
complexity and opacity of its capital market activities (see Staff of the International Monetary Fund and the Bank for International 
Settlements, and the Secretariat of the Financial Stability Board (2009)). See also Basel Committee on Banking Supervision (2011) for a 
set of such characteristics. 
(11)  is a function of the values of a bank’s assets before a shock hits. 
(12) Other forms for the characteristic function to estimate Shapley values are possible.  For instance, rather than a binary function (in 
accordance with the Shapley-Shubik index) one could adopt a function such that 0,1  depending on the value of ∑ . See 
Section 4.  
(13) Other distributions over possible shocks could be used. In fact, since the shocks we are contemplating are assumed to be of sufficient 
magnitude to put the system into a crisis state, it may be the case that shocks in certain directions should be excluded; i.e. assigned zero 
probability in our computations. Suppose, for example, that banks do not hold large values of foreign assets, so that a shock to only 
foreign assets would not cause any banks to fail.  Then we would only want to put positive probability on shocks in directions that 
included both foreign and domestic assets.  This issue would become more important if we went to a higher dimensional asset space that 
included more specialised assets.  
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implied by equation (1) associated with any shock can be determined by dropping 
perpendiculars from the points to the shafts of the directional arrows. (14)  Perpendiculars that lie 
higher up the shaft of an arrow denote earlier failure according to equation (1).  Moreover, as we 
rotate the arrows through the asset space, the order in which banks fail only changes when the 
arrow crosses a perpendicular associated with one of the sides of the triangle defined by the 
three asset positions.    
 
The orderings generated by rotating an arrow 90 degrees through the asset space are shown in 
Chart 1.  Consider a shock in the direction of the -axis. Asset positions with high values of  
relative to  imply the ordering 3,2,1.  As that arrow rotates clockwise, it becomes perpendicular 
to the line through points 1 and 2 and the order of failure switches to 3,1,2.  Further along the 
rotation it becomes perpendicular to the line through points 1 and 3 and the order switches to 
1,3,2. Finally, for asset positions with low values of  relative to  the ordering is 1,2,3.   
 
Table 1: A three-bank example 
 Bank 
 1 2 3 
Domestic assets ( ) 90 30 20
Foreign assets ( ) 40 30 80
Capital ( ) 30 17 20

 3 1.765 1
 1.333 1.765 4

Weight ( ) 0.448 0.207 0.345
Strength ( / ) 4.333 3.529 5
Diversification  
(min , / ) 

0.308 0.5 0.2

 
Chart 1: Illustration of a three-bank 
example  

 

 

 

                                                 
(14) We mentioned earlier that equation (1) is equivalent to cos cos  and each term cos  represents the distance 
of the projection of point  along the directional arrow. 
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To determine each bank's power index, we compute the fraction of shocks for which each bank 
failure is pivotal, in the sense that it causes the value of the characteristic function  to 
change from 0 to 1.  With a chosen risk threshold of 0.5, in this example, the pivotal bank 
failure will always be the second bank to fail, as indicated by the number after the colon in Chart 
1. The power indices for banks 1, 2 and 3 are given by 90⁄ , 90⁄  and 90⁄ , 
respectively.  Using the positions stated in Table 1, the angle values are 19.3, 33.9, 

18.1, and 18.7. The power indices for banks 1, 2 and 3 are therefore given by 
; , , 0.38,0.42,0.20 .  In contrast to a standard (symmetric) power index, not all 

orderings are equally likely and some orderings are ruled out completely. 
 
Bank 2 has the highest power index (largest ) because its failure is pivotal in terms of causing 
a systemic event more often than either of the failure of the other two banks. Further inspection 
of Chart 1 indicates why this is the case. Bank 2 is centrally located relative to banks 1 and 3, 
reflecting its more diversified asset base. Asset shocks that are concentrated in the domestic 
sector bring down bank 1 first, because bank 1 has a large share of domestic assets on its 
balance sheet. Conversely, asset shocks that are concentrated overseas bring down bank 3 first 
because bank 3 has a large share of foreign assets on its balance sheet. In both cases, however, 
bank 2 is positioned to fail second and hence its power index is equal to the 42 per cent share of 
the asset space covered by these shocks. But notice that bank 2 is not the first to fail when asset 
shocks involve broadly even mixtures of domestic and foreign assets: both asset mix and 
balance sheet strength matter in determining the order of failures. Bank 2 has a diversified mix 
of domestic and foreign assets, but it is also well capitalised (it has a ratio of total assets to 
capital of 60/17=3.529) relative to its counterparts (4.333 and 5 for banks 1 and 3 respectively). 
Bank 2 is therefore relatively less likely to fail across possible vectors of asset shocks. It is only 
in extreme cases, where asset shocks fall almost entirely on one asset class or the other that one 
of the other banks is less likely to fail. 
 
This example illustrates the importance of diversification and balance sheet strength, as 
measured by exposure to each asset class relative to capital, in determining banks' power 
indices. But on the face of it, the directions of these effects may seem counter-intuitive. The 
failure of banks which hold diversified asset portfolios are, ceteris paribus, more likely to be 
pivotal because they fail after less diversified banks.  On the other hand being very strong (i.e. 
having low leverage), or even being very weak (i.e. having high leverage), tend to reduce a 
bank's power index.  In the former case it is because the bank is likely to fail last (after the 
threshold defining a systemic event has already been reached) while in the latter case it is 
because the bank is likely to fail first (before the threshold for a systemic event is reached).      
  
These implications of bank 2’s diversified portfolio for its power index do, however, depend on 
the value of the threshold .  If 0.207, for any shock it is the first bank that fails which is 
pivotal.  Table 1 and Chart 1 show that for 0.207 the power indices for banks 1, 2 and 3 
would be 90⁄ , 0, and 90⁄ , respectively.  In these cases, bank 2’s diversified 
portfolio (and its capital level) means it has the lowest power index among the three banks.  See 
Section 3.2.4 for a further discussion of how banks’ power indices depend on the value of .         
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The following subsection illustrates these issues further by considering some extreme examples. 
We also demonstrate how the procedure for computing power indices can be extended to more 
than three banks.  
 
3.2 Strength, diversification and composition of the banking system 
 
The role of balance sheet strength and diversification in determining power indices is illustrated 
in this section using two benchmark scenarios. The cases presented are overly simplistic because 
they involve only three banks, which make the determination of the pivotal bank trivial. 
Nevertheless, these examples illustrate well how balance sheet strength and diversification 
interact to determine power in more complex cases.   
 
In one scenario, all three banks have the same total value of assets and capital holdings (and 
hence the same strength), but different asset mixes. In the other, all three banks have the same 
asset mix, but have different amounts of capital. In each case, banks' power indices are 
determined by their relative positions in the leverage space. Specifically, the failure of a bank 
positioned in the middle is always pivotal in creating a systemic event in these cases and, hence, 
has a power index equal to 1. Departures from these scenarios put us back into the world of 
Table 1 and Chart 1, where differences in strength and diversification jointly determine power 
indices. 
 
3.2.1 Equal strength 
 
Suppose banks’ asset holdings are as shown in Table 2. Bank asset positions fall on the same 
iso-strength line, as shown in Chart 2, because all three banks have the same asset to capital 
ratios.(15) In this case, the only thing that matters for the values of the power indices is 
diversification. Since bank 2 is more diversified than banks 1 and 3 (i.e., it is positioned in the 
middle of the two banks) it is always the second bank to fail. More specifically, for asset shocks 
to the left of the directional arrow the order of failure is 3,2,1 and for asset shocks to the right of 
the directional arrow the order of failure is 1,2,3. Assuming 0.5, bank 2 has a power index 
of 1, while banks 1 and 3 both have power indices of 0. 
 
The idea that bank 2 can have the highest power index because (given the total assets of banks in 
the system and the value of ) it is diversified might appear to contradict standard finance 
theory, which explains how diversification reduces the risk in a portfolio.  But the contrasting 
interpretations of diversification reflect the differences in perspectives.  A bank could reduce the 
absolute risk of it failing by holding a diversified portfolio of assets.  But still if we consider the 
propensity for the failure of that bank to trigger the systemic event (ignoring for these purposes 
the likelihood of it failing), it may be that its diversified portfolio implies it holds the position of 
being pivotal for the largest proportion of potential shocks to asset values.  Thus, this approach 
to assessing systemic importance (as we define it) is consistent with standard finance theory.                     

                                                 
(15) A bank’s strength might depend on the structure of its funding as well as on its leverage. For instance, a bank that has more short-
term wholesale liabilities might be less strong because it is more vulnerable to the risk of suffering a run by its creditors in response to 
shocks to the values of its assets.  It would be possible to incorporate the effect of a bank’s funding structure on its strength by dividing 
banks’ asset positions by a function of the level of its capital and a measure of its funding vulnerability instead of just the level of its 
capital.     
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Table 2: Example of three banks of equal strength 
 Bank 
 1 2 3 
Domestic assets ( ) 100 50 0
Foreign assets ( ) 0 50 100
Capital ( ) 30 30 30

 3.333 1.667 0
 0 1.667 3.333

Weight ( ) 
0.333

 
0.333 0.333

Strength ( / ) 3.333 3.333 3.333
Diversification  
(min , / ) 

0 0.5 0

 
Chart 2: Illustration of the example of three 
banks of equal stretch  

 

 

 
3.2.2 Equal diversification 
 
Assuming that banks have the same level of diversification but different capital holdings we can 
easily see how balance sheet strength matters. Suppose the banks' asset exposures are as shown 
in Table 3. Banks' asset positions fall on the same iso-diversification line (the ray from the 
origin in Chart 3), reflecting the fact that all three banks have the same asset mix. Since all three 
banks have the same asset mix, the only thing that matters in determining power indices is 
balance sheet strength, which is reflected by each bank's position on the ray from the origin. 
Since bank 2 is weaker than bank 1, but stronger than bank 3 (i.e. it is again positioned in the 
middle of the two other banks), it is always the second bank to fail. The order of failure is 1,2,3 
for all asset shocks. So once again, assuming 0.5, bank 2's power index is 1.  Both banks 1 
and 3 have power indices of 0. 
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Table 3: Example of three banks of equal diversification  
 Bank 
 1 2 3 
Domestic assets ( ) 50 40 30
Foreign assets ( ) 50 40 30
Capital ( ) 30 30 30

 1.667 1.333 1
 1.667 1.333 1

Weight ( ) 0.417 0.333 0.250
Strength ( / ) 3.333 2.667 2
Diversification  
(min , / ) 

0.5 0.5 0.5

 
 
Chart 3: Illustration of the example of three 
banks of equal diversification 

 

 

 
3.2.3 Incorporating additional banks in the system 
 
Altering the population of banks alters the positions of institutions in the order in which 
institutions would fail in response to a particular shock and changes the specification of the 
pivotal bank for a given shock. This translates into different measures of contributions to 
systemic risk. Table 4 adds an extra bank (bank 4) to the population described in Table 1. In this 
particular case, the locations of the three critical vectors shown in Chart 1 remain unchanged 
and a new one appears between banks 2 and 3 (Chart 4). For the same threshold 0.5, banks' 
power indices change substantially: ; , , 0.79,0.21,0,0 . Bank 1 is now critical in 
pushing losses beyond the critical level of half of system assets in a vast majority of cases. 
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Table 4: A four-bank example 
 Bank 
 1 2 3 4 
Domestic assets ( ) 90 30 20 50
Foreign assets ( ) 40 30 80 20
Capital ( ) 30 17 20 10

 3 1.765 1 5
 1.333 1.765 4 2

Weight ( ) 0.361 0.167 0.278 0.194
Strength ( / ) 4.333 3.529 5 7
Diversification  
(min , / ) 

0.308 0.5 0.2 0.286

 
Chart 4: Illustration of a four-bank example  

 

 
3.2.4 Varying the critical threshold  
 
The systemic importance of individual banks depends crucially on the definition of the value of 
the critical threshold that defines a systemic event. Table 5 describes a system with 5 banks.  
Chart 5 illustrates the bank positions and shows the power indices of each of the 5 banks for 
different critical thresholds ranging from 0 (i.e. a single failure of any bank would imply a 
systemic event) to 1 (i.e. it is necessary for all banks to fail for there to be a systemic event).       
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Table 5: A five-bank example 
 Bank 
 1 2 3 4 5 
Domestic assets ( ) 350 240 330 400 100
Foreign assets ( ) 290 690 270 110 15
Capital ( ) 45 90 80 40 8

 7.778 2.667 4.125 10 12.5
 6.444 7.667 3.375 2.75 1.875

Weight ( ) 0.229 0.333 0.215 0.182 0.041
Strength ( / ) 14.222 10.333 7.5 12.75 14.375
Diversification  
(min , / ) 

0.453 0.258 0.45 0.216 0.13

 
Chart 5: Illustration of the effect of varying the value of the critical threshold  

 

 
 
Chart 5 shows that banks’ power indices vary considerably with the value of the critical 
threshold.  Some worthwhile observations are immediately apparent.   
 
In the case of very low thresholds, the banks with higher leverage are often the banks with the 
highest power indices.  For instance, bank 1 tends to have the highest or second highest power 
index for values of the threshold 0.4 or less (see the right panel of Chart 5).  But portfolio 
composition and relative size also matter for banks’ power indices at low threshold values.  For 
example, banks 1 and 5 have similar levels of leverage but for a critical threshold of zero, bank 
5 has a higher power index reflecting the bias in its portfolio towards domestic assets compared 
to bank 1’s more diversified portfolio.  For a critical threshold greater than zero, however, bank 
5’s relatively minuscule size means its power index drops to zero while bank 1 still has a 
positive power index.  
 
In the case of very high threshold values (0.8 and above) bank 3 has a highest power index.  It is 
the least leveraged bank (as reflected by its close proximity to the origin in the left panel of 
Chart 5) and one of the most diversified.  But a high threshold means that it tends to be the bank 
that fails last that causes the proportion of failed banks’ assets to cross the critical threshold and 
bank 3’s strength and diversification means that it is that last bank for many shocks.  Only for 
shocks that are strongly biased towards domestic or foreign assets would other banks fail last. 
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This is why for high threshold values, bank 2 (biased towards foreign assets) and bank 4 (biased 
towards domestic assets) also have positive power indices, albeit much smaller than bank 3’s 
(see right panel of Chart 5). 
 
4 Possible extensions 
 
4.1 Calculating generalised Shapley values  
 
The framework can be extended in order to calculate asymmetric Shapley values, which include, 
as a special case, the asymmetric power indices.  A reason for doing this is that one might want 
to incorporate the identity of other banks in a set of failed banks that triggers a systemic event 
into the risk measure, rather than only the bank in the set whose failure tips the system from 
stability to instability.   
 
Equation (5) shows a modified characteristic function. 
 

0 if ∑   

 if ∑ ,  (5) 

1 if ∑   

     
where 
 

0 
 
and,  is such that 0,1  if ∑ , . 
 
  
With this function, the value of the characteristic function always lies between zero and one.  If 
the set of bank failures is small enough (i.e. the proportion of failed banks’ assets is less than or 
equal to ), the value is zero (i.e. there is no systemic event).  If the set of failed banks is large 
enough (i.e. the proportion of failed banks’ assets is greater than or equal to ) , the value is 
one (i.e. there is a full systemic event).  For intermediate levels (i.e. the proportion of failed 
banks’ assets is between  and ) , the value is between zero and one (i.e. there is a partial 
systemic event).  Of course, the characteristic function nests the binary function used to 
calculate asymmetric power indices; by setting , the characteristic function can be the 
same as in Section 3.   
 
Illustrations of possible characteristic functions are shown in Chart 6.  Function (a) is a binary 
characteristic function like that explored in Section 3.  Under both functions (b) and (c), there is 
a no systemic event if the share of total assets of bank failures is 0.3 or less and there is a full 
systemic event if the share is 0.5 or more.  But under function (b), once the asset share of bank 
failures exceeds 0.3, it is the earlier incremental bank failures that have relatively larger effect 
on systemic risk (i.e. the function is concave).  While under function (c) it is the later 
incremental bank failures that have relatively large effects (i.e. the function is convex).  Thus, if 
one replaced function (b) with (c), this would tend to decrease the Shapley values of the earlier 
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incremental bank failures and increase the Shapley values of the later incremental bank failures.  
The same is true under function (d) but under this characteristic function there is no systemic 
event if the share of total assets of bank failures is 0.1 or less and a full systemic event if this 
share is 0.6 or more; that is, over the region in which there is a partial systemic event, systemic 
risk builds more slowly than under function (c).     
 
Chart 6: Different possible characteristic functions 
 

 
(a) 0.375 

(b) 0.3, 0.5, 
.

 

(c) 0.3, 0.5,  

(d) 0.1 0.6,  

 
4.2 The riskiness of asset exposures 
 
Differences in the riskiness of banks’ exposures to an asset class could also be captured by 
extending the framework.  The reason for doing this could be that the relative riskiness of asset 
holdings affects the order in which banks would fail for a given shock.  Banks that hold more 
risky exposures to the asset classes should tend to be towards the front of the order of bank 
failures. 
 
One way to reflect differences in the riskiness of exposures is to apply risk weights to banks’ 
holdings of asset classes; the values of risk weights would be increasing in the riskiness of 
holdings.  For example, risk weights   and  could be applied to bank ’s exposure to 
domestic and foreign assets, where , 0, which mean bank ’s position in the two-
dimensional space becomes , . (16)  To understand how risk weighting 
could increase (decrease) the power indices of banks that hold more (less) risky exposures to 
asset classes, consider the example of two banks 1 and 2, where , , , and 

.  If the bank’s risk weights on their domestic asset holdings are the same or no risk 

                                                 
(16) Differences in the riskiness across asset classes could also be taken into account if risk weights are applied in this way.  For example, 
if one asset class is less risky than another, risk weights for all banks will tend to be lower for the first asset than they are for the second 
asset. 
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weights on these exposures are applied, bank 1 would be before bank 2 in any order of bank 
failures that impacts both asset classes.  But suppose bank 1 invests in less risky domestic assets 
than bank 2, which is reflected in the fact .  If bank 1’s risk weight on domestic assets is 
sufficiently lower than bank 2’s that , bank 2 is ahead of bank 1 in the order for 
any shock.  In general, the introduction of risk weights will result in a relocation of all banks in 
the leverage space; the analysis of Section 3 can then be used to determine the impact of taking 
into account risk weights on banks’ contributions to systemic risk.        
 
4.3 Interbank contagion 
 
The framework set out above does not incorporate the risk of interbank contagion.  For instance, 
the approach could not capture a scenario in which the failure of a relatively small bank has a 
significant effect on systemic stability because it is strongly interconnected with other banks.  
But it is possible to choose a weighting function that allows for contagion between banks to be 
taken into account in the calculation of banks’ power indices.  Interbank contagion arises 
through a network of interbank exposures, Ω.  The function , Ω  maps the set of initial bank 
failures  (based on the order ) to a set of bank failures that are a result of contagion from the 
failed banks in .  There exists a unique function  (Eisenberg and Noe       (2001)).(17)  The 
function  has the following properties: , Ω  (i.e. the set of failed banks due to 
contagion does not include any of the initial failed banks); , Ω  (i.e. if there are no 
initial bank failures then there can be no contagious bank failures); , Ω  (i.e. if all banks 
in the system fail initially there can be no contagious failures); and ,  (i.e. if there are 
no interbank links there can be no contagious failures). To incorporate interbank contagion 
replace the characteristic function  defined in Section 3 with the new characteristic function  
defined such that each subgroup of banks  has a value 1 if ∑ ∑ ,Ω  
and 0 otherwise.      
 
To understand how banks’ power indices can change if the risk of interbank contagion is taken 
into account in this way consider again the four-bank system shown in Chart 4 in Section 3.2.3.  
An interbank network for this system is shown in Chart 7.  Each of the arrows represents an 
interbank loan from the bank at the head of the arrow to the bank at the other end.  That is, Chart 
7 shows that bank 3 has borrowed from bank 2, bank 1 has borrowed from bank 3, and that bank 
4 has borrowed from bank 1.     
 
 
 
 
 
 
 
 
 
 

                                                 
(17) In practice, one would calibrate the function  by running multiple simulations of all possible bank failure scenarios for a given 
network.  Eisenberg and Noe show that there is a unique contagious effect arising from those failures in each scenario. 
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Chart 7: An interbank network 
 
 
 
 
 
 
 
 
 
Table 6 shows all of the sets of initially failed banks that are possible for the network in Chart 7 
( ) and maps these to banks that fail due to contagion through the interbank network ( , Ω ).  
Banks 1, 3 and 4 all pose risk to the banks they have borrowed from but bank 4 poses relatively 
more contagion risk.  For instance, if bank 3 fails alone, it might default on its loan from 2 but 
we assume this is not sufficient to cause bank 2 to also fail (see top row of Table 6).  But if bank 
4 fails alone, it defaulting on its loan from bank 1 implies bank 1 fails, who in turn defaults on 
its loan from bank 3, which causes bank 3 to fail.  Since bank 3 has incurred losses on its 
interbank lending, the amount that bank 2 recovers on its loan to bank 3 might be lower than if 
bank 3 had failed alone, which might be sufficient to mean bank 2 also fails. Thus, all four 
banks fail if bank 4 fails (see second row).  It follows if bank 4 is among the banks that fail 
initially then all four banks fail either due to the shocks to assets or interbank contagion.      
 
Table 6: Contagious bank failures 

 , Ω  
3   
4  1,2,3  

3,4  1,2  
1,4  2,3  

2,3,4  1  
1,3,4  2  
1,2,4  3  

1,2,3,4   
 
If we use characteristic function  for the example in Chart 4 and given the interbank contagion 
process outlined in Table 6, bank 4 becomes the pivotal bank for all possible shocks and 
consequently has a power index of one.  In the case of shocks for which it is the first to fail, the 
fact bank 4 triggers the failure of the other three banks means that the characteristic function 
takes the value of one.  In the case of all other shocks, bank 3 is the first bank to fail but this is 
not enough to cause other banks to fail.  The second bank to fail is then 4, which is enough to 
cause banks 1 and 2 to also fail.  These power indices are in contrast with those if interbank 
contagion is not taken into account, where banks 1 and 2 had positive power indices but banks 3 
and 4 had zero power indices (see Section 3.2.3).  
 
Our example shows: (i) how the power indices of banks that borrow from other banks can 
increase if contagion risk is taken into account; and (ii) that power indices reflect how banks can 
trigger both the failure of banks they are directly connected to and the failure of banks they are 

1 2

4 3
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indirectly connected to through the interbank network.  With just four banks, it is difficult to 
illustrate fully the complexity of interbank contagion and the impact on power indices, and it is 
not surprising that by taking into account contagion a single bank is pivotal for all shocks.  This 
will not be true in general and would not be expected in larger, more realistic networks.     
 
5 Conclusion 
 
This paper presents a measure of contributions of individual bank failures to systemic risk, 
based on the Shapley (1977) version of the Shapley-Shubik power index, which is calculated by 
identifying the prevalence with which each bank, in the event of its failure, would push the total 
assets of failed banks in the system beyond a critical threshold.  The approach uses a very small 
set of variables from bank balance sheets to estimate banks’ power indices.   
 
The framework is an example of a more general methodology for analysing the identity of banks 
that are pivotal in the transition of a banking system from stability to instability.  We describe 
how it is possible to generalise the framework to calculate generalised Shapley values, and take 
into account the riskiness of banks’ asset holdings and the potential for interbank contagion.  It 
is also possible to generalise the methodology in several other ways: banks’ portfolios could be 
comprised of more than two asset classes; perturbations to bank balance sheets could be 
considered to derive confidence intervals around banks’ power indices; alternative functions for 
determining the order in which banks fail could be used; and alternative characteristic functions 
based on weights that take into account factors other than banks’ shares of total system assets 
are possible.   
 
Finally, the approach is designed to be used as a tool for assessing the contributions of bank 
failures to systemic risk – an application to actual bank data is a goal for further work.  The 
work in this paper suggests that the approach has the potential to be used in reverse stress 
testing.      
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