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Summary 
 
The yields on government bonds are of interest to monetary policy makers partly because they 
reflect financial market participants' expectations of future policy rates. As with any asset price, 
however, they also reflect the additional return - or ‘risk premia’ - that investors require to 
compensate them for the uncertainty surrounding future returns on the asset. And yields also 
play an independent and important role in the transmission mechanism of monetary policy. 
Central banks therefore make widespread use of models to both forecast yields and to 
decompose them into expectations of future policy rates and risk premia. 
 
Perhaps the most popular type of model among central bankers, academics and financial market 
practitioners is the ‘affine term structure model’ (ATSM), where yields are a linear function of 
some underlying variables. This makes for tractability. These statistical models of bond yields 
are consistent with the standard assumption that investors cannot make risk-free arbitrage profits 
(ie, investors cannot make profits by buying and selling different categories of bonds in such a 
way that the expected return from holding that portfolio is positive). But ATSMs do not impose 
the restriction that nominal interest rates are subject to a lower bound. This feature of the model 
is likely to have become more important in recent years given the historically low level of 
nominal bond yields. 
 
Quadratic term structure models (QTSMs), in contrast, are more general and can be specified to 
be consistent with a lower bound. They are, however, substantially harder to estimate than 
ATSMs. This paper demonstrates for the first time that it is possible to use a numerical 
technique known as ‘Particle Markov chain Monte Carlo’ to estimate these models. This 
technique involves the random generation of many different candidate values for the model 
parameters. Each candidate draw of parameter values depends on the previous draws. Whether 
the candidate is accepted or rejected depends in part on how well it matches the observed data. 
This in turn is established using a different simulation technique known as a ‘particle filter’, 
which involves simulating many possible scenarios from the model and establishing how likely 
each scenario is given the observed data. Once we have considered a sufficiently large number 
of draws, the distribution of possible parameters will cease to change, known as convergence. 
This way of estimating these models has some desirable features relative to the methods that 
have been used previously. In particular, the statistical properties of the estimated model 
parameters can be more accurately established. 
 
We apply the technique to estimate a QTSM using US nominal bond yields for the period 1962-
2012. We find that the presence of the zero lower bound on nominal interest rates has important 
implications when using term structure models to forecast bond yields and short-term policy 
interest rates. Standard ATSMs imply around a 5-15% probability of negative policy rates in ten 
years' time throughout the estimation period. During the recent financial crisis the ATSM 
implies probabilities of negative policy rates of more than 40% at shorter horizons. The QTSM 
rules this out by construction. The difference between policy rate forecasts from the two models 
becomes more important as bond yields approach the lower bound. 



1 Introduction

The lower bound on nominal interest rates is often ignored in dynamic term struc-
ture models, partly because bond yields have been far from this bound during
most of the post-war period in many countries. However, the recent financial cri-
sis has driven bond yields to historically low levels, with short rates at or close to
zero in several countries. These low interest rates have highlighted a key short-
coming of many affine term structure models (ATSMs), namely their inability to
account for the zero lower bound.

The class of quadratic term structure models (QTSMs) can address this short-
coming, as emphasized by Ahn et al. (2002) and Lieppold and Wu (2002). These
models are, however, quite challenging to estimate because their likelihood func-
tion does not have a closed-form expression when accounting for measurement
errors in bond yields. It is therefore only possible to approximate the likelihood
function for a QTSM by Monte Carlo simulation. This procedure has been consid-
ered numerically infeasible for many years, and researchers have therefore used
alternative estimation methods when taking QTSMs to the data. One strand of the
literature has used Quasi Maximum Likelihood (QML) based on local linearisa-
tions and the Kalman filter, although the asymptotic distribution of this estimator
is unknown (see Taulbjerg (2002), Li and Zhao (2006), Kim (2007), Kim and Sin-
gleton (2011), among others).1 Another approach is to use Generalised Method of
Moments (GMM) when moments have closed-form solutions as in Lieppold and
Wu (2003). The well-known shortcomings of this alternative is that GMM may be
less efficient than Maximum Likelihood (ML) and GMM is often sensitive to the
selected moments. The obvious alternative to GMM is therefore to follow Gallant
and Tauchen (1996) and use Efficient Methods of Moments (EMM), where mo-
ments are determined from a flexible auxiliary model that allows EMM to attain
the same asymptotic efficiency as ML. An application of EMM to QTSMs is pro-
vided in Ahn et al. (2002). However, recent Monte Carlo evidence by Duffee and
Stanton (2012) indicates that EMM may have poor finite sample properties when
data display the same high degree of persistence as bond yields. Moreover, GMM
and EMM do not estimate the latent factors, which prevent derivation of model-
implied time series for term premia, predictions of future interest rates, etc. Given
these shortcomings of QML, GMM, and EMM, likelihood inference still remains a

1Lieppold and Wu (2007) use the unscented Kalman filter for QML estimation of QTSMs, but
the asymptotic properties of this estimator are also unknown.
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very attractive estimation approach with no clear substitutes.
In this paper we show how to make likelihood inference feasible for QTSMs.

We focus on the case where bond yields are measured with errors and a parti-
cle filter is used to get an unbiased estimate of the likelihood function. In this
setting, model parameters can be estimated by Bayesian inference using Markov
chain Monte Carlo (MCMC) as shown in Andrieu et al. (2010). To make the es-
timation process feasible, it is essential to get a fast and reliable estimate of the
likelihood function. This is challenging for dynamic term structure models due to
the presence of multiple latent factors and typically small measurement errors in
bond yields. We overcome these difficulties by using the adaptive particle filter
by Andreasen (2010) to improve the efficiency of particle filtering and hence make
likelihood inference feasible for QTSMs. Although this paper focuses exclusively
on QTSMs, our procedure applies more generally to any non-linear and potentially
non-Gaussian dynamic term structure model.

The suggested procedure is illustrated by estimating the most flexible two-
factor QTSM on US data from 1962 to 2012. We highlight the following results.
First, the adaptive particle filter by Andreasen (2010) is shown to provide a fast
and reliable estimate of the log-likelihood function for QTSMs, unlike the stan-
dard particle filter by Gordon et al. (1993). Second, adopting a Bayesian estima-
tion approach when studying the zero lower bound for bond yields may be use-
ful, because this constraint may easily imply that parameters are at the boundary
of their domain, thus rendering standard classical inference problematic. Third,
the quadratic model gives a much better statistical description of the data than a
Gaussian ATSM. Bayes factors and posterior Bayes factors are clearly in favour of
the quadratic model. Fourth, the estimated quadratic model displays strong non-
linearities and ensures that all forecast distributions imply positive interest rates.
This property is in contrast to the Gaussian ATSM where a large proportion of the
forecast distributions imply negative interest rates during the recent financial crisis
but also prior to the crisis. Based on these findings, we therefore conclude that the
zero lower bound is an important constraint to account for in US data.

The rest of this paper is organised as follows. Section 2 presents the canonical
QTSM and its state space representation. Likelihood estimation of this model is
discussed in Section 3. The QTSM is estimated in Section 4, where we also analyse
the importance of the zero lower bound. Concluding comments are provided in
Section 5.
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2 Quadratic term structure models

This section introduces the canonical QTSM and its state space representation. For
numerical convenience, we follow Realdon (2006) and consider a discrete-time ver-
sion of the model because it gives a closed-form solution to zero-coupon bond
prices even with multiple correlated factors. This timing assumption also simpli-
fies the subsequent estimation as we can ignore issues related to discretisation of
continuous-time diffusions.2

2.1 Model assumptions and identification

We assume that the one-period risk-free interest rate rt is a quadratic function of
an m× 1 vector of latent factors xt, i.e.

rt = α+ β′xt + x′tΨxt. (1)

Here α is a scalar, β is an m× 1 vector, and Ψ is an m×m matrix. The factors evolve
according to a VAR(1) process under the risk-neutral measure Q

xt+1 = (I−Φ) xt +Φµ+ ΣεQ
t+1, (2)

where εQ
t+1 ∼ NID (0, I). The mean level of the factors is given by µ with dimen-

sions m× 1, while Φ and Σ are m× m matrices. Absence of arbitrage implies an
equivalent risk-neutral probability measure, and the price at time t of an i-period
zero-coupon bond Pt,i is therefore

Pt,i = EQ
t [exp {−rt} Pt+1,i−1] . (3)

Given these assumptions, bond prices are exponential-quadratic in the factors, i.e.

Pt,i = exp
{

Ai + B′ixt + x′tCixt
}

(4)

for i = 1, 2, ..., k with the recursive formulae for Ai, Bi, and Ci derived in Realdon
(2006).

We consider a standard affine specification for the market price of risk, i.e.

f (xt) = −f0 − f1xt, (5)

2Accounting for discretisation of continuous-time diffusions in the particle filter is straightfor-
ward (see for instance Pitt (2002)).
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where f0 and f1 having dimensions m× 1 and m×m, respectively.
Within a QTSM, the policy rate, and hence all bond yields, are non-negative if

α ≥ 1
4 β′Ψ−1β and Ψ is positive semi-definite (Realdon (2006)). Restricting nom-

inal yields to be non-negative is desirable from an economic perspective because
investors always have the option of holding banknotes, paying zero interest. In
practice, holding cash is not costless and there are a few cases where nominal in-
terest rates have been slightly negative. For example, the central bank of Denmark
has remunerated excess reserves at interest rates as low as -0.2% since July 2012.
Another example is the US, where secondary market rates on four-week Treasury
bills have occasionally been negative. But these violations of the zero lower bound
in the US have been small (no lower than -0.01% in the daily data published by the
Federal Reserve Board) and short-lived. On the other hand, all interest rates used
in this paper for the US are positive.3

The most flexible normalization is adopted for identification (see Ahn et al.
(2002) and Realdon (2006)). That is, Ψ is symmetric and all diagonal elements
equal one, µ ≥ 0, Σ is a diagonal matrix, and Φ is lower triangular. To impose the
zero lower bound, we require α ≥ 0, β = 0, and Ψ to be positive semi-definite.

2.2 The state space representation

Our specification for the market price of risk implies that the law of motion for the
factors under the physical measure is given by

xt+1 = (I−Φ+ Σf1) xt +Φµ+ Σf0 + Σεt+1, (6)

where εt+1 ∼ NID (0, I). We denote the implied conditional distribution for the
factors by p (xt+1|xt). The measurement equations are constructed from continu-
ously compounded bond yields yt,i = −1

i ln Pt,i for a selected number of maturi-
ties, I = {i1, i2, ..., ik}. As is standard practice when taking dynamic term structure
models to the data, we account for measurement errors in these yields. Such errors
may arise when extracting bond yields from a panel of coupon-bonds due to bid-
ask spreads, non-synchronized trading, etc. These errors are denoted by wt and
we let wt ∼ NID

(
0, s2

wI
)
. The measurement equations for our QTSM are then

3It would be straightforward to allow for a lower bound below zero within the QTSM, for in-
stance by letting α < 0.
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given by 
yt,i1
yt,i2

...
yt,ik

 =

− 1

i1

(
Ai1 + B′i1xt + x′tCi1xt

)
− 1

i2

(
Ai2 + B′i2xt + x′tCi2xt

)
...

− 1
ik

(
Aik + B′ik xt + x′tCik xt

)

+


wi1,t

wi2,t

...
wik,t

 . (7)

We define yt ≡
[

yt,i1 yt,i2 ... yt,ik

]′
and let p (yt|xt) denote the conditional distrib-

ution of yt given the factors. Equations 6 and 7 define a non-linear state space
system with k observed bond yields and m latent factors. The log-likelihood func-
tion for this system is denoted by L (θ|y1:T) where y1:T ≡ {y1, y2, ..., yT} and θ

contains the model parameters.

3 Likelihood-based inference

This section discusses likelihood inference for the considered QTSM. We start in
Section 3.1 by describing how to approximate the value of the log-likelihood func-
tion and how model parameters may be estimated from a classical perspective.
Section 3.2 is devoted to Bayesian inference, and Section 3.3 addresses the chal-
lenging task of getting a fast and reliable estimate of the log-likelihood function.

3.1 Approximating the likelihood function and classical inference

Evaluation of the likelihood function for a QTSM requires computing a multi-
dimensional integral over the latent factors x1:T ≡ {x1, x2, ..., xT}. This is challeng-
ing because the integral does not have a closed-form expression, unlike in linear
and Gaussian models where the solution is given by the Kalman filter. One way
to proceed is to use a particle filter and estimate the log-likelihood function by re-
peated use of importance sampling and resampling (Doucet et al. (2001)). Particle
filters only require distributions for p (yt| xt) and p (xt+1| xt), and they may there-
fore be applied to a wide class of non-linear and potentially non-Gaussian dynamic
term structure models.

The parameters in the model can then be estimated by maximising the likeli-
hood function implied by the particle filter, i.e. by Maximum Simulated Likelihood
(MSL). However, the approximated likelihood function is not smooth in θ due to
the resampling step. It is therefore very challenging to optimise this objective func-
tion and compute asymptotic standard errors.4 Reliable inference is further com-

4The particle filters by Pitt (2002) and Flury and Shephard (2009) are important exceptions where
the estimated likelihood function is smooth in θ. The survey by Kantas et al. (2009) discusses other
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plicated by the demanding requirement that the number of particles must tend to
infinity for consistency of the MSL estimator (see for instance Hajivassiliou and
Ruud (1994)).

These practical and theoretical problems related with MSL have to some extent
reduced the use of MSL. Much focus from a classical perspective has therefore
been devoted to simulation-based moment estimators (i.e. Simulated Method of
Moments, Indirect Inference, and EMM) which are easier to implement compared
to MSL.5

3.2 Bayesian inference by PMCMC

Andrieu et al. (2010) introduce particle Markov chain Monte Carlo (PMCMC) meth-
ods to estimate θ from a Bayesian perspective when only an approximated value
of the log-likelihood function is available using a particle filter. One of the sug-
gested methods is the particle marginal Metropolis-Hastings (PMMH) algorithm
to draw from the posterior distribution of θ. This sampler is similar to the well-
known Metropolis-Hastings algorithm except the estimated likelihood function is
used instead of the true likelihood function. They show that the equilibrium dis-
tribution for this Markov chain is unaffected by the Monte Carlo variation in the
likelihood function. In other words, using an approximated likelihood function
does not induce any bias in the estimates of θ, and this constitutes a clear advan-
tage of PMCMC in comparison to MSL.6

However, the Monte Carlo variation in the likelihood function does affect the
mixing properties of the PMMH algorithm as illustrated by Flury and Shephard
(2011), Andrieu et al. (2010), among others. This is because a noisy estimate of the
likelihood function makes it difficult for the algorithm to explore the parameter
space as the chain may easily get stuck at certain points for a long time. Hence, a
high Monte Carlo variation in the likelihood function increases the probability that
the Markov chain does not converge or that it converges around a local mode.

3.3 Particle filters and QTSMs

As discussed by Flury and Shephard (2011), there is a computational trade-off in
PMCMC estimation. If the estimation of the likelihood is more accurate, fewer

methods to address the mentioned problems for MSL.
5See Carrasco and Florens (2002) for an introduction to simulation-based moment estimators.
6In addition to the assumptions in Andrieu et al. (2010), this result relies on different random

numbers being used in the particle filter throughout the Markov chain, as emphasised by Flury and
Shephard (2011).
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draws will be required before the Markov chain converges to the posterior distri-
bution for the model parameters, but the longer it takes to evaluate the likelihood
at each step in the chain. A reliable estimate of the likelihood function is unfor-
tunately difficult to obtain for dynamic term structure models. This is due to the
presence of multiple latent factors in these models and the typical finding that
bond yields are observed with small measurement errors. The latter implies that
the conditional distribution of yields given the factors p (yt| xt) is very peaked and
may therefore be difficult to approximate.

We follow Andrieu et al. (2010) and start by exploring the properties of the Stan-
dard Particle Filter (SPF) by Gordon et al. (1993) where the proposal distribution
for the importance sampling step is given by the state transition distribution, i.e.
p (xt+1| xt). At the posterior mean parameters reported below, it was not feasible
to use the SPF to evaluate the likelihood function of the QTSM without an ex-
tremely large number of particles. With 100, 000 particles, the filter diverged - i.e.
the conditional density of all particles was too small to be represented with reason-
able numerical accuracy - in 77 out of 100 attempts to evaluate it using different
random number seeds. If we raise the standard deviation of the measurement error
in bond yields from 22 to 40 basis points, the filter does not diverge if 100, 000 par-
ticles are used. Given this configuration, the time taken for each evaluation of the
log-likelihood function is more than 15 seconds and the Monte Carlo variability in
the estimated log-likelihood function is much too high to make estimation feasible
(5.09 which is well above the range suggested by Flury and Shephard (2011)).7

The poor performance of the SPF mainly relates to the fact that bond yields in
the next period, i.e. yt+1, are not used in the proposal distribution for the impor-
tance sampling step. Filters with this adaptive property were first discussed in
Pitt and Shephard (1999), where they suggest the use of auxiliary variables.8 The
adaptive filter applied in this paper is the optimised Central Difference Particle
Filter (CDPF) by Andreasen (2010), where the proposal distribution is generated
as follows. Based on the work of Norgaard et al. (2000), the Central Difference
Kalman Filter (CDKF) is first used to compute preliminary estimates of first and
second moments of p (x1:t+1| y1:t+1). These moments are then used to construct
a Gaussian proposal distribution which therefore contains information from bond

7The computation times reported in this section were based on code written in Fortran 90 run
on a PC with 3GHz Intel Core 2 Duo processors and 3.5GB RAM.

8Other well-known alternatives include local linearisation as in Doucet et al. (2000) or an MCMC
step inside the particle filter (Gilks and Berzuini (2001)).
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yields in the next period, i.e. yt+1. That is, the proposal distribution is given by

x(i)t+1 = x̂CDKF
t+1 + γt+1ŜCDKF

x,t+1 ε
(i)
t+1 for i = 1, 2, ..., N, (8)

where ε
(i)
t+1 ∼ N (0, I). Here, x̂CDKF

t+1 denotes the posterior mean in the CDKF, and
ŜCDKF

x,t+1 is the Cholesky factor of the covariance matrix for this estimate. The role of
the free parameter γt+1 is to increase the variance of the proposal distribution to
account for fat tails and other deviations from normality in p (x1:t+1| y1:t+1). Fol-
lowing the work by Richard and Zhang (2007) on efficient importance sampling,
Andreasen (2010) determines the value of γt+1 by maximising the effective sample
size in every period - which is equivalent to minimising the distance to the opti-
mal proposal distribution. This optimisation step is normally done using a subset
of the particles Nopt << N, and only in the event where the effective sample size
is lower than a given threshold Nlow

e f f are all particles used in the optimisation.9

At the posterior mean for parameters reported below, using only 5, 000 particles
and optimising γt+1 if the effective number of particles is below 250, we find that
it only takes 0.9 seconds to evaluate the likelihood function and the standard devi-
ation of the log likelihood function across 100 evaluations of the filter is just 0.28.
Based on these simulation results and the convergence of the Markov chains pre-
sented below, we conclude that it is possible to get a sufficiently fast and reliable
estimate of the log-likelihood function for a two-factor QTSM to make estimation
by likelihood inference feasible.

4 An estimated QTSM for the US

This section uses the optimised CDPF to estimate a QTSM on US data. We proceed
as follows. Section 4.1 presents the data and Section 4.2 describes restrictions on
the model and settings for the optimised CDPF. Estimation results for the QTSM
are presented in Section 4.3, and we compare the performance of the QTSM to the
ATSM in Section 4.4. The importance of the zero lower bound for bond yields and
forecast distributions are studied in Section 4.5 with special focus devoted to the
recent financial crisis.

4.1 The data

We use end-of-quarter nominal zero-coupon bond yields for the US from 1962Q1
to 2012Q4. Six yields with maturities of 1, 2, 4, 12, 20 and 40 quarters are selected

9We refer to Andreasen (2010) for further details on the implementation of the optimised CDPF.

8
 

 Working Paper No. 481 December 2013

 



for the estimation. The data are from the Federal Reserve Economic Database pro-
vided by the Federal Reserve Bank of St Louis. Figure 1 displays the data and
summary statistics are provided in Table 1. The mean term structure is upward
sloping with average spreads between the 10-year and 1-quarter bond yields of
about 1.5 percentage points. Broadly speaking, the volatility of quarter-on-quarter
changes in yields falls gradually with maturity. We also note that the distributions
of changes in bond yields are asymmetric and fat-tailed relative to a Gaussian dis-
tribution as evident from values of skewness and kurtosis in Table 1; skewness is
negative at all maturities and kurtosis is decreasing with maturity.

Figure 1: US bond yields, 1962Q1-2012Q4
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4.2 Priors

Following Chib and Ergashev (2009), we impose the prior that the unconditional
yield curve is upward sloping, i.e. yt,i1 < yt,i2 < ... < yt,ik . We also impose the
loose prior that the unconditional averages of all yields are between 0% and 10%.
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Table 1: Summary statistics for US bond yields, 1962Q1-2012Q4
Maturity (quarters) 1 2 4 8 20 40
Mean (Percentage points) 5.10 5.25 5.68 6.09 6.33 6.63
Std. dev. (Percentage points) 0.97 0.95 1.04 0.86 0.79 0.66
Skewness -1.95 -2.05 -1.64 -0.72 -0.62 -0.57
Kurtosis 13.46 15.57 14.36 4.86 4.03 2.72

The mean is for the level of bond yields. All other moments are computed for quarter-on-
quarter changes in bond yields.

In addition, we impose all eigenvalues of I−Φ and I−Φ+ Σf1 to be less than
one in absolute value, meaning that the factor dynamics are stable under both the
risk-neutral and physical probability measures. Apart from these restrictions, no
further prior information is imposed for the estimation, i.e. we use flat priors on
all coefficients.

We sample from the posterior distribution for the parameters using the Delayed
Rejection Adaptive Metropolis algorithm of Haario et al. (2006), details of which
are provided in Appendix 1. We run a Markov chain with a length of 100, 000.
Convergence of this chain following a burn-in of bθ = 50, 000 draws is verified
in two ways. First, cumulated averages and trace plots are plotted to identify any
obvious problems of convergence. Second, we use the formal test of Geweke (1992)
to check that the posterior means from the first half of the chain (after discarding
the burn-in) are not significantly different from the means in the second half of the
chain.

4.3 Estimation results

Estimation results are reported in Table 4 in Appendix 2. Most parameters are
estimated quite accurately as seen from the 5th and 95th percentiles of the posterior
distributions. Given the normalization of the QTSM, the lower bound of the short
interest rate rt is given by α. Our mean posterior estimate of α is 5.2993× 10−5,
and we therefore have a lower bound of just over 0.02% for the annualized short
rate, which seems quite realistic. This is contrary to the results in Ahn et al. (2002)
where the lower bound for the short rate is estimated to have an unrealistically
high level (their sample finishes in 1991, well before the current period of low
interest rates). Plots of the posterior distributions in Figure 11 in Appendix 2 show
that the restriction α ≥ 0 is binding and the distribution for α is skewed to the
right. We also observe a skewed distribution for φ11 and µ2, as constraints on
these parameters are binding. Hence, classical inference for this model may be
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challenging because several parameters are close to their boundaries, including
those that enforce positive interest rates.10 We illustrate this further by estimating
the model by QML, using a quasi-likelihood function based on the CDKF. The
QML estimate of α is 1.8722× 10−13, which is extremely close to the zero lower
bound. A large part of the QML asymptotic density covers the invalid negative
region (here the percentiles are based on 100,000 simulations from the asymptotic
distribution).

4.4 Comparing QTSMs to ATSMs

This section compares some of the properties implied by the quadratic model to
a Gaussian ATSM, i.e. a model similar to the one presented in Section 2 except
Ψ = 0. The ATSM is estimated from a Bayesian perspective using the Kalman fil-
ter to evaluate the likelihood function and the same restrictions as for the quadratic
model described in Section 4.2. We start by reporting log-marginal data densities
log p (y1:T) for the quadratic and affine models in Table 2. We have log p (y1:T) ≈
−485 in the quadratic model and log p (y1:T) ≈ −566 in the affine model. How-
ever, the presence of flat priors in both models means that the two marginal data
densities are not directly comparable because the resulting Bayes factor contains
an undefined constant. To get an idea for the size of this constant, consider the
case where all parameters in the two models are uniformly distributed on [−C, C]
where C > 0. The quadratic model has four additional parameters compared to
the affine model (α, ψ21, µ1, µ2), and the Bayes factor is therefore e81−4 log(2C). A
very conservative value of C is 20, which gives a Bayes factor of e66 in favour of
the quadratic model. Following the work of Aitkin (1991), another procedure for
model comparison is to compute the posterior Bayes factor which is the ratio of the
mean posterior likelihood in the two models. Table 2 implies a posterior Bayes fac-
tor of e77 in favour of the quadratic model. Thus, the stochastic structure implied
by the quadratic model is more in line with the data than the structure implied by
the affine model. Ahn et al. (2002) reach a similar conclusion, as the QTSM outper-
forms an affine model when measured in terms of the ability to match moments
from the auxiliary model.

The difference between the quadratic and affine models is the non-linear terms
in bond yields. Our finding that the log-marginal data density is substantially
higher for the quadratic models must therefore imply that these non-linear terms

10Points estimates on the boundary of their domain are also evident in the QML estimates by
Kim and Singleton (2011) on Japanese bond yields after 1995.
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Table 2: Marginal data densities and posterior means of the likehood function
Truncation parameter QTSM ATSM

log p (y1:T) 0.1 -484.77 -565.09
log p (y1:T) 0.3 -485.95 -565.70
log p (y1:T) 0.5 -486.22 -566.00
log p (y1:T) 0.7 -486.45 -566.19
log (E [p (y1:T)]) - -492.63 -570.43

All marginal data densities are computed by the harmonic mean estimator using a trun-
cated multivariate normal distribution.

play an important role. Another way to evaluate the impact of these terms is
to compute unconditional higher-order moments such as skewness and kurtosis.
This is done in Table 3 using the mean posterior parameter estimates. The model-
implied moments are computed based on a simulated time series with 1, 000, 000
observations. For the QTSM we see that quarter-on-quarter changes in bond yields
have almost no skewness, and kurtosis ranging from 4.88 at the one-quarter ma-
turity to 3.96 at the ten-year maturity. The magnitude of these deviations from the
Gaussian distribution are not sufficient to match the unconditional moments in the
data. This is somewhat similar to the results in Ahn et al. (2002) as they conclude
that QTSMs with Gaussian factor dynamics cannot fully match the conditional
volatility in US bond yields.

Table 3: Skewness and kurtosis in quarter-on-quarter changes in bond yields
Maturity (quarters) 1 2 4 8 20 40
Skewness:
QTSM 0.01 0.01 0.00 -0.00 -0.00 -0.00
Data -1.95 -2.05 -1.64 -0.72 -0.62 -0.57

Kurtosis:
QTSM 4.88 4.75 4.57 4.22 4.07 3.96
Data 13.46 15.57 14.36 4.86 4.03 2.72

Moments in the QTSM are computed based on a time series with 1 million observations.
All moments in the QTSMs are computed at the mean of the posterior distributions.

A third way to illustrate the impact of the non-linear terms in the QTSM is
to compare their impulse response functions to those from the affine model. As
a benchmark, Figure 2 reports the impulse response functions in the ATSM fol-
lowing a positive shock. (All impulse response functions reported in this paper
are estimated as the average across 10,000 draws from the joint posterior distribu-
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tion of the parameters.) Shocks to the first factor primarily affect long-term interest
rates, while shocks to the second factor primarily affect the short-term interest rate.
As is common in the term structure literature, we therefore refer to these factors as
driving the ‘level’ and ‘slope’ of the term structure, respectively.

Figure 2: Impulse response functions from the ATSM
Impulse response functions for a one standard deviation shock. The responses are reported
in percentage points from the steady state.
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The corresponding responses in the QTSMs are more complicated due to the
non-linear terms, and these functions therefore depend on i) the sign of the shock,
ii) the size of the shock, and iii) the initial factor values. To illustrate some of these
dependencies we compute the generalised impulse response functions (GIRFs)
proposed by Koop et al. (1996) for positive and negative shocks and at two dif-
ferent dates: i) 1992Q4 where the initial factors imply bond yields between about
3% and 7% and ii) 2012Q4 where the initial factors give low bond yields close to
the zero lower bound at short maturities.

Figures 3 and 4 show GIRFs following shocks to the first and second factor,
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respectively. In each case, the top row of sub-plots shows impulse responses for
1992Q4 and the bottom row for 2012Q4. The first column shows impulse responses
for a positive shock and the second column for a negative shock. The broad shapes
of the impulse responses are similar to those from the ATSM, in that the first factor
(the ‘level’) has a greater impact on long-term yields and the second factor (the
‘slope’) has a greater impact on short-term yields. For both the level and slope, the
responses are larger in 1992Q4 (interest rates are far from the zero-lower bound)
compared with the responses in 2012Q4 (interest rates are close to the bound). For
a given date, responses to a level shock are broadly symmetric. But the response of
short rates to a positive slope shock is larger than the response to a negative slope
in 2012Q4. This is because short rates are bounded below by the zero lower bound.
These differences indicate that the estimated quadratic model displays strong non-
linearities.

Figure 3: Impulse response functions to the level factor in the QTSM
Impulse response functions for a one standard deviation shock to the slope factor. The
responses are reported in percentage points (pp) from the steady state.
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Figure 4: Impulse response functions to the slope factor in the QTSM
Impulse response functions for a one standard deviation shock to the slope factor. The
responses are reported in percentage points (pp) from the steady state.
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Dynamic term structure models are often applied to extract measures of term
premia. We therefore end this section by comparing the derived measures of term
premia from the considered models in Figures 5 and 6. Following Dai and Single-
ton (2002), term premia are here defined as the difference between the long rate
and average expected future short rates, i.e.

TPt,τ = yt,τ −
1
τ

∑τ−1
i=0 Et [rt+i] (9)

in period t for maturity τ. The non-linear terms in the QTSM appear in the long
rate yt,τ and in the expected future short rates 1

τ ∑τ−1
i=0 Et [rt+i], making it difficult a

priori to assess their impact on term premia. But it is striking that estimates of term
premia are broadly similar across the two models (all estimates of term premia are
computed as averages across 10, 000 draws from the posterior densities for the
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parameters). Some more noticeable differences do emerge towards the end of the
sample, when yields are closer to the lower bound. This suggests that estimates of
term premia from the ATSM may be less robust when interest rates are low.
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To summarise, we find that the estimated quadratic model provides a better
statistical description of the data than a Gaussian ATSM. This difference relates
to the presence of sizeable non-linearities in the quadratic model, which leads to
non-trivial higher-order moments in bond yields and factor-dependent impulse
response functions.

4.5 The importance of the zero lower bound

This section studies the importance of the zero lower bound in the considered
affine and quadratic term structure models. Fitted one-quarter rates from the
ATSM are not always positive, falling as low as -0.14% in 2011Q2. In contrast,
the QTSM ensures that fitted short-term interest rates remain positive by construc-
tion. Moreover, forecast distributions implied by the ATSM also assign probability
to negative interest rates even when the model implied short rate is positive. We
illustrate this point in Figures 8 and 9 which show forecast distributions for the
one-quarter interest rate at different forecast horizons for two dates: 1992Q4 and
2012Q4. Here, the central red line shows the median forecast path, and each pro-
gressively lighter shading regions cover ten percentiles of the distributions. In
total, the shaded areas cover 80% of the distributions. For the affine model, we
see that the median projection in 2012Q4 remains above the zero lower bound but
there is nevertheless a high probability of negative interest rates at all horizons.
This shortcoming of the model is due to the fact that these forecast distributions
are Gaussian and hence symmetric. The quadratic model does not have the same
problem and perfectly accounts for the zero lower bound at all forecast horizons.
This is possible because bond yields in this model are a mixture of Gaussian and
Chi-squared distributed variables, with the latter dominating at the zero lower
bound. As a result, forecast distributions display a high degree of positive skew-
ness when interest rates are close to the bound. When interest rates are further
from the zero lower bound, as in 1992Q4, the forecast distribution is more sym-
metric.

To evaluate the historical importance of the zero lower bound, Figure 9 shows
the proportion of the ATSM forecast distributions for the one-quarter rate which
imply negative rates at different horizons (these are computed from 10,000 draws
from the posterior parameter distributions). At short forecast horizons - for exam-
ple, one and four quarters ahead - these proportions are generally below 5% until
the mid-2000s, when they increase to about 20%. Towards the end of the sample
these probabilities spike to over 30%, as short rates approach the lower bound. At
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Figure 7: Model implied probability distributions for the US one-quarter interest
rate from the QTSM
The probability distributions are computed using 10,000 simulations of the model parame-
ters and factor dynamics. The red lines show the median of the distributions. Progressively
lighter shading covers ten-percentile regions of the distributions with the total shaded area
covering percentiles 10-90.
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a forty-quarter forecast horizon, the probability of negative rates is around 10%
throughout the sample, although this also drifts up towards the end of the sam-
ple. Hence, the constraint implied by the zero lower bound is not just binding in
relation to the recent financial crisis but has actually been historically relevant.

As illustrated above, the quadratic model is able to account for the zero lower
bound due to the non-linear terms and in effect truncates forecast distributions
at α to ensure positive interest rates. This implies that forecast distributions in
this model are skewed to the right. Another way to evaluate the importance of
the non-linear terms in accounting for the lower bound is therefore to study the
skewness in forecast distributions as done in Figure 10 (these are computed from
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Figure 8: Model implied probability distributions for the US one-quarter interest
rate from the ATSM
The probability distributions are computed using 10,000 simulations of the model parame-
ters and factor dynamics. The red lines show the median of the distributions. Progressively
lighter shading covers ten-percentile regions of the distributions with the total shaded area
covering percentiles 10-90.
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10,000 draws from the posterior parameter distributions). We see that values of
skewness increase as the one-quarter rate gets close to the zero lower bound. This
appears around 1993, after 2001, and in relation to the recent financial crisis.

To conclude, we find that the zero lower bound for bond yields is an important
constraint to account for and that an ATSM may easily forecast negative interest
rates. Such predictions appear during the recent financial crisis in the US but also
prior to this crisis. On the other hand, a quadratic model perfectly accounts for the
zero lower bound and therefore ensures sensible forecast distributions for bond
yields.
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Figure 9: Probability of forecasting negative 1-quarter interest rates in the ATSM
Each line relates to a different forecast horizon for the 1-quarter interest rate.
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5 Conclusion

This paper shows how to use particle filtering and MCMC to estimate quadratic
term structure models by likelihood inference. The procedure is made numerical
feasible by using the optimised CDPF, which relies on the CDKF and a small opti-
misation step. We show that this adaptive particle filter provides a fast and reliable
estimate of the log-likelihood function for QTSMs, in contrast to the standard par-
ticle filter. The suggested procedure is illustrated by estimating the most flexible
QTSM on quarterly data for the US. We find that the QTSM provides a much better
statistical description of the data than a Gaussian ATSM. Bayes factors and poste-
rior Bayes factors are clearly in favour of the quadratic model. We also find that a
Bayesian perspective is useful when accounting for the zero lower bound because
this constraint may easily imply parameters at the boundary of their domain, thus
rendering standard classical inference problematic. The quadratic model displays
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Figure 10: Skewness of forecast distributions for the 1-quarter interest rates in the
QTSM
Each line relates to a different forecast horizon for the 1-quarter interest rate. Skewness is
computed based on 10,000 draws from the posterior parameter distributions, filtered states
and state disturbances.
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strong non-linearities and ensures that all forecast distributions imply positive in-
terest rates. This property is in contrast to the Gaussian ATSM where a large pro-
portion of the forecast distributions implies negative interest rates. Accordingly,
the lower bound is an important constraint to account for in the US, and this con-
straint has been active before the recent financial crisis.

Although this paper has focused on QTSMs, the suggested likelihood proce-
dure applies more generally to any non-linear and potentially non-Gaussian dy-
namic term structure model. Other applications include a quadratic model with
non-linearities in the market price of risk to further improve the performance of
the model. In relation to the lower bound, another interesting application would
be to estimate a model with a shadow interest rate as suggested by Black (1995).
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We leave these and other applications for future work.
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Appendix 1: Details on the implementation of the PMMH algo-

rithm

Delayed Rejection Adaptive Metropolis algorithm

We use the Delayed Rejection Adaptive Metropolis (DRAM) algorithm of Haario
et al. (2006) to sample from the posterior distribution for the model parameters. At
the ith step in the chain we first draw a proposed parameter vector θ′ according to:

θ′ = θ(i−1) + νS(i)θ ξ′ (10)

where θ(i−1) is the i− 1th member of the chain, ξ′ ∼ N (0, I), ν > 0 is a constant and
S(i)θ is the Cholesky factor of the proposal covariance matrix (see below for further
details). The proposal is accepted with probability min {a1, 1}, where (with a flat
prior) a1 is the ratio of the likelihood functions, i.e.

a1 =
p
(
y1:T|θ′

)
p
(

y1:T|θ(i−1)
) (11)

If the point is accepted, then θ(i) = θ′. If it is rejected, we draw a second proposed
parameter vector θ′′ from a scaled-down proposal distribution:

θ′′ = θ(i−1) + δS(i)θ ξ′′

where ξ′′ ∼ N (0, I) and 0 < δ < ν is a constant. This proposal is accepted with
probability min {a2, 1}, where a2 is modified to account for the rejection at the first
step, as in Haario et al. (2006).

For the first bs = 10, 000 observations in the chain S(i)θ is fixed. After bs ob-
servations, we follow Haario et al. (2001) and update the value of S(i)θ based on
all previous draws in the chain. That is we compute the mean of all values in the
chain so far:

θ
(1:i)

=

 θ̂
CDKF

for i = 0
1

i+1

[
iθ(1:i−1)

+ θ(i)
]

for i ≥ 1

 , (12)
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and replace S(0)θ in 10 by S(i−1)
θ , where R(i−1)

θ = S(i−1)
θ S(i−1)′

θ and:

R(i+1) =


1

bs+1

[
RCDKF

θ +
bs
∑

i=1

(
θ(i) − θ

(1:bθ)
) (

θ(i) − θ
(1:bθ)

)′]
if i = bs

i−1
i R(i) + sd

i

[
iθ(1:i−1)

θ
(1:i−1)′ − (i+ 1) θ

(1:i)
θ
(1:i)′

+ θ(i)θ(i)′ + εI
]

if i > bs

 .

(13)
Here, sd = 2.42/Nθ and ε > 0. After constructing M chains of length Nθ, we
then discard ‘burn-in’ periods of length bθ < Nθ from each chain and combine the
remaining portions of the chains.

The sampling from the posterior distribution is initialised as follows. We first
estimate the parameters (θ̂

CDKF
) that maximise a quasi-likelihood function con-

structed using the Central Difference Kalman Filter (CDKF) of Norgaard et al.
(2000). Here we apply the evolutionary optimisation routine CMA-ES which can
deal with arbitrary non-linear constraints and multimodal objective functions (see
Hansen et al. (2003) and Hansen and Kern (2004)). A Gaussian approximation
around this point is constructed using a Hessian-based covariance estimator (RCDKF

θ ).

A chain initialized by θ(0) = θ̂
CDKF

and RCDKF
θ = S(0)θ S(0)′θ converges quite slowly

to the posterior distribution. In a preliminary step, we therefore construct a chain
of Nθ = 1, 000, 000 replacing the likelihood function with the quasi-likelihood con-
structed using the CDKF - which is much quicker to evaluate that the CDPF - and
discard the first bθ = 500, 000 observations as burn-in. We then initialise the final
chain using the mean and covariance of parameters from this preliminary quasi-
MCMC chain.

The optimised Central Difference Particle Filter

We use the notation [xt, Sx (t)] = CDKF (Sx (t− 1) , xt−1, yt) to denote one itera-
tion in the CDKF from time point t − 1 to time point t based on Sx (t− 1), xt−1,
and yt.

• Initialisation: t = 0

For i = 1, ..., N draw particles x̂(i)0 from p (x0) and let w(i)0 = 1
N for all i. The

posterior state estimate: x̂t =
1
N ∑N

i=1 x̂(i)t

• For t > 0

1. Importance sampling step

–
[
x̂CDKF

t , ŜCDKF
x (t)

]
= CDKF

(
ŜCDKF

x (t− 1) , x̂t−1, yt

)
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– Determine the value of γt by numerical optimisation

– Draw particles x(i)t fromN
(

x(i)t

∣∣∣ x̂CDKF
t , γ2

t ŜCDKF
x (t)

(
ŜCDKF

x (t)
)′)

for i = 1, ..., N

– Evaluate the importance weights:

w(i)t = w(i)t−1
p
(

yt

∣∣∣x(i)t ;θ
)

p
(

x(i)t

∣∣∣x̂(i)t−1 ;θ
)

N
(

x(i)t

∣∣∣x̂CDKF
t ,γ2

t ŜCDKF
x (t)(ŜCDKF

x (t))
′) for i = 1, ..., N

– The contribution to the log-likelihood function: Lt = Lt−1+ log(∑N
i=1 w(i)t )

– For i = 1, ..., N normalise the importance weights w̃(i)t = w(i)t / ∑N
i=1 w(i)t

2. Resampling step:

– Resample with replacement from
{

x(i)0:t

}N

i=1
with probabilities

{
w̃(i)t

}N

i=1
to obtain a samples of size N approximately distributed according

to p (x0:t |y1:t ; θ). This new sample is denoted by
{

x̂(i)0:t

}N

i=1

– In
{

x̂(i)t

}N

i=1
we have w(i)t = 1

N for all i = 1, ..., N

3. State estimates

– The posterior state estimate: x̂t =
1
N ∑N

i=1 x̂(i)t
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