
Working Paper No. 490
Adaptive forecasting in the presence of
recent and ongoing structural change
Liudas Giraitis, George Kapetanios and Simon Price  

March 2014

Working papers describe research in progress by the author(s) and are published to elicit comments and to further debate.  

Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state

Bank of England policy.  This paper should therefore not be reported as representing the views of the Bank of England or members

of the Monetary Policy Committee or Financial Policy Committee. 



Working Paper No. 490
Adaptive forecasting in the presence of recent and
ongoing structural change
Liudas Giraitis,(1) George Kapetanios(2) and Simon Price(3)

Abstract

We consider time series forecasting in the presence of ongoing structural change where both the 

time-series dependence and the nature of the structural change are unknown.  Methods that downweight 

older data, such as rolling regressions, forecast averaging over different windows and exponentially

weighted moving averages, known to be robust to historical structural change, are found also to be

useful in the presence of ongoing structural change in the forecast period.  A crucial issue is how to

select the degree of downweighting, usually defined by an arbitrary tuning parameter.  We make this

choice data-dependent by minimising forecast mean square error, and provide a detailed theoretical

analysis of our proposal.  Monte Carlo results illustrate the methods.  We examine their performance on

97 US macro series.  Forecasts using data-based tuning of the data discount rate are shown to perform

well.

Key words: Recent and ongoing structural change, forecast combination, robust forecasts.

JEL classification: C100, C590.

(1)  Queen Mary University of London.  Email: l.giraitis@qmul.ac.uk

(2)  Queen Mary University of London.  Email: g.kapetanios@qmul.ac.uk

(3)  Bank of England, City University London, CAMA and CFM.  Email:  simon.price@bankofengland.co.uk

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.  Giraitis’s

research was, in part, supported by ESRC grant RES062230790.  This paper was finalised on 25 February 2014.

The Bank of England’s working paper series is externally refereed.

Information on the Bank’s working paper series can be found at

www.bankofengland.co.uk/research/Pages/workingpapers/default.aspx

Publications Group, Bank of England, Threadneedle Street, London, EC2R 8AH 

Telephone +44 (0)20 7601 4030  Fax +44 (0)20 7601 3298  email publications@bankofengland.co.uk

© Bank of England 2014

ISSN 1749-9135 (on-line)



 

 
Working Paper No. 490 March 2014 ii 

Summary 

 
Forecasting is an important activity for central banks, not least because policy takes effect with 

a lag.  Inevitably, policy is forward looking. Thus in many central banks, including the Bank of 

England, the published forecast is a key tool in communicating judgements about monetary 

policy and the economy. The Bank’s forecast, published in the Inflation Report, represents the 

judgements of the Monetary Policy Committee and is not mechanically produced by a single 

model. However, many forecasting models - a “suite” of models - help the Committee 

determine its judgement, including simple largely atheoretical models of the type considered in 

this paper.  

One common cause of forecast failure is that structural changes or “breaks” keep on occurring 

in the underlying relationships in the economy, and this paper addresses that problem, building 

on previous work undertaken in the Bank. The problem, almost by definition, is that we do not 

know what form the structural break took.  If we did, we could model it: but then it would not be 

a structural break, but a known data-generation process.  What we need are methods that are 

useful where there is the possibility of a wide range of types of structural change.  The earlier 

work showed that a robust way of forecasting in such an environment is to discount past data 

so that more recent data is given more weight.  This helps avoid forecast errors, as if there 

have been structural breaks in the past, the data pertaining to that period is given less weight 

compared to recent data where there may have been no or fewer breaks.  This can be done in 

many ways.  These include “rolling windows” where all data before a cut-off date is excluded, 

exponentially declining weights smoothly lowering the weight for distant data (often 

implemented as an exponentially weighted moving average), and other methods.  But this 

raises the practical question of exactly how rapidly to downweight.  The innovation of the paper 

is to choose this by using in-sample forecast performance. 

The paper shows that in a wide variety of situations the method will have good statistical 

properties.  What is more, it can handle any degree of persistence.  Speaking somewhat 

loosely, “persistence” is the tendency for a series to be affected by its past behaviour.  For 

example, a series that is simply a constant with some random white noise has no persistence.  

(In this case, the best forecast is to use all the data to calculate the mean as precisely as 

possible.)  By contrast, in the classic random walk a series is equal to what it was last period 

plus a random white noise error, and so there is a high degree of persistence.  (In that case, 

the best forecast ignores all except the last observation.) These examples show that the 

optimal rate of discounting past data is likely to depend upon persistence.  We are also able to 

demonstrate that the method is very flexible.  There are ways of including dynamics, similar to 

the widely used autoregressive (AR) method, known to produce good forecasts,  where the 

series is solely related to a few of its own lags.  We can also allow the weights to vary very 

flexibly using a non-parametric method which does not tie down the model to a specific form, 

and allow for other explanatory variables.  The theory is for large samples, but we show using 

simulation (“Monte Carlo”) methods that the methods work for short samples as well.   

The proof of the forecast pudding is in the testing, so we apply the methods to a large number 

of economic variables from the United States using a sample from 1960 to 2008, comparing 

root mean square forecast errors (RMSFE), which is a standard criteria that penalises large 

forecast errors.  Not all the series exhibit breaks, but in the typical (median) case the methods 

do better than an AR benchmark.  The methods that work best are ones that allow for some 

dynamics.  For some variables, such as financial spreads and some inflation series, they do 

spectacularly better. Moreover, in many cases the methods are significantly better (in the 
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statistical sense) than the benchmark, meaning that they do better much more often than would 

be expected by chance.   

We conclude that the proposed technique of downweighting past data in a way determined by 

past forecast performance is likely to be a useful item in the forecaster’s toolkit. 

 

 

 

 



1 Introduction

It is widely accepted that structural change is a crucial issue in econometrics and forecasting.
Clements and Hendry suggest forcefully (in e.g. 1998a,b) that such change is the main source of
forecast error; Hendry (2000) argues that the dominant cause of forecast failures is the presence of
deterministic shifts. Convincing evidence of structural change was offered by Stock and Watson
(1996) who looked at many forecasting models of a large number of US time series, and found
parameter instability in a substantial proportion. This issue remains relevant: in a survey of the
literature on forecasting in the presence of instabilities for the Handbook of Economic Forecast-
ing, Rossi (2012) writes ‘the widespread presence of forecast breakdowns suggests the need for
improving ways to select good forecasting models in-sample.’ Our work on robust and data-driven
forecasting is a contribution to precisely this end. As model parameters may change continuously,
drift smoothly over time or change at discrete points in an unknown manner, and both within the
sample and over the forecast period, we consider a general setting where the model structure and
presence and type of structural change are all unknown.

There is a large literature on the identification of breaks, and forecasting methods robust to
them (Rossi (2012)). However, the deeply practical need to forecast after a recent structural
change, or during a period of such change, has received very little attention. As most forecast
approaches are only effective in specific cases, the problem is compounded by the unknown and
therefore unspecified nature of any structural change.

Detection of structural change has a long history, mainly in the context of structural breaks
(although see Kapetanios (2007) for the case of smooth structural change). Seminal papers in-
clude Chow (1960), Andrews (1993) and Bai and Perron (1998). But the question of amendment
of forecasting strategies then arises. While this has been tackled by many authors, a major con-
tribution was made by Pesaran and Timmermann (2007). They concluded that, in the presence
of breaks, forecast pooling using a variety of estimation windows provides a reasonably good and
robust forecasting performance.

Nevertheless, most work on forecasting assumes that change has occurred when sufficient time
has elapsed for post-break estimation.1 In practice, the issue of change occurring in real time is a
major consideration, which was partly addressed in Eklund, Kapetanios, and Price (2010). They
considered a variety of forecasting strategies which can be divided into two distinct groups. In
one case the forecaster monitors for change and adjusts methods once change has been detected.
In the other the forecaster does not attempt to identify breaks, since that involves a substantial
time lag. Instead break-robust forecasting strategies are used that essentially downweight data
from older periods deemed to be irrelevant for the current conjuncture.

While moving in an interesting direction, Eklund, Kapetanios, and Price (2010) do not elabo-
rate two issues: how much to downweight past data, and whether to do so monotonically. Clearly,
any arbitrary discount factor is unlikely to be optimal. And neither may monotonicity: for ex-
ample, if regimes (e.g., monetary policy) come and go then older data, from a period where the
current regime previously held, might be more relevant than more recent data from other regimes.

In this paper, we suggest forecasting approaches that address these issues. Our main contribu-
tion is to introduce and analyse a cross-validation based method which selects a tuning parameter
defining the downweighting rate of the older data. We show that the implied discount rate min-
imises the mean square error (MSE) of the forecast in the weighting schemes considered. Further,

1Exceptions include the interesting work of Clements and Hendry (2006) and Castle, Fawcett, and Hendry
(2011).
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we consider a nonparametric method for determining a flexible weighting scheme. The latter does
not assume any particular shape for the weight function, nor monotonicity. We explore the prop-
erties of the new forecasting methods for a variety of models in terms of theory, with a Monte
Carlo exercise and empirically. It turns out that the method is valid under a wide range of forms
of structural breaks and persistence, and can be generalised in a number of practically important
dimensions, most notably allowing varying dynamic structures.

A byproduct of our results is a new way to accommodate trends of a generic nature in fore-
casting. Unlike many forecasting approaches that require the removal of stochastic or other trends
before forecasting, our methods can be directly applied to the level of the forecast series.

The rest of the paper is organised as follows. Section 2 presents our approach for forecasting
in the presence of recent structural breaks. We provide its theoretical justification and asymptotic
MSE, and describe some robust forecasting strategies. Section 3 includes an extensive Monte
Carlo study in which these strategies are evaluated. In Section 4 the methods are used to forecast
a large number of US macroeconomic time series, where we find results broadly consistent with
the Monte Carlo study. Section 5 concludes. Proofs are reported in an Appendix.

2 Adaptive forecasting: econometric framework

2.1 Forecasting strategies

In this section we work with a simple location forecasting framework that is as general as possible
while consistent with clear theoretical results. It may be summarised as

yt = βt + ut, t = 1, · · · , T, (2.1)

where βt is an unobserved persistent process, and ut is a stationary dependent noise that is
independent of βt. Unlike most previous work we wish to place as little structure as possible
on the process βt. We do not specify whether βt is stochastic or deterministic, or whether it is
discontinuous or smooth. The noise process ut is a stationary linear process with mean zero and
finite variance σ2

u. The persistent component βt ≡ βT,t is allowed to be a triangular array, and
can be a stochastic (unit root) or deterministic (bounded) trend. This set-up provides sufficient
flexibility to our theoretical analysis of forecasting yt, allowing for βT,t such as those used in locally
stationary models (e.g. Dahlhaus (1996)), or in persistent stochastic unit root trend models. For
simplicity of notation, we write yT,t as yt and βT,t as βt. It should be stressed that in robust
forecasting, which is our focus, the structure of βt is neither known nor estimated. Concerning our
simple location conditional mean modelling, we note that our analysis can allow both the use of
a generic model of the conditional mean of the process and robust forecasting around that model.
We discuss details related to this extension in Section 2.8.

Eklund, Kapetanios, and Price (2010) find that simple forecasting of yt, based on weighting
schemes that discount past data, works well in practice. Examples include exponential weighting
and forecast combinations based on different estimation windows. By varying a tuning parameter,
such methods impose different shapes on the weight functions that downweight past data. Their
weakness is that it is not clear how to select the tuning parameters. So data-dependent tuning
methods for choosing these parameters are of great interest.

One way to calibrate parameters is by optimising on in-sample forecasting performance. This
idea is not new. For example, Kapetanios, Labhard, and Price (2006) suggest forecasts where
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different models are averaged with weights that depend on the forecasting performance of each
model in the recent past. In what follows we formalise the above ideas, presenting a data-driven
weighting strategy and developing its theoretical analysis.

We consider a linear forecast of yt, based on (local) averaging of past values yt−1, · · · , y1:

ŷt|t−1, H =
t−1∑
j=1

wtj,Hyt−j = wt1,Hyt−1 + · · ·+ wt,t−1,Hy1, (2.2)

with weights wtj,H ≥ 0 such that wt1,H + · · · + wt,t−1,H = 1, parameterised by a single tuning
parameter H. The latter defines the rate of downweighting the past observations (e.g., the width
of the rolling window). The structure of weights wtj,H is described in Assumption 1. We assume
that H takes values in the interval IT = [α, Hmax], where α > 0.

Assumption 1 The function K(x) ≥ 0, x ≥ 0 is continuous and differentiable on its support,
such that

∫∞
0
K(u)du = 1, K(0) > 0, and for some C > 0, c > 0

K(x) ≤ C exp(−c|x|), |K̇(x)| ≤ C/(1 + x2), x > 0, (2.3)

where K̇ is the first derivative of K. For t ≥ 1, H ∈ IT , set kj,H = K(j/H) and define

wtj,H =
kj,H∑t−1
s=1 ks,H

, j = 1, · · · , t− 1. (2.4)

Example 1 The main classes of commonly employed weights satisfy this assumption.
(i) Rolling window weights, with K(u) = I(0 ≤ u ≤ 1).
(ii) Exponential weighted moving average (EWMA) weights, with K(u) = e−u, u ∈ [0,∞). Then,
with ρ = exp(−1/H), kj,H = ρj and wtj,H = ρj/

∑t−1
k=1 ρ

k, 1 ≤ j ≤ t− 1.
(iii) Triangular window weights, with K(u) = 2(1− u)I(0 ≤ u ≤ 1).

While the rolling window simply averages the H previous observations, the EWMA forecast uses
all observations y1, · · · , yt−1, increasingly downweighting the more distant past. In practice, fore-
casting of a unit root or trending process yt is often conducted by averaging over the last few
observations. When persistence in yt falls, wider windows may be expected to yield smaller fore-
cast MSE. It is also plausible that for a stationary process {yt} when dependence is sufficiently
strong a forecast discounting past data will outperform the sample mean forecast (yt + · · ·+ y1)/t.
These observations, supported by the theory below, indicate that the ‘optimal’ selection of H
depends on the unknown type of persistence in yt. Thus, contrary to the usual practice of using
a preselected value of H, a data based selection method for H is indicated.

2.2 Selection of the tuning parameter H

Given a sample y1, · · · , yT , computation of the forecast yT+1|T,H requires selection of the parameter
H. We use a cross-validation method, obtaining H by numerically minimising the mean squared
forecast error of the in-sample forecasts, defined by the following objective function:

QT,H :=
1

Tn

T∑
t=T0

(yt − ŷt|t−1, H)2, Ĥ := argminH∈ITQT,H (2.5)
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with starting point T0 = o(T ), Tn := T − T0 + 1. Define Hmax = T0T
−δ, 0 < δ < 1. We assume

that T0 and Hmax are selected such that T 2/3 < Hmax < T0 = o(T ).
We will show that the forecast ŷT+1|T,H of yT+1, obtained with data-tuned weights (or Ĥ), min-

imises the Mean Squared Error (MSE), ωT,H := E(yT+1− ŷT+1|T,H)2 in H, hence making the fore-
cast procedure (2.2) operational and optimal in the following sense. Let Hopt = argminH∈ITωT,H
be the optimal value of fixed parameter H minimising MSE ωT,H . Then

ωT,Ĥ = ωT,Hopt + o(1), QT,Ĥ = ωT,Ĥ + op(1), (2.6)

where the quantity QT,Ĥ is an estimate of the forecast error ωT,Ĥ .
Below we verify that the minimisation procedure (2.5) provides optimal selection of H for basic

forms of persistence in yt = βt + ut. As an illustration, let σ̂2
T,u := T−1

n

∑T
j=T0

u2
j be the sample

variance of ut. We will show that, as T →∞,

QT,H = σ̂2
T,u + E[QT,H − σ2

u](1 + oP (1)),

= σ̂2
T,u + (

λβH
m

T p
+
λu
H

)(1 + oP (1)), H →∞, (2.7)

with some constants λβ ≥ 0, λu, and integers m, p ≥ 0. The term λβH
m/T p is contributed by βt

while λu/H by ut. These relations determine whether Ĥ takes finite values or is increasing with
T .

For example, if the noise ut in yt = βt + ut is sufficiently strongly dependent, then using
exponential weights yields λu < 0. Then, no matter what βt is, QT,H reaches its minimum on a

bounded interval, and the minimiser Ĥ of (2.7) remains bounded. Similarly, if yt includes a linear or
unit root trend βt, then Hm/T p ≥ H, and the minimiser Ĥ of (2.7) again remains bounded. Under
mildly persistent βt, the minimiser Ĥ can also increase as a power of T . For example, if βt is a
bounded unit root trend, and ut is an i.i.d. noise, then QT,H = σ̂2

T,u+(λβHT
−1+λuH

−1)(1+oP (1)),

λu > 0, which leads to Ĥ ∼ cT 1/2 (see Sections 2.5-2.6). Similar properties hold for the break in
the mean model (see Section 2.6).

Notation. Beside wtj,h, we will use the weights

wj,H = kj,H/

∞∑
s=1

ks,H , j ≥ 1. (2.8)

Below, a ∧ b = min(a, b), a ∨ b = max(a, b) and I(A) is the indicator function; aT ∼ bT denotes
that aT/bT → 1, as T increases. We write op,H(1) or oH(1) to indicate, that supH∈IT |op,H(1)| →p 0
or supH∈IT |oH(1)| → 0, as T →∞.

We will use the fact

σ̂2
T,u = σ2

u +Op(T
−1/2), (2.9)

which holds under Assumption 2 (see Proposition 4.5.2 in Giraitis, Koul, and Surgailis (2012)).

2.3 Properties of a forecast based on Ĥ

Now we turn to the theoretical justification of the optimal properties of the selection procedure
of H for yt = βt + ut, where βt is a persistent process (deterministic or stochastic trend) of
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unknown type, and ut is a stationary noise term. Our objective is to show that the forecast
yT+1|T,Ĥ of yT+1 with optimal tuning parameter Ĥ minimises the forecast MSE in the following
sense: ωT,Ĥ = ωT,Hopt + oP (1). Moreover, the property QT,Ĥ = ωT,Ĥ + op(1) allows estimation of
the forecast error.

The following assumption specifies the required properties of the stationary noise process ut.

Assumption 2 ut is a stationary linear process

ut =
∞∑
j=0

ajεt−j, t ∈ Z, εj ∼ IID(0, σ2
ε), Eε4

1 <∞, (2.10)

such that
∑

k∈Z |γu(k)| <∞,
∑

k≥n |γu(k)| = o(log−2 n) and s2
u :=

∑
k∈Z γu(k) > 0, where γu(k) =

Cov(uk, u0).

Under Assumption 2, ut has short memory, while its long-run variance s2
u is positive and finite.

We will write ut ∼ I(0) to denote that a stationary process ut satisfies Assumption 2. Below
βt ∼ I(1) denotes a unit root process such that βt − βt−1 is an I(0) process.

We shall consider the following types of persistent component βt.

b1. Constant βt = µ.
b2. Unit root βt ∼ I(1).
b3. Bounded unit root T 1/2βt ∼ I(1).
b4. Deterministic trend βt = tg(t/T ).
b5. Bounded deterministic trend βt = g(t/T ).

b6. Break in the mean βt =

{
µ1, t = 1, · · · , t0,

µ2, t = t0 + 1, · · · , T.
We suppose that, in (b4) and (b5), g(x), x ∈ (0, 1) is continuous and has a bounded second

derivative, and in (b6), µ1 6= µ2 and τ := T − t0 = o(T ).

We are now ready to analyse the properties of QT,H , Ĥ and the forecast error ωT,Ĥ .

2.4 The case of a stationary process yt

First we discuss the properties of the forecast in the case (b1) when yt = µ + ut, t ≥ 1 is a
stationary process. We shall use the following notation: κ2 =

∫∞
0
K2(x)dx, κ0 = K(0), and

qu,H := E
(
u0 −

∞∑
j=1

wj,Hu−j
)2 − σ2

u, λu := s2
u{κ2 − κ0}+ σ2

uκ0. (2.11)

Theorem 1 Suppose that yt = µ+ ut, t ≥ 1, where ut is a stationary I(0) process.

Then, as T →∞, for H ∈ IT ,

QT,H = σ̂2
T,u + qu,H + op,H(H−1), ωT,H = σ2

u + qu,H + oH(H−1), (2.12)

where qu,H = λuH
−1 + o(H−1), as H →∞.

Theorem 1 shows that QT,H is a consistent estimate of ωT,H , and implies that the forecast

yT+1|T, Ĥ computed with the data-tuned Ĥ has the same MSE as yT+1|T,Hopt . The latter can be
estimated by QT,Ĥ as stated in the following corollary.
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Corollary 1 If qu,H reaches its minimum at some finite H0, then

ωT,Ĥ = ωT,Hopt + op(1), QT,Ĥ = ωT,Ĥ + o(1) = σ2
u + qu,H0 + op(1). (2.13)

If qu,H reaches its minimum at infinity, then

ωT,Ĥ = ωT,Hopt + o(T−1/2), QT,Ĥ = ωT,Ĥ +Op(T
−1/2) = σ2

u +Op(T
−1/2). (2.14)

Remark 1 Result (2.13) implies that the forecast with tuning parameter Ĥ has the same precision
as the forecast based on Hopt that minimises the forecast error ωT,H . The sign of λu carries

information about the location of the minimiser Ĥ of QT,H : for λu < 0, QT,H reaches its minimum
at some finite value H0. In such a case, the error ωT,Ĥ = σ2

u + qu,H0 of the optimal forecast is

smaller than that of the sample mean, σ2
u. The sign of λu is determined by two factors: the kernel

K and the strength of dependence in ut. For the rolling window kernel K(u) = I(0 ≤ u ≤ 1),
κ2 = κ0 = 1, and thus λu = σ2

u is always positive. However, for the exponential kernel K(u) = e−u,
u ≥ 0, λu = σ2

u − s2
u/2 which becomes negative when the long-run variance of ut is sufficiently

large: s2
u > 2σ2

u, e.g., for an AR(1) model ut with autoregressive parameter greater than 1/3.
The fact that λu is smaller for exponential weights than for rolling windows suggests that EWMA
weighting leads to a smaller forecast error and may outperform the latter.

If qu,H is a positive function, then Ĥ will take the largest possible value in IT , and the forecast
error ωT,Ĥ → σ2

u will be the same as for the sample mean. These observations are confirmed by
simulation studies. Monte Carlo simulations in Table 2 show that for an AR(1) model ut with
parameter 0.7 the rolling window forecast does not outperform the sample mean, while the forecast
based on EWMA weights reduces the relative MSE by 33%.

2.5 The case of a stochastic trend

In this section we analyse the properties of the forecast when yt = βt + ut, 1 ≤ t ≤ T contains a
stochastic trend βt observed under a stationary noise ut. We focus on two cases:

(b2), where βt is a unit root I(1) process, setting

q
(2)
β,H := E

(
β0 −

∞∑
j=1

wj,Hβ−j
)2
, λ

(2)
β := s2

∇β

∫ ∞
0

( ∫ ∞
x

K(z)dz
)2
dx. (2.15)

(b3), where βt = T−1/2β̃t, t = 1, · · · , T and β̃t is a unit root I(1) type process, setting

q
(3)
β,H := q

(2)

β̃,H
, λ

(3)
β := λ

(2)

β̃
. (2.16)

Here, ∇βt = βt − βt−1. In the following theorem, qu,H and λu are the same as in Theorem 1.

Theorem 2 Let yt = βt + ut, t = 1, · · · , T where ut is a stationary I(0) process.

(i) If βt is a unit root trend (b2), then, as T →∞, for H ∈ IT ,

QT,H = σ̂2
T,u + q

(2)
β,H + qu,H + op,H(H), ωT,H = σ2

u + q
(2)
β,H + qu,H + oH(H), (2.17)

where q
(2)
β,H + qu,H = λ

(2)
β H + o(H), as H →∞.
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(ii) If βt is a bounded unit root trend (b3), then, as T →∞, for H ∈ IT ,

QT,H = σ̂2
T,u + T−1q

(3)
β,H + qu,H + op,H

(
HT−1 +H−1

)
, (2.18)

ωT,H = σ2
u + T−1q

(3)
β,H + qu,H + oH

(
HT−1 +H−1

)
,

where T−1q
(3)
β,H + qu,H = λ

(3)
β HT−1 + λuH

−1 + o
(
HT−1 +H−1

)
, as H →∞.

Theorem 2 implies that the forecast obtained using data tuned parameter Ĥ has the same MSE
as using Hopt, which can be estimated by QT,Ĥ . More precisely, the following holds.

Corollary 2 For a unit root process βt, as in (b2), Ĥ stays bounded, and

ωT,Ĥ = ωT,Hopt + o(1), QT,Ĥ = ωT,Ĥ + o(1) = σ2
u + q

(2)
β,H0

+ qu,H0 + op(1), (2.19)

where H0 is the minimiser of q
(2)
β,H + qu,H .

For a bounded unit root process βt, as in (b3), Ĥ stays bounded, if qu,H reaches its minimum
at some finite point H0. Then

ωT,Ĥ = ωT,Hopt + op(1), QT,Ĥ = ωT,Ĥ + op(1) = σ2
u + qu,H0 + op(1). (2.20)

Otherwise, if qu,H reaches its minimum at infinity, then

ωT,Ĥ = ωT,Hopt +O(T−1/2), QT,Ĥ = ωT,Ĥ +Op(T
−1/2) = σ2

u +Op(T
−1/2).

Remark 2 When βt is a unit root trend, the optimal Ĥ may require averaging over the last few
observations, to minimise the effect of the noise ut. As a rule Ĥ will not take large values, and
the rolling window will be narrow, but not necessary consisting of a single last observation. To
illustrate the selection of H for the rolling window, consider the example of a random walk plus
noise yt = βt + ut, where ξt := βt − βt−1 ∼ IID(0, σ2

b ), ut ∼ IID(0, σ2
u) and σ2

u > σ2
b/2. Then,

ωt,1 = E(yt+1 − yt+1|t,1)2 = E(yt+1 − yt)2 = E(ut+1 + ξt+1 − ut)2 = 2σ2
u + σ2

b ;
ωt,2 = E(yt+1 − yt+1|t,1)2 = E

(
yt+1 − (yt + yt−1)/2

)
)2 = (3/2)σ2

u + (5/4)σ2
b .

Hence, ωt,1 > ωt,2, which implies Ĥ ≥ 2.

When βt is a bounded unit root trend, Ĥ aims to minimise (2.17). If qu,H does not attain its

minimum at a finite point, e.g. if ut ∼ i.i.d., then Ĥ minimises λ
(3)
β HT−1 +λuH

−1 and increases as

Ĥ ∼ (λu/λ
(3)
β )1/2T 1/2. Then the forecast error satisfies QT,Ĥ = σ̂2

T,u+2(λuλ
(3)
β )1/2T−1/2+op(T

−1/2).

2.6 The case of a deterministic trend and a structural break

Next, we analyse the properties of the forecast of yt, when βt = βT,t is a deterministic trend and
ut is a stationary noise. We consider three cases:

(b4), where βt is an unbounded trend: βt = tg(t/T ), setting κ3 := (
∫∞

0
K(x)xdx)2,

q
(4)
β,H := c(g)(

∑∞
j=1 wj,Hj)

2, λ
(4)
β := c(g)κ3 c(g) :=

∫ 1

0

(
g(x) + xġ(x)

)2
dx. (2.21)

(b5), where βt is a bounded trend: βt = g(t/T ), setting

q
(5)
β,H := c′(g)(

∑∞
j=1wj,Hj)

2, λ
(5)
β := c′(g)κ3, c′(g) :=

∫ 1

0
ġ2(x)dx. (2.22)
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(b6), where βt models the break in the mean: βt,T = µ1; t = 1, · · · , t0; , βt,T = µ2, t =
t0 + 1, · · · , T, where ∆ = |µ1 − µ2| 6= 0 and the post-break period τ = T − t0 = o(T ). We set

q
(6)
β,H := ∆2T−1

n

T∑
t=t0

( t−1∑
j=t−t0

wj,H)2, Gτ,H := ∆2

∫ τ/H

0

( ∫ ∞
x

K(v)dv
)2
dx. (2.23)

Notations qu,H and λu are as in Theorem 1.

Theorem 3 Let yt = βt + ut, t = 1, · · · , T where ut is an I(0) process. Then, as T → ∞, for
H ∈ IT the following holds.

(i) For unbounded trend βt (b4),

QT,H = σ̂2
T,u + q

(4)
β,H + qu,H + op,H(H2), ωT,H = σ2

u + δgq
(4)
β,H + qu,H + oH(H2), (2.24)

where q
(4)
β,H + qu,H = λ

(4)
β H2 + o(H2), as H →∞, and δg := (g2(1) + ġ2(1))/c(g).

(ii) For bounded trend βt (b5),

QT,H = σ̂2
T,u + T−2q

(5)
β,H + qu,H + op,H

(
H2T−2 +H−1

)
, (2.25)

ωT,H = σ2
u + T−2δ′gq

(5)
β,H + qu,H + oH

(
H2T−2 +H−1

)
, δ′(g) = ġ2(1)/c′(g),

where q
(5)
β,H ∼ H2λ

(5)
β , qu,H ∼ λuH

−1, as H →∞.

(iii) For break point in βt (b6),

QT,H = σ̂2
T,u + q

(6)
β,TH + qu,H + op,H

(
HT−1 +H−1

)
, (2.26)

ωT,H = σ2
u + λ̃

(6)
T,H + oH

(
T−1

)
, λ̃

(6)
T,H := ∆2

( T∑
j=T+1−t0

wj,H)2 + qu,H ,

where q
(6)
β,TH + qu,H = Gτ,HHT

−1 + λuH
−1 + o

(
T−1

)
, as H →∞.

Theorem 3 obtains the asymptotic properties of QT,H that allow the derivation of the following
characteristics of the forecast yT+1|T, Ĥ .

Corollary 3 For a deterministic trend, βt, as in (b4), Ĥ stays bounded. For a linear trend
βt = ct,

ωT,Ĥ = ωT,Hopt + o(1), QT,Ĥ = ωT,Ĥ + o(1) = σ2
u + q

(4)
β,H0

+ qu,H0 + op(1), (2.27)

where H0 is a minimiser of q
(4)
β,H + qu,H .

For a bounded deterministic trend, βt as in (b5), Ĥ stays bounded, if qu,H reaches its minimum
at some finite point H0. Then,

ωT,Ĥ = ωT,Hopt + o(1), QT,Ĥ = ωT,Ĥ + o(1) = σ2
u + qu,H0 + op(1). (2.28)

Otherwise, if qu,H reaches its minimum at infinity, then

ωT,Ĥ = ωT,Hopt +O(T−2/3), QT,Ĥ = ωT,Ĥ +Op(T
−1/2) = σ2

u +Op(T
−1/2).
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Remark 3 In the presence of a deterministic trend (b4), the optimal Ĥ will be small and the
forecast will be based on averaging over the last few observations, but it may not consist of a
single last observation, unless the noise ut is negligible.

In the presence of a bounded smooth deterministic trend (b5) and ut ∼ i.i.d., Theorem 3(ii)

implies that the optimal Ĥ will tend to minimise λ
(5)
β (H/T )2 + λuH

−1 and increase as Ĥ ∼
(λu/2λ

(5)
β )1/3T 2/3, yielding QT,Ĥ = σ̂2

T,u + cT−2/3 + op(T
−2/3), c = (3/2)(2λ2

uλ
(5)
β )1/3.

The following corollary develops further the result of Theorem 3(iii). It shows that with a
structural break in the mean, the time needed for the optimisation procedure to detect the break
and switch the weighting to post-break data is proportional to

√
T .

Corollary 4 Let yt combine the break in the mean (b6) and an i.i.d. noise ut.

(i) If the post-break period τ = T−t0 satisfies τ/
√
T →∞, then, with λβ := ∆2

∫∞
0

( ∫∞
x
K(u)du

)2
dx,

Ĥ ∼ (λu/λβ)1/2T 1/2, QT,Ĥ = σ̂2
T,u + 2(λuλβ)1/2T−1/2 + op(T

−1/2). (2.29)

Moreover, ωT,Ĥ = σ2
u + O(rT ) and ωT,Ĥ = ωT,Hopt + O(rT ), where rT = T−1/2 + e−2cτ/

√
T and c is

the same as in (2.3).

(ii) If τ = o(
√
T ), then Ĥ is not affected by the break, Ĥ/

√
T →∞ and QT,Ĥ = σ̂2

T,u + op(T
−1/2),

whereas ωT,Ĥ = σ2
u + ∆2 + o(1).

The proof of this corollary can be found in the appendix.

Example 2 If yt contains the break in the mean (b6) and an i.i.d. noise ut, then forecasting
with the rolling window weights, will yield c∆ = ∆2/3 and c∆/λu = 3σ2

u/∆
2. Thus, in finite

samples, if the time expired after the break τ > (σu/∆)
√

3T , then the optimisation will tend to
select the window width Ĥ ≤ τ , and the forecast will be based on the data from the post-break
period. However, for more recent breaks, such that τ < (σu/∆)

√
3T , the forecast may not switch

to the post-break data. The waiting time for such a switch is defined by the ratio σu/∆ and√
3T . We briefly examine these matters with a Monte Carlo forecasting experiment based on 200

observations of the sequence yt = ut+I(t ≥ 160) where ut are i.i.d.(0, 1) normal random variables,
and yt has a break in the mean from 0 to 1 at time t0 = 160. Over 1000 replications we get, as
expected, that the full sample mean 200−1

∑200
t=1 yt produces a bad forecast for time period 201,

compared to the sample mean 40−1
∑200

t=160 yt over the last 40 observations from the post break
period. The relative MSE of the post break sample mean is 0.61, compared to the full sample
mean. Both data-based exponential weighting and rolling window forecasts perform much better
than the full sample mean, with relative MSEs of 0.65 and 0.69 respectively.

2.7 Examples

In order to get a better feel for the behaviour of the data-selected tuning parameters, we consider
one single realisation of sequentially computed Ĥt, t = t0, t0 + 1, · · · , T for two structural change
experiments used in our Monte Carlo study below. We look at rolling window forecasts. Figures
1 and 2 report the starting point (solid line) of the data-selected rolling window for a structural
break in the mean (Experiment 4 of our Monte Carlo study) and a unit root model (Experiment
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11), respectively. The sample size T is 200 and the forecasting starts at t0 = 100.2 For comparison,
we also report the first observation in the data-estimated rolling window when the model has no
structural change (Experiment 1 in the Monte Carlo study), based on the same realisations of the
noise ut, as in the previous two cases (dotted line). The vertical distance between the diagonal
(long dashes, the last observation in the window) and the starting point solid (dotted) line for a
given t = 100, · · · , 200 shows the time span of observations (a graphical realisation of the tuning
parameter) used for forecasting, that is t − Ĥt. It is clearly seen that, under structural change,
the estimated tuning parameter selects a much smaller sample for forecasting than in the absence
of structural change. Figure 1 shows that, for the structural break (at observation 110) the data-
dependent method is attempting to get more information about the change immediately after the
break by initially using a larger sample for forecasting. This then becomes smaller than that in the
no-change case, as more data after the breakpoint accrue. Interestingly, after observation 125, the
starting point of the rolling window is the first post break observation 111 (short-dashed line), as
suggested by theory. Notice that 125 is close to the theoretical switching time 110+

√
3(110) = 128

(see Example 2). Moreover, it remains at that point for much of the rest of the sample. In Figure
2, we can see that with a unit root, the window remains short throughout the sample. A final
diagnostic for the method is the value of the estimated mean squared error obtained in real time.
This is given in Figure 3, where the dotted line relates to the stationary case, the long-dashed
line to the structural break case and the solid line to the unit root case. The smallest MSE is
obtained in the stationary case followed by the structural break and finally the unit root, which
is the ranking one would expect.

2.8 Extensions

Our proposed method extends in several practically relevant ways. In this section we briefly discuss
some of these.

Nonparametric method

The above analysis presupposes a particular parametric form for the weight function. While
that might be desirable from the usual motivation of parsimony, in some circumstances it will be
restrictive. For example, monotonic downweighting might be counterproductive when data come
from a process that follows a finite number of regimes. Data from the same regime as that holding
during the latest forecast period may be more relevant than more recent data. To account for
such possibilities, we construct a nonparametric weighting scheme.

Again we focus on the simple location model (2.1) assuming that βt is some smooth deter-
ministic function of t and ut is a standardised IID(0, 1) noise. We consider forecasts of yt of the
form

ŷt|t−1 =
∑t−1

j=1 wtjyt−j. (2.30)

We wish to determine a nonparametric set of weights wTj, j = 1, · · · , T −1, such that the forecast

MSE of ŷT |T−1 is minimised subject to
∑T−1

i=1 wTj = 1. Letting β̃t = βt − βT ,

E(ŷT |T−1 − yT )2 =
(∑T−1

j=1 wTjβ̃T−j
)2

+ σ2
u

∑T−1
j=1 w

2
Tj.

2Details on how the parameter Ĥt is estimated are given in Section 3.
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Figure 1: Realisation of the data-selected rolling window for a structural break. The solid
line represents the starting point of the window for a structural break model with a break at
observation 110 (Experiment 4 of the Monte Carlo study), and the dashed line (long dashes)
shows the last observation in the window. The dashed line (short dashes) indicates the first post
break observation, and the dotted line the beginning of the window when there is no structural
change.

We construct the Lagrangean

L(λ,wT1, · · · , wT,T−1) =
(∑T−1

j=1 wTjβ̃T−j
)2

+ σ2
u

∑T−1
j=1 w

2
Tj − λ

(∑T−1
j=1 wTj − 1

)
.

Taking derivatives of L w.r.t. the wTjs and equating them to zero, gives equations

(β̃2
T−j + σ2

u)wTj + β̃T−j
∑T−1

i=1,i6=j β̃T−iwT i = λ/2, j = 1, · · · , T − 1.

We need to solve this set of equations. As a system they are written as

(B̃ + σuI)wT = (λ/2)1, or BwT = Λ, (2.31)

where B̃ = (β̃T−jβ̃T−k)j,k=1,...,T−1 is a (T − 1)× (T − 1) matrix, I is a (T − 1)× (T − 1) identity
matrix, wT = (wTj)j=1,··· ,T−1 is a (T − 1) × 1 vector, 1 is (T − 1) × 1 unit vector, B = B̃ + σuI
and Λ = (λ/2)1.

Then, wT = B−1Λ, and λ is determined such that the sum of the elements of B−1Λ is unity.
This is not an operational procedure as βT is unknown at time T − 1. We suggest setting βt = β̂t,
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Figure 2: Realisation of the data-selected rolling window for a unit root. The solid line shows
the starting point of the window for a unit root model (Experiment 11 of the Monte Carlo study),
and the dashed line (long dashes) the last observation in the window. The dotted line indicates
the beginning of the window when there is no structural change.

t = 1, · · · , T − 1 and βT = β̂T = β̂T−1 where β̂t denotes some estimator of βt. This approach does
not allow for a dependent ut, but we discuss possible extensions of (2.1) below that make the
assumption of a serially uncorrelated ut more plausible.

The method can be extended to allow for time-varying variances Eu2
t = σ2

u,t. Then, the forecast
MSE takes the form

E(ŷT |T−1 − yT )2 =
(∑T−1

j=1 wTjβ̃T−j
)2

+
∑T−1

j=1 w
2
Tjσ

2
u,T−j.

Following the steps of the previous argument gives the following system of equations

(B̃ + Ĩ)wT = (λ/2)1, or BwT = Λ,

where Ĩ = diagonal(σ2
u,T−1, · · · , σ2

u,1) is (T − 1) × (T − 1) diagonal matrix. Once again this
procedure becomes operational by replacing σ2

u,t with an estimate. We note that estimation of βt
and σ2

u,t is discussed widely in the literature when βt and σ2
u,t are deterministic functions of time

(see, e.g., Orbe, Ferreira, and Rodriguez-Poo (2005) and Kapetanios (2007)), and is examined in
Giraitis, Kapetanios, and Yates (2011) for stochastic βt.
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Figure 3: Realisation of the estimated MSE. The dotted line shows the MSE for the stationary
case, the long-dashed line for the structural break case and the solid line for the unit root case.

Subsamples

Another extension allows the forecast MSE to be evaluated and minimised over different sample
periods, in order to select the optimal subsample and a specific tuning parameter. This is achieved
by an extended two-parameter minimisation procedure given by

QT,kH := (T − k)−1
∑T

t=k(ŷt|t−1, H − yt)2, {Ĥ, k̂} := argminH∈IT ,k∈{kmin,··· ,kmax}QT,H,k. (2.32)

The selected values of (Ĥ, k̂) can then be used to construct forecasts based on the subsample
[k̂, · · · , T ]. This value of H may be different from that obtained by the optimisation in (2.5).
Such a procedure, when building forecasts, seeks for an optimal subsample yk̂, · · · , yT (‘stability

period’) and an associated optimal tuning parameter Ĥ = Ĥ(k̂). Observe that for the rolling
window forecast, obviously Ĥ ≤ T − k̂. However, using exponential downweighting, only data
yk̂, · · · , yT should be used.

The advantage of the two-parameter procedure becomes obvious in rolling window forecasts
under the break in the mean, discussed in Example 2. If the rolling window is selected using all
the data in a large sample y1, · · · , yT , then it takes

√
T time lags for the forecast to switch to the

postbreak data. However, the switch may be faster when less observations are used (i.e., when
k̂ >> 1 is selected, reducing the weight of irrelevant past information). Our theoretical findings
show that the two-parameter minimisation will minimise the forecast MSE leading to the smallest
possible MSE with optimal downweighting and the most relevant data subsample.
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Dynamic weighting

Another simple way to allow for extra flexibility in the weight function is to allow the first p
weights w1, · · · , wp (p ≥ 0) to vary freely by specifying

w̃tj,H =

{
wj, j = 1, · · · , p,

K(j/H), j = p+ 1, · · · , t− 1, H ∈ IT ,
(2.33)

and standardising the weights: wtj,H = w̃tj,H/
(∑t−1

j=1 w̃tj,H

)
. This allows the first few lags of yt to

enter freely into the forecast rather than through a given parametric function, akin to an estimated
AR process. Then, QT can be minimised jointly over H, w̃1, · · · , w̃p, and, potentially, even p.

Conditional mean modelling

The location set-up in (2.1) does not allow for explicit conditional mean modelling. In this
subsection we address this issue. It would be good if our analysis allows both the use of a
generic model of the conditional mean of the process and robust forecasting around that model.
Specifically, we would like to assume that the forecaster has a preferred model of the conditional
mean which is known (at least up to a finite vector of unknown parameters), and then discuss
how our robust adaptive forecasting methods can be applied to the residual from such a model.
This allows considerable generality, and in practice allows application to realistic conditional mean
models such as the widely used AR model.

In the conditional mean framework, one has a generic forecasting model of the form

xt = g (zt) + yt (2.34)

of the variable of interest xt that produces forecasts g(zt+1) based on a vector of predictor variables
that may contain lags of xt, or other generated variables such as, e.g., dummies to account for
structural change. The process yt in (2.34) is the part of xt unexplained by g(zt). Assuming
that the conditional mean function g has a known parametric structure up to an unknown finite
dimensional parameter, fitting it to xt gives rise to a parametric forecasting model. Clearly, such
a model can be misspecified and may suffer problems associated with the presence of structural
change in xt, as discussed in the introduction. We will abstract from specification and estimation
issues associated with g. This is because we wish to keep our discussion as general as possible and
not related to the exact structure of g. Additionally, the presence of structural change in xt is
likely to complicate considerably any rigorous analysis of estimators of the unknown parameters.
Moreover, our analysis of forecasting yt will efficiently exploit any persistence remaining in yt.
Hence, it is sufficient to assume that fitting the model g(zt) to xt produces yt with an unspecified
persistent structure that may combine dependence, trends and breaks. Once (2.34) is posited and
the possibility allowed of suboptimal forecasts by g(zt+1) due to structural change, it is important
to consider ways in which additional forecasting of yt may produce a superior forecast of xt. In
principle, a fixed conditional mean function g could be extended to a time-varying function, gt,
known or estimated by any of the currently available methods in the literature. However, under
ongoing structural change, the properties of such an estimator may be difficult to determine.

In summary, for any given forecast x̂t of xt, based on information available up to time t − 1,
we shall write xt = x̂t + yt, t = 1, · · · , T . Then we can use our robust methods to produce
a forecast ŷT+1 of yT+1, based on yt = xt − x̂t, t ≤ T and define the final forecast of xT+1 as
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x
(forecast)
T+1 = x̂T+1 + ŷT+1. For example, we may set x̂t ≡ 0, and then yt = xt, t ≤ T . Alternatively,

we can fit to the data, xt, some model of the form g(xt−1, xt−2 · · · ) and after obtaining its estimate,
ĝ, we arrive at x̂t = ĝ(xt−1, xt−2 · · · ). It may be the case, as it sometimes is in policy institutions
such as central banks, that g or x̂t is obtained using informal judgements by policymakers. Note
that any neglected dynamics or errors produced by such a fitting process will be accumulated in
yt and used subsequently to forecast yT+1.

2.9 Theoretical conclusions

We conclude this section by noting some important implications of our analysis.
First, the dominant tendency in the forecasting literature of using models developed for non-

forecast purposes, such as to generate impulse responses or policy analysis, may be counterproduc-
tive. Our arguments suggest that if good forecasting is the aim, then forecasting by averaging or
appropriately downweighting past data, without engaging in further modelling, is a viable strategy.

Second, appropriately downweighting past can provide a general approach for handling trends
of any nature. Our theoretical results show that this method applies for stochastic, linear or
nonlinear deterministic trends and structural breaks without knowledge of the nature of the trend.
It is therefore a tractable method for forecasting the levels of apparently nonstationary processes.
As a result it bypasses difficult problems of combining appropriate detrending of level series with
the subsequent forecasting of stationary processes. Importantly, the proposed forecasting approach
continues to be valid if a series is actually stationary.

Finally, while theoretical results, such as, e.g., Remark 1, and small sample evidence indi-
cate that an exponential kernel has theoretical advantages over a rolling window and is a very
good choice in general, in a particular empirical application another kernel function may still be
preferable. It is then worth noting that the MSE minimisation procedure determining the rate of
downweighing past data can be used to select the kernel function, K, that produces the lowest
MSE, among a set of admissible kernel functions.

3 Monte Carlo study

In this section we explore the finite sample performance of the forecasting strategies discussed
in the previous section. We consider Monte Carlo experiments for the forecast of yT+1 based on
the sample y1, · · · , yT for a number of specific designs for the simple location model (2.1) with
βt following a variety of processes analysed in the previous section. We also consider a variety of
models with short memory dynamics. We analyse one-step ahead forecasts where the benchmark
is the sample mean forecast ŷbenchmark,T+1 = T−1

∑T
t=1 yt or an autoregressive AR(1) forecast. The

benchmarks disregard the possibility of structural change. We also consider a benchmark of the
last available observation forecast, optimal when the process is a random walk. We compare the
performance of the various forecasts in terms of relative MSE.

Design: data-generating processes. We consider the following location shift model (2.1) for
generating the data:

yt = βt + ut, t = 1, · · · , T,

where ut is either a standard normal IID(0, 1) noise, or an AR(1) process with parameter ρ = 0.7 or
-0.7 and standard normal i.i.d. innovations. The process βt is either a deterministic or stochastic
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trend, or a process with a break in the mean. We consider the following data-generating processes,
denoted in tables as Ex1–Ex12:

1. yt = ut. 7. yt = 2T−1/2
∑t

i=1 vi + 3ut.

2. yt = 0.05t+ 5ut. 8. yt = 2T−1/2
∑t

i=1 vi + ut.

3. yt = 0.05t+ 3ut. 9. yt = 0.5
∑t

i=1 vi + 3ut.

4. yt =

{
ut, t ≤ t0 = T/2,

1 + ut, t > t0.
10. yt = 0.5

∑t
i=1 vi + ut.

5. yt = 2 sin (2πt/T ) + 3ut. 11. yt =
∑t

i=1 vi.

6. yt = 2 sin (2πt/T ) + ut. 12. yt =
∑t

i=1 ui,
where vt is a standard normal IID(0, 1) sequence. This selection of deterministic trends provides
a variety of shaped functions driving the structural change in the unconditional mean of yt.

Ex1 is the case of no structural change. Here, as long as the noise ut is an i.i.d. or very weakly
dependent process, the benchmark sample mean forecast should do best, and the robust methods
at most should not lag far behind the benchmark. If ut is a dependent process with persistent
autoregressive dynamics then the AR benchmark should do best. Further, in this case, the robust
forecast with EWMA weights should outperform the sample mean benchmark and rolling window
(see Remark 1). Theory indicates that the exponential weights should outperform the rolling
window, but it leaves open the possibility that the rolling window can outperform the benchmark
when a stationary process yt becomes persistent.

The functional form in Ex2 and Ex3 is a linear monotonic trend. While such trends may be
unrealistic, at least for processes which have been detrended by applying filters or differencing,
they provide a useful benchmark. Further, these trends are sufficiently subtle and minor to be
swamped visually by the noise process. We consider different values for the variance of the noise
process to explore such effects. The purpose of Ex4 is to introduce a break in the mean, to see if
our robust methods can help under traditional structural change specifications. The break occurs
at time t0 = T/2, and the post-break time is greater than

√
T , as required by the theory. Hence the

break is not ‘too recent’ and it will be taken into account by the robust forecasting method, leading
to significant improvement of forecast quality comparing to full sample benchmarks. Moreover,
the effect is amplified by the increase of dependence in the error process ut.

Functions in Ex5 and Ex6 represent smooth cyclical bounded trends. These are more likely
to remain after standard detrending and provide a realistic scenario. Moreover, wider oscillation
of the trend in Ex6 relative to the variance of the noise process seems to lead to a stronger
deterioration of the performance of the benchmark.

Next, Ex7 and Ex8 deal with a bounded stochastic trend βt which is relevant for popular
time-varying coefficient specifications in the macroeconometric and forecasting literature, while
Ex9 and Ex10 deal with a random walk (unit root) process, observed under noise. Finally, Ex11
and Ex12 consider two versions of a standard random walk model, differing only in the persistence
of the noise processes.

3.1 Forecast methods

We examine the robust forecasting methods using three classes of parametric weight functions.

Rolling window. This uses flat weights,
wtj,H = H−1I(1 ≤ j ≤ H), j = 1, · · · , t− 1, for H < t, and
wtj,H = (t− 1)−1I(1 ≤ j ≤ t− 1)), for H ≥ t,
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giving equal weight to recent data and zero weight to older data. We denote it in the tables below
by Rolling H where H is the window size.

Exponential (EWMA). This uses weights

wtj,ρ = ρt−j/
(∑t−1

k=1 ρ
k
)
, 1 ≤ j ≤ t− 1, with 0 < ρ < 1.

Here the main weight is placed on the last few data points, downweighting others to zero ex-
ponentially fast when ρ is small, and more equally when ρ is close to 1. We refer to this as
Exponential ρ.

Polynomial method. This uses weights

wtj,α = (t− j)−α/
(∑t−1

k=1 k
−α
)

, 1 ≤ j ≤ t− 1 with α > 0.

The past is downweighted at a slower rate than with exponential weights. We refer to it as
Polynomial α.

Methods with fixed tuning parameters. We consider forecasts with both fixed values of
H and ρ, and data-selected values Ĥ, ρ̂ and α̂ for the tuning parameters. With polynomial
weights we do not examine the fixed value cases. We set H = 20, 30 for rolling window and for
exponential weights ρ = 0.99, 0.95, 0.9, 0.8, 0.7 and 0.5. Using fixed values allows us to compare
the performance of the forecast with a data-tuned parameter with the best (smallest Monte Carlo
forecast MSE) among the fixed cases. Our objective is to verify in simulations that these two
MSEs, ωT,Ĥ and ωT,Hopt , are comparable, as indicated by Corollaries 1 to 3.

Nonparametric method. We also consider the nonparametric forecast method as in (2.30) and
(2.31) based on the nonparametric weighting scheme. The corresponding results are referred to as
Nonparametric.

Rolling (k̂, Ĥ) method. This is the rolling window forecast where k̂ and Ĥ are selected min-
imising QT,kH in H and k as in (2.32), referred to as Rolling (k̂, Ĥ).

Averaging method. The final robust method we examine is the averaging method of rolling
window forecasts over different periods advocated by Pesaran and Timmermann (2007):

ȳT+1|T =
1

T

T∑
H=1

ŷT+1|T,H , ŷT+1|T,H =
1

H

T∑
t=T−H+1

yt. (3.1)

It combines rolling window forecasts of yT+1 using all possible windows that include the last
available observation. A characteristic of this method is that it does not require selection of any
tuning parameters apart from the mimimum sample size used for forecasting, which is usually of
minor significance. We refer to this as Averaging.

Dynamic weighting method. This uses the weights defined in (2.33) with p = 1 and exponential
K. We refer to it as Dynamic weighting.

Residual methods. We apply three methods to forecast xt = g(zt) + yt, t = 1, · · · , of (2.34).
They fit to xt the AR(1) dynamics g(zt) = φxt−1 and forecast residuals yt by either a parametric
or nonparametric method. The forecast of xt+1 based on x1, · · · , xt is x̂t+1 = φ̂xt + ŷt+1|t, Ĥ .

Exponential AR method. It estimates the autoregressive parameter φ and the tuning parameter
H jointly by minimising the forecast error QT,H = QT,Hφ computed using yt = xt − φxt−1 with
exponential weights. We refer to it as Exponential AR.

The other two methods are two-stage methods, where the autoregressive parameter φ at xt−1

is estimated by OLS separately from the parameters associated with forecasting yt.
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Table 1: Monte Carlo Results. T = 200. One-Step Ahead Forecasts. ut ∼ IID(0, 1). Table
reports relative mean squared error using a full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11

Exponential ρ = ρ̂ 1.085 0.699 0.436 0.791 0.802 0.253 1.029 0.691 0.622 0.212 0.042

Rolling H = Ĥ 1.066 0.694 0.448 0.807 0.804 0.276 1.005 0.696 0.627 0.272 0.153
Rolling H = 20 1.039 0.658 0.413 0.762 0.759 0.264 0.977 0.668 0.618 0.323 0.268

H = 30 1.027 0.654 0.420 0.768 0.764 0.312 0.965 0.685 0.659 0.403 0.373
Exponential ρ = 0.99 1.003 0.736 0.570 0.833 0.836 0.556 0.964 0.766 0.750 0.592 0.562

ρ = 0.95 1.040 0.656 0.412 0.751 0.759 0.258 0.972 0.652 0.595 0.271 0.192
ρ = 0.90 1.102 0.690 0.426 0.778 0.795 0.242 1.023 0.667 0.592 0.211 0.104
ρ = 0.80 1.234 0.772 0.472 0.861 0.892 0.263 1.142 0.733 0.645 0.196 0.062
ρ = 0.70 1.414 0.888 0.538 0.983 1.028 0.299 1.304 0.833 0.731 0.208 0.048
ρ = 0.50 1.947 1.231 0.737 1.352 1.431 0.411 1.783 1.137 0.998 0.268 0.041

Averaging 1.003 0.747 0.589 0.848 0.844 0.583 0.967 0.781 0.774 0.636 0.619
Nonparametric 1.102 0.671 0.415 0.770 0.778 0.239 1.015 0.667 0.595 0.242 0.155
Polynomial α = α̂ 1.025 0.726 0.488 0.807 0.817 0.310 0.987 0.695 0.640 0.322 0.149

Rolling H = Ĥ, k = k̂ 1.061 0.720 0.473 0.812 0.825 0.283 1.011 0.699 0.636 0.243 0.106
Dynamic Weighting 1.162 0.719 0.452 0.807 0.822 0.260 1.082 0.711 0.630 0.214 0.045
Exponential AR 1.107 0.729 0.456 0.830 0.832 0.265 1.074 0.720 0.642 0.219 0.044

Exponential Residual 1.093 0.707 0.474 0.815 0.815 0.316 1.026 0.720 0.660 0.245 0.044
Nonparametric Residual 1.109 0.697 0.470 0.795 0.802 0.312 1.025 0.708 0.650 0.240 0.044

Last Observation 1.951 1.234 0.738 1.355 1.435 0.412 1.787 1.140 1.001 0.269 0.041
AR 1.000 0.805 0.599 0.826 0.870 0.381 0.978 0.844 0.790 0.310 0.052

Exponential residual method. It forecasts residuals ŷt = xt − φ̂xt−1 using exponential weights
producing Ĥ and the forecast ŷt+1|t, Ĥ . We refer to it as Exponential Residual.

Nonparametric residual method. It forecasts residuals ŷt = xt− φ̂xt−1 using the nonparametric
forecast method. We refer to it as Nonparametric Residual.

3.2 Monte Carlo results

We choose a particular forecast starting point at time t0 by any given method. Then one-step
ahead forecasts yt0|t0−1, H , · · · , yt|t−1, H , t = t0, ..., T , are computed. The forecast evaluation period
ends at T . Note that all forecasts for t are produced using only information up to t − 1. To
compare different forecast methods, as the performance criterion we use the forecast MSE relative
to the benchmark of the sample mean of all data (MSERR). For method i, we compute MSEi =

(T − t0)−1
∑T

t=t0
(ŷ

(i)
t|t−1−yt)2 and define the relative MSERR = MSEi

MSE0
where MSE0 corresponds to

the benchmark forecast by the sample mean. For all experiments, forecasting starts at t0 = 100,
and the sample size is T = 200. MSERR below unity shows that the forecast method outperforms
the sample mean. We carry out 200 replications and report the average MSERR over these.

The relative MSE for models Ex1 to Ex12 obtained with our forecasting methods with data-
selected and fixed tuning parameters are reported in Tables 1-3. In Table 1, the noise ut is an i.i.d.
standard normal process, whereas in Tables 2 and 3, the ut are dependent variables, generated
by stationary AR(1) processes with parameters ρ = 0.7 and ρ = −0.7 and i.i.d. standard normal
innovations respectively.

The first column, labelled Ex1, corresponds to the stationary case yt = ut. In the i.i.d.
case, as expected, the sample mean outperforms the forecasts for each method, especially those
penalised by the loss of information from strong discounting. However, for sufficiently dependent
ut, discounting improves the forecast as indicated by Remark 1.

For the other experiments, in almost all cases, downweighting beats the sample mean in the
sense that the MSERR is considerably below unity. Further, the full sample autoregressive model
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Table 2: Monte Carlo Results. T = 200. One-Step Ahead Forecasts. ut ∼ AR(0.7). Table
reports relative mean squared error using a full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex12

Exponential ρ = ρ̂ 0.632 0.418 0.285 0.591 0.465 0.141 0.572 0.358 0.351 0.110 0.008

Rolling H = Ĥ 0.964 0.605 0.425 0.956 0.707 0.238 0.878 0.559 0.580 0.248 0.100
Rolling H = 20 1.027 0.678 0.433 1.027 0.764 0.272 0.936 0.618 0.635 0.341 0.213

H = 30 1.045 0.684 0.450 1.014 0.775 0.318 0.941 0.637 0.689 0.431 0.320
Exponential ρ = 0.99 0.978 0.732 0.572 0.966 0.813 0.547 0.911 0.713 0.744 0.610 0.555

ρ = 0.95 0.865 0.561 0.374 0.852 0.642 0.232 0.790 0.518 0.527 0.262 0.149
ρ = 0.90 0.758 0.484 0.327 0.739 0.558 0.181 0.696 0.442 0.437 0.176 0.065
ρ = 0.80 0.656 0.419 0.287 0.623 0.480 0.150 0.597 0.374 0.366 0.130 0.028
ρ = 0.70 0.606 0.393 0.269 0.568 0.444 0.137 0.551 0.344 0.335 0.112 0.016
ρ = 0.50 0.617 0.411 0.278 0.569 0.451 0.138 0.562 0.351 0.340 0.106 0.008

Averaging 1.002 0.757 0.596 0.985 0.834 0.575 0.935 0.740 0.774 0.658 0.617
Nonparametric 0.970 0.593 0.386 0.968 0.694 0.218 0.893 0.556 0.551 0.235 0.106
Polynomial α = α̂ 0.708 0.488 0.364 0.657 0.525 0.227 0.644 0.431 0.462 0.252 0.073

Rolling H = Ĥ, k = k̂ 0.824 0.532 0.359 0.788 0.591 0.192 0.740 0.470 0.475 0.197 0.068
Dynamic Weighting 0.610 0.393 0.268 0.577 0.441 0.137 0.560 0.348 0.341 0.112 0.011
Exponential AR 0.610 0.408 0.278 0.569 0.454 0.140 0.559 0.353 0.348 0.112 0.004

Exponential Residual 0.575 0.391 0.272 0.537 0.427 0.146 0.532 0.339 0.339 0.114 0.005
Nonparametric Residual 0.586 0.386 0.263 0.547 0.424 0.138 0.536 0.336 0.330 0.110 0.008

Last Observation 0.618 0.412 0.278 0.569 0.452 0.138 0.563 0.351 0.340 0.106 0.008
AR 0.556 0.380 0.248 0.556 0.406 0.140 0.515 0.370 0.374 0.144 0.011

although better than the sample mean forecast in the majority of cases is also beaten by down-
weighting methods in several cases, particularly where there is a location shift or autoregressive
dynamics. Generally, all these methods are useful, including the rolling window and averaging
method. In the case of a fixed tuning parameter, for the model with a strong trend, the largest
reduction of MSERR comes from the exponential weights with the highest discount rates. Al-
though the tuned exponential weights are not the best, they are where they should be according
to theory: comparable to the best fixed value methods and never among the poor performers.
Note, e.g., that the exponential weights with a ρ = 0.9 fixed discount can perform both very well
and considerably worse than the tuned exponential weights in a number of cases, illustrating the
importance of data-dependent tuning.

Given that optimal fixed ρ for exponential weights cannot be observed in practice, our simula-
tion study suggests the efficiency and usefulness of data based downweighting. The nonparametric
method similarly offers a powerful alternative, for i.i.d. noise ut slightly beating the tuned pa-
rameter methods in many cases. However, being designed for an i.i.d. noise ut, in case of a
dependent AR(1) noise this method is outperformed by the parametric tuning methods, unless
coupled with an initial AR correction. It is also worth mentioning that while the benchmark
full sample AR forecast is a good competitor in many cases, there are circumstances such as, for
example, i.i.d. noise or autoregressive noise with negative autoregressive coefficients where it can
perform considerably worse than robust downweighting methods.

Comparing exponential, rolling window and polynomial methods, the exponential method
outperforms rolling windows while the latter beats polynomial windows when the noise ut is
dependent and is outperformed by it when the noise is i.i.d. The averaging method outperforms
the benchmark but is beaten by the rolling windows with data-selected Ĥ. The rolling window
forecast using a data dependent window, Ĥ, and an evaluation period [k̂, T ], is equivalent to a
rolling window with Ĥ and k = 1 under the i.i.d. noise, but outperforms it when the noise, ut, is
dependent.

It is worth noting that, in applications, one could select from a set of available forecasts with
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Table 3: Monte Carlo Results. T = 200. One-Step Ahead Forecasts. ut ∼ AR(−0.7). Table
reports relative mean squared error using a full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex12

Exponential ρ = ρ̂ 1.007 0.691 0.435 1.005 0.784 0.263 0.965 0.668 0.651 0.202 0.141

Rolling H = Ĥ 1.055 0.698 0.444 1.059 0.791 0.271 0.976 0.670 0.658 0.241 0.213
Rolling H = 20 1.040 0.664 0.412 1.045 0.759 0.269 0.959 0.658 0.644 0.307 0.289

H = 30 1.026 0.662 0.419 1.028 0.764 0.317 0.948 0.681 0.673 0.385 0.372
Exponential ρ = 0.99 1.012 0.747 0.571 1.013 0.846 0.563 0.960 0.768 0.779 0.594 0.566

ρ = 0.95 1.088 0.691 0.428 1.088 0.787 0.272 0.995 0.662 0.642 0.258 0.227
ρ = 0.90 1.212 0.765 0.468 1.212 0.864 0.269 1.102 0.705 0.675 0.203 0.158
ρ = 0.80 1.490 0.940 0.573 1.493 1.059 0.321 1.353 0.849 0.809 0.203 0.136
ρ = 0.70 1.903 1.201 0.732 1.911 1.354 0.409 1.728 1.077 1.024 0.238 0.146
ρ = 0.50 3.326 2.102 1.284 3.358 2.373 0.713 3.021 1.873 1.776 0.387 0.217

Averaging 1.007 0.756 0.587 1.008 0.852 0.589 0.961 0.783 0.807 0.645 0.615
Nonparametric 1.074 0.694 0.426 1.078 0.787 0.249 1.000 0.658 0.635 0.222 0.193
Polynomial α = α̂ 1.001 0.801 0.547 1.001 0.873 0.353 0.980 0.730 0.718 0.293 0.251

Rolling H = Ĥ, k = k̂ 1.052 0.739 0.464 1.055 0.832 0.277 1.004 0.686 0.663 0.217 0.173
Dynamic Weighting 0.826 0.399 0.251 0.787 0.448 0.158 0.615 0.430 0.424 0.162 0.131
Exponential AR 0.581 0.399 0.252 0.563 0.449 0.161 0.575 0.438 0.433 0.162 0.122

Exponential Residual 0.573 0.434 0.393 0.557 0.482 0.368 0.559 0.541 0.559 0.298 0.194
Nonparametric Residual 0.585 0.419 0.381 0.565 0.465 0.360 0.543 0.534 0.549 0.292 0.192

Last Observation 3.340 2.111 1.289 3.372 2.383 0.716 3.033 1.881 1.784 0.389 0.218
AR 0.527 0.790 0.737 0.506 0.745 0.522 0.634 0.786 0.797 0.336 0.200

data-dependent and fixed discounting rates, the one minimising the criterion function QT,H of
(2.5), and respectively, the forecast MSE, ωT,Ĥ ∼ QT,Ĥ . This possibility illustrates the wide
relevance of our cross-validation approach.

In summary, the results suggest that robust forecasting methods with data-selected parametric
downweighting are effective in the face of a variety of types of structural change, and in some
cases prevent significant errors. For models with i.i.d. noise, nonparametric methods can be very
effective. Further, exponential AR and residual methods seem to provide a very effective way to
forecast under structural change in the presence of substantial short-run dynamics, and are likely
to be preferable to the simpler methods that do not allow for short-run dynamics. It remains to
be seen in the next section whether our proposed methods are effective in practice.

4 Empirical illustration

In this section we examine how our methods would have fared when applied to a wide range of US
quarterly data series.3 We are not trying to establish the best methods for particular data series,
but instead to get an impression of whether the issues identified above are important in practice.
Although not required with our methodology, so as not to disadvantage the simple location and
an AR(1) benchmarks in all cases we transform series to stationarity. We use data on 97 US series
for the US, taken from Eklund, Kapetanios, and Price (2010). The dataset includes real activity,
prices and financial variables among others. Appendix C of Eklund, Kapetanios, and Price (2010)
lists the series. The data span 1960Q1 to 2008Q3. We evaluate one step ahead forecasts over a
long period starting in 1992Q2 and ending in 2008Q3. For each series, we compare MSEs to those
from the full sample benchmark simple location and AR(1) models.4

3We take no account of real-time data revisions.
4The simple location model benchmark is the baseline model in our exposition and can perform well as a

parsimonious forecasting strategy. The AR(1) is a standard forecast benchmark, and often the first lag is the critical
one in AR forecasting. Elliott and Timmermann (2008) note that it is difficult to outperform simple approaches,
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Table 4: Empirical relative mean squared error results for the US data with a full sample uncon-
ditional mean and AR(1) forecast as benchmarks.

Full Sample Unconditional Mean Benchmark Full Sample AR(1) Benchmark
Method Mean Median Min Max DM1 DM2 Mean Median Min Max DM1 DM2

Exponential ρ = ρ̂ 0.614 0.652 0.024 1.288 1 48 0.883 0.979 0.073 1.402 4 22

Rolling H = Ĥ 0.779 0.923 0.110 1.163 2 34 1.947 1.052 0.298 11.811 32 16
Rolling H = 20 0.876 0.979 0.185 1.764 11 32 2.725 1.087 0.393 24.211 37 10

H = 30 0.862 0.987 0.222 1.610 4 29 2.812 1.050 0.373 25.043 36 8
Exponential ρ = 0.99 0.908 0.957 0.462 1.211 3 38 4.218 1.062 0.718 35.741 33 6

ρ = 0.95 0.744 0.840 0.164 1.150 2 45 2.000 1.015 0.353 13.232 32 19
ρ = 0.90 0.680 0.728 0.086 1.197 4 50 1.473 1.034 0.291 7.102 31 22
ρ = 0.80 0.653 0.621 0.057 1.435 4 52 1.126 1.049 0.194 3.244 24 23
ρ = 0.70 0.686 0.598 0.039 1.772 8 49 1.029 1.078 0.125 2.068 22 21
ρ = 0.50 0.876 0.638 0.024 2.774 21 47 1.148 1.026 0.073 3.237 27 14

Averaging 0.954 0.997 0.505 1.583 9 29 4.920 1.100 0.746 46.727 42 5
Nonparametric 0.808 0.904 0.111 1.738 7 31 2.084 1.059 0.337 13.355 36 12
Polynomial α = α̂ 0.667 0.682 0.055 1.207 1 48 1.805 1.020 0.113 16.189 16 21

Rolling H = Ĥ, k = k̂ 0.706 0.792 0.089 1.135 2 50 1.545 1.045 0.264 8.071 30 24
Dynamic Weighting 0.624 0.616 0.023 1.401 3 53 0.912 1.018 0.074 2.213 3 21
Exponential AR 0.646 0.653 0.013 1.543 0 47 0.913 0.987 0.062 2.436 2 21

Exponential Residual 0.620 0.625 0.013 1.479 2 49 0.891 1.012 0.067 1.504 3 19
Nonparametric Residual 0.616 0.606 0.030 1.255 2 51 0.904 1.002 0.087 1.332 5 17

AR 0.709 0.899 0.024 1.164 3 52 - - - - - -

The robust methods we report are those in the Monte Carlo study, and include rolling win-
dow forecasts, averaging across estimation periods, exponentially weighted moving average fore-
casts, polynomially weighted moving average forecasts and forecasts produced using nonparametric
weights and residuals.

Table 4 contains the results. We report the median and mean MSERR relative to the full
sample mean (equal weight) benchmarks. We also include the minimum and maximum MSERR.
DM1 and DM2 report the number of significant Diebold-Mariano tests where the null is equality
of the downweighting method and the benchmark. The alternative for DM1 is that the benchmark
is the better forecast, and for DM2 that the downweighting method is superior. As in most cases
for one of the two comparator models a form of rolling estimation is involved, the use of this test
is valid (Giacomini and White (2005)).

In almost all cases, the data-dependent downweighting methods beat the sample mean bench-
mark. The median reduction in the optimised EWMA downweighting forecast is large, reaching
over 30%. But this simple benchmark will not usually be applied in practice, as typically forecasts
accounting for some dynamics are employed. Thus of much more interest is the more challenging
AR benchmark.

The median statistics with respect to the AR model are typically greater than one, showing
that the proposed methods fail to outperform a full sample AR. The natural interpretation of
this is that only a minority of series suffer from structural change. Notwithstanding this, we note
that the optimised exponential and the exponential AR beat the benchmark at the median, and
elsewhere the forecast performance penalty at the median is small. This is particularly true for
the dynamic methods (dynamic weighting and residual methods). The implication is that in this
sample our methods are safe to use, in the sense that typically they will be, at worst, only slightly
inferior to a full sample AR benchmark.

such as a parsimonious autoregressive model, that tend to generate relatively smooth and stable forecasts, without
being subject to too much parameter estimation error. We also investigated an AR(p) benchmark, where p is
chosen by the Bayesian information criterion, but found that both median and average forecast MSE, over all the
series we consider, were higher compared to the AR(1) model.
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In many cases, a relatively high fixed discount rate in the EWMA does well, although not on
average beating the AR benchmark. But in some cases they do poorly. Note that even where
the number of significant DM2 tests is high (favouring the downweighting method) the number
of significant DM1 cases is invariably higher (see e.g. EWMA for ρ = 0.90 and 0.95). The point,
of course, is that one fixed weight is unlikely to be right for all series. The data-dependent and
fixed window rolling method also does poorly, as does the averaging method. Neither are the
nonparametric and optimised polynomial methods particularly successful. But by contrast, in
general the optimised EWMA downweighting and dynamic models (the dynamically weighted and
residual based methods) do well, and we concentrate our discussion on these.

The mean MSERR of the optimised EWMA and dynamic methods is uniformly below the
median, indicating that there is a predominance of well performing models and that sometimes,
when structural change occurs, there are very large benefits to be had from the use of our pro-
posed methods relative to an AR benchmark. The mean reduction in MSE is large enough to be
practically important. In the best cases, for the dynamic models the improvement is sensational,
with MSEs of less than 0.07. The exponential method is also an outstanding performer. In the
worst cases, the optimised EWMA and the dynamic methods have MSEs between 1 and 1.5.
While large, these are generally much lower than for the non-optimised (fixed tuning parameter)
methods. These impressions are confirmed by formal tests. For the data-dependent exponential
and the dynamic models in between 18 and 23% of cases the proposed method is significantly
better than the AR benchmark, with less than 5% of cases where the benchmark is significantly
better than the proposed robust method. This is strong evidence in support of the practical utility
of data-dependent downweighting dynamic models.

Table 5 reports the series where the outperformance is most pronounced. It includes the 20
series with the smallest MSEs compared to the AR(1) for optimised Exponential and Exponential
AR methods. There are very large improvements relative to the benchmark for all of these series,
which are never unimportant practically and in some cases dramatic. The methods are particularly
useful for forecasting spreads and inflation series. This is further strong evidence supporting the
use of the optimised EWMA and dynamic methods.

5 Conclusions

Forecast methods that are known to be robust to historical structural change have been recently
found to be useful forecasting tools under ongoing structural change. They include rolling re-
gressions, forecast averaging over different windows and exponentially weighted moving averages.
However, the typical practice of setting a priori the degree of downweighting older data is sub-
optimal by its nature. The alternative approach suggested here indicates that, although we do
not know the structure of the model and the nature of structural change, we can make the choice
of the tuning parameter data-dependent and select it by cross-validation using in-sample forecast
performance. Such discounting has a number of attractive properties. It minimises asymptotic
forecast MSE over the class of parametrically weighted moving average forecasts. Rather remark-
ably, it allows also the evaluation of the forecast error, and provides a framework for a number of
new developments for forecasting under ongoing structural change. Both theory and small sample
evidence suggest that exponential weighting may be most helpful and efficient, and that data
selected tuning can provide a useful framework for avoiding large forecast errors. An especially
useful finding is that our methods coupled with simple dynamic modelling, such as a low-order
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Table 5: 20 series with the smallest relative MSERR for optimised Exponential and Exponential
AR forecast and AR(1) forecast benchmark

Optimised Exponential Exponential AR
Spread AAA-FF 0.073 Spread AAA-FF 0.067
Spread BAA-FF 0.086 Spread BAA-FF 0.075
Spread 10Y-FF 0.119 Non-Borrowed Reserves of Depository Institutions 0.096

Non-Borrowed Reserves of Depository Institutions 0.155 Spread 10Y-FF 0.124
Spread 3M-FF 0.176 Spread 3M-FF 0.191
Spread 5Y-FF 0.198 Spread 5Y-FF 0.201

CPI-U: Medical care 0.212 Spread 6M-FF 0.253
Spread 6M-FF 0.243 CPI-U: Medical care 0.256

CPI-U: Durables 0.296 Commercial & Industrial Loans Outstanding 0.291
Commercial & Industrial Loans Outstanding 0.319 CPI-U: Durables 0.309

Manufacturing: average hourly earnings of production workers 0.399 Natural resources and mining employment 0.418
Natural resources and mining employment 0.422 Spread 1Y-FF 0.423

Spread 1Y-FF 0.429 Effective Federal Funds Rate 0.479
Construction: average hourly earnings of production workers 0.456 Construction: average hourly earnings of production workers 0.537

Consumer Credit Outstanding - Nonrevolving 0.540 Consumer Credit Outstanding - Nonrevolving 0.539
Consumer Price Index For All Urban Consumers: All Items 0.608 Manufacturing: average hourly earnings of production workers 0.560

CPI-U: Apparel 0.610 3-Month Treasury Bill: Secondary Market Rate 0.591
M2 Money Stock 0.614 M2 Money Stock 0.603

CPI-U: All Items Less Medical Care 0.637 Money Supply - M2 0.609
Money Supply - M2 0.647 M1 Money Stock 0.670

USA Prime Rate 0.672 PPI: Intermediate Mat. Supplies & Components 0.679
CPI-U: All Items Less Food 0.689 6-Month Treasury Bill: Secondary Market Rate 0.713

PPI: Intermediate Mat. Supplies & Components 0.719 CPI-U: Apparel 0.716
M1 Money Stock 0.726 USA Prime Rate 0.740

Nondurable goods manufacturing employment 0.746 Consumer Price Index For All Urban Consumers: All Items 0.784

autoregressive structure, can provide great improvements over standard forecasting methods in
the presence of structural change, while having small costs in its absence.

The simulation study and the empirical exercise using a large number of US macroeconomic
series show that fixed discount EWMA weighting, with a low discount rate, is often good, but
is outperformed consistently by the data selected downweighting. Not all series exhibit breaks,
but in many cases forecast performance is enhanced substantially and significantly relative to a
full sample AR forecast, without a large penalty in other cases. Overall, we find strong support
for our approach, motivated by the impossibility of knowing the optimal degree of discounting ex
ante.

A Appendix: Proofs

A.1 Proof of Theorems 1-3 and Corollaries 1-4

In this section we establish the claims of Theorems 1-3 about QT,H and ωT,H for yt = βt + ut,
with βt following models (b1) to (b6). The proof of Theorems 1-3 follows the main steps outlined
below. Write

QT,H = T−1
n

T∑
t=T0

(yt − ŷt|t−1, H)2 = T−1
n

T∑
t=T0

( t−1∑
j=1

wtj,H(yt − yt−j)
)2

,

ωT,H = E(yT+1 − ŷT+1|T,H)2 = E
( T∑
j=1

wT+1,j,H(yT+1 − yT+1−j)
)2

.
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We will approximate QT,H and ωT,H by

Q
(apr)
T,H = T−1

n

T∑
t=T0

( T1∑
j=1

wj,H(yt − yt−j)
)2

, ω
(apr)
T,H = E

( T∑
j=1

wj,H(yT+1 − yT+1−j)
)2
,

respectively, where wj,H ’s are as in (2.8), setting T1 = T0T
−δ/2. Recall that Hmax = T0T

−δ. Thus,
T0/Hmax = T δ, T1/Hmax = T δ/2 and T1/T ≤ T−δ/2. Lemma A.1 below implies that uniformly in
H:

QT,H = Q
(apr)
T,H +OH(T−2), ωT,H = ω

(apr)
T,H +OH(T−2). (A.1)

The proof of Theorems 1-3 is based on (A.1) and the following properties of Q
(apr)
T,H and ω

(apr)
T,H .

Let Q̃
(apr)
T,H := Q

(apr)
T,H − σ̂2

T,u. For each of the cases (bi), i = 1, · · · , 6, we will find deterministic

approximating functions Γ
(i)
T,H , Γ̃

(i)
T,H and a rate function r

(i)
T,H , such that as T → ∞, uniformly in

H ∈ IT ,

(i)
∣∣EQ̃(apr)

T,H − Γ
(i)
T,H

∣∣ = oH(r
(i)
T,H), (ii) E

∣∣Q̃(apr)
T,H − EQ̃

(apr)
T,H

∣∣ = oH(r
(i)
T,H), (A.2)∣∣ω(apr)

T,H − Γ̃
(i)
T,H − σ

2
u

∣∣ = oH(r
(i)
T,H). (A.3)

Then, (A.1)-(A.3) imply

QT,H = σ̂2
T,u + Γ

(i)
T,H + (EQ̃

(apr)
T,H − Γ

(i)
T,H) + (Q̃

(apr)
T,H − EQ̃

(apr)
T,H ) +OH(T−2) (A.4)

= σ̂2
T,u + Γ

(i)
T,H + oH(r

(i)
T,H) +OH(T−2),

ωT,H = σ2
u + Γ̃

(i)
T,H + oH(r

(i)
T,H).

Functions Γ
(i)
T,H and r

(i)
T,H i = 1, · · · , 6, are as follows.

Γ
(1)
T,H = qu,H , r

(1)
T,H = H−1, λ

(1)
T,H = λuH

−1;

Γ
(2)
T,H = q

(2)
β,H + qu,H , r

(2)
T,H = H, λ

(2)
T,H = λ

(2)
β H;

Γ
(3)
T,H = T−1q

(3)
β,H + qu,H , r

(3)
T,H = HT−1 +H−1, λ

(3)
T,H = λ

(3)
β HT−1 + λuH

−1;

Γ
(4)
T,H = q

(4)
β,H + qu,H , r

(4)
T,H = H2, λ

(4)
T,H = λ

(4)
β H2;

Γ
(5)
T,H = T−2q

(5)
β,H + qu,H , r

(5)
T,H = (H/T )2 +H−1, λ

(5)
T,H = λ

(5)
β (H/T )2 + λuH

−1;

Γ
(6)
T,H = q

(6)
β,TH + qu,H , r

(6)
T,H = HT−1 +H−1, λ

(6)
T,H = Gτ,HHT

−1 + λuH
−1.

We define Γ̃
(i)
T,H = Γ

(i)
T,H , i = 1, 2, 3, Γ̃

(4)
T,H = δgq

(4)
β,H +qu,H , Γ̃

(5)
T,H = T−2δ′gq

(5)
β,H +qu,H and Γ̃

(6)
T,H = λ̃

(6)
T,H ,

where δg, δ
′
g and λ

(6)
T,H are the same as in Theorem 3 (i-iii). We will use the functions λ

(i)
T,H in Lemma

A.2(ii) to describe the asymptotics

Γ
(i)
T,H = λ

(i)
T,H + oH(r

(i)
T,H), H →∞, i = 1, · · · , 6.

Observe that T−2 = o(r
(i)
T,H), uniformly in H ∈ IT , i = 1, · · · , T .

Hence, the proof of Theorems 1-3, in the case (bi), i = 1, · · · , 6 reduces to the verification of

approximations (A.2)–(A.3) with corresponding Γ
(i)
T,H , Γ̃

(i)
T,H and r

(i)
T,H , obtained in Lemmas A.2

and A.3.
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Proof of Theorem 1. In case (b1), Lemmas A.1-A.3 imply (A.1)–(A.3), which in turn imply
(A.4):

QT,H = σ̂2
T,u + qu,H + oH(H−1), ωT,H = σ2

u + qu,H + oH(H−1).

In addition, in Lemma A.2(ii) it is shown that qu,H = λuH
−1 + o(H−1), as H → ∞. This proves

that QT,H and ωT,H have properties (2.12). �

Proof of Theorem 2. In cases (b2) and (b3), use Lemmas A.1-A.3 to verify (A.1)–(A.3), which
imply (A.4) that reads

QT,H = σ̂2
T,u + q

(2)
β,H + qu,H + oH(H), ωT,H = σ2

u + q
(2)
β,H + qu,H + oH(H), in (b2),

QT,H = σ̂2
T,u + T−1q

(3)
β,H + qu,H + oH(r

(3)
T,H), ωT,H = σ2

u + T−1q
(3)
β,H + qu,H + oH(r

(3)
T,H), in (b3),

where r
(3)
T,H = HT−1+H−1. In addition, by Lemma A.2(ii), asH →∞, q

(2)
β,H+qu,H = λ

(2)
β H(1+o(1))

and T−1q
(3)
β,H + qu,H = {λ(3)

β HT−1 + λuH
−1}(1 + o(1)), which proves that QT,H and ωT,H have

properties (2.17) and (2.18), respectively. �

Proof of Theorem 3. In cases (b4) and (b5), (A.1)–(A.3) of Lemmas A.1-A.3 imply (A.4):

QT,H = σ̂2
T,u + q

(4)
β,H + qu,H + oH(H2), ωT,H = σ2

u + δgq
(4)
β,H + qu,H + oH(H2), in (b4),

QT,H = σ̂2
T,u + T−2q

(5)
β,H + qu,H + oH(r

(5)
T,H), ωT,H = σ2

u + δ′gT
−1q

(5)
β,H + qu,H + oH(r

(5)
T,H), in (b5),

where r
(5)
T,H = (H/T )2 +H−1. In addition, by Lemma A.2(ii), as H →∞, q

(4)
β,H + qu,H = λ

(4)
β H2(1+

o(1)) and T−2q
(5)
β,H+qu,H = {λ(5)

β (H/T )2+λuH
−1}(1+o(1)), and by (A.33), qu,H = λuH

−1(1+o(1)).
This proves that QT,H and ωT,H satisfy (2.24), (2.25), respectively.

Finally, in case (b6), the results (A.1)–(A.3) of Lemmas A.1-A.3 lead to (A.4):

QT,H = σ̂2
T,u + q

(6)
β,TH + qu,H + oH(HT−1 +H−1), ωT,H = σ2

u + λ̃
(6)
T,H + oH(HT−1 +H−1).

By Lemma A.2(ii), as H →∞, q
(6)
β,TH + qu,H = {Gτ,HHT

−1 + λuH
−1}(1 + o(1)), which completes

the proof of (2.26). �

Proof of Corollary 1. Suppose that qu,H reaches its minimum c0 = qu,H0 at some finite H0.
Then (2.12) implies that QT,Ĥ = c0 + o(1), ωT,Hopt = c0 + o(1), which in turn implies ωT,Ĥ =
QT,Ĥ + o(1) = c0 + o(1). Hence, ωT,Ĥ = ωT,Hopt + o(1) and QT,Ĥ = ωT,Ĥ + o(1). This proves (2.13).

If qu,H reaches its minimum at infinity, then by (2.12) Ĥ ∼ Hmax. Recall that by definitionHmax

is of larger order than T 1/2. Then (2.12) implies that QT,Ĥ = σ̂2
u + Op(H

−1
max) = σ2

u + Op(T
−1/2),

noting that σ̂2
u = σ2

u + Op(T
−1/2) by (2.9). Similarly, ωT,Hopt = σ2

u + O(H−1
opt) = σ2

u + o(T−1/2).

Hence, ωT,Ĥ = QT,Ĥ + Op(Ĥ
−1) = σ2

u + Op(T
−1/2), showing that ωT,Ĥ = ωT,Hopt + O(T−1/2) and

QT,Ĥ = ωT,Ĥ +Op(T
−1/2), which verifies (2.14). �

Proof of Corollary 2. For βt as in (b2), property (2.17) of QT,H shows that Ĥ stays bounded.
Then (2.19) follows by the same argument as in Corollary 1.

For βt as in (b3), if qu,H reaches its minimum c0 = qu,H0 at some finite H0, then (2.18) implies

that Ĥ stays bounded, and QT,Ĥ = c0+o(1), ωT,Hopt = c0+o(1) and ωT,Ĥ = QT,Ĥ+o(1) = c0+o(1).
This yields (2.20).

If qu,H reaches its minimum at infinity, then the relation T−1q
(3)
β,H + qu,H ∼ λ

(3)
β HT−1 + λuH

−1

derived in Theorem 2(ii), implies that Ĥ ∼ argminH
(
λ

(3)
β HT−1+λuH

−1
)
∼ (λu/λ

(3)
β )1/2T 1/2. Then
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(2.18) implies that QT,Ĥ = σ̂2
u+Op(Ĥ

−1) = σ2
u+Op(T

−1/2), and similarly, ωT,Hopt = σ2
u+O(T−1/2).

Hence, ωT,Ĥ = QT,Ĥ + Op(Ĥ
−1) = σ2

u + Op(T
−1/2), showing that ωT,Ĥ = ωT,Hopt + O(T−1/2) and

QT,Ĥ = ωT,Ĥ +Op(T
−1/2), which proves the last two claims of Corollary 2. �

Proof of Corollary 3. Result (2.24) of Theorem 3(i) shows that q
(4)
β,H + qu,H ∼ λ

(4)
β H2 as

H → ∞, which implies that Ĥ stays bounded. For a linear trend βt = ct, we have δg = 1.
Then, the approximations of QT,H and ωT,H in (2.24) coincide, and (2.27) follows using a similar
argument as in the proof of Corollary 1.

For βt as in (b5), if qu,H reaches its minimum c0 = qu,H0 at some finite H0, then (2.25) implies

that Ĥ stays bounded, and QT,Ĥ = c0+o(1), ωT,Hopt = c0+o(1) and ωT,Ĥ = QT,Ĥ+o(1) = c0+o(1).
This verifies (2.28).

If qu,H reaches its minimum at infinity, then, the relation (H/T )2q
(5)
β,H + qu,h ∼ λ

(5)
β (H/T )2 +

λuH
−1, derived in Theorem 3(ii), implies that Ĥ ∼ argminH

(
λ

(5)
β (H/T )2 +λuH

−1
)
∼ cT 2/3, c > 0.

Then by (2.25), QT,Ĥ = σ̂2
u +Op(T

−2/3) = σ2
u +Op(T

−1/2), and similarly, ωT,Hopt = σ2
u +O(T−2/3).

Hence, ωT,Ĥ = QT,Ĥ + Op(T
−1/2) = σ2

u + Op(T
−1/2), ωT,Ĥ = ωT,Hopt + O(T−1/2) and QT,Ĥ =

ωT,Ĥ +Op(T
−1/2). This implies the last two claims of Corollary 3. �

Proof of Corollary 4. (i) Suppose that τ/
√
T → ∞. To show (2.29), set τ ′ = (Tτ)1/4 and

split the minimization interval IT into I ′T = [α, τ ′] and I ′′T = [τ ′, Hmax]. Notice that τ ′ = o(τ)
and τ ′/

√
T → ∞. By Theorem 3(iii), minimization of QT,H in H ∈ I ′T reduces to minimiza-

tion of Gτ,HHT
−1 + λuH

−1. Since for H ≤ τ ′, τ/H → ∞ and Gτ,H → λβ, it further reduces

to minimization of λβHT
−1 + λuH

−1, which implies (2.29) for the minimizer Ĥ in I ′T . Then,
infH∈I′T

(
Gτ,HHT

−1 + λuH
−1
)
∼ cT−1/2 with c > 0. Next, we show that the minimum in IT is

reached in I ′T , because
inf
H∈I′′T

(
Gτ,HHT

−1 + λuH
−1
)
>> T−1/2.

To verify the latter, select ε > 0 such that
∫∞
ε
K(v)dv ≥ 1/2. Then, for H ≥ τ ′, Gτ,H ≥ Gτ ′,H ≥

Gτ ′ε,H ≥ ∆2(τ ′ε/H)/4. Hence,
√
T (Gτ,HHT

−1) ≥ (τ ′/
√
T )∆2ε/4→∞ which proves (2.29).

To complete the proof of (i), we need to evaluate ωT,Ĥ given by (2.26). By Assumption 1

K(x) ≤ C exp(−c|x|), and therefore
(∑T

j=T+1−t0 wj,H)2 ≤ C(H−1
∫∞
τ
K(x/H)dx)2 ≤ Ce−2cτ/H .

Since for i.i.d. noise qu,H ∼ σ2
uH
−1, applying this in (2.26) gives ωT,Ĥ = σ2

u +O(T−1/2 + e−2cτ/
√
T ).

Obviously, ωT,Hopt satisfies the same relation which yields the last two claims in (i).

(ii) Now, let τ/
√
T = o(1). Set τ ∗ = τ log(

√
T/τ) and write IT = [α, τ ∗]∪[τ ∗, Hmax] =: I∗T∪I∗∗T .

Note that τ = o(τ ∗). By (2.26), infH∈I∗T
(
q

(6)
β,TH +qu,H

)
≥ infH∈I∗T qu,H = infH∈I∗T λuH

−1(1+o(1)) =

λuτ
∗−1(1 + o(1)). Next we show that the minimum in I∗∗T is of smaller order than in I∗T . Let

H ≥ τ ∗. Then τ/H → 0, which combining with
∫∞
x
K(v)dv = 1 −

∫ x
0
K(v)dv = 1 + O(x),

gives Gτ,H = ∆2
∫ τ/H

0
(1 + O(x))2dx = ∆2τH−1 + O((τ/H)2). In turn, this implies Gτ,HHT

−1 =

∆2τT−1 +oH(H−1) because (τ/H)2HT−1 = H−1τ 2T−1 = o(H−1). Thus, infH∈I∗∗T
(
q

(6)
β,TH +qu,H

)
=

infH∈I∗∗T
(
∆2τT−1 + λuH

−1 + oH(H−1)
)

= ∆2τT−1 + Op(H
−1
max) = o(τ ∗−1), noting that τT−1 =

τ ∗−1
(
τ 2T−1 log(

√
T/τ)

)
= o(τ ∗−1) when τ = o(

√
T ), while H−1

max = o(τ ∗−1). This shows that the

minimum in I∗∗T is reached by largest possible H and is smaller then the minimum in I∗T . Hence Ĥ is
not affected by the break, Ĥ/

√
T →∞, and QT,Ĥ = σ̂2

T,u+∆2τT−1 +Op(Ĥ
−1) = σ̂2

T,u+op(T
−1/2).

Since τ/Ĥ → 0, (2.26) implies that ωT,Ĥ = σ2
T + ∆2(

∫∞
τ/Ĥ

K(x)dx)2 + o(1) = σ2
T + ∆2 + o(1).
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This completes the proof of the corollary. �

A.2 Lemmas

This section includes three lemmas used to prove Theorems 1-3.

Lemma A.1 If weights wtj and ut’s satisfy Assumptions 1 and 2, and βt is as in (b1)-(b6), then

E
[

sup
H∈IT

∣∣QT,H −Q(apr)
T,H

∣∣] = O(T−2), sup
H∈IT

∣∣ωT,H − ω(apr)
T,H

∣∣ = O(T−2). (A.5)

Proof. We start with the first claim in (A.5). Recall that wtk,H ≤ 1 and wj,H ≤ 1. Note that
for T0 ≤ t ≤ T and j, k ≤ t − 1, |wtj,Hwtk,H − wj,Hwk,HI(j, k ≤ T1)| ≤ |wtj,Hwtk,H − wj,Hwk,H | +
|wj,Hwk,H − wj,Hwk,HI(j, k ≤ T1)| ≤ |wtj,H − wj,H | + |wtk,H − wk,H | + wj,HI(j ≥ T1) + wk,HI(k ≥
T1) ≤ CT−6 by (A.30) and (A.29). Hence,

|QT,H −Q(apr)
T,H | ≤ T−1

n

∑T
t=T0

∑t−1
j,k=1

∣∣wtj,Hwtk,H − wj,Hwk,HI(j, k ≤ T1)
∣∣|(yt − yt−j)(yt − yt−k)|

≤ CT−1
n

∑T
t=T0

∑t−1
j,k=1 T

−6|(yt − yt−j)(yt − yt−k)| =: jT ,

where jT does not depend on H. Notice that βt of (b1)-(b6) satisfies maxt≤T E|yt− yt−j|2 ≤ CT 2.

Hence E|(yt − yt−j)(yt − yt−k)| ≤ CT 2 and EjT ≤ CT−6T−1
n

∑T
t=T0

∑t−1
j,k=1 T

2 ≤ CT−2 which
implies (A.5).

To show the second claim in (A.5), note that in models (b1)-(b6), E|(yT+1 − yT+1−j)(yT+1 −
yT+1−k)| ≤ CT 2, and |wtj,Hwtk,H −wj,Hwk,H | ≤ |wtj,H −wj,H |wtk,H +wj,H |wtk,H −wk,H | ≤ |wtj,H −
wj,H |+|wtk,H−wk,H | ≤ CT−6 by (A.30). Then |ωT,H−ω(apr)

T,H | ≤ CT 2
∑T

j,k=1 |wtj,Hwtk,H−wj,Hwk,H |
≤ CT 2

∑T
j,k=1 T

−6 ≤ CT−2. �

Below T1 is the same as in Q
(apr)
T,H .

Lemma A.2 For βt as in (bi), i = 1, · · · , 6, as T →∞, it holds

(i) EQ̃
(apr)
T,H = Γ

(i)
T,H + oH(r

(i)
T,H); (ii) Γ

(i)
T,H = λ

(i)
T,H + oH(r

(i)
T,H), H →∞, (A.6)

(iii) ω
(apr)
T,H = σ2

u + Γ̃
(i)
T,H + oH(r

(i)
T,H). (A.7)

Proof. Observe the following general facts. Since βt and ut are mutual independent and Euj = 0,

EQ̃
(apr)
T,H = E[Q

(apr)
T,H − σ̂2

TH ] = mβ,TH +mu,TH , ω
(apr)
T,H = vβ,TH + vu,TH ,

where mβ,TH := T−1
n

∑T
t=T0

E
(∑T1

j=1 wj,H(βt − βt−j)
)2

, and by stationarity of ut,

mu,TH := T−1
n

∑T
t=T0

E
(∑T1

j=1wj,H(ut − ut−j)
)2

− σ2
u = E

(∑T1
j=1wj,H(u0 − u−j)

)2

− σ2
u,

vβ,TH := E
(∑T

j=1wj,H(βT+1 − βT+1−j)
)2
, vu,TH := E

(∑T
j=1wj,H(uT+1 − uT+1−j)

)2
.

First we analyze mu,TH and vu,TH . By definition, qu,H = E
(∑∞

j=1wj,H(u0 − u−j)
)2

− σ2
u. Since

E|(u0 − u−j)(u0 − u−k)| ≤ 4Eu2
0 <∞,

∑∞
k=1 wk,H = 1 and

∑∞
j=T1

wj,H = O(T−6) by (A.29), then

|mu,TH − qu,H | ≤
∑∞

j=T1
wj,H = O(T−2), |vu,TH − qu,H − σ2

u| ≤
∑∞

j=T wj,H = O(T−2).
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Hence, uniformly in H ∈ IT ,

EQ̃
(apr)
T,H = mβ,TH + qu,H +O(T−2); ω

(apr)
T,H = vβ,TH + σ2

u + qu,H +O(T−2), (A.8)

qu,H = λuH
−1 + o(H−1), H →∞, (A.9)

where (A.9) holds by (A.34).
Case (b1). βt = const implies mβ,TH = 0. Hence, (A.8)-(A.9) imply (A.6) (i, ii) and (A.7).
Case (b2). Let βt ∼ I(1). We will show that

mβ,TH = q
(2)
β,H +O(T−2), vβ,TH = q

(2)
β,H +O(T−2); H−1q

(2)
β,H → λ

(2)
β , H →∞ (A.10)

which together with (A.8) and (A.9) imply (A.6) and (A.7).
Notice that ζt := ∇βt = βt−βt−1 ∼ I(0) is a stationary process and γβ,jk := E[(βt−βt−j)(βt−

βt−k)] = E[(β0− β−j)(β0− β−k)], 0 ≤ j, k ≤ t does not depend on t. Since βj − β0 =
∑j

l=1 ζl, then
(see e.g. Proposition 4.4.1 in Giraitis, Koul, and Surgailis (2012)), γβ,jj ∼ js2

∇β, j →∞,

|γβ,jk| ≤ C(jk)1/2; γβ,jk = s2
∇β(j ∧ k) + o(j ∧ k), j, k →∞. (A.11)

Hence, mβ,TH = E
(∑T1

j=1wj,H(β0 − β−j)
)2

. Since q
(2)
β,H = E

(∑∞
j=1 wj,H(β0 − β−j)

)2

, then∣∣mβ,H − q(2)
β,H

∣∣ ≤ CH
∑∞

j=T1
wj,H(j/H)1/2

∑∞
k=1wk,H(k/H)1/2 = O(HT−6) = O(T−2),

uniformly in H ∈ IT , by (A.11), (A.29) and (A.33). This proves the first claim of (A.10), while
the second follows similarly.

To show the third claim, use (A.11) and (A.33), to obtain q
(2)
β,H ≤ C

(∑∞
j=1wj,Hj

1/2
)2 ≤ CH,

and H−1q
(2)
β,H → s2

∇β
∫ ∫∞

0
K(x)K(y)(x ∨ y)dxdy = λ

(2)
β , H → ∞, which completes the proof of

(A.10).
Case (b3). Let βt = T−1/2β̃t where β̃ ∼ I(1). Since mβ,TH = T−1mβ̃,TH , then (A.10) implies

mβ,TH = T−1q
(3)
β,H + O(T−2), vβ,TH = T−1q

(3)
β,H + O(T−2) and H−1q

(3)
β,H → λ

(3)
β , H → ∞, which

together with (A.8) and (A.9) proves (A.6) and (A.7).
We present Case (b5) first as it provides results for Case (b4).
Case (b5). Let βt = g(t/T ). We will verify that

mβ,TH =
1

T 2
q

(5)
β,H + oH

(H2

T 2

)
, vβ,TH =

1

T 2
δ′gq

(5)
β,H + oH

(H2

T 2

)
;

1

H2
q

(5)
β,H → λ

(5)
β , H →∞, (A.12)

which together with (A.8) and (A.9) implies (A.6) and (A.7).

We approximate mβ,TH by m′β,TH = T−1
n

∑T
t=T0

(∑T1
j=1wj,H ġ(t/T )(j/T )

)2
, showing that as

T → ∞, (a) (T/H)2|mβ,TH − m′β,TH | = oH(1) and (T/H)2|m′β,TH − T−2q
(5)
β,H | = oH(1), which

proves the first claim in (A.12). To show (a), recall that g has two bounded derivatives. Thus, by
Taylor expansion |g(t/T ) − g((t − j)/T ) + ġ(t/T )(j/T )| ≤ C(j/T )2 ≤ C(j/T )T−δ/2 for j ≤ T1,
since T1/T ≤ T−δ/2. Hence, βt−βt−j ≡ g(t/T )− g((t− j)/T ) = −ġ(t/T )(j/T ) + (j/T )oH(T−δ/2).
Since by (A.31), H−2|wj,Hwk,Hjk| ≤ C(jk)−1, we obtain (T/H)2wj,Hwk,H

∣∣(βt− βt−j)(βt− βt−k)−
ġ2(t/T )(j/T )(k/T )

∣∣ ≤ CH−2wj,Hwk,H(jk)−1T−δ/2 ≤ C(jk)−1T−δ/2. Therefore, (T/H)2|mβ,TH −
m′β,TH | ≤ CT−δ/2

∑T1
j,k=1(jk)−1 ≤ C(log T )2T−δ/2 → 0, T →∞, proving (a).

To show (b), notice that (T/H)2|m′β,TH − T−2q
(5)
β,H | =

∣∣T−1
n

∑T
t=T0

ġ(t/T )2(
∑T1

j=1 wj,H(j/H)
)2 −

c′(g)(
∑∞

j=1wj,H(j/H)
)2| = oH(1), because T−1

n

∑T
t=T0

ġ2(t/T ) →
∫ 1

0
ġ2(x)dx = c′(g), while by
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(A.29) and (A.33),
∑T1

j=1 wj,H(j/H) →
∫∞

0
K(x)xdx and

∑∞
j=1wj,H(j/H) →

∫∞
0
K(x)xdx. This

proves (b).
The second claim of (A.12) follows using a similar argument. The third claim follows noting

that (
∑∞

j=1wj,H(j/H))2 → κ3, by (A.33).
Case (b4). Let βt = tg(t/T ). Applying (A.12) to β′t = (t/T )g(t/T ) we obtain, mβ,TH =

q
(4)
β,H + oH

(
H2
)
, vβ,TH = δgq

(4)
β,H + oH

(
H2
)
, and H−2q

(4)
β,H → λ

(4)
β as H → ∞, which together with

(A.8) and (A.9) implies (A.6) and (A.7).
Case (b6). We will verify that

mβ,TH = q
(6)
β,H + oH

(
T−1

)
, vβ,TH = ∆2

( T∑
j=T+1−t0

wj,H)2; TH−1q
(6)
β,H → Gτ,β, H →∞, (A.13)

which together with (A.8) and (A.9) imply (A.6) and (A.7).

The first claim follows from definition of mβ,TH and q
(6)
β,H , observing that for t0 ≥ T0 one has

βt − βt−j = 0 if t < t0 or j < t − t0, and taking into account (A.29). The same argument and
definition of vβ,TH imply the equality of the second claim. To show the third claim, observe that
t0 ≥ T1 and (A.29) imply

TH−1q
(6)
β,H ∼ ∆2H−1

∑T
t=t0

(∑∞
j=t−t0 wj,H)2 ∼ ∆2H−1

∑τ
s=0

(∑∞
j=sK(j/H)H−1)2

∼ ∆2
∫ τ/H

0

( ∫∞
x
K(v)dv)2dx = Gτ,H ,

which proves (A.13) and completes the proof of the lemma. �

Lemma A.3 Under the assumptions of Lemma A.1,

E sup
H∈IT

(r
(i)
T,H)−1

∣∣Q̃(apr)
T,H − EQ̃

(apr)
T,H

∣∣→ 0. (A.14)

Proof. Denote βtj = βt − βt−j, utj = ut − ut−j. Then,
∑T1

j=1 wj,H(yt − yt−j) =
∑T1

j=1wj,Hβtj +∑T1
j=1 wj,Hutj, and we can write

Q
(apr)
T,H = T−1

n

T∑
t=T0

( T1∑
j=1

wj,H(yt − yt−j)
)2

= Jββ,TH − 2Jβu,TH + Juu,TH , (A.15)

where Jββ,TH = T−1
n

∑T
t=T0

(∑T1
j=1wj,Hβtj

)2

, Juu,TH = T−1
n

∑T
t=T0

(∑T1
j=1 wj,Hutj

)2
and Jβu,TH =

T−1
n

∑T
t=T0

(
∑T1

j=1wj,Hβtj)(
∑T1

k=1wk,Hutk).
We will show that in cases (bi), i = 2, · · · , 6,

E sup
H∈IT

(r
(i)
T,H)−1E|Jββ,TH − EJββ,TH | → 0, (A.16)

E sup
H∈IT

(r
(i)
T,H)−1E|Jβu,TH − EJβu,TH | → 0, (A.17)

and, in addition,

E sup
H∈IT

H
∣∣Juu,TH − σ̂2

T,u − E(Juu,TH − σ̂2
T,u)
∣∣→ 0. (A.18)

Recall that Q̃
(apr)
T,H = Q

(apr)
T,H − σ̂2

T,u. Then, applying (A.16)-(A.18) in (A.15) yields (A.14).
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First, we establish the following general fact. Consider the sum,

JT,H := r−1
T,H

∑T1
j,k=1wj,Hwk,HST,jk, (A.19)

where the random variables ST,jk do not depend on H and rT,H are real numbers such that:
(i) for some a, b ≥ 0, uniformly in H ∈ IT , r−1

T,H |wj,Hwk,H | ≤ j−1−ak−1−bδT ,

(ii) E|ST,jk−EST,jk| ≤ jakbδ′T , where δT , δ′T depend only on T and satisfy δT δ
′
T = o((log T )−2).

Then,

E sup
H∈IT

|JT,H − EJT,H | → 0, T →∞. (A.20)

To verify claim, bound |JT,H − EJT,H | ≤ CδT
∑T1

j,k=1 j
−1−ak−1−b|ST,jk − EST,jk| =: J̃T , and note

that EJ̃T ≤ CδT δ
′
T

∑T1
j,k=1 j

−1k−1 ≤ CδT δ
′
T log2 T → 0. Notice that (A.20) remains valid replacing

in (A.19) wj,H by any other weights w′j,H satisfying (i).

Proof of (A.16). Write Jββ,TH =
∑T1

j,k=1wj,Hwk,HSββ,T,jk where Sββ,T,jk := T−1
n

∑T
t=T0

βtjβtk. In
view of (A.20), to prove (A.16), it suffices to show that in cases (b2)-(b6), the sum JT,H ≡
(1/r

(i)
T,H)Jββ,TH satisfies conditions (i) and (ii).

Case (b2). Here r
(2)
T,H = H. Then r−1

T,Hwj,Hwk,H ≤ C(jk)−3/2 by (A.31), while by (A.24) of

Lemma A.4, E|Sββ,T,jk| ≤ δ′T (jk)1/2 with δ′T = o(log−2 T ) , which verifies (i) and (ii).

Case (b3). Here βt = T−1/2β̃t and r
(3)
T,H ≥ HT−1. Then (T/H)Jββ,TH = H−1Jβ̃β̃,TH and (A.16)

follows by the same argument as in the case (b2).
Case (b4)-(b6). Here (A.16) trivially holds because βt is non-random.

Proof of (A.17). Write Jβu,TH =
∑T1

j,k=1wj,Hwk,HSβu,T,jk where Sβu,T,jk := T−1
n

∑T
t=T0

βtjutk. Since
Eut = 0, and βt and ut are mutually independent, then ESβu,T,jk = 0. First, we show that

E|Sβu,T,jk| ≤ CT−1Dj, Dj := (
∑T

t=T0
Eβ2

tj)
1/2. (A.21)

Indeed, ES2
βu,T,jk ≤ T−2

n

∑T
t,s=T0

E[βtjβsj]E[utkusk]. Bound |E[βtjβsj]| ≤ Eβ2
tj + Eβ2

sj, and note
that |Eutkusk| ≤ 2|γu(t − s)| + |γu(t − s + k)| + |γu(t − s − k)|. Since

∑
k |γu(k)| < ∞, then

ES2
βu,T,jk ≤ CT−2

∑T
t=T0

Eβ2
tj

∑
s∈Z |γu(s)| ≤ CT−2D2

j , which implies (A.21).

To prove (A.17), it remains to show that in each case (b2)-(b6), the sum (1/r
(i)
T,H)Jβu,TH satisfies

conditions (i) and (ii), yielding (A.20).

Case (b2). Here, r
(2)
T,H = H. Then (r

(2)
T,H)−1wj,Hwk,H ≤ (H−1wj,H)wk,H ≤ Cj−2k−1 by (A.31).

By (A.11), Eβ2
tj ≤ Cj. Therefore, D2

j ≤ CTj, and E|Sβu,T,jk| ≤ CT−1Dj ≤ CT−1/2j1/2, which
verifies (i) and (ii).

Case (b3). Observe that r
(3)
T,H ≥ HT−1 + H−1/2 ≥ T−1/2, because |a| + |b| ≥ |ab|1/2. Hence,

(1/r
(3)
T,H)wj,Hwk,H ≤ T 1/2wj,Hwk,H ≤ CT 1/2(jk)−1. Next, since βt = T−1/2β̃t, then E|Sβu,T,jk| =

T−1/2E|Sβ̃u,T,jk| ≤ T−1j1/2 by the same argument as in (b2). Since T1/T ≤ T−δ/2 for j ≤ T1, and

T−1j1/2 ≤ T−1/2(T1/T )1/2 ≤ T−1/2−δ/4, this verifies conditions (i) and (ii).

Case (b4). Here, r
(4)
T,H = H2. Hence, by (A.31), (1/r

(4)
T,H)wj,Hwk,H = (H−2wj,H)wk,H ≤

Cj−3k−1. In addition, by the mean value theorem, |βtj| = |tg(t/T ) − (t − j)g((t − j)/T )| ≤ Cj.
Thus, D2

j ≤ Cj2T and by (A.21), E|Sβu,T,jk| ≤ CT−1(j2T )1/2 = CjT−1/2, which verifies conditions
(i) and (ii).
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Case (b5). Observe that r
(5)
T,H = (H/T )2+H−1 ≥ H1/2T−1. Hence, by (A.31), (1/r

(5)
T,H)wj,Hwk,H ≤

T (H−1/2wj,H)wk,H ≤ CTj−3/2k−1. In addition, by the mean value theorem, |βtj| = |g(t/T )−g((t−
j)/T )| ≤ CjT−1, so D2

j ≤ Cj2T−1 and by (A.21), E|Sβu,T,jk| ≤ CT−1(j2/T )1/2 = CjT−3/2 ≤
Cj1/2T−1(T1/T )1/2 ≤ Cj1/2T−1−δ/4 for j ≤ T1, verifying (i) and (ii).

Case (b6). Here, r
(6)
T,H = (H/T ) + H−1 ≥ T−1/2. Hence, by (A.31), (1/r

(6)
T,H)wj,Hwk,H ≤

T 1/2(jk)−1, while D2
j =

∑T
t=T0

β2
tj ≤

∑t0+j
t=t0

(βt − βt−j)
2 ≤ ∆2j. Then, by (A.21), E|Sβu,T,jk| ≤

CT−1j1/2 ≤ CT−1/2(T1/T )1/2 ≤ CT−1/2T−δ/4, verifying (i) and (ii). This completes the proof of
(A.17).

Proof of (A.18). Let w′j,H := wj,H −wj+1,H , j = 1, · · ·T1− 1, w′T1,H := wT1,H , β′tj =
∑j

s=1 ut−s, j =

1, · · · , T1 and hT :=
∑T1

j=1wj,H . Using summation by parts, write
∑T1

j=1wj,Hut−j =
∑T1

j=1 w
′
j,Hβ

′
tj.

Then,
∑T1

j=1wj,Hutj = hTut −
∑T1

j=1 wj,Hut−j = hTut −
∑T1

j=1w
′
j,Hβ

′
tj, and

Juu,TH = T−1
n

T∑
t=T0

(
hTut −

T1∑
j=1

w′j,Hβ
′
tj

)2
= J ′β′β′,TH − 2hTJ

′
β′u,TH + h2

T σ̂
2
T,u,

where J ′β′β′,TH = T−1
n

∑T
t=T0

(
∑T1

j=1w
′
j,Hβ

′
tj)

2 and J ′β′u,TH = T−1
n

∑T
t=T0

(
∑T1

j=1w
′
j,Hβ

′
tj)ut. To prove

(A.18), it suffices to verify that

E sup
H∈IT

H
∣∣J ′β′β′,TH − EJ ′β′β′,TH∣∣→ 0, (A.22)

E sup
H∈IT

H
∣∣J ′β′u,TH − EJ ′β′u,TH∣∣→ 0, E sup

H∈IT
H|1− h2

T |σ̂2
T,u → 0. (A.23)

To show (A.22), we use the same argument as in verifying (A.16) in case (b2). Write J ′β′β′,TH =∑T1
j,k=1 w

′
j,Hw

′
k,HSβ′β′,T,jk, where Sβ′β′,T,jk := T−1

n

∑T
t=T0

β′tjβ
′
tk. In view of (A.20), to prove (A.22),

it suffices to verify conditions (i) and (ii) of (A.19) for the weights w′j,H . We can bound

|H1/2w′j,HH
1/2w′k,H | ≤ C(jk)−3/2 which follows using (A.31) for j, k < T1 and (A.29) for j = k =

T1. Moreover, since β′tj =
∑t−1

s=t−j us, then by (A.24) of Lemma A.4(ii), E
∣∣Sβ′β′,T,jk−ESβ′β′,T,jk∣∣ ≤

δ′T (jk)1/2 with δ′T = o(log−2 T ) , which verifies (i) and (ii).
To show (A.23), we use the bound H|w′j,H | ≤ Cj−1 which follows from (A.31) and (A.29). Then

H|J ′β′u,TH−EJ ′β′u,TH
∣∣ ≤∑T1

j=1H|w′j,H |T−1
n

∣∣∑T
t=T0

(β′tjut−Eβ′tjut)
∣∣ ≤ C

∑T1
j=1 j

−1T−1
∣∣∑T

t=T0
(β′tjut−

Eβ′tjut)
∣∣ =: J̃T . By (A.25) of Lemma A.4(ii), E

(
T−1

∑T
t=T0
{β′tjut − Eβ′tjut}

)2 ≤ CT−1j. Hence,

EJ̃T ≤ C
∑T1

j=1 j
−1(T−1j)1/2 ≤ C(T1/T )1/2 → 0, by definition of T1, which proves the first claim

of (A.23). To show the second claim, notice that Eσ̂2
T,u = σ2

u, and 1 − h2
T ≤ 2(1 − hT ) ≤

2
∑∞

j=T1
wj,H = O(T−6) by (A.29), which implies (A.23) and completes the proof of the lemma. �

Lemma A.4 Let ut ∼ I(0). (i) For 1 ≤ j ≤ t, set βtj =
∑t

i=t−j+1 ui, PT,jk := T−1
n

∑T
t=T0

βtjβtk

and PTj := T−1
n

∑T
t=T0

βtjut. Then,

max
1≤j,k≤T1

E(PT,jk − EPT,jk)2 ≤ δ′ 2T jk, δ′T = o(log−2 T ), (A.24)

max
1≤j≤T1

E(PTj − EPTj)2 ≤ CT−1j. (A.25)

(ii) Bounds (A.24) and (A.25) remains valid if in PT,jk and PT,j βtj are replaced by β′tj =
∑t−1

i=t−j ui.
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Proof. A short memory process ut can be written ut =
∑∞

s=0 asεt−s, see (2.10), where εj is an
i.i.d.(0, σ2

ε) noise, and
∑

k∈Z |γu(k)| <∞. Set for simplicity, aj = 0, j ≤ −1, so ut =
∑

s∈Z at−sεs.

Then βtj =
∑t

l=t−j+1 ul =
∑

s∈Z(
∑t

l=t−j+1 al−s)εs. Hence,

PT,jk = T−1
n

∑T
t=T0

βtjβtk =
∑

s,i∈ZBT,siεsεi, BT,si := T−1
∑T

t=T0
(
∑t

l=t−j+1 al−s)(
∑t

v=t−k+1 av−i).

By Lemma 4.5.1 of Giraitis, Koul, and Surgailis (2012), if an i.i.d. noise εt has finite forth moment,
then a quadratic form PT :=

∑
s,i∈Z θsiεsεi with weights θsi satisfies E(QT −EQT )2 ≤ C

∑
s,i∈Z θ

2
si,

where C does not depend on θsi’s. Hence,

E(PT,jk − EPT,jk)2 ≤ C
∑

s,i∈ZB
2
T,si = CT−2

∑T
t′,t=T0

E[βt′jβtj]E[βt′kβtk] =: CqT . (A.26)

Write qT = T−2
∑T

t′,t=T0: |t′−t|≥T1+T ε [· · · ] +T−2
∑T

t′,t=T0: |t′−t|<T1+T ε [· · · ] = q1,T + q2,T , where ε > 0 is

a small number. To prove (A.24), it suffices to show that qi,T ≤ δ′ 2T jk, i = 1, 2.
To bound q1,T , notice that

|Eβt′jβtj| ≤ δ′T j, if t′ − t ≥ T1 + T ε. (A.27)

Indeed, for t′ − j ≤ i′ ≤ t and t− j ≤ i ≤ t it holds i′ − i ≥ t′ − j − t ≥ T ε + T1 − j ≥ T ε. Then,
|Eβt′jβtj| ≤

∑t′

i′=t′−j
∑t

i=t−j |γu(i′ − i)| ≤ Cjδ′T , where δ′T :=
∑

v≥T δ/2 |γu(v)| ≤ C
∑

v≥T ε |γu(v)| =
o(log−2 T ), by Assumption 2. From (A.27) and (A.26) it follows q1,T ≤ δ′ 2T jk.

To bound q2,T , note that by (A.11), |Eβt′jβtj| ≤ Cj, and observe that T1 + T ε = T0T
−δ/2 +

T ε ≤ 2T 1−δ/2, where ε > 0 is chosen small. Therefore, q2,T ≤ Cjk T−2
∑T

t′,t=T0: |t′−t|≤T1+T ε 1 ≤
CjkT−ε =: δ′ 2T jk, which completes the proof of (A.24).

To prove (A.25), use (A.26), |Eβt′jβtj| ≤ Cj and equality βt,1 = ut, to obtain

E(PTj − EPTj)2 ≤ CT−2
∑T

t′,t=T0
E[βt′jβtj]E[βt′,1βt,1]

≤ CT−2
∑T

t′,t=T0
j|γu(t− t′)| ≤ CT−1j

∑
t∈Z |γu(t)| ≤ CT−1j.

This completes the proof of (A.25) and part (i) of the lemma.
In part (ii) of the lemma, (A.24) and (A.25) follow using the same argument as in (i). �

A.3 Auxiliary results

Denote vt,H :=
∑t−1

j=1 kj,H , t ≥ 1 and vH :=
∑∞

j=1 kj,H . Recall definitions wtj,H = kj,H/vt,H and

wj,H = kj,H/vH . Below qu,H is as in (2.11) and T1 as in definition of = Q
(apr)
T,H .

Lemma 1 Under Assumption 1, uniformly in H ∈ IT , T ≥ 1, the following holds.
(i) There exists c > 0, C > 0 such that for 0 ≤ γ ≤ 2,

vH ≥ cH, wj,H ≤ C(j ∨H)−1, j ≥ 1; (A.28)

wj,H ≤ CT−6, j ≥ T1,
∑∞

j=T1
wj,H(j/H)γ = O(T−6); (A.29)

|wtj,H − wj,H | ≤ CT−6, T0 ≤ t ≤ T, 1 ≤ j ≤ t− 1; (A.30)

wj,H(j/H)γ ≤ Cj−1, |wj,H − wj+1,H |Hγ ≤ Cj−2+γ, j ≥ 1. (A.31)

32
 

 
Working Paper No. 490 March 2014 

 



(ii) As H →∞,

H−1vH → 1, H
∑∞

j=1w
2
j,H →

∫∞
0
K2(x)dx, Hw0,H → K(0), (A.32)∑∞

j=1wj,H(j/H)γ →
∫∞

0
K(x)xγdx, 0 ≤ γ ≤ 2, (A.33)

Hqu,H → λu, (A.34)

where λu is as in Theorem 1.

Proof (i) To prove the first claim of (A.28), with ε > 0 bound vH ≥
∑[εH]

j=1 K(j/H) ≥ δ[εH] where
δ := inf0≤u≤εK(u). Notice that δ > 0 when ε > 0 is sufficiently small, because K(u)→ K(0) > 0,
u→ 0 by Assumption 1. This implies vH ≥ cH as H →∞, with c = δε/2.

To prove the second claim of (A.28), notice that by (2.3), K(x) ≤ C(x−1 ∧ 1), which together
with the first claim implies wj,H = kj,H/vH ≤ CK(j/H)H−1 ≤ C(j ∨H)−1.

To show (A.29), note that Hmax/T1 ≤ T−δ/2. By (2.3), one can bound K(x) ≤ C|x|−(m+4),
with any m > 0. Choose mδ/2 ≥ 6. Then, for j ≥ T1 and H ≤ Hmax, kj,H ≤ C(H/j)m+4 ≤
C(Hmax/T1)m(H/j)4 ≤ CT−6(H/j)4. So, wj,H ≤ CT−6, since j ≥ H. In addition,

∑∞
j=T1

wj,H(j/H)γ

≤ CT−6H−1
∑∞

j=T1
(H/j)2 ≤ CT−6HT−1

1 ≤ CT−6, proving (A.29).
To show (A.30), first we verify that

|vH − vt,H | ≤ CT−6H, t ≥ T0,

for some c > 0. By definition of Hmax and T0, Hmax/T0 ≤ T−δ. Using (2.3), bound ks,H ≤
C(H/s)m+1 choosing m such that δm ≥ 6. Then, vH − vt,H =

∑∞
s=t ks,H ≤ C

∑∞
j=t(H/j)

m+1 ≤
C(H/t)mH ≤ C(Hmax/T0)mH ≤ CT−6H when H ≤ Hmax and t ≥ T0. Together with the bound
v−1
H ≤ (cH)−1 of (A.28), this implies |wtj,H − wj,H | = kj,H |v−1

t,H − v−1
H | = wtj,H |vH − vt,H |v−1

t,H ≤
|vH − vt,H |v−1

H ≤ CT−6.
To prove the first part of (A.31), notice that by (2.3), K(x)xγ ≤ Cx−1, which together with

v−1
H ≤ CH−1 of (A.28) implies wj,H(j/H)γ = kj,H(j/H)γ/vH ≤ Cj−1. To verify the second part

of (A.31), bound Hγ|wj+1,H − wj,H | = Hγv−1
H |K(j + 1/H)−K(j/H)| ≤ CH−2+γ|K̇(ξ)| for some

ξ ∈ [jH−1, (j + 1)H−1]. By (2.3), |K̇(ξ)| ≤ Cξ−2+γ ≤ C(H/j)2−γ, which implies (A.31).
(ii) Proof of (A.32) and (A.33). Under (2.3), these claims follow using standard arguments of

approximation of a sum by an integral.
Proof of (A.34). Write

qu,H =
∑
s∈Z

( ∞∑
k=1

wk,Hwk+|s|,H − w|s|,H
)
γu(s) + w0,Hγu(0) =:

∑
s∈Z

νs,Hγu(s) + w0,Hγu(0).

Since wk+|s|,H ≤ CH−1, then H|ν|s|,H | ≤ C(
∑∞

k=1wk,H + 1) = 2C, where C does not depend on H

and s. Moreover, since |K̇| is a bounded function, then |wk+|s|,H −wk,H | = v−1
H

∣∣K((k + |s|)/H
)
−

K
(
k/H

)∣∣ ≤ C|s|H−2 supx |K̇(x)| ≤ C|s|H−2, where C does not depend on k, s and H. Therefore,
for any fixed s, H|νs,H − ν0,H | ≤ C|s|H−1(

∑∞
k=1wk,H + 1) = C|s|H−1 → 0, as H → ∞. Since,∑

s∈Z |γu(s)| <∞, by theorem of dominated convergence, H
∑

s∈Z |(νs,H − ν0,H)γu(s)| → 0. This,
together with (A.32) implies (A.34):

HQu,H = Hν0,H

∑
s∈Z

γu(s) +Hw0,Hγu(0) + o(1) = H
( ∞∑
k=1

w2
k,H − w0,H

)
s2
u +Hw0,Hσ

2
u + o(1)

→
(∫∞

0
K2(x)dx−K(0)

)
s2
u +K(0)σ2

u = λu, H →∞. �
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